3.1800tutu.com

800tutu.com  时间:2021-04-09  阅读:()
NRELisanationallaboratoryoftheU.
S.
DepartmentofEnergyOfficeofEnergyEfficiency&RenewableEnergyOperatedbytheAllianceforSustainableEnergy,LLCThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)atwww.
nrel.
gov/publications.
ContractNo.
DE-AC36-08GO28308MarineHydrokineticEnergySiteIdentificationandRankingMethodologyPartI:WaveEnergyLeviKilcherandRobertThresherTechnicalReportNREL/TP-5000-66038October2016NRELisanationallaboratoryoftheU.
S.
DepartmentofEnergyOfficeofEnergyEfficiency&RenewableEnergyOperatedbytheAllianceforSustainableEnergy,LLCThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)atwww.
nrel.
gov/publications.
ContractNo.
DE-AC36-08GO28308NationalRenewableEnergyLaboratory15013DenverWestParkwayGolden,CO80401303-275-3000www.
nrel.
govMarineHydrokineticEnergySiteIdentificationandRankingMethodologyPartI:WaveEnergyLeviKilcherandRobertThresherPreparedunderTaskNo.
WA152001TechnicalReportNREL/TP-5000-66038October2016NOTICEThisreportwaspreparedasanaccountofworksponsoredbyanagencyoftheUnitedStatesgovernment.
NeithertheUnitedStatesgovernmentnoranyagencythereof,noranyoftheiremployees,makesanywarranty,expressorimplied,orassumesanylegalliabilityorresponsibilityfortheaccuracy,completeness,orusefulnessofanyinformation,apparatus,product,orprocessdisclosed,orrepresentsthatitsusewouldnotinfringeprivatelyownedrights.
Referencehereintoanyspecificcommercialproduct,process,orservicebytradename,trademark,manufacturer,orotherwisedoesnotnecessarilyconstituteorimplyitsendorsement,recommendation,orfavoringbytheUnitedStatesgovernmentoranyagencythereof.
TheviewsandopinionsofauthorsexpressedhereindonotnecessarilystateorreflectthoseoftheUnitedStatesgovernmentoranyagencythereof.
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)atwww.
nrel.
gov/publications.
AvailableelectronicallyatSciTechConnecthttp:/www.
osti.
gov/scitechAvailableforaprocessingfeetoU.
S.
DepartmentofEnergyanditscontractors,inpaper,from:U.
S.
DepartmentofEnergyOfficeofScientificandTechnicalInformationP.
O.
Box62OakRidge,TN37831-0062OSTIhttp://www.
osti.
govPhone:865.
576.
8401Fax:865.
576.
5728Email:reports@osti.
govAvailableforsaletothepublic,inpaper,from:U.
S.
DepartmentofCommerceNationalTechnicalInformationService5301ShawneeRoadAlexandria,VA22312NTIShttp://www.
ntis.
govPhone:800.
553.
6847or703.
605.
6000Fax:703.
605.
6900Email:orders@ntis.
govCoverPhotosbyDennisSchroeder:(lefttoright)NREL26173,NREL18302,NREL19758,NREL29642,NREL19795.
NRELprintsonpaperthatcontainsrecycledcontent.
iiiThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)atwww.
nrel.
gov/publications.
AcknowledgementsThisworkwouldnotbepossiblewithouttheinputofwaveenergyexpertsfromindustry,academia,andnationallaboratories.
Inparticular,thankstoReenstLesemannandPukhaLenee-BluhmatColumbiaPowerTechnologies;WilliamStabyatResoluteMarineEnergy;TimMundonandRahulShendureatOscillaPower;CharlesVinickatEcosphereTechnologies;BelindaBatten,DanHellin,andBrianPolagyeattheNorthwestNationalMarineRenewableEnergyCenter;LuisVega,RichardRocheleau,andPatrickCrossattheHawaiiNaturalEnergyInstitute;JasonBuschandMattSandersattheOregonWaveEnergyTrust;JoshAhmannatParametrix;WilliamTomanatCaliforniaPolytechnicStateUniversity;SimonGeerlofsandZhaoqingYangatthePacificNorthwestNationalLaboratory;VincentNearyandAnnieDallmanatSandiaNationalLaboratory;BrysonRobertsonattheUniversityofVictoria;HeidiTinnesand,OwenRoberts,RobiRobichaud,JochemWeber,andJasonCotrellattheNationalRenewableEnergyLaboratory;andJoelClineattheU.
S.
DepartmentofEnergy.
Thanksespeciallytooursponsor,theU.
S.
DepartmentofEnergy,forfundingthisworkundercontractDE-AC36-08GO28308.
ivThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)atwww.
nrel.
gov/publications.
AbbreviationsandAcronymskWhkilowatt-hourLCOElevelizedcostofenergyMCDAMulti-CriteriaDecisionAnalysisMHKmarinehydrokineticMWmegawattNNMRECNorthwestNationalMarineRenewableEnergyCenterREFSSARenewableEnergyFacilitySuitabilityStudyAreasREPARenewableEnergyPermitAreasU.
S.
DOEU.
S.
DepartmentofEnergyWECwaveenergyconverterWPDwavepowerdensityvThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)atwww.
nrel.
gov/publications.
ExecutiveSummaryMarinehydrokineticenergyisapromisingandgrowingpieceoftherenewableenergysectorthatoffershighpredictabilityandadditionalenergysourcesforadiversifiedenergyeconomy.
ThisreportinvestigatesthemarketopportunitiesforwaveenergyalongtheU.
S.
coastlines.
Itispartoneofatwo-partinvestigationintotheUnitedStates'twolargestmarinehydrokineticresources(waveandtidal).
Waveenergytechnologyisstillanemergingformofrenewableenergyforwhichlarge-scalegrid-connectedprojectcostsarecurrentlypoorlydefined.
Ideally,devicedesignerswouldliketoknowtheresourceconditionsateconomicalprojectsitessotheycanoptimizedevicedesigns.
Ontheotherhand,projectdevelopersneeddetaileddevicecostdatatoidentifysiteswhereprojectsareeconomical.
Thatis,devicedesignandsitingare,tosomeextent,acoupledproblem.
Thisworkdescribesamethodologyforidentifyinglikelydeploymentlocationsbasedonasetofcriteriathatwaveenergyexpertsinindustry,academia,andnationallaboratoriesagreearelikelytobeimportantfactorsforalltechnologytypes.
Themethodologyisamulti-criteriadecisionanalysisthatusessixcriteriatoidentifylikelydeploymentlocations:Resourcedensity(wavepowerdensity)MarketsizeEnergyprice(anestimateofavoidedenergycostinthemarket)DistancetotransmissionShippingcostWaterdepth.
