algorithm23ise.com

23ise.com  时间:2021-04-09  阅读:()
Developingcomputationalthinkingintheclassroom:aframework!
June2014!
Workinggroupofauthors:!
Prof.
PaulCurzonQueenMaryUniversityofLondon,SchoolofElectronicEngineeringandComputerScienceTeachingLondonComputingProject(http://www.
teachinglondoncomputing.
org/),fundedbytheMayorofLon-donandDepartmentofEducationthroughtheLondonSchool'sExcellenceFund!
MarkDorlingBCS,TheCharteredInstituteforITandComputingAtSchoolNetworkofExcellenceproject(http://www.
com-putingatschool.
org.
uk),fundedbytheDepartmentforEducation,industrypartnersandawardingbodiesDigitalSchoolhouseLondonProject(http://www.
digitalschoolhouse.
org.
uk),fundedbytheMayorofLondonandDepartmentofEducationthroughtheLondonSchool'sExcellenceFund!
ThomasNgWestBerkshireCouncilSchoolImprovementAdviser(ICT&Assessment)!
Dr.
CynthiaSelbyBayHouseSchoolandSixthForm,Gosport,HampshireSouthamptonEducationSchool,UniversityofSouthampton!
Dr.
JohnWoollardSouthamptonEducationSchool,UniversityofSouthamptonBCS,CharteredInstituteforITBarefootComputingproject(http://www.
barefootcas.
org.
uk),fundedbytheDe-partmentforEducation!
!
!
!
!
!
!
!
!
!
!
!
Copyright2014ComputingAtSchoolThisworkislicensedundertheCreativeCommonsAttribution-NonCommerciallicense;seehttp://cre-ativecommons.
org/licenses/by-nc/3.
0/fordetails.
!
!
IntroductionComputationalthinkingsitsattheheartofthenewstatutoryprogrammeofstudyforComputing:"Ahighqualitycomputingeducationequipspupilstousecomputationalthinkingandcreativitytounder-standandchangetheworld"(DepartmentforEducation,2013,p.
188).
Thisdocumentaimstosupportteacherstoteachcomputationalthinking.
Itdescribesaframeworkthathelpsexplainwhatcomputationalthinkingis,describespedagogicapproachesforteachingitandgiveswaystoas-sessit.
PupilprogressionwiththepreviousICTcurriculumwasoftendemonstratedthrough'how'(forexample,asoft-wareusageskill)or'what'thepupilproduced(forexample,aposter).
Thiswaspartlyduetotheneedsofthebusinessworldforofficeskills.
Suchuseofpreciouscurriculumtimehoweverhasseveralweaknesses.
Firstly,thecountry'seconomydependsontechnologicalinnovationnotjustoneffectiveuseoftechnology.
Secondly,thepaceoftechnologyandorganisationalchangeisfastinthattheICTskillslearntareoutofdatebeforeapupilleavesschool.
Thirdly,technologyinvadesallaspectsofourlifeandthetypicallytaughtofficepracticeisonlyasmallpartoftechnologyusetoday.
Incontrast,thenewComputingcurriculumhasanenrichedcomputerscienceelement.
Computerscienceisanacademicdisciplinewithitsownbodyofknowledgethatcanequippupilstobecomeindependentlearners,evaluatorsandpotentiallydesignersofnewtechnologies.
Instudyingcomputerscience,pupilsgainnotonlyknowledgebutalsoauniquewayofthinkingaboutandsolvingproblems:computationalthinking.
Itallowsthepupilstounderstandthedigitalworldinadeeperway:justasphysicsequipspupilstobetterunderstandthephysicalworldandbiologythebiologicalworld.
SimonPeyton-Jonesgivesanaccountofwhylearningcom-puterscienceandcomputationalthinkingisacorelifeandtransferableskillinatalkfilmedatTEDxExeter(Peyton-Jones,2014).
Toprepareourpupilstounderstandtheconsequencesoftechnologicalchange,adaptwhenusingtechnolo-gies,developnewtechnologiesoreventoworkinjobsthathaven'tyetbeeninvented,notonlydoesthe'what'and'how'ofthesubjectneedtobetaught,pupilsalsoneedtodeveloptechniquestoaskandbeabletoanswerthequestion'why'.
Computationalthinkingsupportsdoingso.
