algorithm23ise.com

23ise.com  时间:2021-04-09  阅读:()
Developingcomputationalthinkingintheclassroom:aframework!
June2014!
Workinggroupofauthors:!
Prof.
PaulCurzonQueenMaryUniversityofLondon,SchoolofElectronicEngineeringandComputerScienceTeachingLondonComputingProject(http://www.
teachinglondoncomputing.
org/),fundedbytheMayorofLon-donandDepartmentofEducationthroughtheLondonSchool'sExcellenceFund!
MarkDorlingBCS,TheCharteredInstituteforITandComputingAtSchoolNetworkofExcellenceproject(http://www.
com-putingatschool.
org.
uk),fundedbytheDepartmentforEducation,industrypartnersandawardingbodiesDigitalSchoolhouseLondonProject(http://www.
digitalschoolhouse.
org.
uk),fundedbytheMayorofLondonandDepartmentofEducationthroughtheLondonSchool'sExcellenceFund!
ThomasNgWestBerkshireCouncilSchoolImprovementAdviser(ICT&Assessment)!
Dr.
CynthiaSelbyBayHouseSchoolandSixthForm,Gosport,HampshireSouthamptonEducationSchool,UniversityofSouthampton!
Dr.
JohnWoollardSouthamptonEducationSchool,UniversityofSouthamptonBCS,CharteredInstituteforITBarefootComputingproject(http://www.
barefootcas.
org.
uk),fundedbytheDe-partmentforEducation!
!
!
!
!
!
!
!
!
!
!
!
Copyright2014ComputingAtSchoolThisworkislicensedundertheCreativeCommonsAttribution-NonCommerciallicense;seehttp://cre-ativecommons.
org/licenses/by-nc/3.
0/fordetails.
!
!
IntroductionComputationalthinkingsitsattheheartofthenewstatutoryprogrammeofstudyforComputing:"Ahighqualitycomputingeducationequipspupilstousecomputationalthinkingandcreativitytounder-standandchangetheworld"(DepartmentforEducation,2013,p.
188).
Thisdocumentaimstosupportteacherstoteachcomputationalthinking.
Itdescribesaframeworkthathelpsexplainwhatcomputationalthinkingis,describespedagogicapproachesforteachingitandgiveswaystoas-sessit.
PupilprogressionwiththepreviousICTcurriculumwasoftendemonstratedthrough'how'(forexample,asoft-wareusageskill)or'what'thepupilproduced(forexample,aposter).
Thiswaspartlyduetotheneedsofthebusinessworldforofficeskills.
Suchuseofpreciouscurriculumtimehoweverhasseveralweaknesses.
Firstly,thecountry'seconomydependsontechnologicalinnovationnotjustoneffectiveuseoftechnology.
Secondly,thepaceoftechnologyandorganisationalchangeisfastinthattheICTskillslearntareoutofdatebeforeapupilleavesschool.
Thirdly,technologyinvadesallaspectsofourlifeandthetypicallytaughtofficepracticeisonlyasmallpartoftechnologyusetoday.
Incontrast,thenewComputingcurriculumhasanenrichedcomputerscienceelement.
Computerscienceisanacademicdisciplinewithitsownbodyofknowledgethatcanequippupilstobecomeindependentlearners,evaluatorsandpotentiallydesignersofnewtechnologies.
Instudyingcomputerscience,pupilsgainnotonlyknowledgebutalsoauniquewayofthinkingaboutandsolvingproblems:computationalthinking.
Itallowsthepupilstounderstandthedigitalworldinadeeperway:justasphysicsequipspupilstobetterunderstandthephysicalworldandbiologythebiologicalworld.
SimonPeyton-Jonesgivesanaccountofwhylearningcom-puterscienceandcomputationalthinkingisacorelifeandtransferableskillinatalkfilmedatTEDxExeter(Peyton-Jones,2014).
Toprepareourpupilstounderstandtheconsequencesoftechnologicalchange,adaptwhenusingtechnolo-gies,developnewtechnologiesoreventoworkinjobsthathaven'tyetbeeninvented,notonlydoesthe'what'and'how'ofthesubjectneedtobetaught,pupilsalsoneedtodeveloptechniquestoaskandbeabletoanswerthequestion'why'.
Computationalthinkingsupportsdoingso.