Dataforeachcriterionwerecollectedfromarangeofsources,includingtheNationalRenewableEnergyLaboratory'sMHKAtlas(http://maps.
nrel.
gov/mhk_atlas)andtheU.
S.
EnergyInformationAdministration(http://eia.
gov).
Thisworkgroupsthedataforthesixcriteriaintolocalesthataredefinedasthesmallerofeitherthelocaltransmissiongridorastateboundary.
TheformerappliestoU.
S.
islands(e.
g.
,Hawaii,AmericanSamoa)andruralvillages(e.
g.
,inAlaska);thelatterappliestostatesinthecontiguousUnitedStates.
Thesedataarethenscoredfrom0to10accordingtoscoringfunctionsthatweredevelopedwithinputfromwaveenergyindustryandacademicoceanenergyexperts.
Thescoresareaggregatedusingasimpleproductmethodthatincludesaweightingfactorforeachcriterion.
Thisworkpresentstwoweightingscenarios:along-termscenariothatdoesnotincludeenergypriceandashort-termscenariothatdoesincludeenergyprice.
Theaggregatedscoresarethenusedtoproducerankedlistsoflikelydeploymentlocales.
Resultsfromtheshort-termscenarioindicatelocationswherewaveenergyislikelytobedeployedfirst.
Thelong-termscenariolooksbeyondthenextfewdecadestoatimewhentheindustryhasmaturedandthecostsofwaveenergyapproachparitywithothertechnologies,andlow-carbonelectricityproductionbecomesahigherpriority.
Atthattime,energypriceisexpectedtobealess-criticalprojectsitingcriteria.
viThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)atwww.
nrel.
gov/publications.
Inbothscenarios,HawaiiandthePacificNorthwest(NorthernCalifornia,Oregon,andWashington)rankatthetopofthelists.
Hawaiirankshighestintheshort-termscenariobecauseithashighenergycosts.
Inthelong-termscenario,Oregonrankshighestbecauseithasalargemarketandanenergeticresource.
SeveralEastCoaststatesandPuertoRicoarealsoidentifiedaspotentialwaveenergydeploymentsitesiftechnologicalinnovationsmakeitpossibletoefficientlygenerateelectricityfromthemodestresourcethere.
Therearealsoseveralsmall-marketsitesinAlaskaandU.
S.
PacificIslandsthatrankparticularlywellintheshort-termanalysisduetotheirhighenergyprices.
Theselocationsmayrepresentopportunitiestodemonstrateeconomicalwaveenergyconversionasastepping-stonetolargermarkets.
Severalfactorsthatwillaffectwaveprojectcostsandsitinghavenotbeenconsideredhere—includingpermittingconstraints,conflictinguse,seasonalresourcevariability,extremeeventlikelihood,anddistancetoports—becauseconsistentdataareunavailableortechnology-independentscoringcouldnotbeidentified.
Astheindustrycontinuestomatureandconvergearoundasubsetofdevicearchetypeswithwell-definedcosts,morepreciseinvestigationsofprojectsitingthatincludethesefactorswillbepossible.
Fornow,theseresultsprovideahigh-levelguidepointingtotheregionswheremarketsandresourcewillonedaysupportcommercialwaveenergyprojects.
viiThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)atwww.
nrel.
gov/publications.
TableofContents1Introduction.
11.
1Background11.
2Approach.
22MethodologyandData42.
1ResourceDensity.
62.
2MarketSize62.
2.
1Demand72.
2.
2TotalWaveResource72.
2.
3MarketSize:SummaryandScoring.
82.
3EnergyPrice.
82.
4Range.
92.
5WaterDepth102.
6ShippingCost.
113Results.
133.
1Long-TermModel.
133.
2Short-TermModel.
164Discussion.
184.
1PacificNorthwest.
194.
2CentralandSouthernCalifornia.
234.
3HawaiiandPacificIslandTerritories.
234.
4Alaska.
245Conclusions26References.
27viiiThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)atwww.
nrel.
gov/publications.
ListofFiguresFigure1.
WaveresourcemapalongtheU.
S.
WestCoast.
4Figure2.
WPDscoringfunction.
LocationswithWPDlessthan5kW/mareexcludedfromtheanalysis.
ThemaximumscoreisassignedwhereWPD>30kW/m.
5Figure3.
Marketscoresincreaselogarithmicallyfrom300kWto4gigawatts8Figure4.
Energypricescores.
9Figure5.
Scoringfordistancebetweenlocaleandresource(range)10Figure6.
Waterdepthscoringfunction11Figure7.
Shippingcostscores12Figure8.
ScoringmapalongtheSouthernOregoncoast.
20Figure9.
MapofscoresattheOregon-Washingtonborder(theColumbiaRiver)21Figure10.
MapofscoresinNorthernCalifornia.
22Figure11.
SouthernCaliforniascoremapnorthofPointConception.
23Figure12.
Oahu,Hawaiiscoremap.
24ListofTablesTable1.
OriginPort,IntermediatePort,andParametersoftheShippingCostModelforEachRegion.
.
.
.
11Table2.
RankingofWaveEnergyLocalesfortheLong-TermScoringModel.
15Table3.
RankingofWaveEnergyLocalesfortheShort-termScoringModel.
17Table4.
RegionalSummaryComparingLong-TermandShort-TermAnalyses181ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)atwww.
nrel.
gov/publications.
1IntroductionInthemodernera,withdemandforelectricitygrowingalongsidetheconsequencesposedbyclimatechange,thereisincreasingneedforadiverseportfolioofrenewableenergysources.
Establishedrenewableenergytechnologies,suchaswindandsolar,havethepotentialtomeetalargeportionoftheUnitedStates'energydemand,butasthey'vescaledupthey'vebeguntoencounterintegrationchallengesthatsuggestaneedforenergystorage,aswellassocietalchallengessuchascompetinglanduseandenvironmentalimpactconcerns.
Marinehydrokinetic(MHK)energyalsohasthepotentialtocontributesignificantlytothenation'senergyneeds,and—becauseitislocatedatseaandcanbeforecastwithgreateraccuracy—maynothavethesamechallenges.
MHKenergycanhelptodiversifythenation'senergyportfolioandmakethenation'sfuturehigh-penetrationrenewableenergysystemmorerobustandreliable(Maietal.
2012).
Thisreportisthefirstinatwo-partseriesonmethodsforidentifyingandrankingcommercialMHKdeploymentlocations.
Itisfocusedonwaveenergysiteidentification,anditscompanionreportfocusesontidalenergysiteidentification(Kilcher,Thresher,andTinnesand2016).
EachofthesereportsutilizespublicallyavailabledatafortheU.