Computationalthinkingskillsarethesetofmentalskillsthatconvert"complex,messy,partiallydefined,realworldproblemsintoaformthatamind-lesscomputercantacklewithoutfurtherassistancefromahuman.
"(BCS,2014)Today,however,thereisaninterpretation,ledbythepopularmedia,implyingthatthenewcomputingcurricu-lumfocuseson'coding'(Crow,2014;Nettleford,2013).
Thisgivesamisleadingmessage,especiallytothosenewtothediscipline.
Incontrast,ourframeworkpresentedbelowaimstosupportteachers'understandingofcomputationalthinkingacrossthefullbreadthanddepthofthesubjectofComputingandoffersawaytoeasilyandeffectivelyintegrateitintoclassroompractice.
!
!
!
TheframeworkTherearefourinterconnectedstagesofdevelopmenttoourcomputationalthinkingframework:Stage1:DefinitionStage2:ConceptsStage3:ClassroomtechniquesStage4:AssessmentWeovervieweachinthesubsequentsections.
Stage1:DefinitionTosupportthesharingofcurriculummaterialsandclassroompractices,anagreeddefinitionthatissuitablefortheclassroomisneeded.
WeusetheinterpretationforwardedbyProfessorJeannetteWing,whooriginallypopularisedtheideaofcomputationalthinking.
Shedefinesitas:"…thethoughtprocessesinvolvedinformulatingproblemsandtheirsolutionssothatthesolutionsarerepresentedinaformthatcanbeeffectivelycarriedoutbyaninformation-processingagent"(Cuny,Snyder,Wing,2010,citedinWing,2011,p.
20).
.
.
"thesesolutionscanbecarriedoutbyanyprocessingagent,whetherhuman,computer,oracombinationofboth"(Wing,2006).
WechosethisdefinitionbecauseitisbasedonWing'soriginaldefinitionandhasgainedconsensusamongstacademics.
Itsemphasisisonpupilsperformingathoughtprocess,notontheproductionofartefactsorevi-dence.
Itthereforefitsthedirectionofchangeinthecurrentcurriculumdevelopment.
Stage2:ConceptsThenextstageistodefinethecoreconceptsinvolvedincomputationalthinking.
Basedonareviewofacade-micreferences,SelbyandWoollard(2013)suggestthefollowingarekey:algorithmicthinkingevaluationdecompositionabstractiongeneralisationWeoutlinetheseconceptswithexamplesbelow,givinglinkedclassroomtechniquesinthenextsection.
Algorithmicthinkingisawayofgettingtoasolutionthroughcleardefinitionofthesteps-nothinghappensbymagic.
Ratherthancomingupwithasingleanswer,like42,thepupilsdevelopasetofinstructionsorrulesthatiffollowedprecisely(whetherbyapersonoracomputer)leadstoanswerstothatandsimilarproblems.
Forexample,wealllearnalgorithmsfordoingmultiplicationatschool.
Ifwe(oracomputer)followtherulesweweretaughtpreciselywecangettheanswertoanymultiplicationproblem.
Oncewehavethealgorithmwedon'thavetoworkouthowtodomultiplicationfromscratcheverytimewearefacedwithanewproblem.
Evaluationistheprocessofensuringanalgorithmicsolutionisagoodone:thatitisfitforpurpose.
Variouspropertiesofalgorithmsneedtobeevaluatedincludingwhethertheyarecorrect,arefastenough,areeconom-icintheuseofresources,areeasyforpeopletouseandpromoteanappropriateexperience.
Trade-offsneedtobemadeasthereisrarelyasingleidealsolutionforallsituations.
Thereisaspecificandoftenextremefo-cusonattentiontodetailincomputationalthinkingbasedevaluation.
Forexample,ifwearedevelopingamedicaldevicetodeliverdrugstopatientsinhospitalweneedtobesurethatitalwaysdeliverstheamountofdrugsetandthatitdoessoquicklyenoughoncestartispressed.
Howev-er,wealsoneedtobesurethatnurseswillbeabletosetthedosequicklyandeasilywithoutmakingmistakesandthatitwon'tbefrustratingorirritatingforpatientsandnursestouse.
Thereislikelytobeatrade-offtobemadebetweenspeedofenteringnumbersandhelpingavoidmistakesbeingmadewhendoingso.