Computationalthinkingskillsarethesetofmentalskillsthatconvert"complex,messy,partiallydefined,realworldproblemsintoaformthatamind-lesscomputercantacklewithoutfurtherassistancefromahuman.
"(BCS,2014)Today,however,thereisaninterpretation,ledbythepopularmedia,implyingthatthenewcomputingcurricu-lumfocuseson'coding'(Crow,2014;Nettleford,2013).
Thisgivesamisleadingmessage,especiallytothosenewtothediscipline.
Incontrast,ourframeworkpresentedbelowaimstosupportteachers'understandingofcomputationalthinkingacrossthefullbreadthanddepthofthesubjectofComputingandoffersawaytoeasilyandeffectivelyintegrateitintoclassroompractice.
!
!
!
TheframeworkTherearefourinterconnectedstagesofdevelopmenttoourcomputationalthinkingframework:Stage1:DefinitionStage2:ConceptsStage3:ClassroomtechniquesStage4:AssessmentWeovervieweachinthesubsequentsections.
Stage1:DefinitionTosupportthesharingofcurriculummaterialsandclassroompractices,anagreeddefinitionthatissuitablefortheclassroomisneeded.
WeusetheinterpretationforwardedbyProfessorJeannetteWing,whooriginallypopularisedtheideaofcomputationalthinking.
Shedefinesitas:"…thethoughtprocessesinvolvedinformulatingproblemsandtheirsolutionssothatthesolutionsarerepresentedinaformthatcanbeeffectivelycarriedoutbyaninformation-processingagent"(Cuny,Snyder,Wing,2010,citedinWing,2011,p.
20).
.
.
"thesesolutionscanbecarriedoutbyanyprocessingagent,whetherhuman,computer,oracombinationofboth"(Wing,2006).
WechosethisdefinitionbecauseitisbasedonWing'soriginaldefinitionandhasgainedconsensusamongstacademics.
Itsemphasisisonpupilsperformingathoughtprocess,notontheproductionofartefactsorevi-dence.
Itthereforefitsthedirectionofchangeinthecurrentcurriculumdevelopment.
Stage2:ConceptsThenextstageistodefinethecoreconceptsinvolvedincomputationalthinking.
Basedonareviewofacade-micreferences,SelbyandWoollard(2013)suggestthefollowingarekey:algorithmicthinkingevaluationdecompositionabstractiongeneralisationWeoutlinetheseconceptswithexamplesbelow,givinglinkedclassroomtechniquesinthenextsection.
Algorithmicthinkingisawayofgettingtoasolutionthroughcleardefinitionofthesteps-nothinghappensbymagic.
Ratherthancomingupwithasingleanswer,like42,thepupilsdevelopasetofinstructionsorrulesthatiffollowedprecisely(whetherbyapersonoracomputer)leadstoanswerstothatandsimilarproblems.
Forexample,wealllearnalgorithmsfordoingmultiplicationatschool.
Ifwe(oracomputer)followtherulesweweretaughtpreciselywecangettheanswertoanymultiplicationproblem.
Oncewehavethealgorithmwedon'thavetoworkouthowtodomultiplicationfromscratcheverytimewearefacedwithanewproblem.
Evaluationistheprocessofensuringanalgorithmicsolutionisagoodone:thatitisfitforpurpose.
Variouspropertiesofalgorithmsneedtobeevaluatedincludingwhethertheyarecorrect,arefastenough,areeconom-icintheuseofresources,areeasyforpeopletouseandpromoteanappropriateexperience.
Trade-offsneedtobemadeasthereisrarelyasingleidealsolutionforallsituations.
Thereisaspecificandoftenextremefo-cusonattentiontodetailincomputationalthinkingbasedevaluation.
Forexample,ifwearedevelopingamedicaldevicetodeliverdrugstopatientsinhospitalweneedtobesurethatitalwaysdeliverstheamountofdrugsetandthatitdoessoquicklyenoughoncestartispressed.
Howev-er,wealsoneedtobesurethatnurseswillbeabletosetthedosequicklyandeasilywithoutmakingmistakesandthatitwon'tbefrustratingorirritatingforpatientsandnursestouse.
Thereislikelytobeatrade-offtobemadebetweenspeedofenteringnumbersandhelpingavoidmistakesbeingmadewhendoingso.
Thejudgementaboutitbeingquickandeasyhastobemadesystematicallyandrigorously.
Decompositionisawayofthinkingaboutproblems,algorithms,artefacts,processesandsystemsintermsoftheirparts.