S.
coastlinetoprovideahigh-levelassessmentofthepotentialforMHKdeploymentintheUnitedStates.
1.
1BackgroundWaveenergyiscurrentlyatacriticalmiddlestageofthetechnologydevelopmentprocess.
Arespectedbodyofliteratureexiststhatdescribestheessentialphysics,classifiesdesigntypes,andquantifiestheresourcepotential(e.
g.
,Bedard2008;HagermanandScott2011;Stopaetal.
2013).
Severaldevicedesignshaveperformedfull-andmid-scaledemonstrationsthathavegeneratedelectricityintheopenocean.
Incollaborationwithregionalorganizationsanduniversities,theU.
S.
DepartmentofEnergy(DOE)hasestablishedtestcenterswheredevicedesignscanbetestedinthemostenergeticlocationswiththefullarrayofmonitoringinfrastructurethatisneededfortechnologyrefinement(BattenandPolagye2013,DeVisseretal.
2013).
Thesetestcentersarecriticalforengineeringthenextgenerationofwaveenergyconverters(WECs)andprovidingthedataoncost,performance,andreliabilitynecessarytogainacceptancefromcommercialinvestors.
Thenextstepinthetechnologydevelopmentlifecycleisthedeploymentofcommercial-scalearrayswithcapacitiesgreaterthan10megawatts(MW).
Theselargerarraysareexpectedtogreatlyreducecostrelativetodemonstrationprojectsandstartthepathtowardcostparitywithothersourcesoflow-carbongenerationthroughstandardization,learningbydoing,andincreasedscale.
Mirroringexperiencefromthewindindustry,whereturbinedesignshaveevolvedforspecificclassesofwindspeedsandturbulenceconditions,DOEissupportinganefforttodefineawaveclassificationschemethatestablishesstandardsforclassifyingcriticalwavesitefactorsandconditions(InternationalElectrotechnicalCommission,2015,2011).
ForWECs,acriticaldesignconsiderationislikelytoberelatedtoperiodicstormsthatgenerateextremeseastatesthathavethepotentialtodamagedevices.
Inordertoengineerefficient,low-cost,robustdevicesthatcangaincommercialacceptance,thewaveenergyindustryneedsamoredetailedunderstandingoftheextremeconditionsWECdeviceswillencounter.
Howmanyroguewaveswillawavedeviceexpecttoseeinadecade2ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)atwww.
nrel.
gov/publications.
HowmanyextremestormsHowdoesthemagnitudeoftheforcesintheseconditionscomparetooperationalconditionsHowmuchadditionalstructuralmaterialisneededfordevicestosurvivethemDodesignchangesforreliabilityreduceefficiencyHowdotheseconsiderationscontributetothelevelizedcostofenergy(LCOE)ofwavetechnologyDOE-fundednationallaboratories,includingtheNationalRenewableEnergyLaboratoryandSandiaNationalLaboratories,aredevelopingsimulationtoolsthathelptoanswerthesequestionbypredictingperformanceandfatigueloadingonwavedevicesinoperationalandextremeseastates(Ruehletal.
2014);however,thesetoolsrequiredatathatdefinethefrequencyandintensityoftheevents.
ThewaveclassificationschemeisdesignedtohelpWECdesignerstargetarangeofoperationalandextremeseastatesthatexistinspecificlocations.
Theclassificationschemewillestablishaframeworkformorerapidcommercializationofwavetechnologyasalldeviceswillnothavetobedesignedforallconditions.
InorderfortheseeffortstobeusefultoU.
S.
technologydevelopers,theyrequiredetailedknowledgeofthetypicalambientandextremeseastatesthatexistatlikelycommercialwavesitesalongtheU.
S.
coastline.
Thisreportisintendedtohelpidentifythosesites.
1.
2ApproachTheobjectiveofthisworkistoprovideaconsistentmethodologyforassessingwaveenergyopportunitiesalongtheentireU.
S.
coastline,includingtheEastandWestCoastsofthecontiguousUnitedStates,Alaska,Hawaii,andallU.
S.
territories.
Acrossthisdomainawiderangeoffactorscontributestoprojectviability,includingresourcecharacteristics;marketconditions;regulatoryrequirements;manufacturingcapacity;andportstosupportinstallation,operations,andmaintenance.
Thediversemixofthesefactors,theircomplexrelationships,andtheevolvingstateofwaveenergytechnologyaddtothechallengeofidentifyingthemostsuitablelocationsforwavetechnologydeployment.
Fortunately,therehasalreadybeensignificantworkinthisdomain,especiallyintheregionswherewaveenergyisconsideredtobeapromisingsourceofrenewableenergy(Geerlofsetal.
2011;PorterandPhillips2016;"StateofOregonTerritorialSeaPlanPart5:UseoftheTerritorialSeafortheDevelopmentofRenewableEnergyFacilitiesorOtherRelatedStructures,Equipment,orFacilities,"2013;Stopaetal.
2013;VanCleveetal.
2013;Vega2010).
TheobjectiveofthisworkistoprovideanationwidecontextforthesestudiesandtobringU.
S.
locationsnotconsideredinthoseworksintothediscussion.
Thisanalysisisorganizedinto"locales,"definedhereinassub-regionsorsitesthatareeitherseparatedbylegalboundaries(e.
g.
,states)orareanisolatedelectricalgrid(e.
g.
,aHawaiianIslandorruralAlaskanvillage).
Thismulti-faceteddefinitionallowstherankingtoincludethediversityofMHKopportunitiesthatexistinU.
S.
waters.
Thisworkfocusesonidentifyingandrankinglocalesindependentofthetechnologyorsite-specificdetailswhilestillmaintainingquantitativescoringcriteriathatproducemeaningfulrankingsofMHKopportunities.
Itdoesnotconsiderthepermitting,alternate-use,orzoningconsiderationsthatmaybeimportantwithinalocale.
TheintentistofacilitatediscussiononMHKopportunitieswithstakeholdersandprovidecontextformoredetailedsite-specificinvestigationsbyprojectdevelopersandotherorganizations(e.
g.
,Geerlofsetal.
2011;Stopaet3ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)atwww.
nrel.
gov/publications.
al.
2013;VanCleveetal.
2013;Vega2010).
Throughoutthisanalysis,considerableeffortismadetoconsidertherangeoflocaletypesinaconsistent,inclusive,andjudiciousmanner.
Themethodologyisdesignedtoranksitesbasedonhigh-leveltechnicalandeconomicfactorsthatareimportanttocurrentandfutureMHKtechnologyandprojectdevelopment.
Towardthisend,thisworkpresentstwosetsofresults:1)along-termscenario,and2)ashort-termscenario.
Theshort-termscenarioincludesthelocale'senergypriceasascoringcriterion.
