leachingwww.55fang.com

www.55fang.com  时间:2021-04-08  阅读:()
www.
ijpab.
com185FactorsAffectingtheRateofBiodegradationofPolyaromaticHydrocarbonsShalluSihag1*HardikPathak2andD.
P.
Jaroli21ResearchScholar,DepartmentofBiotechnology,JECRCUniversity,Jaipur,India2AssistantProfessor-IandHeadofDepttofBiotechnology,JECRCUniversity,Jaipur,India*CorrespondingAuthorE-mail:cul.
tanya@gmail.
comABSTRACTInthewholeenvironment,oneofthemostvitalcontaminationsiscausedbythepetrochemicalindustries,products,effluentswhichisreleasedfromthepetrochemicalindustries,roadaccidents,shipaccidentsetc.
Thesepetroleumproductscontainthecarcinogenicandmutageniccompoundswhichareknownaspolyaromatichydrocarbons.
Inthepresentpictureofworldamajorenvironmentalpollutionofsoilandwaterisduetohydrocarboncontaminationresultingbythepetrochemicalindustries,refineries,humanactivitiesetc.
Thebetterunderstandingofthemechanismsandfactorswhichaffectbiodegradationisofgreatecologicalsignificance,sincethechoiceofbioremediationstrategydependsonit.
ForsuccessfulimplementationofbioremediationtechnologiesoncontaminatedareasmustbedependsuponthecharacteristicsofthecontaminatedsiteandacomplexsystemofmanyfactorsthataffectthepetroleumhydrocarbonsbiodegradationprocessesThemainfactorswhichlimittheoverallbiodegradationratecanbegroupedas:soilcharacteristics,contaminantcharacteristics,bioavailability,microorganism'snumber,catabolismevolutionetc.
Inordertoadoptandimplementsomeeffectivebioremediationstrategyitisextremelyimportanttoconsiderandunderstandthoselimitingfactors.
Thepresentstudyexplainssomefactorswhichcantherateofbiodegradationprocess.
Keywords:Polyaromatichydrocarbons;factors;biodegradation;bioremediationetc.
INTRODUCTIONTheintentofthepresentreviewistopresentabroadandupdatedoverviewofthemicrobialecologyofhydrocarbondegradation,emphasizingbothenvironmentalandbiologicalfactorswhichareinvolvedindeterminingtherateatwhichanextenttowhichhydrocarbonsareremovedfromtheenvironmentbybiodegradation.
Aspectsofbiodegradationofpetroleumandindividualhydrocarbonsinmarine,freshwaterandsoilecosystemsarepresented.
Inthemodernindustrialageoftechnologiesvariousaspectsofhumanlifechanges.
Thequalityoflifeonearthishighlyrelatedwithitsenvironment.
Itisveryimportantforlifetosustainthattheenvironmentshouldremaincleanandhealthy.
Inrecenttimesduetotheincreaseinindustrializationandutilizationofpetroleumrelatedproductsnottoforgetnegligenceusingthem,theenvironmentisgettingdamaged.
Tocleanupespeciallythesubsurfacehydrocarbonconcentrationisaworldwideproblem.
Thedevelopmentofhumansocietyalloverhistoryhasleadtorisingdisruptionofthenaturalequilibriumandtherateofdifferenttypesofpollution.
Theplanetdependsonoil,andtheuseofoilasfuelhasleadtointensiveeconomicdevelopmentworldwide.
Thegreatneedforthispowersourcehasledtothegradualexhaustionofnormaloilcapital.
ontheotherhand,mankindwillwitnesstheresultsofoilutilizationforcenturiesafteritstermination.
Ecologicalpollutionwithpetroleumandpetrochemicalproductshasbeenrecognizedasasignificantandseriousproblem1.
Today,themostcommonenvironmentproblemiscausedduetopetroleumproducts.
Iftheseproductsareexposedtotheenvironmenttheycanbehazardoustothesurroundingsaswellastolifeforms.
Millionsoflitersofpetroleumenterintotheenvironment,frombothnaturalandanthropogenicsourceseveryyear.
Availableonlineatwww.
ijpab.
comISSN:2320–7051Int.
J.
PureApp.
Biosci.
2(3):185-202(2014)IINNTTEERRNNAATTIIOONNAALLJJOOUURRNNAALLOOFFPPUURREE&&AAPPPPLLIIEEDDBBIIOOSSCCIIEENNCCEEReviewArticlewww.
ijpab.
com186ShalluSihagetalInt.
J.
PureApp.
Biosci.
2(3):185-202(2014)ISSN:2320–7051Ithasbeenestimatedthatglobalproductionofcrudeoilmorethantwelvemillionmetrictonsannuallyandabout1.
7to8.
8millionmetrictonsofpetroleumhydrocarbonescapesintotheterrestrialandmarineenvironment.
Inthewholeenvironmentthereleaseofhydrocarbonswhetheritisaccidentallyorduetohumanactivitiesisamaincauseofwaterandsoilpollution.
Thesoilcontaminationwithhydrocarbonscausesextensivedamageoflocalsystemsinceaccumulationofpollutantsinanimalsandplanttissuemaycausedeathormutations.
Theseaccidentaloilspillscanevencausedamagetotheseaandshorelineorganisms38.