Theseparatepartscanthenbeunderstood,solved,developedandevaluatedseparately.
Thismakescomplexproblemseasiertosolveandlargesystemseasiertodesign.
Forexample,ifwearedevelopingagame,differentpeoplecandesignandcreatethedifferentlevelsindepen-dentlyprovidedkeyaspectsareagreedinadvance.
Throughdecompositionoftheoriginaltaskeachpartcanbedevelopedandintegratedlaterintheprocess.
Asimplearcadelevelmightalsobedecomposedintosever-alparts,suchasthelife-likemotionofacharacter,scrollingthebackgroundandsettingtherulesabouthowcharactersinteract.
Abstractionisanotherwaytomakeproblemsorsystemseasiertothinkabout.
Itsimplyinvolveshidingdetail-removingunnecessarycomplexity.
Theskillisinchoosingtherightdetailtohidesothattheproblembe-comeseasierwithoutlosinganythingthatisimportant.
Itisusedasawaytomakeiteasiertocreatecomplexalgorithms,aswellaswholesystems.
Akeypartofitisinchoosingagoodrepresentationofasystem.
Differ-entrepresentationsmakedifferentthingseasytodo.
Forexample,whenweplaycards,weusetheword'shuffle'.
Everyplayerunderstandsthat'shuffle'meansputtingthecardsinarandomorder.
Thewordisanabstraction.
Thesametypeofabstractionworkswhenprogramming.
Implementing'shuffle'inacomputergamemeansgivingawaytorandomisethecards.
Wecanrefertoshufflingthroughouttheprogramandunderstandwhatismeantwithouthavingtothinkabouthowitisactuallydonebytheprogram.
Allthatisneededisthattheprogramdoesincludeadescriptionsomewhereofhowshufflingistobedone.
Asanexampleillustratingthedifferencetherepresentationcanmake,consideranartproject.
PupilsstudyingMonetcouldtakeadigitalpictureofaHaystackpaintinginagallery.
Indoingsotheyhavecreatedarepresen-tationofitonthecomputeraspixels.
Theycantheneasilymanipulatethisdigitalrepresentationinwaysthatwouldbeveryhardwithadifferentrepresentationorintherealworld.
Forexample,thecolourscouldbechangedbyanalgorithm.
Inthiswayaseriesofdifferentbutrelatedversionsofthepaintingcouldbecreated.
Generalisationisawayofquicklysolvingnewproblemsbasedonpreviousproblemswehavesolved.
Wecantakeanalgorithmthatsolvessomespecificproblemandadaptitsothatitsolvesawholeclassofsimilarproblems.
Thenwheneverwehavetosolveanewproblemofthatkindwejustapplythisgeneralsolution.
Forexample,apupilusesafloorturtletodrawaseriesofshapes,suchasasquareandatriangle.
Thepupilwritesacomputerprogramtodrawthetwoshapes.
Theythenwanttodrawanoctagonanda10-sidedshape.
Fromtheworkwiththesquareandtriangle,theyspotthatthereisarelationshipbetweenthenumberofsidesintheshapeandtheanglesinvolved.
Theycanthenwriteanalgorithmthatexpressesthisrelationshipandusesittodrawanyregularpolygon.
Insummary,eachoftheabovetechniquesfitsintothewell-establishedsystemdesignlifecycleofcomputingprojectsinthebusiness,academicandscientificcommunities.
Inpracticetheyareusedtogetherinarichandinterdependentwaytosolveproblems.
Theemphasisintheseconceptsisonpracticaltechniquesorthoughtprocesses,notontheproductionofartefactsorevidence.
Stage3:ClassroomTechniquesThedescriptionsoftheconceptsabovearehigh-level.
Althoughimportant,ontheirowntheydon'texplainhowcomputationalthinkingcanbeembeddedintotheclassroomandintegratedintopedagogy.
Therefore,ournextstep(Table1)istoidentifylearnerbehavioursassociatedwitheach.
!
!
Table1:Computationalthinkingconceptsandassociatedtechniques.
Examplesofalgorithmicthinking,evaluation,decomposition,generalisationandabstraction,arefoundatallstages;itisthecontextthatdeterminestherelevanceandchallengeoftheactivity.
Wehavethereforetriednottoattributecomputationalconceptsandlearnerbehaviourstoparticularkeystages(phasesofeducation)be-causedoingsowouldimplythattheyareage-dependentinawaythattheyarenot:theyarecapabilitydepen-dent.