Thisisimportantintheshorttermbecausewaveenergyisstillrelativelyexpensivecomparedtoothertypesofgeneration,andthereforelocaleswithhigherenergypriceswillbemoreattractivetoprojectdevelopers.
Thelong-termscenariodoesnotincludeenergyprice.
Thisisbasedontheexpectationthatwaveenergycostswillapproachparitywithotherformsofgenerationoverthenext10to20years,andlow-carbonelectricityproductionbecomesahigherpriority.
Inthatcase,energypricewillbecomealess-criticalfactorinprojectsiting.
Theshort-andlong-termscenarios,therefore,providecomplementaryperspectivesthatidentifymarketopportunitiesandsuggesthowthoseopportunitiesmightevolveasthetechnologymaturesoverthenextfewdecades.
4ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)atwww.
nrel.
gov/publications.
2MethodologyandDataThissectionprovidesadetaileddescriptionofthedataandmethodsusedinthisreport.
AllcoastalU.
S.
statesandU.
S.
territoriesareincludedintheanalysis.
Atthesmallestlevel,alocaleisaruralisolatedpowergridwithmeanannualgenerationofatleast20kilowatts(kW)(e.
g.
,ruralAlaskanvillagesorPacificIslandcommunities).
Atthelargestlevel,alocaleisanentirestatecoastline(e.
g.
,Oregon,Washington,Florida,Georgia,etc.
).
California'slongcoastlineisdividedintothreelocales:SouthernCaliforniaissouthof35.
8N(Monterey-SanLuisObispocountyborder),NorthernCaliforniaisnorthofPt.
Arena(38.
95N),andCentralCaliforniaspansthedistancebetweenthem.
Figure1.
WaveresourcemapalongtheU.
S.
WestCoast.
Wavepowerdensityiscoloredyellow(low)tomauve(high).
Alternatingblueandgreencontoursforeachlocaleindicatetheboundaryalongwhichtotalwaveenergyiscalculated.
Reddotsarecoastaltransmission/distributionsubstations.
Thethinbluelineindicatesthe200-misobath.
ThenumberedcyanboxesindicatelocationsofFigures8-11.
Wehavechosennottodivideotherstatesintosmallerregionstoavoidrepeatingtheworkofotherswhohaveperformedmoredetailedstate-specificwavesiteidentification(e.
g.
,Stopaetal.
2013;VanCleveetal.
2013).
Thismethodologyproducedadatabaseof100localesdistributed5ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)atwww.
nrel.
gov/publications.
throughoutthePacific,alongtheU.
S.
eastandwestcoastlines,withintheCaribbean,andalongtheAlaskancoast.
Basedonreviewsofpreviouswork,asearchofpublicallyavailabledata,andasurveyofindustryexperts,asetofkeytechnologyandmarketdriverswasdevelopedtoestimatesuitabilityforearlydeploymentofwaveenergytechnology.
Whileotherfactorsandcriteriaareimportantinselectingbetweenparticularlocations,thekeycriteriaforsiteassessmentconsideredhereare:ResourcedensityMarketsizeEnergyprice(short-termscenarioonly)DistancetopointofinterconnectionWaterdepthShippingcost.
Figure2.
WPDscoringfunction.
LocationswithWPDlessthan5kW/mareexcludedfromtheanalysis.
ThemaximumscoreisassignedwhereWPD>30kW/m.
AMulti-CriteriaDecisionAnalysis(MCDA)frameworkisusedtoscoreeachofthesecriteria,createacompositescore,andgeneraterankingsofwavelocalesandtidalsites(VanCleveetal.
2013;Wangetal.
2009).
Eachofthesecriteriaisscoredonascalefrom0to10andassignedaweighttosettherelativeimportanceofeachcriterion.
Thecompositescoreiscomputedasaproductoftheweightedcriterionasfollows:=.
(1)6ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)atwww.
nrel.
gov/publications.
Where,andarethescoresandweights,respectively,foreachcriterionateachlocale.
''denotesaproductoftheweightedscores(i.
e.
Notethatthetotalcompositescoreforasite,,isbetween0and10iftheweightsarenormalizedsuchthat,=1(Wangetal.
2009).
Thedataandsoftwaretools(Pythonpackageandscripts)usedtoscoreandranksitesinthisanalysisareavailablefordownloadfromtheMHKDataRepository(submissionid154i).
ThesecompositescoresareusedtoranksitesintermsoftheirsuitabilityforearlyMHKtechnologydeployment.
Detailedinformationonthedatasourcesandscoringrationaleforthelong-termmodelforeachofthecriteriaareprovidedbelow.
Resourcedensityandmarketsizecriteriaareindicatorsofthetechnicalandcommercialviabilityofapotentialprojectlocation.
Higherresourcedensityandlargermarketsarelikelytobemoreattractivetoprojectdevelopers,andthesecriteriaarethereforescoredpositively.
Theshippingcost,distancetoresource,andwaterdepthcriteriaareindicatorsfortotalprojectcost.
Siteswithlargercostsareconsideredlessattractive,andthesecriteriaarethereforescoredlower.
2.
1ResourceDensityWavepowerdensity(WPD)istheannualaverageincidentwavepowerpersegmentofcoastline,inunitsofkW/m(InternationalElectrotechnicalCommission2011).
SeveralsourceswereusedtoobtaintheWPDestimatesforthisstudy.
TheWPDestimatesformostlocalesarefromtheDOE-funded2011ElectricPowerResearchInstitutestudy"MappingandAssessmentoftheUnitedStatesOceanWaveEnergyResource"(HagermanandScott2011).
TheseWPDestimatesarebasedona51-monthWaveWatchIIIhind-cast.
EstimatesofWPDatthePacificIslandterritoriesthatwerenotincludedintheHagermanandScottreportwereestimatedfromtheU.
S.
ArmyCorps'WaveInformationStudiesdatabase,whichalsoutilizedaWaveWatchIIIhind-castformorewidelydispersedlocations(Hansonetal.
2009).
WPDisscoredlinearlyfrom0to30kW/mandlocalswithresourceslessthan5kW/mwereexcludedfromtheanalysis.
Theuppervalue,30kW/m,isselectedbecauseitisanindustrystandardvaluefora"fullyenergeticsite"(VanCleveetal.
2013).
Thethresholdvalueof5kW/mwasselectedbasedonpriorworkinthisareaandfromindustryfeedback,whichsuggeststhat10-15kW/misanappropriateminimumthresholdforwaveenergysitinginthenextfewdecades.
Thevalueof5kW/misusedtoextendtheanalysistolongertimescaleswhenlowerpowersitesmightbecomeeconomicallyviableandtoconsiderlocationsthatwouldbeexcludedfromotherstudiesbutmayhaveotherwisefavorablesitingconsiderations.