Theothersourcesofcontaminationduetohydrocarbonsincludeservicestations,garages,scrapyard,wastetreatmentplantsandsawmillsetc.
Petroleumisdefinedasanymixtureofnaturalgas,condensateandcrudeoil.
Crudeoilcanconsistofthousandsofindividualcompoundswithhydrocarbonsrepresentingfrom50to98percentofthetotalweightofcrudeoil.
Whenpetroleumcompoundssuchascrudeoilarereleasedintotheenvironment,thecompoundsundergophysical,chemical,andbiologicalchangescollectivelyreferredtoasweathering.
Thedegreetowhichvarioustypesofpetroleumhydrocarbonsdegradeunderthesechangesdependsonthephysicalandchemicalpropertiesofthehydrocarbons14,31,32,42,53.
1.
1PolyAromaticHydrocarbonsThesitescontaminatedbyautomobileorrelatedwithpetrochemicalcompoundscontainavarietyofaliphatic,aromaticandpolyaromatichydrocarbons(PAHs).
Amongthem,PAHsposemorethreattotheenvironmentandhumanhealth18.
ThePAHsconsistsoftwoormorethantwofusedaromaticringsinlinear,angularandclusterarrangements.
ThePAHsarethepollutantswhicharepresentinair,soilandsediments.
PAHsenterintotheenvironmentfromvarioussourcesandtheirderivativesareresultsofincompletecombustionoforganicmaterialsintheenvironment.
Theyarisefromnaturalcombustionlike;forestfiresandvolcaniceruptions,activitiesrelatedtochemicalandpetro-chemicalindustries,agriculturewastes,sludgewastesetc.
PAHsarewidelyfoundinhighconcentrationsatmanyindustrialsites,particularlythoseassociatedwithpetroleum,gasproductionandwoodpreservingindustries.
Duetotheirtoxicity,carcinogenicityandmutagenecitythesePAHshavegainedmuchconcern50,17.
Morethan100differentPAHsareubiquitouslydistributedinenvironment;manyofthempossessmutagenic,carcinogenic,teratogenicproperties58.
Amongthem,16PAHshavebeenidentifiedasprioritypollutantsandsevenofthemclassifiedasprobablehumancarcinogensbyU.
Senvironmentalprotectionagency&EuropeanUnion35.
InrecentyearsthemajorsourcesofPAHspollutionincludeindustrialproduction,transportation,refuseburning,gasificationandplasticwasteincineration.
ThefateofPAHsinnatureisrelatedtoenvironmentduetotheirtoxic,mutagenicandcarcinogenicproperties(phenanthreneisknowntobeahumanskinphotosensitizerandmildallergen,Benzo(pyrene)iscarcinogenicforhumans).
PAHsmaygetabsorbedtoorganic-richsoils/sedimentsandgetaccumulateinfishandotheraquaticorganisms.
Fromtheretheymightbetransferredtohumansthroughfoodchains.
1.
2BioremediationThereareseveralmethodstotreatthecontaminationcausedbypetroleumandpetroleumproductssuchasphysical,chemicalandbiologicaltreatment.
BiologicaldegradationappearstobethemainprocessresponsiblefortheremovalofPAHsinsoil45,54.
Microorganisms,suchasbacteriaandfungimaytransformPAHstootherlessharmfulorganiccompoundsortoinorganicendproductssuchascarbondioxideandwater15,5.
Thebiologicalmethodslikenaturalattenuation,biostimulation,bioaugmentationandbioremediationareefficientandadequatemethodstocleanupsoilwithpetroleumhydrocarbonsascontaminantsbecausethesemethodsdonotadverselyaffectthesite.
ThebioremediationisoneoftheeconomicalmethodscomparedtotheothermethodslikeincinerationandwashingofthesoiletcBioremediationistheoneoftheusefulandinexpensivemethodtoachievetheoptimumbiodegradationcondition,inwhichbytheuseofmicroorganismshydrocarbonsdegradedwhichisthesourcesofcarbonandenergyforthemicroorganisms.
www.
ijpab.
com187ShalluSihagetalInt.
J.
PureApp.
Biosci.
2(3):185-202(2014)ISSN:2320–7051Bioremediationhaspotentialtoprovidealowcost,non-intrusive,naturalmethodtorendertoxicsubstancesinsoillessharmfulorharmlessovertime.
Currently,researchisbeingconductedtoimproveandovercomelimitationsthathinderbioremediationofpetroleumhydrocarbons.
Onabroaderscope,muchresearchhasbeenandcontinuestobedevelopedenhanceunderstandingoftheessenceofmicrobialbehaviorasmicrobesinteractwithvarioustoxiccontaminants.
Additionalresearchcontinuestoevaluateconditionsforsuccessfulintroductionofexogenicandgeneticallyengineeredmicrobesintoacontaminatedenvironment.
Thesenewtechniquesarebroughtintocommercialpractice,theimportanceofsoundmethodsforevaluatingbioremediationwillincrease.
Andthatwillhelptocreateabetterandcleanerenvironment.
1.
3FactorsThecleaningupofpetroleumhydrocarbonsinthesoilenvironmentisarealworldproblem.