Itisalsoimportanttoemphasisethatcomputationalthinkingconceptsarenotthecontentforthesubjectof'Computing'.
Thesubjectcontentissetoutinthenationalcurriculumprogrammeofstudy.
Computationalthinkingskillsenablelearnerstoaccesspartsofthatsubjectcontent.
!
Stage4:AssessmentThefinalstageneededisawaytoassesstheincreasingcompetenceofpupilsincomputationalthinking.
Thiscanbedoneusinganadaptedversionoftheexistingsubjectframeworkforthecomputingsubjectitself.
!
Tosupportclassroomteachers,ComputingAtSchoolpublishedanassessmentframeworkcalled'ComputingProgressionPathways'(DorlingandWalker,2014a).
Itsetsoutthemajorknowledgeareasofcomputingandgivesspecificindicatorsofincreasinglevelsofmasteryofthesubjectinthoseareas.
Thisassessmentframe-workwasproducedbyasmallteamofauthorsandreviewers(allteachersandacademics)basedontheirclassroomexperiences.
Itisaninterpretationofthebreadthanddepthofthecontentinthe2014nationalcur-riculumforthecomputingprogrammeofstudy.
Thisbreadthaffordsanopportunitytoviewthesubjectofcom-putingasawhole,ratherthantheseparatesubjectstrandsofcomputerscience,digitalliteracyandinformationtechnologyproposedbytheRoyalSociety(2012).
Theassessmentframeworkidentifiesthedependenciesandinterdependenciesbetweenconceptsandprinciplesaswellasbetweenthethreesubjectstrands.
!
Separatepathwaysaregivenfortheareasofalgorithms,programming&development,dataanddatarepre-sentation,hardware&processing,communication&networksandinformationtechnology.
Forexample,thepathwayaroundthesubjectareaofalgorithmsatitslowestlevelinvolvesunderstandingofwhatanalgorithmisandanabilitytoexpresssimplelinearalgorithmswithcareandprecision.
Itthenmovesthroughlevelsofbeingabletoexpressmorecomplicatedalgorithmsusingselectionandloops,toatthehigh-estlevelbeingabletodesignalgorithmsthatmakeuseofrecursionaswellashavinganunderstandingthatnotallproblemscanbesolvedcomputationally.
Theassessmentframeworkisalsopresentedwherethelearningoutcomesareorganisedbytheseparatesub-jectstrandsofcomputerscience,digitalliteracyandinformationtechnology(DorlingandWalker,2014b).
Afur-therversionhasbeendevelopedtoincorporateprovisionfortheconceptsofcomputationalthinking(Selby,DorlingandWoollard,2014).
Itnowincludesadescriptionofhowitcanbeusedtoacknowledgeprogressionandrewardperformanceinmasteringboththecontentofthecomputingprogrammeofstudyandtheideasofcomputationalthinking(Dorling,Walker,2014c).
Forexample,algorithmicthinkingisdemonstratednotjustintheAlgorithmsandProgramming&Developmentpathways,butalsoinconstructingappropriatesearchfilters(Data&DataRepresentation)andindemonstratingunderstandingofthefetch-executecycle(Hardware&Processing).
SeeFigure1asanexampleofwhatyoucanexpecttoseeinComputingProgressionPathwayswithcomputationalthinking.
Figure1:MappingthelearningoutcomesfromComputingProgressionPathwaystotheconcepts(fromStage2)ofcomputationalthinking.
!
!
!
!
UsingtheframeworktoplanlessonsWhenplanningandteachingaschemeofworkinanysubject,teachersrefertotheplanning-teaching-evaluat-ingcycle.
Computationalthinkingcanbeincludedintheplanningstageinfourstepswithintheplanningphaseofeachlessonintheplanning-teaching-evaluatingcycle,seeFigure2.
Step1:Determinethe'why'atthestartoftheunitofstudy(Stage1)aswellasthepossibletopics(thecol-umnheadernamesfromtheProgressionPathwaysAssessmentFramework)thattheschemeofworkwillbecovering.
Repeatsteps2-4whenplanningeachlessoninaunitofstudyStep2:Decide'what'thelearningoutcomesareforthelessonfromtheComputingProgressionPathwaysAs-sessmentFramework(Stage4),whichenablethepupilstomoveclosertocompletingorachievingthe'why'.