Thisresourcescoringfunctionisagnostictotechnology-specificdetails,emphasizesthevalueoflargerresource,andexcludessiteswithaverylowresource.
2.
2MarketSizeWaveenergymarketsizeisthemaximumamountofwaveenergythatcanbesoldinagivenlocale.
Thisislimitedbytwofactors:1)themaximumpotentialdemandforwaveenergywithinthelocale,and2)thetotalwaveenergyavailablenearthelocale.
Therefore,marketsizeiscalculatedasthesmallerofthetwoquantities:demandandtotalwaveresource.
ihttp://mhkdr.
openei.
org/submissions/1547ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)atwww.
nrel.
gov/publications.
2.
2.
1DemandLocale-specificestimatesofmaximumpotentialdemandforwaveenergydonotcurrentlyexistanddependonarangeofhighlyuncertaineconomicandpoliticalfactors.
Instead,thecurrentloadofalocale'selectricgridisusedasaproxyforpotentialdemandforwaveenergy.
Thisisbasedontheassumptionthatlocaleswithlargerelectricgridswillbecapableofsupportinglargerwaveprojects,whichareattractiveforeconomyofscalebenefitsandcouldleadtoreducedLCOE.
Thisapproachisreasonablebecausetheuncertaintyassociatedwithitissmallcomparedtotherangeofloadsconsideredhere.
Forexample,a600-kWruralAlaskanvillageisunlikelytosuddenlycreateinfrastructurethatwillgeneratedemandfor50MWofwavegenerationcapacity.
Furthermore,therankingisbasedontherelativeattractivenessofU.
S.
MHKsites,andloadisareasonableproxyforrelativedemandofanyeconomicalenergysource.
Loaddatawerecompiledfromthefollowingsources:RuralAlaskancommunities:AlaskaEnergyAuthority'sPowerCostEqualization(PCE)report(2013PCEReport,2014)HawaiianIslands:HawaiianStateEnergyOfficeFactsandFigures(HawaiianStateEnergyOffice2014)PacificIslandsTerritories:VariousNRELtechnicalreportsandtheMarshallEnergycompanywebsite(Baring-Gould,Hunsberger,Visser,andVoss2011;Baring-Gould,Conrad,Haase,Hotchkiss,McNutt2011;Busche,Conrad,Funk,Kandt,McNutt2011;MarshallsEnergyCompany2013)ForallotherU.
S.
states,loaddataarefromtheU.
S.
EnergyInformationAdministration(RetailSalesofElectricity2013)ForeachCalifornialocale(Northern,Central,Southern),theEnergyInformationAdministrationtotalwasportionedbypopulation.
2.
2.
2TotalWaveResourceThetotalwavepowerwasestimatedfromtheWPDdata(HagermanandScott2011).
Becausethisdatasetdoesnotyetincludewaveenergydirectionality,weassumeomni-directionalwavepowerpropagatesinthemeanwavefluxdirection.
Wethencomputethetotaltheoreticalenergyasthefluxofthisvectorcrossingacontouraroundthesite,island,orcoastline(i.
e.
,sumofdot-productsaroundthelocale).
Thiscontouristakenasthenearerof20kmfromtransmissionsubstationsonthelocale'sgridorthe200-mdepthcontour.
Weusethis"vectordot-productmethod"—asopposedtosummingwaveenergymagnitude—becauseitprovidesaconservativeestimateoftotalavailablepowerthatisinsensitivetocontourdetails(wigglesandfolds).
Thetheoreticalestimateisthenmultipliedbya"knockdownfactor"of0.
5toobtainanestimateofthetotalpracticalresource.
Thisfactorismeanttoaccountfora)regionsthatwillbeexcludedfromdevelopmentandb)wavefarmefficiency.
Whilethevalueoftheknockdownfactorislikelytobehigh,itsprimarypurposeistoequalizethetotalresourceestimateswithdemandsothatthetwovariablescanbecomparedandusedasanestimateofrelativemarketsizeforcomparinglocales.
Sincetheaboveestimateofdemandisalsobiasedhigh,thevalueof0.
5fortheknockdownfactorisreasonable.
8ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)atwww.
nrel.
gov/publications.
2.
2.
3MarketSize:SummaryandScoringInsummary,wecomputethetotalpracticalresourceforeachlocalethencomparethistothepotentialdemand(load)forwaveenergyatthatlocale.
Thesmallerofthetwovaluesistakenasanestimateofmarketsize.
Ingeneral,thisworkisdesignedtofavorlocaleswithlargemarketsbecauseeconomiesofscalearehighlyattractivetoMHKprojectdevelopers.
Ontheotherhand,thescoringisintendedtoincludesmallmarketsthathavehighlyfavorablesiteconditions,whichmaybevaluableasearlycommercialprojects.
Toaccountforthesefactorsanduncertainties,wescoremarketsizelogarithmicallyfrom300kWto5gigawatts(Figure3).
Thisfunctioncapturesthelogarithmicdistributionofthemarketsconsideredinthisanalysisandproducesascoringthatismoresensitiveforsmallmarkets(e.
g.
,8)betweenMorroBayandAvilaBeach(i.
e.
,westofSanLuisObispo).
Allofthesesitesareparticularlyattractivefortheiraccesstoalargegrid.
Vandenberg,inparticular,isattractivebecausethewaterstherearecontrolledbytheAirForce.
4.
3HawaiiandPacificIslandTerritoriesHawaiihasagoodwaveenergyresourceandasignificantdemandforwaveenergy.
Hawaiiisparticularlyattractiveasawaveenergydevelopmentlocationintheshort-termscenariobecauseofthehighenergypricesontheislands.
Evenwithoutbringingthisfactorintoaccount,thenorthshoreofthefourlargestHawaiianIslandsallrankwellinthisanalysis.
MoredetailedresourcemapsandanalysisofdevelopmentopportunitieshavebeencompletedbylocalstakeholdersandtheUniversityofHawaii'sHawaiiNationalMarineRenewableEnergyCenter(Stopaetal.
2013;Vega2010).
AlloftheHawaiianIslandscould,theoretically,bepoweredbywaveenergy.
Acriticalissuefortheislands,however,isthefactthatthewaterdepthincreasesrapidlyawayfromtheislands'shores.
Kauai,Maui,andtheBigIslandallhavesimilarlyhighscores(>7.
5)alongtheirnorthernshoreline,whereenergeticwavesfromtheNorthPacificencountertheislandcoastlines.
Oahu,inparticular,scoreshighestamongtheislandsprimarilybecauseithasthelargestmarket(Figure12).
24ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)atwww.
nrel.
gov/publications.
