algorithm23ise.com

23ise.com  时间:2021-04-09  阅读:()
Developingcomputationalthinkingintheclassroom:aframework!
June2014!
Workinggroupofauthors:!
Prof.
PaulCurzonQueenMaryUniversityofLondon,SchoolofElectronicEngineeringandComputerScienceTeachingLondonComputingProject(http://www.
teachinglondoncomputing.
org/),fundedbytheMayorofLon-donandDepartmentofEducationthroughtheLondonSchool'sExcellenceFund!
MarkDorlingBCS,TheCharteredInstituteforITandComputingAtSchoolNetworkofExcellenceproject(http://www.
com-putingatschool.
org.
uk),fundedbytheDepartmentforEducation,industrypartnersandawardingbodiesDigitalSchoolhouseLondonProject(http://www.
digitalschoolhouse.
org.
uk),fundedbytheMayorofLondonandDepartmentofEducationthroughtheLondonSchool'sExcellenceFund!
ThomasNgWestBerkshireCouncilSchoolImprovementAdviser(ICT&Assessment)!
Dr.
CynthiaSelbyBayHouseSchoolandSixthForm,Gosport,HampshireSouthamptonEducationSchool,UniversityofSouthampton!
Dr.
JohnWoollardSouthamptonEducationSchool,UniversityofSouthamptonBCS,CharteredInstituteforITBarefootComputingproject(http://www.
barefootcas.
org.
uk),fundedbytheDe-partmentforEducation!
!
!
!
!
!
!
!
!
!
!
!
Copyright2014ComputingAtSchoolThisworkislicensedundertheCreativeCommonsAttribution-NonCommerciallicense;seehttp://cre-ativecommons.
org/licenses/by-nc/3.
0/fordetails.
!
!
IntroductionComputationalthinkingsitsattheheartofthenewstatutoryprogrammeofstudyforComputing:"Ahighqualitycomputingeducationequipspupilstousecomputationalthinkingandcreativitytounder-standandchangetheworld"(DepartmentforEducation,2013,p.
188).
Thisdocumentaimstosupportteacherstoteachcomputationalthinking.
Itdescribesaframeworkthathelpsexplainwhatcomputationalthinkingis,describespedagogicapproachesforteachingitandgiveswaystoas-sessit.
PupilprogressionwiththepreviousICTcurriculumwasoftendemonstratedthrough'how'(forexample,asoft-wareusageskill)or'what'thepupilproduced(forexample,aposter).
Thiswaspartlyduetotheneedsofthebusinessworldforofficeskills.
Suchuseofpreciouscurriculumtimehoweverhasseveralweaknesses.
Firstly,thecountry'seconomydependsontechnologicalinnovationnotjustoneffectiveuseoftechnology.
Secondly,thepaceoftechnologyandorganisationalchangeisfastinthattheICTskillslearntareoutofdatebeforeapupilleavesschool.
Thirdly,technologyinvadesallaspectsofourlifeandthetypicallytaughtofficepracticeisonlyasmallpartoftechnologyusetoday.
Incontrast,thenewComputingcurriculumhasanenrichedcomputerscienceelement.
Computerscienceisanacademicdisciplinewithitsownbodyofknowledgethatcanequippupilstobecomeindependentlearners,evaluatorsandpotentiallydesignersofnewtechnologies.
Instudyingcomputerscience,pupilsgainnotonlyknowledgebutalsoauniquewayofthinkingaboutandsolvingproblems:computationalthinking.
Itallowsthepupilstounderstandthedigitalworldinadeeperway:justasphysicsequipspupilstobetterunderstandthephysicalworldandbiologythebiologicalworld.
SimonPeyton-Jonesgivesanaccountofwhylearningcom-puterscienceandcomputationalthinkingisacorelifeandtransferableskillinatalkfilmedatTEDxExeter(Peyton-Jones,2014).
Toprepareourpupilstounderstandtheconsequencesoftechnologicalchange,adaptwhenusingtechnolo-gies,developnewtechnologiesoreventoworkinjobsthathaven'tyetbeeninvented,notonlydoesthe'what'and'how'ofthesubjectneedtobetaught,pupilsalsoneedtodeveloptechniquestoaskandbeabletoanswerthequestion'why'.
Computationalthinkingsupportsdoingso.