Step3:UsethepredefinedmappingintheComputingProgressionPathwaysAssessmentFrameworktoiden-tifythepossibleassociatedcomputationalthinkingconcepts(Stage2).
Step4:Usethecomputationalthinkingconceptstoidentifypossibletechniques'how'toincorporateintoandhighlightaspartofthechosenclassroomactivities(Stage3).
Figure2:Mappingthe4stagesoftheframeworkto'why','how'and'what'.
Itisimportanttonotethatthemostimportantstepinthisprocessisthelaststep(step4).
JustbecausepupilscanevidencelearningintheComputingProgressionPathwaysAssessmentFrameworkandthatthelearningoutcomeismappedtocomputationalthinking,itdoesnotnecessarilymeanthatthepupilswillhaveperformedcomputationalthinking.
Completionofanactivity,initself,isnotevidencethatcomputationalthinkinghasoc-curred.
!
ACaseStudyBelow,weillustratetheapplicationoftheaboveframeworkwithacasestudy,basedaroundalessononeoftheauthors(Dorling)hasusedinhisclassroom.
Inthesub-sectionofeachactivity,wehighlighthowdifferentpartsoftheactivitydrawonthecomputationalthinkingconcepts(CT).
Intheclassroom,theseconceptscouldbedrawnoutexplicitlyin,forexample,adiscussionattheendwherethepupilsreflectonthecomputationalthinkingskillstheyhaveusedthroughtheactivity.
TopicNetworking&Communications-usingabinaryprotocoltotransferinformationWhyIfirstleadagroupdiscussionaimingtodrawoutwhynetworksareimportant.
Wediscusstheapplicationspupilsuseonaregularbasis,suchasasearchengineornetworkfilesharesandhowtheseapplicationshavecompletelychangedthewaywedothings.
Ileadpupilstoask"whatactuallyhappensinthewiretomakein-formationgobackandforth"HowActivity1)Recap-Iremindthepupilsthattheyhavepreviouslystudiedandunderstoodthedifferentlayersinvolvedincomputerarchitecture:applications,theoperatingsystemandthehardware.
(CT)AbstractionoffunctionalityAswemovefromhardwaretooperatingsystemtoapplicationswemovethroughincreasinglayersofsystemabstractionaseachhidesthemessydetailsofthelevelbelow.
Activity2)Iintroducethepupilstothelayersofnetworkarchitecture:application,transportandnetworkandpointoutthesimilaritytothecomputerarchitecturelayers.
(CT)AbstractionoffunctionalityInasimilarwaywemoveupthroughsimilarlayersofabstractionfromthenetworktotransportlayertoapplicationsaseachhidesthemessyde-tailsofthelevelbelow.
(CT)Generalisationofsolution(applyingthesametechniquetoasimilarprob-lem)Wehavetransferredthetechniqueofanalysisbylayersfromcomputerarchitecturetonetworkarchitecture.
Activity3)Iremindpupilsoftheirunderstandingofdenary(decimal)numbersstoredasbinarynumbers,thatisdenarynumbersareanabstractionofthebinarycode.
Theyhidethedetailofhowthenumbersareactuallystored.
Isuggestthattheycouldusethisknowledgetoinventtheirowntransportationlayerprotocol.
(CT)AbstractionofdataDenarynumbersconcealthecomplexityofthebinaryrepresentationActivity4)Igivethepupilsasimplecircuit,i.
e.
abattery,wiresandalamp,andaskthemtotransferadecimalnumberacrosstheroomtoafriendusingthelamp.
Itisuptothelearnerstoperformtheconversionintobinaryandtransferitacrosstheroom.
Iencouragethemtothinkofthedifferenttasksinvolved.
Thesenderandreceiverdodifferentthoughrelatedthings.
Therecipientwillreceivethenumber,assemblethestringofbinaryandconvertthebinarybackintoadenarynumber.
(CT)DecompositionofaproblemIdentificationofthehigh-levelstepsnecessarytoaccomplishthewholetask(CT)AlgorithmicthinkingDevelopmentoftheorderingofthehigh-levelstepsnecessarytoac-complishwholetaskandworkingoutthedetailedstepsforeach.
Obviouslywithoutanagreedprotocolthereiscompletemayhem.
Pupilshavetoworktogethertoagreeapro-tocolfor1(lighton)and0(lightoff).