Betterunderstandingofthemechanismsandfactorswhichaffectbiodegradationisofgreatecologicalsignificance,sincethechoiceofbioremediationstrategydependsonit.
Microbialdegradationprocessesaidtheeliminationofspilledoilfromtheenvironment,togetherwithvariousphysicalandchemicalmethods.
Thisispossiblebecausemicroorganismshaveenzymesystemstodegradeandutilizedifferenthydrocarbonsasasourceofcarbonandenergy.
Eveniftheoptimalconditionsformicrobialdegradationareprovided,theextentofhydrocarbonremovalisstronglyaffectedbyitsbioavailabilityandstagesofweathering.
Asaconsequence,somefractionsofhydrocarbonsremainundegraded.
Thisresidualfractionofhydrocarboninsoilcanrepresentanacceptableendpointforbioremediationif1hydrocarbonbiodegradationistooslowtoallowfurtherbioremediation,inwhichcaseothertechnologiesmustbeapplied;2thoseconcentrationsareunabletoreleasefromthesoilandposeadverseeffectstotheenvironmentandhumanhealth,likethosepresentedinthegivencasestudiesVariousstudieshaveaddressedthesuccessfulapplicationsofremediationofhydrocarboncontaminatedsoilandwater.
ItwascarriedoutintegratedstudyofcontaminationcausedbyhydrocarbonandPAHsanditstreatmentwithbioremediationmethod35.
ByinoculatinganenzymaticmicrobialcompounditwasmeasuredconcentrationofhydrocarbonandPAHs.
Someeco-toxicologicalandmicrobiologicaltestswereperformedandreductionsofpollutantswereobtainedwhiletoxicologicalandphytotoxicitytestsevidencedagreatimprovementofthesoil.
Themaximumbiodegradationoccurredwhenconditionsarefavourableformicroorganisms.
Itisimportanttoknowthecharacteristicsofthecontaminatedsitebeforebeginningthetreatments.
Thebasicinformationsuchasresidualoilconcentration,populationdensityofhydrocarbondegradingmicroorganismsandthebiodegradationpotential,environmentalfactorssuchaspH,temperatureetc.
aresomeofthekeyfactorstobeconsideredforbioremediation12,19,41.
DegradationofPAHsinsituisoftenslow,andresearchoverthelastdecadeshasshownthatthesecompoundsveryoftenarepersistent.
Thispersistencemaybeduetoseveralfactorssuchasnutrients,bioavailabilityofPAHs(sorptiontoparticles),temperature,oxygen,andpresenceofPAH-degradingmicroorganisms.
Afullfactorialdesigncanbeusedtotesteverypossiblecombinationofdifferentenvironmentalfactors.
Successfulimplementationofbioremediationtechnologiesoncontaminatedareasdependsonthecharacteristicsofthecontaminatedsiteandacomplexsystemofmanyfactorsthataffectthepetroleumhydrocarbonsbiodegradationprocesses19.
Themainfactorswhichlimittheoverallbiodegradationratecanbegroupedas:soilcharacteristics,contaminantcharacteristics,bioavailability,microorganism'snumberandcatabolismevolution1.
Inordertoadoptandimplementsomebioremediationstrategyitisextremelyimportanttoconsiderandunderstandthoselimitingfactors.
Fortheeffectivebioremediation,informationregardingthephysicochemicalpropertiesandtheindigenousmicrobialcommunityoftheautomobilecontaminatedsoilareessential52.
Alargepartoftheoilresourcesinourplanetisconstitutedbyheavyoil,i.
e.
,oilreservoirsthathavesufferedbiodegradationatacertainextent.
Therearemanyfactorscontributingtotheoildegradation,includingphysical-chemicalfactors,suchastheenvironmentalpH,organicmattercontent,temperature,andtheoilchemicalcomposition,aswellasbiologicalfactors,suchasthemicrobialdistributionintheenvironment,physiologicalandmetabolic.
www.
ijpab.
com188ShalluSihagetalInt.
J.
PureApp.
Biosci.
2(3):185-202(2014)ISSN:2320–7051Manypublishedstudieshaveinvestigatedtheefficacyofbioremediationonabenchscaleandunderideallaboratoryconditions,suchasacircum-neutralpHandmesophilictemperatures.
However,itisapparentthatenvironmentalfactorsthatvaryfromsitetosite(suchassoilpH,nutrientavailabilityandthebioavailabilityofthecontaminant)caninfluencetheprocessofbioremediationbyinhibitinggrowthofthepollutant-degradingmicroorganisms.
ThereareavarietyoffactorslikepH,temperature,oxygen,nutrientavailabilityetc.
,whichcanaffecttherateofdegradationofpolyaromatichydrocarbons56,57studiedtheeffectoftemperature,salinityandoilconcentrationonbiodegradationofcrudeoil,thebiosurfactantactivityandnaphthalenedegradationbyanewlyidentifiedstrainBacilluscereus28BNwasinvestigatedthemetaboliccapabilityof15bacterialisolatesisolatedfromoilcontaminatedsitebyusingenrichmentculturetechniquewhichwereabletodegradearomaticandpolyaromaticfractions48,26.
Variousfactors,includingtheadditionalpresenceofcarbonsources,pH,moisturecontentandsizeofinoculums,influencedthedegradation2BecauseofthetoxicityandcarcinogenicityofPAHsitismoreimportanttoreduceitseffect.