Computationalthinkingskillsarethesetofmentalskillsthatconvert"complex,messy,partiallydefined,realworldproblemsintoaformthatamind-lesscomputercantacklewithoutfurtherassistancefromahuman.
"(BCS,2014)Today,however,thereisaninterpretation,ledbythepopularmedia,implyingthatthenewcomputingcurricu-lumfocuseson'coding'(Crow,2014;Nettleford,2013).
Thisgivesamisleadingmessage,especiallytothosenewtothediscipline.
Incontrast,ourframeworkpresentedbelowaimstosupportteachers'understandingofcomputationalthinkingacrossthefullbreadthanddepthofthesubjectofComputingandoffersawaytoeasilyandeffectivelyintegrateitintoclassroompractice.
!
!
!
TheframeworkTherearefourinterconnectedstagesofdevelopmenttoourcomputationalthinkingframework:Stage1:DefinitionStage2:ConceptsStage3:ClassroomtechniquesStage4:AssessmentWeovervieweachinthesubsequentsections.
Stage1:DefinitionTosupportthesharingofcurriculummaterialsandclassroompractices,anagreeddefinitionthatissuitablefortheclassroomisneeded.
WeusetheinterpretationforwardedbyProfessorJeannetteWing,whooriginallypopularisedtheideaofcomputationalthinking.
Shedefinesitas:"…thethoughtprocessesinvolvedinformulatingproblemsandtheirsolutionssothatthesolutionsarerepresentedinaformthatcanbeeffectivelycarriedoutbyaninformation-processingagent"(Cuny,Snyder,Wing,2010,citedinWing,2011,p.
20).
.
.
"thesesolutionscanbecarriedoutbyanyprocessingagent,whetherhuman,computer,oracombinationofboth"(Wing,2006).
WechosethisdefinitionbecauseitisbasedonWing'soriginaldefinitionandhasgainedconsensusamongstacademics.
Itsemphasisisonpupilsperformingathoughtprocess,notontheproductionofartefactsorevi-dence.
Itthereforefitsthedirectionofchangeinthecurrentcurriculumdevelopment.
Stage2:ConceptsThenextstageistodefinethecoreconceptsinvolvedincomputationalthinking.
Basedonareviewofacade-micreferences,SelbyandWoollard(2013)suggestthefollowingarekey:algorithmicthinkingevaluationdecompositionabstractiongeneralisationWeoutlinetheseconceptswithexamplesbelow,givinglinkedclassroomtechniquesinthenextsection.
Algorithmicthinkingisawayofgettingtoasolutionthroughcleardefinitionofthesteps-nothinghappensbymagic.
Ratherthancomingupwithasingleanswer,like42,thepupilsdevelopasetofinstructionsorrulesthatiffollowedprecisely(whetherbyapersonoracomputer)leadstoanswerstothatandsimilarproblems.
Forexample,wealllearnalgorithmsfordoingmultiplicationatschool.
Ifwe(oracomputer)followtherulesweweretaughtpreciselywecangettheanswertoanymultiplicationproblem.
Oncewehavethealgorithmwedon'thavetoworkouthowtodomultiplicationfromscratcheverytimewearefacedwithanewproblem.
Evaluationistheprocessofensuringanalgorithmicsolutionisagoodone:thatitisfitforpurpose.
Variouspropertiesofalgorithmsneedtobeevaluatedincludingwhethertheyarecorrect,arefastenough,areeconom-icintheuseofresources,areeasyforpeopletouseandpromoteanappropriateexperience.
Trade-offsneedtobemadeasthereisrarelyasingleidealsolutionforallsituations.
Thereisaspecificandoftenextremefo-cusonattentiontodetailincomputationalthinkingbasedevaluation.
Forexample,ifwearedevelopingamedicaldevicetodeliverdrugstopatientsinhospitalweneedtobesurethatitalwaysdeliverstheamountofdrugsetandthatitdoessoquicklyenoughoncestartispressed.
Howev-er,wealsoneedtobesurethatnurseswillbeabletosetthedosequicklyandeasilywithoutmakingmistakesandthatitwon'tbefrustratingorirritatingforpatientsandnursestouse.
Thereislikelytobeatrade-offtobemadebetweenspeedofenteringnumbersandhelpingavoidmistakesbeingmadewhendoingso.