Figure12.
Oahu,Hawaiiscoremap.
ThehighestrankingsiteforalloftheHawaiianIslandsisatthenortherntipofOahu(cyan).
ExistingnationalDataBuoyCenterbuoysandtheWaveEnergyTestSite(WETS)arelabeledinwhite.
ThefarPacificislargelyunexploredforwaveenergydevelopment.
Therearecurrentlynopublicreportsthatincludethewaveenergyresourceattheselocations.
TheresourcedatausedinthisreportwerecalculatedfromtheU.
S.
ArmyCorps'WaveInformationSystemsdatabase.
LiketheHawaiianIslands,thefarPacificterritorieshavehighenergypricesthatmaymakeshort-termdeploymentofwaveenergytechnologyeconomicallyfeasiblebeforeitisfeasibleinlargermarkets.
Moreworkisneededtoidentifytheinterestandconflictingusesthatexistintheseregionsforwaveenergy.
Siteassessmentsandfeasibilitystudieswouldbehelpfulinunderstandingthechallengesandopportunitiesthatexistintheselocations.
4.
4AlaskaThesoutherncoastlineofAlaskaholds51%ofthenation'swaveenergyresource,andtheBeringSeapossessesanother8%(HagermanandScott2011).
ThechallengeinAlaskaisconnectingthatvastresourcetoamarketthatcanutilizethese"strandedrenewables"(Johnsonetal.
2012).
TheclosesttheprimarypowergridofthestatecomestothisresourceisontheKenaiPeninsulasouthofAnchorage,wheretheWPDislessthan15kW/m.
TheAleutianChainandsoutheastAlaskabothhaveverylargeWPD,butdemandforenergyisrelativelylowthere.
ThoughitisunlikelythatwaveenergywillprovidesignificantpowertotheAlaskanRailbeltintheforeseeablefuture,thereareafewsmallcommunitiesalongtheAlaskancoastlinethatholdpromiseforwaveenergydevelopment.
LiketheHawaiianandPacificIslands,theseAlaskancommunitiesoftenhavehighenergypricesthatlifttheirrankingintheshort-termmodel.
FirstamongtheseisYakutat,whichhasagoodWPDof22kW/m.
TherehasalreadybeensomeprojectdevelopmentinYakutat,andthecommunityhasshowninterestinutilizingitswaveenergyresourcetopowertheireconomy.
Mostnotably,thelocalmunicipal-ownedutilityhasperformedupgradesoftheirtransmissionandprimarygenerationinfrastructuretofacilitateintegrationwithrenewables.
Yakutatishometoafishprocessingplantthathasstruggledtocompetewithprocessorsinothercommunitiesthathavelowerenergyprices.
Lookingatafutureinwhichwaveenergybeginstocompetewithtraditionalsourcesofelectricity,itisintriguingtoconsiderhowYakutatmightgrowandbetransformedbylow-costwaveenergy.
25ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)atwww.
nrel.
gov/publications.
Kodiak,Alaska—locatedonanislandofthesamename—isasomewhatlargercommunitythatisexposedtotheGulfofAlaska.
Itswaveresource,however,isapaltry9kW/maccordingtoexistingmodels.
However,giventhewidespacingbetweenwavebuoysforvalidatingmodelsinthisregion,itmaybevaluabletorefinethisestimatebymeasuringthewaveresourcenearKodiak.
SeveralotherAlaskancommunitiesmaybeviablewaveenergydeploymentsites,especiallywhenconsideringenergyprice(Table2).
However,theseallhaveeitherasmallerresourceorasmallerload,andtheyalsogenerallyhavehighershippingcosts.
TheAleutianChain,inparticular,isaregionwhereasomewhatlargermarket—byafewmegawatts—mightsuddenlymakeasiteveryattractivetowaveenergydevelopers.
Thisraisestheconceptofbuildingawavefarmalongsideinfrastructurethatwouldutilizethepower.
PotentialusesofAlaska'sstrandedrenewablesincludedatacenters,mining,smelting,fishprocessing,andalternativefuelproduction(Johnsonetal.
2012).
DatacentersareaparticularlyintriguingconceptconsideringthattheAleutianchainisatthenexuspointbetweenNorthAmerica,Europe,andEastAsiafortheplannedArcticFibreproject.
iiiThisregionhastheaddedbenefitofhavingsignificantpassivecoolingandoceanthermalenergyconversioncoolingopportunities.
Asthecostofalternativefuelproductioncontinuestodecreasecomparedtotraditionalfuels,itmaybecomefeasibletoexportthisgreenenergyontheglobalmarketaswellasutilizetheenergylocallyforseveralkeyindustriesincludingmining,smelting,andfishprocessing.
iiihttp://arcticfibre.
com26ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)atwww.
nrel.
gov/publications.
5ConclusionsThereisbroadconsensusacrossthewaveenergyindustrythatitiscrucialtocontinuetestinganddevelopingwaveenergyconversiontechnologiesattestcenterstorefineanddemonstratetheircommercialreadiness.
Astechnologiespassthisimportantsteppingstone,itwillbeimportanttohavesitesidentifiedandvettedforcommercialdeployment(MetoceanProceduresGuide2015).
ThisworkpresentsamethodologyforidentifyingthesesitesandapreliminaryrankingofU.
S.
sites.
Thisprovidesanationwidecontextforseveralpriorworksandworksinprogressthathavelookedatthisissueatregionalscales(Stopaetal.
2013;VanCleveetal.
2013;Vega2010).
ThefutureofwaveenergyintheUnitedStatesislikelytobecenteredinthePacificNorthwest.
OregonandNorthernCalifornia,inparticular,havevastwaveenergyresourcesandtransmission/distributioninfrastructurethatsuggestpromisingmarketopportunitiesaswaveenergytechnologymatures.
Bothofthesestatesalsohaverenewableportfoliostandardsthatmayhelpdrivedemand.
Oregoniscommittedto25%renewablesby2025,andCaliforniahasveryrecentlycommittedto50%by2030.
Thisworkhasnotconsideredtheregulatoryandcompeting-useissuesthatareofcriticalimportanceinsitingwaveenergyprojects.
Fishing,marineprotectedareas,endangeredspecies,data-cableroutes,surfing,andothersimilarconsiderationsareallimportantfactorsthatwillneedtobeaddressedaswaveenergyprojectsgetstarted.
Oregonhasbeenleadingthewayinworkingwithstakeholders—includingfishermanandregulators—toidentifysitesalongthestate'scoastlinethatarelikelytoseewaveenergydeployment.
GiventhatworkandOregon'spositionatthetopofthisanalysis,sitesidentifiedinPart5oftheOregonTerritorialSeaPlanareamongthemostattractivesitesintheUnitedStates.