Theconfusioncontinuesuntilthepupilsrealisethetimeorclockelementthatisneededsothestartpointisknownandthelightiseitheronorofffortwosecondswithaonesecondpausebetweeneachonoroff.
(CT)EvaluationoffunctionalcorrectnessPupilsreflectontheproblems(evenmayhem)ofinitialsolutionsandrealisetheneedtoimprovethem(CT)AlgorithmicthinkingThetrialandfeedbackdevelopmentloopusedbetweenpupilsistheheuristicdevelopmentofanalgorithmAnalternativeactivityforpupilswhohavenotyetfullygraspedbinaryistohavethemlookathistoricalcom-municationmethodstheyhaveheardofsuchasMorsecodeorsmokesignalswithaviewtoidentifyingsimilar-itiesbetweenthemandthecurrentchallenge.
(CT)GeneralisingasolutionfromoneproblemtoanotherIdentifyingthatineachcaseonerepresentation(aletter)istransformedintoanother(Morsecode),recognisingapatterninthesolutions.
Activity5)Astandardprotocolisagreedamongstthewholeclass,thiswasachievedthroughadiscussionoftheproblemsofinteroperabilityifeverypairhaschosenadifferentwayofcommunicating.
Theyarethengivenaseriesofnumbersthefirsttwoidentifyingtheperson(e.
g.
table-individual)andthenexttwobeingthemes-sagetothatperson(ratherthananactualIPaddressatthisstageoflearning)(CT)AbstractionofdataUnderstandingthatanIPaddressisanameforamachinePupilsagainstrugglewiththisasitcanbedifficultwithalongstringofbinary,sotheyarelikelytocomeupwithanideatochunkorgroupthebinary.
Thisisanalogoustoapacket.
(CT)AbstractionofdataInventingtheconceptofachunkorpacket,withchunksbeingsent,receivedandreassembled.
(CT)AlgorithmicthinkingWorkingoutthedetailedinstructionstomakethechunkingwork.
Activity6)Havingmasteredtheseconcepts,wediscussIPaddressingasanalogoustotheUKpostcodesys-tem.
(CT)GeneralisingasolutionfromoneproblemareatoanotherRecognisingapatterninthesolutionstonetworkpacketsendingandsendingaletterbypostFuturelearningopportunitiescanbebuiltonthesefoundations.
Forexample,visualpackettracingtoolscanbeusedtoconsiderthelocationofwebserversaroundtheworld.
DigitalliteracyquestionscanbeposedaboutbreakingthelawwhenusingtheInternetandconsideringinwhichcountryacrimemayhavebeencommitted.
WhatFromtheactivitiesdiscussedhere,thepupilshavehadopportunitiestousetechniquesassociatedwithcom-putationalthinkingconceptsasindicatedinordertodemonstratetheirunderstandingoftheprogrammeofstudycontent.
Dependinguponthelevelofunderstandingexpressedorobservedinthepupilbehaviours,itispossibletoawardprogressinthesubjectcontentfromthecomputingpathwaysatthefollowinglevels:PinkLevelAlgorithms:Understandswhatanalgorithmisandisabletoexpresssimplelinear(non-branching)al-gorithmssymbolically;Demonstratescareandprecisiontoavoiderrors.
InformationTechnology:Talksabouttheirworkandmakeschangestoimproveit.
YellowLevelAlgorithms:Designssimplealgorithmsusingloopsandselectioni.
e.
ifstatements;useslogicalreason-ingtopredictoutcomes;detectsandcorrectserrorsi.
e.
debugging,inalgorithms.
InformationTechnology:Talksabouttheirworkandmakesimprovementstosolutionsbasedonfeed-backreceivedOrangeLevelAlgorithms:Recognisesthatsomeproblemssharethesamecharacteristicsandusethesamealgo-rithmtosolveboth.
Data&DataRepresentation:Understandsthedifferencebetweendataandinformation.
Communications&Networks:Understandsthedifferencebetweentheinternetandinternetservice,forexample,worldwideweb.
InformationTechnology:Makesappropriateimprovementstosolutionsbasedonfeedbackreceivedandcancommentonthesuccessofthesolution.
BlueLevelAlgorithms:Designssolutionsbydecomposingaproblemandcreatesasub-solutionforeachoftheseparts.
PurpleLevelData&DataRepresentation:Understandshowbitpatternsrepresentnumbersandimages;knowsthatcomputerstransferdatainbinary.