Thejudgementaboutitbeingquickandeasyhastobemadesystematicallyandrigorously.
Decompositionisawayofthinkingaboutproblems,algorithms,artefacts,processesandsystemsintermsoftheirparts.
Theseparatepartscanthenbeunderstood,solved,developedandevaluatedseparately.
Thismakescomplexproblemseasiertosolveandlargesystemseasiertodesign.
Forexample,ifwearedevelopingagame,differentpeoplecandesignandcreatethedifferentlevelsindepen-dentlyprovidedkeyaspectsareagreedinadvance.
Throughdecompositionoftheoriginaltaskeachpartcanbedevelopedandintegratedlaterintheprocess.
Asimplearcadelevelmightalsobedecomposedintosever-alparts,suchasthelife-likemotionofacharacter,scrollingthebackgroundandsettingtherulesabouthowcharactersinteract.
Abstractionisanotherwaytomakeproblemsorsystemseasiertothinkabout.
Itsimplyinvolveshidingdetail-removingunnecessarycomplexity.
Theskillisinchoosingtherightdetailtohidesothattheproblembe-comeseasierwithoutlosinganythingthatisimportant.
Itisusedasawaytomakeiteasiertocreatecomplexalgorithms,aswellaswholesystems.
Akeypartofitisinchoosingagoodrepresentationofasystem.
Differ-entrepresentationsmakedifferentthingseasytodo.
Forexample,whenweplaycards,weusetheword'shuffle'.
Everyplayerunderstandsthat'shuffle'meansputtingthecardsinarandomorder.
Thewordisanabstraction.
Thesametypeofabstractionworkswhenprogramming.
Implementing'shuffle'inacomputergamemeansgivingawaytorandomisethecards.
Wecanrefertoshufflingthroughouttheprogramandunderstandwhatismeantwithouthavingtothinkabouthowitisactuallydonebytheprogram.
Allthatisneededisthattheprogramdoesincludeadescriptionsomewhereofhowshufflingistobedone.
Asanexampleillustratingthedifferencetherepresentationcanmake,consideranartproject.
PupilsstudyingMonetcouldtakeadigitalpictureofaHaystackpaintinginagallery.
Indoingsotheyhavecreatedarepresen-tationofitonthecomputeraspixels.
Theycantheneasilymanipulatethisdigitalrepresentationinwaysthatwouldbeveryhardwithadifferentrepresentationorintherealworld.
Forexample,thecolourscouldbechangedbyanalgorithm.
Inthiswayaseriesofdifferentbutrelatedversionsofthepaintingcouldbecreated.
Generalisationisawayofquicklysolvingnewproblemsbasedonpreviousproblemswehavesolved.
Wecantakeanalgorithmthatsolvessomespecificproblemandadaptitsothatitsolvesawholeclassofsimilarproblems.
Thenwheneverwehavetosolveanewproblemofthatkindwejustapplythisgeneralsolution.
Forexample,apupilusesafloorturtletodrawaseriesofshapes,suchasasquareandatriangle.
Thepupilwritesacomputerprogramtodrawthetwoshapes.
Theythenwanttodrawanoctagonanda10-sidedshape.
Fromtheworkwiththesquareandtriangle,theyspotthatthereisarelationshipbetweenthenumberofsidesintheshapeandtheanglesinvolved.
Theycanthenwriteanalgorithmthatexpressesthisrelationshipandusesittodrawanyregularpolygon.
Insummary,eachoftheabovetechniquesfitsintothewell-establishedsystemdesignlifecycleofcomputingprojectsinthebusiness,academicandscientificcommunities.
Inpracticetheyareusedtogetherinarichandinterdependentwaytosolveproblems.
Theemphasisintheseconceptsisonpracticaltechniquesorthoughtprocesses,notontheproductionofartefactsorevidence.
Stage3:ClassroomTechniquesThedescriptionsoftheconceptsabovearehigh-level.
Althoughimportant,ontheirowntheydon'texplainhowcomputationalthinkingcanbeembeddedintotheclassroomandintegratedintopedagogy.
Therefore,ournextstep(Table1)istoidentifylearnerbehavioursassociatedwitheach.
!
!
Table1:Computationalthinkingconceptsandassociatedtechniques.