BythemanipulationinthefactorspHofthesoilmicrobialmanipulationtherateofdegradationofPolyaromaticHydrocarbonscanbeenhanced36.
However,determinationoftheoptimizationvaluesforthedegradationprocessofabioticfactors[(C/N/P/),thenitrogensource,theironsource,theironconcentration,thepHandthecarbonsource]ofPAHs(naphthalene,phenanthreneandanthracene)werecarriedoutbyisolatingbacterialconsortiumbelongingtoC2PL0544.
Table1.
1:-FactoraffectingmicrobialdegradationLimitingfactorsEffectWeatheringAggregation,spreading,dispersion,adsorption.
WaterpotentialEvaporations,photooxidation.
TemperatureOsmoticandmatrixforces,exclusionofwaterfromhydrophobicaggregatesOxidantInfluenceonevaporationanddegradationrates.
MineralnutrientsO2requiredtoinitiateoxidation,NO3-orSO42-tosustain,PHCbiodegradation.
ReactionN,P,FemaybelimitingLowpHmaybelimitingMicroorganismsPHCdegradersmaybeabsentorlowinnumbersTable1.
2:OptimalconditionsformicrobialgrowthandhydrocarbonbiodegradationParameterMicrobialgrowthHCbiodegradationWaterholdingcapacity25-2840-80pH5.
5-8.
86.
5-8.
0Temperature(oC)10-4520-30Oxygen(air-filledporespace)10%10-40%C:N:P100:10:1(0.
5)100:10:1(0.
5)ContaminantsNottootoxicHC5–10%ofdryweightofsoilHeavymetals75Crespectivelyinspent-mushroomcompostduringthedegradationofPAHs.
Over90%degradationofthecontaminatingPAHswasoccurredatthesetemperatures.
VariousenvironmentalfactorswereinvestigatedinthewatersolublefractionofKuwaitcrudeoil.
ResultswereindicatealmostallPAHsweredegradedat150Candatanoxygenlevelof4ppmontheotherhandat400CmostofPAHsdegradedoptimallyat0ppmoxygenlevel59.
Themicroorganismswhichdegradehydrocarbonsaremostactiveinspecifiedtemperaturerangesthatgoverntheproductionofenzymes.
ThethreeclassesandtheiroptimumtemperaturerangesarePsycrophiles(below200C),mesophiles(150C-450C),andthermophiles(above500C).
Mostoildegradingmicroorganismsareactiveinthemesothermicrangeof200Cto350Candprovideoptimumdegradationratesatthesetemperatures.
Temperaturewilldeterminetoacertainextentthetypesoforganismsthatwillbepresentfordegradation.
Ingeneral,degradationrateswillbeslowerincolderwatersthatinwarmersclimates.
Atlowertemperatures,theoilviscosityincreases,thevolatilityofthelowerchainhydrocarbonsdecreasesandsolubilityincreases,makingtheoilmoretoxicandlessappealingtodegradingmicrobes.
Seawaterrangesfrom-20Cto350C,withover90%oftheoceanshavingatemperaturebelow50C.
Biodegradationhasbeenobservedinthisentiretemperaturerange.
Oneexperimentshowedthatatemperaturedropfrom250Cto50Ccausedatenfolddecreaseinresponserates60.
DegradationhasbeenobservedinArcticiceandfrozentundra,butatnegligiblerates61.
Heatisreleasedduringdegradationprocesses,butafirebyspontaneouscombustionisnotpossible.
Temperaturesdonotexceed710C,thelimitingmaximumtemperatureformicrobialsurvival.
Highertemperatureswouldberequiredformostproductstoignite,butthechanceremainssmallduetothevolatizationofthesemolecules.
Itisanimportantfactortogovernthemetabolicactivityofthedegradingmicroorganismsaswellasphysicalandchemicalnatureofhydrocarbons.
Atthemesophilicandthermophilicrangeoftemperaturesitisbeenfoundthattheenzymeactivityofmicroorganismsincreaseswhichhelpsinincreasingtherateofhydrocarbondegradation.
Thereforemajorlythe300C-400Ctemperatureinthemesophilicrangeorsometimes600Ctemperaturesinthermophilicrangeisused.
Thoughitisbeenalsoobservedthatsomehydrocarbonslike,dieselcanbedegradedatlowertemperaturesi.
e.
between00-100C.
Butatlowtemperaturestheviscosityofoilincreaseswhichsuppressesthespreadingofoilonsurfacewhichmakesthedegradationdifficult.
Moreover,inthemesophilicrangemorevarietyoforganismscanbeavailablefordegradationsomesophilicorthermophilictemperaturesarethebetterchoiceforbioremediation30.
2.
2SoilCharacteristicsSoilcharacteristicsareespeciallyimportantforsuccessfulhydrocarbonbiodegradation,someofthemainlimitingfactorsare:soiltexture,permeability,pH,waterholdingcapacity,soiltemperature,nutrientcontentandoxygencontent.
Soiltextureaffectspermeability,watercontentandthebulkdensityofsoil.
Soilwithlowpermeability(suchasclays)hinderstransportationandthedistributionofwater,nutrientsandoxygen.