Communications&Networks:Understandsdatatransmissionbetweendigitalcomputersovernet-works,includingtheinterneti.
e.
IPaddressesandpacketswitchingAlgorithms:Canidentifysimilaritiesanddifferencesinsituationsandcanusethesetosolveproblems.
InformationTechnology:Usescriteriatoevaluatethequalityofsolutions,canidentifyimprovementsmakingsomerefinementstothesolutionandfuturesolutions.
!
SummaryToengagepupilsinlessonsandsogetthebestoutofthem,itisimportantthattheyunderstandwhytheyarelearningtopics.
SomematerialssupportingthepreviousICTcurriculumfocusedonwhatwasbeingtaught,(perhapsaskill)andwhatthepupilsproduced(perhapsaspreadsheetmodel).
Thinkingabout'what'and'how'thepupilswereproducinganartefactbut'why'theywerelearningagivenskillweresecondaryconsider-ations.
The'why'wasoftenanassessmentobjectiveoraqualificationexaminationinsteadofareal-worldrea-son.
Criticismofthisapproachidentifiedalackoffocusonunderstandingthedeeper'how'and'why'(prob-lemsaresolved,systemsaremade,…)(RoyalSociety,2012).
Thefour-stepframeworkwehavesetoutgivesapracticalwaytobothunderstandcomputationalthinkingandintroducetheideasintotheclassroomcontext.
Itcanbeusedbothtosupporttheplanningofactivitiestoin-creasetheopportunitiesforpupilstodevelopcomputationalthinkingskillsandtoassesstheirprogressindo-ingso.
Thiscanbeachievedbyconsideringthe'why'ofthechallengetheyaresettingforthelearnersattheoutset.
PupilsshouldthenemployavarietyoftheircomputationalthinkingabilitiesasdescribedinTable1(the'how')todevelopunderstandingorsolvetheprobleminhand.
The'what'isexpressedintheevidenceoftheactualsubjectlearning.
Thiscouldbewhatthepupilsproduce(artefact),whatthepupilsunderstandorexpress(write,test,verbalise),orwhatbehaviourisobserved(generalising).
The'what'matchesthelearningoutcomestatementsfromtheComputingProgressionPathwaysAssessmentFramework.
Figure3mapsthefourstagesofdevelopmentdescribedabovetothenotionoffocusingonthe'why','how'and'what'.
!
!
Figure3:Mappingthe4stagesoftheframeworkto'why','how'and'what'.
!
!
!
ReferencesBCS,TheCharteredInstituteforIT.
2014.
Callforevidence-UKDigitalSkillsTaskforce.
Available:http://poli-cy.
bcs.
org/sites/policy.
bcs.
org/files/BCS%20response%20to%20UKDST%20call%20for%20evidence%20fi-nal.
pdf[Accessed26-06-2014].
DepartmentforEducation.
2013.
TheNationalCurriculuminEngland,FrameworkDocument.
Available:http://www.
education.
gov.
uk/nationalcurriculum[Accessed23-06-2014].
Dorling,M.
&Walker,M.
2014a.
ComputingProgressionPathways.
Available:http://community.
computin-gatschool.
org.
uk/resources/1692[Accessed23-06-2014].
Dorling,M.
&Walker,M.
2014b.
ComputingProgressionPathwaysgroupedbyCS,ITandDL.
Available:http://community.
computingatschool.
org.
uk/resources/1946[Accessed23-06-2014].
Dorling,M.
&Walker,M.
2014c.
ComputingProgressionPathwayswithComputationalThinking.
Available:http://community.
computingatschool.
org.
uk/resources/2324.
[Accessed27-06-2014]Nettleford,W.
2013.
PrimarySchoolChildrenLearntoWriteComputerCode.
Available:http://www.
bbc.
co.
uk/news/uk-england-london-23261504[Accessed23-06-2014].
Peyton-Jones,S.
2014.
TeachingCreativeComputerScience.
Available:http://tedxexeter.
com/2014/05/06/si-mon-peyton-jones-teaching-creative-computer-science[Accessed23-06-2014].
RoyalSociety.
2012.
ShutdownorrestartThewayforwardsforcomputinginUKschools.
Available:https://royalsociety.
org/~/media/education/computing-in-schools/2012-01-12-computing-in-schools.
pdf[Accessed23-06-2014].
Selby,C.