Thejudgementaboutitbeingquickandeasyhastobemadesystematicallyandrigorously.
Decompositionisawayofthinkingaboutproblems,algorithms,artefacts,processesandsystemsintermsoftheirparts.
Theseparatepartscanthenbeunderstood,solved,developedandevaluatedseparately.
Thismakescomplexproblemseasiertosolveandlargesystemseasiertodesign.
Forexample,ifwearedevelopingagame,differentpeoplecandesignandcreatethedifferentlevelsindepen-dentlyprovidedkeyaspectsareagreedinadvance.
Throughdecompositionoftheoriginaltaskeachpartcanbedevelopedandintegratedlaterintheprocess.
Asimplearcadelevelmightalsobedecomposedintosever-alparts,suchasthelife-likemotionofacharacter,scrollingthebackgroundandsettingtherulesabouthowcharactersinteract.
Abstractionisanotherwaytomakeproblemsorsystemseasiertothinkabout.
Itsimplyinvolveshidingdetail-removingunnecessarycomplexity.
Theskillisinchoosingtherightdetailtohidesothattheproblembe-comeseasierwithoutlosinganythingthatisimportant.
Itisusedasawaytomakeiteasiertocreatecomplexalgorithms,aswellaswholesystems.
Akeypartofitisinchoosingagoodrepresentationofasystem.
Differ-entrepresentationsmakedifferentthingseasytodo.
Forexample,whenweplaycards,weusetheword'shuffle'.
Everyplayerunderstandsthat'shuffle'meansputtingthecardsinarandomorder.
Thewordisanabstraction.
Thesametypeofabstractionworkswhenprogramming.
Implementing'shuffle'inacomputergamemeansgivingawaytorandomisethecards.
Wecanrefertoshufflingthroughouttheprogramandunderstandwhatismeantwithouthavingtothinkabouthowitisactuallydonebytheprogram.
Allthatisneededisthattheprogramdoesincludeadescriptionsomewhereofhowshufflingistobedone.
Asanexampleillustratingthedifferencetherepresentationcanmake,consideranartproject.
PupilsstudyingMonetcouldtakeadigitalpictureofaHaystackpaintinginagallery.
Indoingsotheyhavecreatedarepresen-tationofitonthecomputeraspixels.
Theycantheneasilymanipulatethisdigitalrepresentationinwaysthatwouldbeveryhardwithadifferentrepresentationorintherealworld.
Forexample,thecolourscouldbechangedbyanalgorithm.
Inthiswayaseriesofdifferentbutrelatedversionsofthepaintingcouldbecreated.
Generalisationisawayofquicklysolvingnewproblemsbasedonpreviousproblemswehavesolved.
Wecantakeanalgorithmthatsolvessomespecificproblemandadaptitsothatitsolvesawholeclassofsimilarproblems.
Thenwheneverwehavetosolveanewproblemofthatkindwejustapplythisgeneralsolution.
Forexample,apupilusesafloorturtletodrawaseriesofshapes,suchasasquareandatriangle.
Thepupilwritesacomputerprogramtodrawthetwoshapes.
Theythenwanttodrawanoctagonanda10-sidedshape.
Fromtheworkwiththesquareandtriangle,theyspotthatthereisarelationshipbetweenthenumberofsidesintheshapeandtheanglesinvolved.
Theycanthenwriteanalgorithmthatexpressesthisrelationshipandusesittodrawanyregularpolygon.
Insummary,eachoftheabovetechniquesfitsintothewell-establishedsystemdesignlifecycleofcomputingprojectsinthebusiness,academicandscientificcommunities.
Inpracticetheyareusedtogetherinarichandinterdependentwaytosolveproblems.
Theemphasisintheseconceptsisonpracticaltechniquesorthoughtprocesses,notontheproductionofartefactsorevidence.
Stage3:ClassroomTechniquesThedescriptionsoftheconceptsabovearehigh-level.
Althoughimportant,ontheirowntheydon'texplainhowcomputationalthinkingcanbeembeddedintotheclassroomandintegratedintopedagogy.
Therefore,ournextstep(Table1)istoidentifylearnerbehavioursassociatedwitheach.
!
!
Table1:Computationalthinkingconceptsandassociatedtechniques.
Examplesofalgorithmicthinking,evaluation,decomposition,generalisationandabstraction,arefoundatallstages;itisthecontextthatdeterminestherelevanceandchallengeoftheactivity.