TheLakesideNorthandCampRileasites,inparticular,performverywellinthisanalysisandhaveexistingdesignationsforwaveenergydevelopmentintheOregonTerritorialSeaPlan.
ThesesitesarealsolikelytobenefitfromtheresearchanddevelopmentthatwillbegeneratedatNNMREC'sPacificMarineEnergyCenterNorthEnergyTestSiteandtheproposedSouthEnergyTestSite.
Hawaiialsostandsoutasapremierregionwherewaveenergyconversionismostlikelytobecomeeconomical,especiallyintheshort-term.
Hawaiirecentlybecamethefirststateinthenationtocommittoa100%renewableportfoliostandard.
ThenextstepforMHKinHawaiiisworkingwithlocalstakeholderstoidentifysitesthathaveminimalconflictinguseconcerns.
Theislandsaresmall,andthedepththatissuitableforwaveenergytechnologyisanarrowstripnearthenorthshoreoftheislands'coastlines.
Thestate'srecentcommitmentto100%renewableenergyby2045isanaggressivecommitmentthatislikelytocreatedemandforwaveenergy.
AsincreasingnumbersofdevicesaretestedattheHawaiiWaveEnergyTestSite,earnestdebatesaboutthecompromisesnecessarytomeetthestate'sgoalsarelikelytoidentifywaveenergyasacriticalresource.
SeveralPacificIslandsandruralAlaskanlocations(e.
g.
,Yakutat)arealsoattractiveasshort-termmarkets,wherehighenergypricesmakewavetechnologydeploymentmoreattractivetoprojectdevelopers.
Theprimaryquestionattheselocationsiswhetherthedemandforenergyishighenoughtojustifyprojectdevelopmentcosts.
Thisrepresentsakeyopportunityformodestpublicinvestmenttoreducetheprojectdevelopmentbarrier:astheserelativelysmallprojectsdemonstratecommercialsuccess,theindustrywillbenefitgreatlyfromthetechnicalknowledgethatisgainedandtheincreasinglypositivepublicimagethatcomeswiththissuccess.
27ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)atwww.
nrel.
gov/publications.
ReferencesAlaskaEnergyAuthority.
2014.
2013PowerCostEqualizationProgramStatisticalDatabyCommunity.
http://www.
akenergyauthority.
org/Content/Programs/PCE/Documents/FY13StatisticalRptComt.
pdfBaring-Gould,I.
,Hunsberger,R.
,Visser,C.
,Voss,P.
2011CommonwealthoftheNorthernMarianaIslandsInitialTechnicalAssessmentReport.
TP-7A40-50906.
NationalRenewableEnergyLaboratory(NREL),Golden,CO(UnitedStates).
http://www.
nrel.
gov/docs/fy11osti/50906.
pdfBaring-Gould,I.
,Conrad,M.
,Haase,S.
,Hotchkiss,E.
,McNutt,P.
2011GuamInitialTechnicalAssessmentReport.
TP-7A40-50580.
NationalRenewableEnergyLaboratory(NREL),Golden,CO(UnitedStates).
http://www.
nrel.
gov/docs/fy11osti/50580.
pdfBatten,B.
,Polagye,B.
2013.
NNMRECAccomplishmentsandImpacts2009-2013.
NNMRECReport#5.
NorthwestNationalMarineRenewableEnergyCenter(NNMREC).
Corvallis:NNMREC.
55pp.
https://ir.
library.
oregonstate.
edu/xmlui/handle/1957/39929Bedard,M.
2008.
PrioritizedResearch,Development,DeploymentandDemonstration(RDD&D)Needs:MarineandOtherHydrokineticRenewableEnergy.
ElectricPowerResearchInstitute,PaloAlto,CA.
Busche,S.
,Conrad,M.
,Funk,K.
,Kandt,A.
,McNutt,P.
2011.
AmericanSamoaInitialTechnicalAssessmentReport.
TP-7A40-50905.
NationalRenewableEnergyLaboratory(NREL),Golden,CO(UnitedStates).
http://www.
nrel.
gov/docs/fy11osti/50905.
pdfDeVisser,A.
,Cable,B.
,Vega,L.
2013.
WaveEnergyTestSite(WETS).
http://hinmrec.
hnei.
hawaii.
edu/wp-content/uploads/2009/12/Wave-Energy-Test-Site-at-Kaneohe-Bay.
pdfGeerlofs,S.
,O'Neil,R.
S.
,Hanna,L.
,Battey,H.
2011.
"SitingwaveenergyontheOregoncoast:theOregonterritorialseaplanandsitinganalysistools.
"Glob.
StatusCrit.
Dev.
OceanEnergy127.
Hagerman,G.
,Scott,G.
2011.
MappingandAssessmentoftheUnitedStatesOceanWaveEnergyResource(No.
1024637).
ElectricPowerResearchInstitute,PaloAlto,CA.
http://www1.
eere.
energy.
gov/water/pdfs/mappingandassessment.
pdfHanson,J.
L.
,Tracy,B.
A.
,Tolman,H.
L.
,Scott,R.
D.
2009.
"PacificHindcastPerformanceofThreeNumericalWaveModels.
"J.
AtmosphericOcean.
Technol.
26,1614–1633.
doi:10.
1175/2009JTECHO650.
1HawaiianStateEnergyOffice.
2014.
"HawaiiEnergyFactsandFigures.
"http://energy.
hawaii.
gov/wp-content/uploads/2014/11/HSEO_FF_Nov2014.
pdf28ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)atwww.
nrel.
gov/publications.
InternationalElectrotechnicalCommission.
2011.
Part1:Terminology(TechnicalSpecificationNo.
62600-1),Marineenergy-Wave,tidal,andotherwatercurrentconverters.
InternationalElectrotechnicalCommission.
2015.
Part101:Waveenergyresourceassessmentandcharacterization(TechnicalSpecificationNo.
62600-101),Marineenergy-Wave,tidal,andotherwatercurrentconverters.
Johnson,E.
,Meyer,J.
,Mager,M.
,Horel,A.
,Holdmann,G.
2012.
StrandedRenewableEnergyResourcesofAlaska.
AlaskaCenterforEnergyandPower.
http://www.
uaf.
edu/files/acep/Standed-Renewables-Report-Final.
pdfKilcher,L.
;Thresher,R.
;Tinnesand,H.
2016.
MarineHydrokineticEnergySiteIdentificationandRankingMethodologyPartII:TidalEnergy.
NREL/TP-5000-66079.
NationalRenewableEnergyLaboratory(NREL),Golden,CO(UnitedStates).
http://www.
nrel.
gov/docs/fy17osti/66079.
pdfMai,T.
,Sandor,D.
,Wiser,R.