Toenablethebioremediationofsuchsoil,itshouldbemixedwithamendmentsorbulkingmaterials(straw,sawdustetc.
),asthebioremediationprocessesrelyonmicrobialactivity,andmicroorganismsrequireoxygeninorganicnutrients,waterandoptimaltemperatureandpHtosupportcellgrowthandsustainbiodegradation62,63.
2.
3pHManysitescontaminatedwithPAHsarenotattheoptimalpHforbioremediation.
Forexample,retiredgasworkssitesoftencontainsignificantquantitiesofdemolitionwastesuchasconcreteandbrick.
LeachingofthismaterialwillincreasethepHofthenativesoiland/ormadegroundofthesite,resultinginlessfavorableconditionsformicrobialmetabolism.
Inaddition,theoxidationandleachingofcoalcreateanacidicenvironmentbythereleaseandoxidationofsulfides.
AsthepHofcontaminatedsitescanoftenbelinkedtothepollutant,theindigenousmicroorganismsatthesiteswillnothavethecapacitytowww.
ijpab.
com190ShalluSihagetalInt.
J.
PureApp.
Biosci.
2(3):185-202(2014)ISSN:2320–7051transformPAHsunderacidicoralkalineconditions.
ItwasstudiedtheeffectofpHontheabilityofsodiumphosphate(Na3PO4)indegradingpolycyclicaromatichydrocarbons(PAHs)incontaminatedsoil.
ResultsobtainedfromGasChromatography/MassSpectroscopy(GC/MS)analysesindicatedthat23%of2-methylnaphthalenewasdegradedastheoverallhighestpolycyclicaromatichydrocarbonatpH2.
0using2gNa3PO4,whileacenaphthene(1.
7%)wastheleastoveralldegradedpolycyclicaromatichydrocarbonatpH2.
0using4gNa3PO4powder.
AnincreaseinPAHsdegradedtrendwasobservedusing4gNa3PO4asthepHwasincreasedfrom2.
0to4.
0.
Therefore,itiscommonpracticetoadjustthepHatthesesites,forexamplebytheadditionoflime.
(64)PhenanthrenedegradationinliquidculturehasbeeninvestigatedatarangeofpHvalues(pH5.
5–7.
5)withBurkholderiacocovenenas,anorganismisolatedfromapetroleum-contaminatedsoil65.
AlthoughbacterialgrowthwasnotsignificantlyaffectedbythepH,phenanthreneremovalwasonly40%atpH5.
5after16days,whereasatcircum-neutralpHvalues,phenanthreneremovalwas80%.
Sphingomonaspaucimobilis(strainBA2)washowever,moresensitivetothepHofgrowthmedia,withthedegradationofthePAHsphenanthreneandanthracenesignificantlyinhibitedatpH5.
2relativetopH766.
PAHdegradationhasbeenrecordedinanacidicsoil(pH2)contaminatedbycoalspoilbytheindigenousmicroorganisms,withtheconcentrationsofnaphthalene,phenanthreneandanthracenereducedovera28-dayperiod67.
Naphthaleneconcentrationswerereducedby50%insoilsdownstreamofanearbycoalpile,withphenanthreneandanthracenereducedbybetween10and20%.
ItwasfoundthatsomeoftheenvironmentalisolateswereabletobothreducethepHoftheliquidmediafrom9to6.
5within24h,andalsoutilizenaphthaleneasasolesourceofcarbon.
Incontrast,thenaphthalenedegradingmicroorganismsPseudomonasfredrikbergensis(DSM13022)andPseudomonasfluorescens(DSM6506),wereseverelyinhibitedbytheelevatedpH.
Itsuggeststhatinsitumicroorganismsatacontaminatedsitemaybenotonlytolerantofthesiteconditions,butmayhavethepotentialtometabolizePAHsinsub-optimalconditions(inthiscase,highpH).
ThechoiceofpHdependsonthemicroorganismstobeusedforthedegradation.
Fungalstrainsarefoundtocarrybiodegradationatlowertemperatures.
Evenwhenindigenousmicrobialconsortiuminclusiveoffungi,yeastandseveralbacteriaisusedtheyarefoundtosurviveatpH2.
AlthoughtherearecertainbacteriathatarealkaliphilesfoundinalkalinelakesatpH7.
5-10.
Salinitymanyisolatesarecapableofgrowingatsalinitycomparabletoseawater.
Thesignificanthydrocarbondegradationwasobservedwith0.
1-2MNaClwheremaximumwasat0.
4Mi.
e.
almostequivalenttonaturalseawater.
Thoughathighersalinitylevel,thedegradationratewasfoundtodecrease.
2.
4OxygenThoughitisnowwellestablishedthatbioremediationoforganiccontaminantssuchasPAHscanproceedunderbothaerobicandanaerobicconditions,mostworkhastendedtoconcentrateuponthedynamicsofaerobicmetabolismofPAHs.
Thisisinpartduetotheeaseofstudyandcultureofaerobicmicroorganismsrelativetoanaerobicmicroorganisms.
DuringaerobicPAHmetabolism,oxygenisintegraltotheactionofmono-anddioxygenaseenzymesintheinitialoxidationofthearomaticring68.
