NANOEXPRESSOpenAccessStructuralandopticalcharacterizationsofInPBithinfilmsgrownbymolecularbeamepitaxyYiGu1,KaiWang1,HaifeiZhou1,YaoyaoLi1,ChunfangCao1,LiyaoZhang1,YonggangZhang1,QianGong1*andShuminWang1,2*AbstractInPBithinfilmshavebeengrownonInPbygassourcemolecularbeamepitaxy.
AmaximumBicompositionof2.
4%isdeterminedbyRutherfordbackscatteringspectrometry.
X-raydiffractionmeasurementsshowgoodstructuralqualityforBicompositionupto1.
4%andapartiallyrelaxedstructureforhigherBicontents.
Thebandgapwasmeasuredbyopticalabsorption,andthebandgapreductioncausedbytheBiincorporationwasestimatedtobeabout56meV/Bi%.
StrongandbroadphotoluminescencesignalswereobservedatroomtemperatureforsampleswithxBi180Kthepeakataround0.
95eVdisappearsandtheothertwopeaksareoverlapped.
Thepeakenergieslabeledpeaks1and2redshiftedabout82and108meV,respectively,whenthetemperatureincreasesfrom8to300K,compar-abletothered-shiftedvalueof71meVfortheInPrefer-encesample.
However,thepeakenergieslabeledpeak3arealmostconstantataround0.
95eVatvarioustempera-tures.
Toourknowledge,thePLsignalofdilutebismidesfarfromtheband-to-bandtransitionwasscarcelyreportedFigure3BandgapenergyofInPBimeasuredfromabsorptionspectraasafunctionofBicomposition.
Theerrorbarsoftheexperimentaldataarelabeled.
Thesolidlineisthefittinglineoftheexperimentaldata.
Figure4PLspectraofInPBifilmswithvariousBicompositionsatRT.
ThePLspectrumofInPreferencesampleisalsoshown.
Guetal.
NanoscaleResearchLetters2014,9:24Page3of5http://www.
nanoscalereslett.
com/content/9/1/24inthepast.
Markoetal.
observedtheclearandbroadPLsignalofInGaAsBisamplefrom0.
46eV(2.
7μm)to0.
65eV(1.
8μm)withamuchlongerwavelengththantheband-to-bandPLat0.
786eV(1.
6μm)andattributedtothecompositionalinhomogeneity[19].
Theysuggestedthatthelocalizednarrower-gapregionstrappedcarriersatlowtemperaturesandproducedthelongwavelengthemis-sion.
However,theycouldonlyobservethelongwave-lengthPLatT<160K,andthePLintensitydroppedrapidlywithtemperature,whichcontraststoourresults.
Inaddition,transmissionelectronmicroscopeandsecond-aryionmassspectrometrymeasurements(notshownhere)haverevealedquiteuniformBicontentsinourInPBisamples.
AnotherpossibleexplanationisthatthelongwavelengthPLisfromtherecombinationrelatedtodeepenergylevels.
TheBiincorporationatlowgrowthtemper-aturesmayintroduceBi-relateddefectssuchasBi-antisites[20],whichcouldactasadeeprecombinationcenter.
Notethattheband-to-bandPLofInPBiwasnotobservedevenat8Kinourexperiments.
Thissuggestsaveryshortcarrierlifetimeatthebandgapandalongcar-rierlifetimeatthedeeplevels.
Therefore,theoriginofthePLsignalsisstillunclearatpresent,andfurtherinvestiga-tionsareneededtofullyaccountforthisphenomenon.
ConclusionsThestructuralandopticalpropertiesof430-nm-thickInPBithinfilmshavebeeninvestigated.
TheBicomposi-tionsdeterminedbyRBSmeasurementswereintherangeof0.
6%to2.
4%.
AgoodqualityhasbeendemonstratedforthesampleswiththeBicompositionlowerthan1.
4%,whereasthesampleswithhigherBicontentsbecomepar-tiallyrelaxed.
ItwasfoundthattheincorporationofBicausedthebandgapreductionofabout56meV/Bi%.
StrongandbroadPLsignalscontainingmultipleover-lappedpeakswereobservedatroomtemperaturewithpeakwavelengththatvariedfrom1.
4to1.
9μm,whichisfarfromtheband-to-bandtransition.
TheoriginsofthelongwavelengthPLsignalswerediscussed,butfurtherin-vestigationisnecessaryforunambiguousexplanation.
CompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterests.
Authors'contributionsYGcarriedouttheopticalmeasurements,analyzedtheresults,andwrotethemanuscript.
KWgrewthesamplesandperformedXRDmeasurements.
HFZ,YYL,CFC,andLYZhelpedinthemeasurementsandanalysisofresults.
YGZsupervisedthePLexperimentsandrevisedthemanuscript.
QGsupervisedthegrowthandjoinedthediscussions.