Wehavethereforetriednottoattributecomputationalconceptsandlearnerbehaviourstoparticularkeystages(phasesofeducation)be-causedoingsowouldimplythattheyareage-dependentinawaythattheyarenot:theyarecapabilitydepen-dent.
Itisalsoimportanttoemphasisethatcomputationalthinkingconceptsarenotthecontentforthesubjectof'Computing'.
Thesubjectcontentissetoutinthenationalcurriculumprogrammeofstudy.
Computationalthinkingskillsenablelearnerstoaccesspartsofthatsubjectcontent.
!
Stage4:AssessmentThefinalstageneededisawaytoassesstheincreasingcompetenceofpupilsincomputationalthinking.
Thiscanbedoneusinganadaptedversionoftheexistingsubjectframeworkforthecomputingsubjectitself.
!
Tosupportclassroomteachers,ComputingAtSchoolpublishedanassessmentframeworkcalled'ComputingProgressionPathways'(DorlingandWalker,2014a).
Itsetsoutthemajorknowledgeareasofcomputingandgivesspecificindicatorsofincreasinglevelsofmasteryofthesubjectinthoseareas.
Thisassessmentframe-workwasproducedbyasmallteamofauthorsandreviewers(allteachersandacademics)basedontheirclassroomexperiences.
Itisaninterpretationofthebreadthanddepthofthecontentinthe2014nationalcur-riculumforthecomputingprogrammeofstudy.
Thisbreadthaffordsanopportunitytoviewthesubjectofcom-putingasawhole,ratherthantheseparatesubjectstrandsofcomputerscience,digitalliteracyandinformationtechnologyproposedbytheRoyalSociety(2012).
Theassessmentframeworkidentifiesthedependenciesandinterdependenciesbetweenconceptsandprinciplesaswellasbetweenthethreesubjectstrands.
!
Separatepathwaysaregivenfortheareasofalgorithms,programming&development,dataanddatarepre-sentation,hardware&processing,communication&networksandinformationtechnology.
Forexample,thepathwayaroundthesubjectareaofalgorithmsatitslowestlevelinvolvesunderstandingofwhatanalgorithmisandanabilitytoexpresssimplelinearalgorithmswithcareandprecision.
Itthenmovesthroughlevelsofbeingabletoexpressmorecomplicatedalgorithmsusingselectionandloops,toatthehigh-estlevelbeingabletodesignalgorithmsthatmakeuseofrecursionaswellashavinganunderstandingthatnotallproblemscanbesolvedcomputationally.
Theassessmentframeworkisalsopresentedwherethelearningoutcomesareorganisedbytheseparatesub-jectstrandsofcomputerscience,digitalliteracyandinformationtechnology(DorlingandWalker,2014b).
Afur-therversionhasbeendevelopedtoincorporateprovisionfortheconceptsofcomputationalthinking(Selby,DorlingandWoollard,2014).
Itnowincludesadescriptionofhowitcanbeusedtoacknowledgeprogressionandrewardperformanceinmasteringboththecontentofthecomputingprogrammeofstudyandtheideasofcomputationalthinking(Dorling,Walker,2014c).
Forexample,algorithmicthinkingisdemonstratednotjustintheAlgorithmsandProgramming&Developmentpathways,butalsoinconstructingappropriatesearchfilters(Data&DataRepresentation)andindemonstratingunderstandingofthefetch-executecycle(Hardware&Processing).
SeeFigure1asanexampleofwhatyoucanexpecttoseeinComputingProgressionPathwayswithcomputationalthinking.
Figure1:MappingthelearningoutcomesfromComputingProgressionPathwaystotheconcepts(fromStage2)ofcomputationalthinking.
!
!
!
!
UsingtheframeworktoplanlessonsWhenplanningandteachingaschemeofworkinanysubject,teachersrefertotheplanning-teaching-evaluat-ingcycle.
Computationalthinkingcanbeincludedintheplanningstageinfourstepswithintheplanningphaseofeachlessonintheplanning-teaching-evaluatingcycle,seeFigure2.
Step1:Determinethe'why'atthestartoftheunitofstudy(Stage1)aswellasthepossibletopics(thecol-umnheadernamesfromtheProgressionPathwaysAssessmentFramework)thattheschemeofworkwillbecovering.