Examplesofalgorithmicthinking,evaluation,decomposition,generalisationandabstraction,arefoundatallstages;itisthecontextthatdeterminestherelevanceandchallengeoftheactivity.
Wehavethereforetriednottoattributecomputationalconceptsandlearnerbehaviourstoparticularkeystages(phasesofeducation)be-causedoingsowouldimplythattheyareage-dependentinawaythattheyarenot:theyarecapabilitydepen-dent.
Itisalsoimportanttoemphasisethatcomputationalthinkingconceptsarenotthecontentforthesubjectof'Computing'.
Thesubjectcontentissetoutinthenationalcurriculumprogrammeofstudy.
Computationalthinkingskillsenablelearnerstoaccesspartsofthatsubjectcontent.
!
Stage4:AssessmentThefinalstageneededisawaytoassesstheincreasingcompetenceofpupilsincomputationalthinking.
Thiscanbedoneusinganadaptedversionoftheexistingsubjectframeworkforthecomputingsubjectitself.
!
Tosupportclassroomteachers,ComputingAtSchoolpublishedanassessmentframeworkcalled'ComputingProgressionPathways'(DorlingandWalker,2014a).
Itsetsoutthemajorknowledgeareasofcomputingandgivesspecificindicatorsofincreasinglevelsofmasteryofthesubjectinthoseareas.
Thisassessmentframe-workwasproducedbyasmallteamofauthorsandreviewers(allteachersandacademics)basedontheirclassroomexperiences.
Itisaninterpretationofthebreadthanddepthofthecontentinthe2014nationalcur-riculumforthecomputingprogrammeofstudy.
Thisbreadthaffordsanopportunitytoviewthesubjectofcom-putingasawhole,ratherthantheseparatesubjectstrandsofcomputerscience,digitalliteracyandinformationtechnologyproposedbytheRoyalSociety(2012).
Theassessmentframeworkidentifiesthedependenciesandinterdependenciesbetweenconceptsandprinciplesaswellasbetweenthethreesubjectstrands.
!
Separatepathwaysaregivenfortheareasofalgorithms,programming&development,dataanddatarepre-sentation,hardware&processing,communication&networksandinformationtechnology.
Forexample,thepathwayaroundthesubjectareaofalgorithmsatitslowestlevelinvolvesunderstandingofwhatanalgorithmisandanabilitytoexpresssimplelinearalgorithmswithcareandprecision.
Itthenmovesthroughlevelsofbeingabletoexpressmorecomplicatedalgorithmsusingselectionandloops,toatthehigh-estlevelbeingabletodesignalgorithmsthatmakeuseofrecursionaswellashavinganunderstandingthatnotallproblemscanbesolvedcomputationally.
Theassessmentframeworkisalsopresentedwherethelearningoutcomesareorganisedbytheseparatesub-jectstrandsofcomputerscience,digitalliteracyandinformationtechnology(DorlingandWalker,2014b).
Afur-therversionhasbeendevelopedtoincorporateprovisionfortheconceptsofcomputationalthinking(Selby,DorlingandWoollard,2014).
Itnowincludesadescriptionofhowitcanbeusedtoacknowledgeprogressionandrewardperformanceinmasteringboththecontentofthecomputingprogrammeofstudyandtheideasofcomputationalthinking(Dorling,Walker,2014c).
Forexample,algorithmicthinkingisdemonstratednotjustintheAlgorithmsandProgramming&Developmentpathways,butalsoinconstructingappropriatesearchfilters(Data&DataRepresentation)andindemonstratingunderstandingofthefetch-executecycle(Hardware&Processing).
SeeFigure1asanexampleofwhatyoucanexpecttoseeinComputingProgressionPathwayswithcomputationalthinking.
Figure1:MappingthelearningoutcomesfromComputingProgressionPathwaystotheconcepts(fromStage2)ofcomputationalthinking.
!
!
!
!
UsingtheframeworktoplanlessonsWhenplanningandteachingaschemeofworkinanysubject,teachersrefertotheplanning-teaching-evaluat-ingcycle.
Computationalthinkingcanbeincludedintheplanningstageinfourstepswithintheplanningphaseofeachlessonintheplanning-teaching-evaluatingcycle,seeFigure2.
Step1:Determinethe'why'atthestartoftheunitofstudy(Stage1)aswellasthepossibletopics(thecol-umnheadernamesfromtheProgressionPathwaysAssessmentFramework)thattheschemeofworkwillbecovering.