SMWproposedtheinitialwork,supervisedthesampledesignandanalysis,andrevisedthemanuscript.
Allauthorsreadandapprovedthefinalmanuscript.
AcknowledgementsTheauthorswishtoacknowledgethesupportofNationalBasicResearchProgramofChinaundergrantnos.
2014CB643900and2012CB619202;theNationalNaturalScienceFoundationofChinaundergrantnos.
61334004,61204133,and61275113;theGuidingProjectofChineseAcademyofSciencesundergrantno.
XDA5-1;theKeyResearchProgramoftheChineseAcademyofSciencesundergrantno.
KGZD-EW-804;andtheInnovationResearchGroupProjectofNationalNaturalScienceFoundationundergrantno.
61321492.
Received:13November2013Accepted:18December2013Published:13January2014Figure5PLspectraoftheInPBisamplewith1.
0%Biatvarioustemperatures.
Theoverlappedmulti-peaksobtainedbyusingGaussianfittingareshownasthedashedanddottedlinesforthecasesof8and300K,andthemulti-peaksofPLspectraatothertemperatureswerealsoobtainedsimilarly.
Figure6PLenergiesofthemulti-peaksatvarioustemperaturesfortheInPBisamplewith1.
0%Bi.
Theenergyvalueswereextractedbyusingthemulti-peakGaussianfittingofthePLspectraatvarioustemperatures.
Guetal.
NanoscaleResearchLetters2014,9:24Page4of5http://www.
nanoscalereslett.
com/content/9/1/24References1.
FrancoeurS,SeongMJ,MascarenhasA,TixierS,AdamcykM,TiedjeT:BandgapofGaAs1xBix,06%.
ApplPhysLett2003,82:3874–3876.
2.
AlberiK,WuJ,WalukiewiczW,YuK,DubonO,WatkinsS,WangC,LiuX,ChoYJ,FurdynaJ:Valence-bandanticrossinginmismatchedIII-Vsemiconductoralloys.
PhysRevB2007,75:045203.
3.
SweeneySJ,JinSR:Bismide-nitridealloys:promisingforefficientlightemittingdevicesinthenear-andmid-infrared.
JApplPhys2013,113:043110.
4.
HossainN,MarkoIP,JinSR,HildK,SweeneySJ,LewisRB,BeatonDA,TiedjeT:RecombinationmechanismsandbandalignmentofGaAs1xBix/GaAslightemittingdiodes.
ApplPhysLett2012,100:051105.
5.
TominagaY,OeK,YoshimotoM:LowtemperaturedependenceofoscillationwavelengthinGaAs1-xBixlaserbyphoto-pumping.
ApplPhysExpress2010,3:62201.
6.
LudewigP,KnaubN,HossainN,ReinhardS,NattermannL,MarkoIP,JinSR,HildK,ChatterjeeS,StolzW,SweeneySJ,VolzK:ElectricalinjectionGa(AsBi)/(AlGa)Assinglequantumwelllaser.
ApplPhysLett2013,102:242115.
7.
StreubelK,LinderN,WirthR,JaegerA:HighbrightnessAlGaInPlight-emittingdiodes.
IEEEJSelTopicsinQuanElectron2002,8:321–332.
8.
YamamotoM,YamamotoN,NakanoJ:MOVPEgrowthofstrainedInAsP/InGaAsPquantum-wellstructuresforlow-threshold1.
3-μmlasers.
IEEEJQuanElectron1994,30:554–561.
9.
BerdingMA,SherA,ChenAB,MillerWE:Structuralpropertiesofbismuth-bearingsemiconductoralloys.
JApplPhys1988,63:107–115.
10.
DeanPJ,WhiteAM,WilliamsEW,AstlesMG:Theisoelectronictrapbismuthinindiumphosphide.
SolidStateCommun1971,9:1555–1558.
11.
RuhleW,SchmidW,MeckR,StathN,FischbachJU,StrottnerI,BenzKW,PilkuhnM:Isoelectronicimpuritystatesindirect-gapIII-Vcompounds:thecaseofInP:Bi.
PhysRevB1978,18:7022–7032.
12.
ZhangYG,GuY,WangK,FangX,LiAZ,LiuKH:Fouriertransforminfraredspectroscopyapproachformeasurementsofphotoluminescenceandelectroluminescenceinmid-infrared.
RevSciInstrum2012,83:053106.
13.
FengG,YoshimotoM,OeK,ChayaharaA,HorinoY:NewIII-VsemiconductorInGaAsBialloygrownbymolecularbeamepitaxy.
JpnJApplPhys2005,44:L1161.
14.
JanottiA,WeiSH,ZhangSB:TheoreticalstudyoftheeffectsofisovalentcoalloyingofBiandNinGaAs.
PhysRevB2002,65:115203.
15.