Repeatsteps2-4whenplanningeachlessoninaunitofstudyStep2:Decide'what'thelearningoutcomesareforthelessonfromtheComputingProgressionPathwaysAs-sessmentFramework(Stage4),whichenablethepupilstomoveclosertocompletingorachievingthe'why'.
Step3:UsethepredefinedmappingintheComputingProgressionPathwaysAssessmentFrameworktoiden-tifythepossibleassociatedcomputationalthinkingconcepts(Stage2).
Step4:Usethecomputationalthinkingconceptstoidentifypossibletechniques'how'toincorporateintoandhighlightaspartofthechosenclassroomactivities(Stage3).
Figure2:Mappingthe4stagesoftheframeworkto'why','how'and'what'.
Itisimportanttonotethatthemostimportantstepinthisprocessisthelaststep(step4).
JustbecausepupilscanevidencelearningintheComputingProgressionPathwaysAssessmentFrameworkandthatthelearningoutcomeismappedtocomputationalthinking,itdoesnotnecessarilymeanthatthepupilswillhaveperformedcomputationalthinking.
Completionofanactivity,initself,isnotevidencethatcomputationalthinkinghasoc-curred.
!
ACaseStudyBelow,weillustratetheapplicationoftheaboveframeworkwithacasestudy,basedaroundalessononeoftheauthors(Dorling)hasusedinhisclassroom.
Inthesub-sectionofeachactivity,wehighlighthowdifferentpartsoftheactivitydrawonthecomputationalthinkingconcepts(CT).
Intheclassroom,theseconceptscouldbedrawnoutexplicitlyin,forexample,adiscussionattheendwherethepupilsreflectonthecomputationalthinkingskillstheyhaveusedthroughtheactivity.
TopicNetworking&Communications-usingabinaryprotocoltotransferinformationWhyIfirstleadagroupdiscussionaimingtodrawoutwhynetworksareimportant.
Wediscusstheapplicationspupilsuseonaregularbasis,suchasasearchengineornetworkfilesharesandhowtheseapplicationshavecompletelychangedthewaywedothings.
Ileadpupilstoask"whatactuallyhappensinthewiretomakein-formationgobackandforth"HowActivity1)Recap-Iremindthepupilsthattheyhavepreviouslystudiedandunderstoodthedifferentlayersinvolvedincomputerarchitecture:applications,theoperatingsystemandthehardware.
(CT)AbstractionoffunctionalityAswemovefromhardwaretooperatingsystemtoapplicationswemovethroughincreasinglayersofsystemabstractionaseachhidesthemessydetailsofthelevelbelow.
Activity2)Iintroducethepupilstothelayersofnetworkarchitecture:application,transportandnetworkandpointoutthesimilaritytothecomputerarchitecturelayers.
(CT)AbstractionoffunctionalityInasimilarwaywemoveupthroughsimilarlayersofabstractionfromthenetworktotransportlayertoapplicationsaseachhidesthemessyde-tailsofthelevelbelow.
(CT)Generalisationofsolution(applyingthesametechniquetoasimilarprob-lem)Wehavetransferredthetechniqueofanalysisbylayersfromcomputerarchitecturetonetworkarchitecture.
Activity3)Iremindpupilsoftheirunderstandingofdenary(decimal)numbersstoredasbinarynumbers,thatisdenarynumbersareanabstractionofthebinarycode.
Theyhidethedetailofhowthenumbersareactuallystored.
Isuggestthattheycouldusethisknowledgetoinventtheirowntransportationlayerprotocol.
(CT)AbstractionofdataDenarynumbersconcealthecomplexityofthebinaryrepresentationActivity4)Igivethepupilsasimplecircuit,i.
e.
abattery,wiresandalamp,andaskthemtotransferadecimalnumberacrosstheroomtoafriendusingthelamp.
Itisuptothelearnerstoperformtheconversionintobinaryandtransferitacrosstheroom.
Iencouragethemtothinkofthedifferenttasksinvolved.
Thesenderandreceiverdodifferentthoughrelatedthings.
Therecipientwillreceivethenumber,assemblethestringofbinaryandconvertthebinarybackintoadenarynumber.