,Schneider,T.
2012.
RenewableElectricityFuturesStudy:ExecutiveSummary.
NREL/TP-6A20-52409-ES).
NationalRenewableEnergyLaboratory,Golden,CO(UnitedStates).
MarshallsEnergyCompany.
http://mecrmi.
net/(accessedOctober2016)MetoceanProceduresGuideforOffshoreRenewables.
2015.
InstituteofMarineEngineering,ScienceandTechnology.
Parkinson,S.
C.
,Dragoon,K.
,Reikard,G.
,Garcia-Medina,G.
,Ozkan-Haller,H.
T.
,Brekken,T.
K.
2015.
Integratingoceanwaveenergyatlargescales:AstudyoftheU.
S.
PacificNorthwest.
Renew.
Energy76,551-559.
Porter,A.
,Phillips.
S.
2016.
DeterminingtheInfrastructureNeedstoSupportOffshoreFloatingWindandMarineHydrokineticFacilitiesonthePacificWestCoastandHawaii.
BureauofOceanEnergyManagement.
Ruehl,K.
M.
,Yu,Y.
-H.
,Lawson,M.
,Michelen,C.
2014.
DevelopmentandDemonstrationoftheWEC–SimWaveEnergyConverterSimulationTool.
SAND2014-3013.
SandiaNationalLaboratories(SNL-NM),Albuquerque,NM(UnitedStates).
http://energy.
sandia.
gov/wp-content/gallery/uploads/SAND2014-3013.
pdfSeaRates.
com[WWWDocument],2015.
URLwww.
searates.
com(accessedSeptember9,2015).
StateofOregon.
2013.
"StateofOregonTerritorialSeaPlanPart5:UseoftheTerritorialSeafortheDevelopmentofRenewableEnergyFacilitiesorOtherRelatedStructures,Equipment,orFacilities.
"http://www.
oregon.
gov/LCD/docs/rulemaking/tspac/Part_5_FINAL_10082013.
pdfStopa,Justin;Filipot,Jean-Franois;Li,Ning;Cheung,KwokFai;Chen,Yi-Leng;andLuisVega.
2013.
"WaveenergyresourcesalongtheHawaiianIslandchain.
"Renew.
Energy55,305–321.
AccessedMarch1,2016.
doi:10.
1016/j.
renene.
2012.
12.
03029ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)atwww.
nrel.
gov/publications.
U.
S.
EnergyInformationAdministration.
Retailsalesofelectricitytoultimatecustomersbyend-usesector,bystate(No.
5.
4),2013.
www.
eia.
gov/electricity/data/browser/VanCleve,F.
B.
,Judd,C.
,Radil,A.
,Ahmann,J.
,Geerlofs,S.
H.
2013.
GeospatialAnalysisofTechnicalandEconomicSuitabilityforRenewableOceanEnergyDevelopmentonWashington'sOuterCoast.
PNNL-22554.
PacificNorthwestNationalLaboratory,Richland,WA(UnitedStates).
http://www.
msp.
wa.
gov/wp-content/uploads/2013/07/PNNL_EnergySuitability_Final-Report.
pdfVega,L.
2010.
WaveEnergyResourcesforRepresentativeSitesaroundtheHawaiianIslands.
HawaiiNationalMarineRenewableEnergyCenter.
Wang,J.
-J.
,Jing,Y.
-Y.
,Zhang,C.
-F.
,Zhao,J.
-H.
2009.
"Reviewonmulti-criteriadecisionanalysisaidinsustainableenergydecision-making.
"RenewableandSustainableEnergyReviews,13,2263–2278.

DiyVM:香港VPS五折月付50元起,2核/2G内存/50G硬盘/2M带宽/CN2线路

diyvm怎么样?diyvm这是一家低调国人VPS主机商,成立于2009年,提供的产品包括VPS主机和独立服务器租用等,数据中心包括香港沙田、美国洛杉矶、日本大阪等,VPS主机基于XEN架构,均为国内直连线路,主机支持异地备份与自定义镜像,可提供内网IP。最近,DiyVM商家对香港机房VPS提供5折优惠码,最低2GB内存起优惠后仅需50元/月。点击进入:diyvm官方网站地址DiyVM香港机房CN...

欧路云(22元/月),美国CERA弹性云服务器!香港弹性云服务器15元/月起;加拿大高防vps仅23元/月起

欧路云怎么样?欧路云主要运行弹性云服务器,可自由定制配置,可选加拿大的480G超高防系列,也可以选择美国(200G高防)系列,也有速度直逼内地的香港CN2系列。所有配置都可以在下单的时候自行根据项目 需求来定制自由升级降级 (降级按天数配置费用 退款回预存款)。2021年7月14日美国 CERA 弹性云服务器 上新 联通CUVIP 线路!8折特惠中!点击进入:欧路云官方网站地址付款方式:PayPa...

日本vps云服务器选择指南。

日本vps云服务器怎么选择?很多人都会遇到日本vps和日本云服务器怎么选择的问题,日本云服务器具有免备案的特点。小编今天就分析一下日本云服务器价格多少钱,以方便大家选购的时候有个更加合适的取舍。日本云服务器租用前比较选择,高性能、安全、高效、免备案日本云服务器是很关键的因素。那么,日本云服务器该怎么选择呢?日本作为我们的邻国,与其贸易、文化往来是比较多的。日本云服务器价格多少钱一年?一、日本·CN...

800tutu.com为你推荐
openeuler手机里的安全性open.wpapsk分别是什么意思安徽汽车网安徽什么汽车网站比较好?硬盘的工作原理硬盘的工作原理?是怎样存取数据的?杰景新特杰德特这个英雄怎么样罗伦佐娜维洛娜毛周角化修复液治疗毛周角化有用吗?谁用过?能告诉我吗?同ip网站12306怎么那么多同IP网站啊?这么重要的一个网站我感觉应该是超强配置的独立服务器才对啊,求高人指点avtt4.comCOM1/COM3/COM4是什么意思??/ip查询器怎么样查看自己电脑上的IP地址bbs2.99nets.com西安论坛、西安茶馆网、西安社区、西安bbs 的网址是多少?www.hyyan.comDOTA6.51新手选什么英雄为好,请详细讲述出装备顺序,加点顺序,以及注意事项。谢谢
什么是虚拟主机 荷兰vps 域名停靠一青草视频 互联网域名管理办法 bandwagonhost 韩国俄罗斯 紫田 火车票抢票攻略 好看的桌面背景图片 主机合租 免费smtp服务器 蜗牛魔方 卡巴斯基是免费的吗 空间租赁 云服务器比较 114dns 重庆服务器 阿里云个人邮箱 winserver2008 bwg 更多