MaKY,FangZM,CohenRM,StringfellowGB:Organometallicvapor-phaseepitaxygrowthandcharacterizationofBi-containingIII/Valloys.
JApplPhys1990,68:4586.
16.
BiWG,TuCW:NincorporationinInPandbandgapbowingofInNxP1-x.
JApplPhys1996,80:1934–1936.
17.
BarnettSA:DirectE0energygapsofbismuth-containingIII-Valloyspre-dictedusingquantumdielectrictheory.
JVacuumSci&TechnolA:Vacuum,Surfaces&Films1987,5:2845.
18.
AlberiK,DubonOD,WalukiewiczW,YuKM,BertulisK,KrotkusA:ValencebandanticrossinginGaBixAs1x.
ApplPhysLett2007,91:051909.
19.
MarkoIP,BatoolZ,HildK,JinSR,HossainN,HoseaTJC,PetropoulosJP,ZhongY,DongmoPB,ZideJMO,SweeneySJ:TemperatureandBi-concentrationdependenceofthebandgapandspin-orbitsplittinginInGaBiAs/InPsemiconductorsformid-infraredapplications.
ApplPhysLett2012,101:221108.
20.
KunzerM,JostW,KaufmannU,HobgoodHM,ThomasRN:IdentificationoftheBiGaheteroantisitedefectinGaAs:Bi.
PhysRevB1993,48:4437–4441.
doi:10.
1186/1556-276X-9-24Citethisarticleas:Guetal.
:StructuralandopticalcharacterizationsofInPBithinfilmsgrownbymolecularbeamepitaxy.
NanoscaleResearchLetters20149:24.
Submityourmanuscripttoajournalandbenetfrom:7Convenientonlinesubmission7Rigorouspeerreview7Immediatepublicationonacceptance7Openaccess:articlesfreelyavailableonline7Highvisibilitywithintheeld7RetainingthecopyrighttoyourarticleSubmityournextmanuscriptat7springeropen.
comGuetal.
NanoscaleResearchLetters2014,9:24Page5of5http://www.
nanoscalereslett.
com/content/9/1/24
PacificRack在本月发布了几款特价产品,其中最低款支持月付仅1.5美元,基于KVM架构,洛杉矶机房,PR-M系列。PacificRack简称PR,QN机房旗下站点,主要提供低价VPS主机产品,基于KVM架构,数据中心为自营洛杉矶机房,现在只有PR-M一个系列,分为了2个类别:常规(Elastic Compute Service)和多IP产品(Multi IP Server)。下面列出几款秒...
我们在去年12月分享过Hosteons新上AMD Ryzen9 3900X CPU及DDR4内存、NVMe硬盘的高性能VPS产品的消息,目前商家再次发布了产品更新信息,暂停新开100M带宽KVM套餐,新订单转而升级为新的Budget KVM VPS(SSD)系列,带宽为1Gbps端口,且配置大幅升级,目前100M带宽仅保留OpenVZ架构产品可新订购,所有原有主机不变,用户一直续费一直可用。Bud...
修罗云怎么样?修罗云是一家国内老牌商家,修罗云商家以销售NAT机器起家,国内的中转机相当不错,给的带宽都非常高,此前推荐的也都是国内NAT VPS机器。今天,云服务器网(www.yuntue.com)小编主要介绍一下修罗云的香港云服务器,适合建站,香港沙田cn2云服务器,2核2G,5M带宽仅70元/月起,同时香港香港大带宽NAT VPS低至50元/月起,性价比不错,可以尝试一下!点击进入:修罗云官...
www.55fang.com为你推荐
急救知识纳入考试应急救护知识应该由哪个部门培训access数据库access数据库主要学什么同一ip网站最近我们网站老是出现同一个IP无数次的进我们网站,而且是在同一时刻,是不是被人刷了?为什么呀?www.vtigu.com如图所示的RT三角形ABC中,角B=90°(初三二次根式)30 如图所示的RT三角形ABC中,角B=90°,点p从点B开始沿BA边以1厘米每秒的速度向A移动;同时,点Q也从点B开始沿BC边以2厘米每秒的速度向点C移动。问:几秒后三角形PBQ的面积为35平方厘米?PQ的距离是多少lcoc.toptop weenie 是什么?ww.66bobo.com有的网址直接输入***.com就行了,不用WWW, 为什么?javlibrary.comSSPD-103的AV女主角是谁啊1!!!!求解www.1diaocha.com哪个网站做调查问卷可以赚钱 啊朴容熙这个女的叫什么?222cc.com怎样开通网站啊
高防服务器租用选锐一 网站域名备案查询 重庆vps租用 新网域名管理 highfrequency suspended lighttpd 一元域名 已备案删除域名 免费吧 linux服务器维护 cdn加速是什么 服务器监测 华为云服务登录 无限流量 万网主机管理 shuang12 服务器论坛 免费蓝钻 主机返佣 更多