(CT)DecompositionofaproblemIdentificationofthehigh-levelstepsnecessarytoaccomplishthewholetask(CT)AlgorithmicthinkingDevelopmentoftheorderingofthehigh-levelstepsnecessarytoac-complishwholetaskandworkingoutthedetailedstepsforeach.
Obviouslywithoutanagreedprotocolthereiscompletemayhem.
Pupilshavetoworktogethertoagreeapro-tocolfor1(lighton)and0(lightoff).
Theconfusioncontinuesuntilthepupilsrealisethetimeorclockelementthatisneededsothestartpointisknownandthelightiseitheronorofffortwosecondswithaonesecondpausebetweeneachonoroff.
(CT)EvaluationoffunctionalcorrectnessPupilsreflectontheproblems(evenmayhem)ofinitialsolutionsandrealisetheneedtoimprovethem(CT)AlgorithmicthinkingThetrialandfeedbackdevelopmentloopusedbetweenpupilsistheheuristicdevelopmentofanalgorithmAnalternativeactivityforpupilswhohavenotyetfullygraspedbinaryistohavethemlookathistoricalcom-municationmethodstheyhaveheardofsuchasMorsecodeorsmokesignalswithaviewtoidentifyingsimilar-itiesbetweenthemandthecurrentchallenge.
(CT)GeneralisingasolutionfromoneproblemtoanotherIdentifyingthatineachcaseonerepresentation(aletter)istransformedintoanother(Morsecode),recognisingapatterninthesolutions.
Activity5)Astandardprotocolisagreedamongstthewholeclass,thiswasachievedthroughadiscussionoftheproblemsofinteroperabilityifeverypairhaschosenadifferentwayofcommunicating.
Theyarethengivenaseriesofnumbersthefirsttwoidentifyingtheperson(e.
g.
table-individual)andthenexttwobeingthemes-sagetothatperson(ratherthananactualIPaddressatthisstageoflearning)(CT)AbstractionofdataUnderstandingthatanIPaddressisanameforamachinePupilsagainstrugglewiththisasitcanbedifficultwithalongstringofbinary,sotheyarelikelytocomeupwithanideatochunkorgroupthebinary.
Thisisanalogoustoapacket.
(CT)AbstractionofdataInventingtheconceptofachunkorpacket,withchunksbeingsent,receivedandreassembled.
(CT)AlgorithmicthinkingWorkingoutthedetailedinstructionstomakethechunkingwork.
Activity6)Havingmasteredtheseconcepts,wediscussIPaddressingasanalogoustotheUKpostcodesys-tem.
(CT)GeneralisingasolutionfromoneproblemareatoanotherRecognisingapatterninthesolutionstonetworkpacketsendingandsendingaletterbypostFuturelearningopportunitiescanbebuiltonthesefoundations.
Forexample,visualpackettracingtoolscanbeusedtoconsiderthelocationofwebserversaroundtheworld.
DigitalliteracyquestionscanbeposedaboutbreakingthelawwhenusingtheInternetandconsideringinwhichcountryacrimemayhavebeencommitted.
WhatFromtheactivitiesdiscussedhere,thepupilshavehadopportunitiestousetechniquesassociatedwithcom-putationalthinkingconceptsasindicatedinordertodemonstratetheirunderstandingoftheprogrammeofstudycontent.
Dependinguponthelevelofunderstandingexpressedorobservedinthepupilbehaviours,itispossibletoawardprogressinthesubjectcontentfromthecomputingpathwaysatthefollowinglevels:PinkLevelAlgorithms:Understandswhatanalgorithmisandisabletoexpresssimplelinear(non-branching)al-gorithmssymbolically;Demonstratescareandprecisiontoavoiderrors.
InformationTechnology:Talksabouttheirworkandmakeschangestoimproveit.
YellowLevelAlgorithms:Designssimplealgorithmsusingloopsandselectioni.
e.
ifstatements;useslogicalreason-ingtopredictoutcomes;detectsandcorrectserrorsi.
e.
debugging,inalgorithms.
InformationTechnology:Talksabouttheirworkandmakesimprovementstosolutionsbasedonfeed-backreceivedOrangeLevelAlgorithms:Recognisesthatsomeproblemssharethesamecharacteristicsandusethesamealgo-rithmtosolveboth.
Data&DataRepresentation:Understandsthedifferencebetweendataandinformation.
Communications&Networks:Understandsthedifferencebetweentheinternetandinternetservice,forexample,worldwideweb.