Waysinwhichtomaintainadequateoxygenlevelsforaerobicmetabolismforinsitutreatmentsarediscussedbelowandincludehydrogenperoxideforsub-surfacecontamination.
Forsurfacecontamination,simplesoiltillingand/ormixing,forexampleusingcompostturners,canaeratecontaminatedmaterialwellenoughtoallowPAHtransformationtoproceed.
Thereisstilldebateastowhetherthebenefitsofanaerobicbioremediationareoutweighedbythenegatives,withtheaerationofcontaminatedanaerobicaquiferssuccessfullyusedtostimulateaerobicmicrobialcommunitiesresultinginsignificantreductionsinPAHconcentrationsingroundwater.
Thishasbeenaccomplishedusinghydrogenperoxide,sodiumnitrate69andperchlorate70.
Inaddition,theaerobicbiodegradationofhydrocarbonshasbeenreportedtobeuptoanorderofmagnitudehigherrelativetoanaerobicbiodegradation71.
However,ithasalsobeenreportedthatratesofanaerobicPAHdegradationunderdenitrifyingconditionswerecomparabletothoseunderaerobicconditions72.
Thoughitappearsthatthefutureofanaerobicbioremediationispromising,thereareseveraldrawbackstothepromotionofanaerobicbioremediation.
www.
ijpab.
com191ShalluSihagetalInt.
J.
PureApp.
Biosci.
2(3):185-202(2014)ISSN:2320–7051NotallenvironmentscontainanactivepopulationofanaerobesthatareabletodegradePAHs.
Thishasbeenshownincreosote-contaminatedsediment,wherelimitedbiodegradationofPAHswasseenunderdenitrifying,sulfate-reducingandmethanogenicconditions,59eventhoughtherewasanactivelyrespiringanaerobiccommunitypresentinthesediment.
SimilarresultswerefoundwheninvestigatingthepotentialforPAHdegradationinsedimentsamplesfromSanDiegoBay,California73.
MetabolismofPAHsinthesesedimentsthathadhadlowlevelsofpreviousexposuretoPAHsonlyoccurredafteralonglagperiod,andwaspromotedwhentheywere'spiked'withPAH-contaminatedsedimentsthatcontainedanactivecommunityofPAH-degraders.
ThissuggeststhatthedominantinsitumicrobialcommunitydidnotconsistofPAH-degradingmicroorganismsandthatbioremediationwaslimitedbylownumbersofPAH-degradingmicroorganismsratherthanadverseenvironmentalconditions73.
anotherpotentialdisadvantageofthepromotionofinsituanaerobicbioremediationisthatthegeochemistryofthesubsurfacewillbealteredbytheimpositionofreducingconditions.
Asanenvironmentisdrivenanaerobic,allresidualoxygenisdepleted,andelectronacceptorssuchasnitrate,ferricironandsulfatearereducedduringrespiration74.
Thisresultsinthemobilizationofferrousiron,andthereforethereleaseofphosphateFroiron(III)–phosphatecomplexes.
Bothofthesearetoxictotheenvironment;iron(II)israpidlyoxidizedwhenexposedtooxygen,causinganorangeprecipitateinfreshwaterfrequentlyassociatedwithacidminedrainage75andexcessphosphateinfreshwaterscancauseeutrophication.
Inaddition,thereisoftenaconcomitantincreaseinpH,whichcanresultinthesolubilizationofcarbonatemineralsandthereleaseoftracemetals76.
RespirationwillalsoproducepotentiallypotentgreenhousegasessuchasH2S,CH4andN2O77.
Itisclearthatmoreresearchisneededtofullyunderstandtheimplicationsassociatedwiththepromotionofanaerobicbioremediation.
Thediscoveryofawidediversityofpollutant-transforminganaerobesisasignificantstepforwardinunderstandingtheprocessesinvolvedinbioremediation,andthedesignandapplicationofanaerobicremediationbothinsituandexsitutothecontaminatedsite.
Dissolvedmolecularoxygenisrequiredforrespirationofthemicrobeandisusedthroughoutthesubsequentdegradationpathway.
Requirementsforoxygenuptakearesignificant.
Itusuallytakes3to4mlofdissolvedoxygentooxidize1mlofhydrocarbonstocarbondioxideandwater49.
Thisrelativelyhighdemandisduetothehighconcentrationofhydrogenandcarbonintheoil,butverylowconcentrationsofoxygen.
Surfacewaters,suchasoceans,harbors,andlakes,essentiallyhaveaninfinitesupplyofoxygenduetotheair/waterinterfaceandthewindandwaveaction.
But,oxygenbecomestheratelimitingeffectasdepthincreases.
Atsufficientdepthsandindeepwatersediments,degradationofthehydrocarbonscanturnanaerobicwhentheoxygensupplyisdepleted.
Thus,oilthatisdispersedandsinkstothedeepoceansandiscoveredbysedimentswilltakemuchlongertodegrade.
Oxygenreplenishmentcanbehinderedbylarge,thickpoolsofoilonwatersurfacesduetotheblanketingoftheair/waterinterface.
Thisproblemismostlikelytooccurinmarshes,harbors,andinletsthatrelyontheflushingprocessprovidedbytidalmovements.
Mechanicalremovalisrequiredtoincreasetheairinterfaceboundarynecessaryforoxygenreplenishment.