Repeatsteps2-4whenplanningeachlessoninaunitofstudyStep2:Decide'what'thelearningoutcomesareforthelessonfromtheComputingProgressionPathwaysAs-sessmentFramework(Stage4),whichenablethepupilstomoveclosertocompletingorachievingthe'why'.
Step3:UsethepredefinedmappingintheComputingProgressionPathwaysAssessmentFrameworktoiden-tifythepossibleassociatedcomputationalthinkingconcepts(Stage2).
Step4:Usethecomputationalthinkingconceptstoidentifypossibletechniques'how'toincorporateintoandhighlightaspartofthechosenclassroomactivities(Stage3).
Figure2:Mappingthe4stagesoftheframeworkto'why','how'and'what'.
Itisimportanttonotethatthemostimportantstepinthisprocessisthelaststep(step4).
JustbecausepupilscanevidencelearningintheComputingProgressionPathwaysAssessmentFrameworkandthatthelearningoutcomeismappedtocomputationalthinking,itdoesnotnecessarilymeanthatthepupilswillhaveperformedcomputationalthinking.
Completionofanactivity,initself,isnotevidencethatcomputationalthinkinghasoc-curred.
!
ACaseStudyBelow,weillustratetheapplicationoftheaboveframeworkwithacasestudy,basedaroundalessononeoftheauthors(Dorling)hasusedinhisclassroom.
Inthesub-sectionofeachactivity,wehighlighthowdifferentpartsoftheactivitydrawonthecomputationalthinkingconcepts(CT).
Intheclassroom,theseconceptscouldbedrawnoutexplicitlyin,forexample,adiscussionattheendwherethepupilsreflectonthecomputationalthinkingskillstheyhaveusedthroughtheactivity.
TopicNetworking&Communications-usingabinaryprotocoltotransferinformationWhyIfirstleadagroupdiscussionaimingtodrawoutwhynetworksareimportant.
Wediscusstheapplicationspupilsuseonaregularbasis,suchasasearchengineornetworkfilesharesandhowtheseapplicationshavecompletelychangedthewaywedothings.
Ileadpupilstoask"whatactuallyhappensinthewiretomakein-formationgobackandforth"HowActivity1)Recap-Iremindthepupilsthattheyhavepreviouslystudiedandunderstoodthedifferentlayersinvolvedincomputerarchitecture:applications,theoperatingsystemandthehardware.
(CT)AbstractionoffunctionalityAswemovefromhardwaretooperatingsystemtoapplicationswemovethroughincreasinglayersofsystemabstractionaseachhidesthemessydetailsofthelevelbelow.
Activity2)Iintroducethepupilstothelayersofnetworkarchitecture:application,transportandnetworkandpointoutthesimilaritytothecomputerarchitecturelayers.
(CT)AbstractionoffunctionalityInasimilarwaywemoveupthroughsimilarlayersofabstractionfromthenetworktotransportlayertoapplicationsaseachhidesthemessyde-tailsofthelevelbelow.
(CT)Generalisationofsolution(applyingthesametechniquetoasimilarprob-lem)Wehavetransferredthetechniqueofanalysisbylayersfromcomputerarchitecturetonetworkarchitecture.
Activity3)Iremindpupilsoftheirunderstandingofdenary(decimal)numbersstoredasbinarynumbers,thatisdenarynumbersareanabstractionofthebinarycode.
Theyhidethedetailofhowthenumbersareactuallystored.
Isuggestthattheycouldusethisknowledgetoinventtheirowntransportationlayerprotocol.
(CT)AbstractionofdataDenarynumbersconcealthecomplexityofthebinaryrepresentationActivity4)Igivethepupilsasimplecircuit,i.
e.
abattery,wiresandalamp,andaskthemtotransferadecimalnumberacrosstheroomtoafriendusingthelamp.
Itisuptothelearnerstoperformtheconversionintobinaryandtransferitacrosstheroom.
Iencouragethemtothinkofthedifferenttasksinvolved.
Thesenderandreceiverdodifferentthoughrelatedthings.
Therecipientwillreceivethenumber,assemblethestringofbinaryandconvertthebinarybackintoadenarynumber.