InformationTechnology:Makesappropriateimprovementstosolutionsbasedonfeedbackreceivedandcancommentonthesuccessofthesolution.
BlueLevelAlgorithms:Designssolutionsbydecomposingaproblemandcreatesasub-solutionforeachoftheseparts.
PurpleLevelData&DataRepresentation:Understandshowbitpatternsrepresentnumbersandimages;knowsthatcomputerstransferdatainbinary.
Communications&Networks:Understandsdatatransmissionbetweendigitalcomputersovernet-works,includingtheinterneti.
e.
IPaddressesandpacketswitchingAlgorithms:Canidentifysimilaritiesanddifferencesinsituationsandcanusethesetosolveproblems.
InformationTechnology:Usescriteriatoevaluatethequalityofsolutions,canidentifyimprovementsmakingsomerefinementstothesolutionandfuturesolutions.
!
SummaryToengagepupilsinlessonsandsogetthebestoutofthem,itisimportantthattheyunderstandwhytheyarelearningtopics.
SomematerialssupportingthepreviousICTcurriculumfocusedonwhatwasbeingtaught,(perhapsaskill)andwhatthepupilsproduced(perhapsaspreadsheetmodel).
Thinkingabout'what'and'how'thepupilswereproducinganartefactbut'why'theywerelearningagivenskillweresecondaryconsider-ations.
The'why'wasoftenanassessmentobjectiveoraqualificationexaminationinsteadofareal-worldrea-son.
Criticismofthisapproachidentifiedalackoffocusonunderstandingthedeeper'how'and'why'(prob-lemsaresolved,systemsaremade,…)(RoyalSociety,2012).
Thefour-stepframeworkwehavesetoutgivesapracticalwaytobothunderstandcomputationalthinkingandintroducetheideasintotheclassroomcontext.
Itcanbeusedbothtosupporttheplanningofactivitiestoin-creasetheopportunitiesforpupilstodevelopcomputationalthinkingskillsandtoassesstheirprogressindo-ingso.
Thiscanbeachievedbyconsideringthe'why'ofthechallengetheyaresettingforthelearnersattheoutset.
PupilsshouldthenemployavarietyoftheircomputationalthinkingabilitiesasdescribedinTable1(the'how')todevelopunderstandingorsolvetheprobleminhand.
The'what'isexpressedintheevidenceoftheactualsubjectlearning.
Thiscouldbewhatthepupilsproduce(artefact),whatthepupilsunderstandorexpress(write,test,verbalise),orwhatbehaviourisobserved(generalising).
The'what'matchesthelearningoutcomestatementsfromtheComputingProgressionPathwaysAssessmentFramework.
Figure3mapsthefourstagesofdevelopmentdescribedabovetothenotionoffocusingonthe'why','how'and'what'.
!
!
Figure3:Mappingthe4stagesoftheframeworkto'why','how'and'what'.
!
!
!
ReferencesBCS,TheCharteredInstituteforIT.
2014.
Callforevidence-UKDigitalSkillsTaskforce.
Available:http://poli-cy.
bcs.
org/sites/policy.
bcs.
org/files/BCS%20response%20to%20UKDST%20call%20for%20evidence%20fi-nal.
pdf[Accessed26-06-2014].
DepartmentforEducation.
2013.
TheNationalCurriculuminEngland,FrameworkDocument.
Available:http://www.
education.
gov.
uk/nationalcurriculum[Accessed23-06-2014].
Dorling,M.
&Walker,M.
2014a.
ComputingProgressionPathways.
Available:http://community.
computin-gatschool.
org.
uk/resources/1692[Accessed23-06-2014].
Dorling,M.
&Walker,M.
2014b.
ComputingProgressionPathwaysgroupedbyCS,ITandDL.
Available:http://community.
computingatschool.
org.
uk/resources/1946[Accessed23-06-2014].
Dorling,M.
&Walker,M.
2014c.
ComputingProgressionPathwayswithComputationalThinking.
Available:http://community.
computingatschool.
org.
uk/resources/2324.
[Accessed27-06-2014]Nettleford,W.
2013.
PrimarySchoolChildrenLearntoWriteComputerCode.
Available:http://www.
bbc.
co.
uk/news/uk-england-london-23261504[Accessed23-06-2014].
Peyton-Jones,S.