Forsoilenvironments,theavailabilityofoxygenisdependentonthetypeofsoil,amountofmoisture,andtherateofmicrobialdegradationthathasoccurred.
Oxygenisplentifulonbeachsurfacesandsubsurfaceswherewaveandtidalmechanismscontributetore-aerationandreplenishment.
Oxygencontentwillbehighalsonearjetties,pierstructures,andretainingwallssubjecttocrashingwaves.
Oxygenwillbelimitedinfinegrainsoils,beachfrontswithlittleornotidalmovements,andassoildepthsincrease.
Oxygenhasbeen--showntobetheratelimitingstepofdegradationofhydrocarbonsindeepsoilsandgroundwater.
Toalleviatethese3problems,thesoilcanbemechanicallytilledtoprovideaeration,or,fordeepersoilsandgroundwater,oxygencanbe3suppliedbypumpingitintoaseriesofburiedperforatedpipes,bysoilventing,airsparging,injectionofhydrogenperoxide3andbyaeratingthewatertoprovidethenecessaryamountsofoxygen.
Itisoneofthebasicrequirementsforthebiodegradation.
Butagaintheconcentrationofoxygenusedwillhighlydependonthechoiceofmicroorganismused.
Foraerobicbacteria,stoichiometrically3.
1mg/mlofoxygenisrequiredforthedegradationof1mg/mlhydrocarbonswithouttakingintoconsiderationthetotalmassofbacteria.
Soitmayvarywithincreasingordecreasingmassofbacteria7.
Evenanaerobicbiodegradationhasproveditsimportance.
Manydifferenttypesofbacteriaaretestedandfoundtobewww.
ijpab.
com192ShalluSihagetalInt.
J.
PureApp.
Biosci.
2(3):185-202(2014)ISSN:2320–7051usefulindegradinghydrocarbonslikebenzene,alkanes,toluenesetc,hydrocarbondegradationratesinsoil,freshwater,andmarineenvironments9.
2.
5NutrientavailabilityInadditiontoareadilydegradablecarbonsource,microorganismsrequiremineralnutrientssuchasnitrogen,phosphateandpotassium(N,PandK)forcellularmetabolismandthereforesuccessfulgrowth.
Incontaminatedsites,whereorganiccarbonlevelsareoftenhighduetothenatureofthepollutant,availablenutrientscanbecomerapidlydepletedduringmicrobialmetabolism61.
Thereforeitiscommonpracticetosupplementcontaminatedlandwithnutrients,generallynitrogenandphosphatestostimulatetheinsitumicrobialcommunityandthereforeenhancebioremediation78,79.
TheamountsofNandPrequiredforoptimalmicrobialgrowthandhencebioremediationhavebeenpreviouslyestimatedfromtheratioofC:N:Pinmicrobialbiomass(between100:15:380and120:10:181.
However,arecentstudyhasshownthatoptimalmicrobialgrowthandcreosotebiodegradationoccurredinsoilwithamuchhigherC:Nratio(25:1)thanthosepredictedfromtheratioinmicrobialbiomass,withlowerC:Nratios(5:1)causingnoenhancementinmicrobialgrowth80.
ThelevelofnutrientsrequiredforPAHtransformationaregenerallythoughttobesimilartothoserequiredforotherorganicpollutantssuchaspetroleumcompounds.
However,littleworkhasbeendoneregardingthemostfavorablenutrientlevelsrequiredfortheoptimaldegradationofPAHs,andfurtherworkinthisareawouldbenefitfuturebioremediationtrials.
Itisworthnotingthatfungiareabletoeffectivelyrecyclenutrients(specificallynitrogen),andthatexcessivelyhighnutrientloadingsmayinfactinhibitmicrobialmetabolism.
Inaddition,thehighmolecularweightPAH-oxidizingligninolyticenzymesofthewhite-rotfungiareproducedundernutrientdeficient(oftenlownitrogen)conditions82.
Itthereforeappearsimperativethatthenutrientstatusofthesiteisestablishedpriortothesupplementationofthesitewithadditionalnutrients.
Eventhoughmicrobialmetabolismmaybetemporarilyincreased,thelong-terminhibitionoffunctionallyimportantorganismsmayresultinthefailureofthebioremediationofhighmolecularweightPAHs(suchasbenzo[a]pyrene).
Nutrientsarerequiredtosupportthebiologicalactivity,andhencebioremediation.
Microorganismscommonlyrequirecarbon,nitrogenandphosphorousforthedegradationofhydrocarbons.
Theamountofvariousnutrientsandratioofparticularly,nutrientslikeC,NandPisquiteconceivableregardingthesuccessofthebioremediationprocess.
Variousstudieshavebeenconductingtoevaluatethefactorswhichenhancetheremediationprocess.
ItwasinvestigatedthedegradationofphenanthrenebynaturalmicroflorapresentinseawatersamplesfromGuayanillabaybytheadditionofKNO3asasourceofinorganicnitrogenwhichwasresulted10foldincreaseinthephenanthrenedegradation54.
Theorganiccarboncontentinhydrocarboncontaminatedsiteisfoundtobeveryhighattributedtoconstantinputofhydrocarbons.