(CT)DecompositionofaproblemIdentificationofthehigh-levelstepsnecessarytoaccomplishthewholetask(CT)AlgorithmicthinkingDevelopmentoftheorderingofthehigh-levelstepsnecessarytoac-complishwholetaskandworkingoutthedetailedstepsforeach.
Obviouslywithoutanagreedprotocolthereiscompletemayhem.
Pupilshavetoworktogethertoagreeapro-tocolfor1(lighton)and0(lightoff).
Theconfusioncontinuesuntilthepupilsrealisethetimeorclockelementthatisneededsothestartpointisknownandthelightiseitheronorofffortwosecondswithaonesecondpausebetweeneachonoroff.
(CT)EvaluationoffunctionalcorrectnessPupilsreflectontheproblems(evenmayhem)ofinitialsolutionsandrealisetheneedtoimprovethem(CT)AlgorithmicthinkingThetrialandfeedbackdevelopmentloopusedbetweenpupilsistheheuristicdevelopmentofanalgorithmAnalternativeactivityforpupilswhohavenotyetfullygraspedbinaryistohavethemlookathistoricalcom-municationmethodstheyhaveheardofsuchasMorsecodeorsmokesignalswithaviewtoidentifyingsimilar-itiesbetweenthemandthecurrentchallenge.
(CT)GeneralisingasolutionfromoneproblemtoanotherIdentifyingthatineachcaseonerepresentation(aletter)istransformedintoanother(Morsecode),recognisingapatterninthesolutions.
Activity5)Astandardprotocolisagreedamongstthewholeclass,thiswasachievedthroughadiscussionoftheproblemsofinteroperabilityifeverypairhaschosenadifferentwayofcommunicating.
Theyarethengivenaseriesofnumbersthefirsttwoidentifyingtheperson(e.
g.
table-individual)andthenexttwobeingthemes-sagetothatperson(ratherthananactualIPaddressatthisstageoflearning)(CT)AbstractionofdataUnderstandingthatanIPaddressisanameforamachinePupilsagainstrugglewiththisasitcanbedifficultwithalongstringofbinary,sotheyarelikelytocomeupwithanideatochunkorgroupthebinary.
Thisisanalogoustoapacket.
(CT)AbstractionofdataInventingtheconceptofachunkorpacket,withchunksbeingsent,receivedandreassembled.
(CT)AlgorithmicthinkingWorkingoutthedetailedinstructionstomakethechunkingwork.
Activity6)Havingmasteredtheseconcepts,wediscussIPaddressingasanalogoustotheUKpostcodesys-tem.
(CT)GeneralisingasolutionfromoneproblemareatoanotherRecognisingapatterninthesolutionstonetworkpacketsendingandsendingaletterbypostFuturelearningopportunitiescanbebuiltonthesefoundations.
Forexample,visualpackettracingtoolscanbeusedtoconsiderthelocationofwebserversaroundtheworld.
DigitalliteracyquestionscanbeposedaboutbreakingthelawwhenusingtheInternetandconsideringinwhichcountryacrimemayhavebeencommitted.
WhatFromtheactivitiesdiscussedhere,thepupilshavehadopportunitiestousetechniquesassociatedwithcom-putationalthinkingconceptsasindicatedinordertodemonstratetheirunderstandingoftheprogrammeofstudycontent.
Dependinguponthelevelofunderstandingexpressedorobservedinthepupilbehaviours,itispossibletoawardprogressinthesubjectcontentfromthecomputingpathwaysatthefollowinglevels:PinkLevelAlgorithms:Understandswhatanalgorithmisandisabletoexpresssimplelinear(non-branching)al-gorithmssymbolically;Demonstratescareandprecisiontoavoiderrors.
InformationTechnology:Talksabouttheirworkandmakeschangestoimproveit.
YellowLevelAlgorithms:Designssimplealgorithmsusingloopsandselectioni.
e.
ifstatements;useslogicalreason-ingtopredictoutcomes;detectsandcorrectserrorsi.
e.
debugging,inalgorithms.
InformationTechnology:Talksabouttheirworkandmakesimprovementstosolutionsbasedonfeed-backreceivedOrangeLevelAlgorithms:Recognisesthatsomeproblemssharethesamecharacteristicsandusethesamealgo-rithmtosolveboth.
Data&DataRepresentation:Understandsthedifferencebetweendataandinformation.