,Dorling,M.
&Woollard,J.
2014.
EvidenceofAssessingComputationalThinking.
https://eprints.
so-ton.
ac.
uk/366152[Accessed23-06-2014].
Selby,C.
&Woollard,J.
2013.
ComputationalThinking:TheDevelopingDefinition.
Available:http://eprints.
so-ton.
ac.
uk/356481[Accessed23-06-2014].
Wing,J.
2006.
ComputationalThinking.
Commun.
ACM,49,3,33-35.
Available:http://dl.
acm.
org/citation.
cfmid=1118215[Accessed23-06-2014].
Wing,J.
2011.
ResearchNotebook:ComputationalThinking-WhatandWhyTheLink.
Pittsburgh,PA:CarneigeMellon.
Available:http://www.
cs.
cmu.
edu/link/research-notebook-computational-thinking-what-and-why[Accessed23-06-2014].

cyun29元/月,香港CN2 GIA云服务器低至起;香港多ip站群云服务器4核4G

cyun怎么样?cyun蓝米数据是一家(香港)藍米數據有限公司旗下品牌,蓝米云、蓝米主机等同属于该公司品牌。CYUN全系列云产品采用KVM架构,SSD磁盘阵列,优化线路,低延迟,高稳定。目前,cyun推出的香港云服务器性价比超高,香港cn2 gia云服务器,1核1G1M/系统盘+20G数据盘,低至29元/月起;香港多ip站群云服务器,16个ip/4核4G仅220元/月起,希望买香港站群服务器的站长...

速云:广州移动/深圳移动/广东联通/香港HKT等VDS,9折优惠,最低月付9元;深圳独立服务器1050元/首月起

速云怎么样?速云,国人商家,提供广州移动、深圳移动、广州茂名联通、香港hkt等VDS和独立服务器。现在暑期限时特惠,力度大。广州移动/深圳移动/广东联通/香港HKT等9折优惠,最低月付9元;暑期特惠,带宽、流量翻倍,深港mplc免费试用!点击进入:速云官方网站地址速云优惠码:全场9折优惠码:summer速云优惠活动:活动期间,所有地区所有配置可享受9折优惠,深圳/广州地区流量计费VDS可选择流量翻...

ReliableSite怎么样,月付$95美国洛杉矶独立服务器

ReliableSite怎么样?ReliableSite好不好。ReliableSite是一家成立于2006年的老牌美国商家,主要经营美国独立服务器租赁,数据中心位于:洛杉矶、迈阿密、纽约,带宽1Gbps起步,花19美元/月即可升级到10Gbps带宽,月流量150T足够各种业务场景使用,且免费提供20Gbps DDoS防护。当前商家有几款大硬盘美国独服,地点位于美国洛杉矶或纽约机房,机器配置很具有...

23ise.com为你推荐
百度商城百度商城知道在哪个地方,怎么找不到啊甲骨文不满赔偿如果合同期不满被单位辞退,用人单位是否需要赔偿原代码什么叫源代码,源代码有什么作用杰景新特我准备在网上买杰普特711RBES长笛,10700元,这价格合理吗?还有,这是纯银的吗,是国内组装的吗?同一ip网站最近我们网站老是出现同一个IP无数次的进我们网站,而且是在同一时刻,是不是被人刷了?为什么呀?www.vtigu.com如图所示的RT三角形ABC中,角B=90°(初三二次根式)30 如图所示的RT三角形ABC中,角B=90°,点p从点B开始沿BA边以1厘米每秒的速度向A移动;同时,点Q也从点B开始沿BC边以2厘米每秒的速度向点C移动。问:几秒后三角形PBQ的面积为35平方厘米?PQ的距离是多少www.36ybyb.com有什么网址有很多动漫可以看的啊?我知道的有www.hnnn.net.很多好看的!但是...都看了!我想看些别人哦!还有优酷网也不错...baqizi.cc讲讲曾子杀猪的主要内容!sodu.tw给个看免费小说的网站汴京清谈汴京残梦怎么样
子域名查询 西安电信测速 site5 香港主机 20g硬盘 嘟牛 国外在线代理 河南服务器 网站木马检测工具 酷番云 台湾谷歌 银盘服务是什么 双12 国外在线代理服务器 广州虚拟主机 中国联通宽带测速 hdsky godaddyssl cpu使用率过高怎么办 美国服务器 更多