2014.
TeachingCreativeComputerScience.
Available:http://tedxexeter.
com/2014/05/06/si-mon-peyton-jones-teaching-creative-computer-science[Accessed23-06-2014].
RoyalSociety.
2012.
ShutdownorrestartThewayforwardsforcomputinginUKschools.
Available:https://royalsociety.
org/~/media/education/computing-in-schools/2012-01-12-computing-in-schools.
pdf[Accessed23-06-2014].
Selby,C.
,Dorling,M.
&Woollard,J.
2014.
EvidenceofAssessingComputationalThinking.
https://eprints.
so-ton.
ac.
uk/366152[Accessed23-06-2014].
Selby,C.
&Woollard,J.
2013.
ComputationalThinking:TheDevelopingDefinition.
Available:http://eprints.
so-ton.
ac.
uk/356481[Accessed23-06-2014].
Wing,J.
2006.
ComputationalThinking.
Commun.
ACM,49,3,33-35.
Available:http://dl.
acm.
org/citation.
cfmid=1118215[Accessed23-06-2014].
Wing,J.
2011.
ResearchNotebook:ComputationalThinking-WhatandWhyTheLink.
Pittsburgh,PA:CarneigeMellon.
Available:http://www.
cs.
cmu.
edu/link/research-notebook-computational-thinking-what-and-why[Accessed23-06-2014].

TMTHosting:夏季优惠,美国西雅图VPS月付7折,年付65折,美国服务器95折AS4837线路

tmthosting怎么样?tmthosting家本站也分享过多次,之前也是不温不火的商家,加上商家的价格略贵,之到斯巴达商家出现,这个商家才被中国用户熟知,原因就是斯巴达家的机器是三网回程AS4837线路,而且也没有多余的加价,斯巴达家断货后,有朋友发现TMTHosting竟然也在同一机房,所以大家就都入手了TMTHosting家的机器。目前,TMTHosting商家放出了夏季优惠,针对VPS推...

无忧云:洛阳/大连BGP云服务器38.4元/月,雅安物理机服务器315元/月起,香港荃湾CN2限时5折优惠

无忧云怎么样?无忧云是一家成立于2017年的老牌商家旗下的服务器销售品牌,现由深圳市云上无忧网络科技有限公司运营,是正规持证IDC/ISP/IRCS商家,主要销售国内、中国香港、国外服务器产品,线路有腾讯云国外线路、自营香港CN2线路等,都是中国大陆直连线路,非常适合免备案建站业务需求和各种负载较高的项目,同时国内服务器也有多个BGP以及高防节点,目前商家开启了夏日清凉补贴活动,商家的机器还是非常...

个人网站备案流程及注意事项(内容方向和适用主机商)

如今我们还有在做个人网站吗?随着自媒体和短视频的发展和兴起,包括我们很多WEB2.0产品的延续,当然也包括个人建站市场的低迷和用户关注的不同,有些个人已经不在做网站。但是,由于我们有些朋友出于网站的爱好或者说是有些项目还是基于PC端网站的,还是有网友抱有信心的,比如我们看到有一些老牌个人网站依旧在运行,且还有新网站的出现。今天在这篇文章中谈谈有网友问关于个人网站备案的问题。这个也是前几天有他在选择...

23ise.com为你推荐
网罗设计网络工程是什么啊?毕业后能干什么工作啊?网红名字被抢注想用的微博名被人抢注了 而且是个死号 没发博没粉丝 该怎么办中老铁路中长铁路的铁路的新中国历史商标注册流程及费用注册商标的流程是什么,大概需要多少费用?广东GDP破10万亿在已披露的2017年GDP经济数据中,以下哪个省份GDP总量排名第一?百度指数词什么是百度指数baqizi.cc讲讲曾子杀猪的主要内容!dpscyclewow3.13术士的PVE的命中多少够了?bihaiyinsha谁知道长葛洗浴中心如何消费?www.seowhy.com如何快速做外链
美国域名 安徽双线服务器租用 看国外视频直播vps 新世界机房 enzu 息壤备案 腾讯云数据库 512av 外国域名 英文简历模板word 长沙服务器 免费个人网站申请 777te godaddy域名证书 建立邮箱 美国在线代理服务器 福建铁通 如何安装服务器系统 购买国外空间 超级服务器 更多