Communications&Networks:Understandsthedifferencebetweentheinternetandinternetservice,forexample,worldwideweb.
InformationTechnology:Makesappropriateimprovementstosolutionsbasedonfeedbackreceivedandcancommentonthesuccessofthesolution.
BlueLevelAlgorithms:Designssolutionsbydecomposingaproblemandcreatesasub-solutionforeachoftheseparts.
PurpleLevelData&DataRepresentation:Understandshowbitpatternsrepresentnumbersandimages;knowsthatcomputerstransferdatainbinary.
Communications&Networks:Understandsdatatransmissionbetweendigitalcomputersovernet-works,includingtheinterneti.
e.
IPaddressesandpacketswitchingAlgorithms:Canidentifysimilaritiesanddifferencesinsituationsandcanusethesetosolveproblems.
InformationTechnology:Usescriteriatoevaluatethequalityofsolutions,canidentifyimprovementsmakingsomerefinementstothesolutionandfuturesolutions.
!
SummaryToengagepupilsinlessonsandsogetthebestoutofthem,itisimportantthattheyunderstandwhytheyarelearningtopics.
SomematerialssupportingthepreviousICTcurriculumfocusedonwhatwasbeingtaught,(perhapsaskill)andwhatthepupilsproduced(perhapsaspreadsheetmodel).
Thinkingabout'what'and'how'thepupilswereproducinganartefactbut'why'theywerelearningagivenskillweresecondaryconsider-ations.
The'why'wasoftenanassessmentobjectiveoraqualificationexaminationinsteadofareal-worldrea-son.
Criticismofthisapproachidentifiedalackoffocusonunderstandingthedeeper'how'and'why'(prob-lemsaresolved,systemsaremade,…)(RoyalSociety,2012).
Thefour-stepframeworkwehavesetoutgivesapracticalwaytobothunderstandcomputationalthinkingandintroducetheideasintotheclassroomcontext.
Itcanbeusedbothtosupporttheplanningofactivitiestoin-creasetheopportunitiesforpupilstodevelopcomputationalthinkingskillsandtoassesstheirprogressindo-ingso.
Thiscanbeachievedbyconsideringthe'why'ofthechallengetheyaresettingforthelearnersattheoutset.
PupilsshouldthenemployavarietyoftheircomputationalthinkingabilitiesasdescribedinTable1(the'how')todevelopunderstandingorsolvetheprobleminhand.
The'what'isexpressedintheevidenceoftheactualsubjectlearning.
Thiscouldbewhatthepupilsproduce(artefact),whatthepupilsunderstandorexpress(write,test,verbalise),orwhatbehaviourisobserved(generalising).
The'what'matchesthelearningoutcomestatementsfromtheComputingProgressionPathwaysAssessmentFramework.
Figure3mapsthefourstagesofdevelopmentdescribedabovetothenotionoffocusingonthe'why','how'and'what'.
!
!
Figure3:Mappingthe4stagesoftheframeworkto'why','how'and'what'.
!
!
!
ReferencesBCS,TheCharteredInstituteforIT.
2014.
Callforevidence-UKDigitalSkillsTaskforce.
Available:http://poli-cy.
bcs.
org/sites/policy.
bcs.
org/files/BCS%20response%20to%20UKDST%20call%20for%20evidence%20fi-nal.
pdf[Accessed26-06-2014].
DepartmentforEducation.
2013.
TheNationalCurriculuminEngland,FrameworkDocument.
Available:http://www.
education.
gov.
uk/nationalcurriculum[Accessed23-06-2014].
Dorling,M.
&Walker,M.
2014a.
ComputingProgressionPathways.
Available:http://community.
computin-gatschool.
org.
uk/resources/1692[Accessed23-06-2014].
Dorling,M.
&Walker,M.
2014b.
ComputingProgressionPathwaysgroupedbyCS,ITandDL.
Available:http://community.
computingatschool.
org.
uk/resources/1946[Accessed23-06-2014].
Dorling,M.
&Walker,M.
2014c.
ComputingProgressionPathwayswithComputationalThinking.
Available:http://community.
computingatschool.
org.
uk/resources/2324.
[Accessed27-06-2014]Nettleford,W.
2013.
PrimarySchoolChildrenLearntoWriteComputerCode.
Available:http://www.
bbc.
co.
uk/news/uk-england-london-23261504[Accessed23-06-2014].
Peyton-Jones,S.
2014.
TeachingCreativeComputerScience.
Available:http://tedxexeter.
com/2014/05/06/si-mon-peyton-jones-teaching-creative-computer-science[Accessed23-06-2014].
RoyalSociety.
2012.
ShutdownorrestartThewayforwardsforcomputinginUKschools.
Available:https://royalsociety.
org/~/media/education/computing-in-schools/2012-01-12-computing-in-schools.
pdf[Accessed23-06-2014].
Selby,C.
,Dorling,M.
&Woollard,J.
2014.
EvidenceofAssessingComputationalThinking.
https://eprints.
so-ton.
ac.
uk/366152[Accessed23-06-2014].
Selby,C.
&Woollard,J.
2013.
ComputationalThinking:TheDevelopingDefinition.
Available:http://eprints.
so-ton.
ac.
uk/356481[Accessed23-06-2014].
Wing,J.
2006.
ComputationalThinking.
Commun.
ACM,49,3,33-35.
Available:http://dl.
acm.
org/citation.
cfmid=1118215[Accessed23-06-2014].
Wing,J.
2011.
ResearchNotebook:ComputationalThinking-WhatandWhyTheLink.
Pittsburgh,PA:CarneigeMellon.
Available:http://www.
cs.
cmu.
edu/link/research-notebook-computational-thinking-what-and-why[Accessed23-06-2014].

捷锐数据399/年、60元/季 ,香港CN2云服务器 4H4G10M

捷锐数据官网商家介绍捷锐数据怎么样?捷锐数据好不好?捷锐数据是成立于2018年一家国人IDC商家,早期其主营虚拟主机CDN,现在主要有香港云服、国内物理机、腾讯轻量云代理、阿里轻量云代理,自营香港为CN2+BGP线路,采用KVM虚拟化而且单IP提供10G流量清洗并且免费配备天机盾可达到屏蔽UDP以及无视CC效果。这次捷锐数据给大家带来的活动是香港云促销,总共放量40台点击进入捷锐数据官网优惠活动内...

gcorelabs远东khabarovsk伯力Cloud云服务器测评,告诉你gcorelabs云服务器怎么样

说明一下:gcorelabs的俄罗斯远东机房“伯力”既有“Virtual servers”也有“CLOUD SERVICES”,前者是VPS,后者是云服务器,不是一回事;由于平日大家习惯把VPS和云服务器当做一回事儿,所以这里要特别说明一下。本次测评的是gcorelabs的cloud,也就是云服务器。 官方网站:https://gcorelabs.com 支持:数字加密货币、信用卡、PayPal...

湖北50G防御物理服务器( 199元/月 ),国内便宜的高防服务器

4324云是成立于2012年的老牌商家,主要经营国内服务器资源,是目前国内实力很强的商家,从价格上就可以看出来商家实力,这次商家给大家带来了全网最便宜的物理服务器。只能说用叹为观止形容。官网地址 点击进入由于是活动套餐 本款产品需要联系QQ客服 购买 QQ 800083597 QQ 2772347271CPU内存硬盘带宽IP防御价格e5 2630 12核16GBSSD 500GB​30M​1个IP...

23ise.com为你推荐
敬汉卿姓名被抢注身份证信息被抢注12306账号怎么办地图应用谁知道什么地图软件好用,求 最好可以看到路上行人阿丽克丝·布莱肯瑞吉行尸走肉第六季女演员西部妈妈网我爸妈在云南做非法集资了,钱肯定交了很多,我不恨她们。他们叫我明天去看,让我用心的看,,说是什么...bbs.99nets.com送点卷的冒险岛私服psbc.com95580是什么诈骗信息不点网址就安全吧!sss17.com一玩棋牌吧(www.17wqp.com)怎么样?百度指数词什么是百度指数www.javmoo.comJAV编程怎么做?kb123.netwww.zhmmjyw.net百度收录慢?
域名空间购买 重庆服务器托管 5折 singlehop 全球付 163网 缓存服务器 xen 免费ddos防火墙 北京主机 福建天翼加速 hkg 刀片式服务器 lol台服官网 服务器是干什么的 香港亚马逊 河南移动梦网 数据库空间 godaddy空间 .htaccess 更多