Becauseofthehighcarboncontentofoilandthelowlevelofothernutrientsessentialformicrobialgrowth,therateandextentofdegradationare,ingeneral,limitedbythelowavailabilityofnitrogenandphosphorus.
Consequently,growthofhydrocarbon-degradingbacteriaandhydrocarbondegradationcanbestronglyenhancedbyfertilizationwithinorganicNandP.
InmajorityofthetreatmentstheC:N:Pratioismaintainedas120:10:138,21.
Thetypesandquantitiesofnutrientspresentinthesystemplayamuchmoreimportantroleinlimitingtherateofhydrocarbondegradation.
Manystudieshaveshownthataninadequatesupplyofnutrientsmayresultinaslowerrateofdegradationforhydrocarbons(Roberts,1992).
Thecapacityofthemicroorganismtogrowinagivensystemdependsontheorganism'sabilitytoutilizeanyavailablenutrient.
Aerobicmicroorganismsutilizevarioustypesofnutrientsincludingnitrogen,phosphorus,andtraceamountsofpotassium,calcium,sulfur,magnesium,iron,andmanganese.
Nitrogenandphosphorusarevitalnutrientsespeciallysinceoilcontainsverylittleofeither6.
Thelackofeithernutrientwillretardnaturaldegradationrates.
Seawaterisoftendeficientinthesenutrientsbecausenon-oildegradingmicroorganismsconsumethemaswellastheoilconsumingspecies.
Also,phosphorusprecipitatesascalciumphosphateinthepresenceofseawater48.
Concentrationsofnitrogencompoundsinseawaterrangefrom.
1to1mg/l,andphosphorusrangesfrom0to.
07mg/l,dependingonseasonaltemperatures6.
Tocompensateforthelackofnutrients,fertilizershavebeenapplied.
Amendingthesoilinthismannerimprovesthenutritionalstatusofmicroorganismsandencouragesgrowth.
Theamountrequiredtodegradeacertainvolumeofoilhasnotyetbeenthoroughlyunderstood,thoughthesubjectisbeingresearched20.
www.
ijpab.
com193ShalluSihagetalInt.
J.
PureApp.
Biosci.
2(3):185-202(2014)ISSN:2320–70512.
6MicroorganismsNumberandCatabolismEvolutionTheabilityofthesoil'smicrobialcommunitytodegradehydrocarbonsdependsonthemicrobe'snumberanditscatabolicactivity.
Microorganismscanbeisolatedfromalmostallenvironmentalconditions.
Soilmicrofloracontainsnumbersofdifferentmicroorganismsincludingbacteria,algae,fungi,protozoaandactinomycetes,whichhaveadiversecapacityforattackinghydrocarbons.
Themainfactorswhichaffecttherateofmicrobialdecompositionofhydrocarbonsare:theavailabilityofthecontaminantstothemicroorganismsthathavethecatabolicabilitytodegradethem;thenumbersofdegradingmicroorganismspresentinthesoil;theactivityofdegradingmicroorganisms,andthemolecularstructureofthecontaminant42.
Thesoilmicroorganismsnumberisusuallyintherange104to107CFU,forsuccessfulbiodegradationthisnumbershouldnotbelowerthan103pergramofsoil.
Microorganismnumberslowerthan103CFUpergramofsoilindicatethepresenceoftoxicconcentrationsoforganicorinorganiccontaminants27,33.
Theactivityofsoilmicrofloracanbecontrolledbythefactorsdiscussedabove-pH,temperature,nutrients,oxygenetc.
Forsuccessfulbiodegradation,itisalsonecessarythatthemicroorganismscandevelopcatabolicactivity,bythefollowingactivities:inductionofspecificenzymes,developmentofnewmetaboliccapabilitiesthroughgeneticchanges,andselectiveenrichmentoforganismsabletotransformthetargetcontaminant27,33.
Hydrocarbonsarearichsourceofcarbonandenergythatmicrobesneedforgrowth.
Beforethecarbonisavailableforuse,largerhydrocarbonmoleculesmustbebrokendownintosimplermoleculessuitableforusebyothermicrobes.
Morethan70microbialgeneraareknowntocontainorganismsthatcandegradehydrocarbonmolecules.
Hydrocarbonsreleasedintheenvironmentarebiodegradedprimarilybybacteriaandfungi.
Thesemicrobesareubiquitousinsoil,freshwater,andseawaterenvironments.
Ofthemanybacteriafoundtodegradehydrocarbons,themostimportantfoundinmarineandsoilenvironmentsareAchromobacter,Acinetobacter,Alcaligenes,Arthrobacter,Bacillus,Flavobacterium,Nocardia,andPseudomonas20.
Amongthefungilisted,Aureobasidium,Candida,Rhodotorula,andSporobolomycesarecommoninmarineenvironmentsandTrichodermaandMortierellaaremostcommoninsoilenvironments20.
Inmarineenvironments,bacteriaareconsideredtobethepredominanthydrocarbonorganism.
Bothbacteriaandfungicontributetohydrocarbondegradationinsoils,withpercentcontributionsrangingfrom50-50to80-20infavorofbacteria.
Evenlessisknownaboutthecomparativerolesofbacteria,fungi,andyeastsinfreshwater,asaretherolesofprotozoaandalgaeinoveralldegradationrates.
Themicroorganismswhichusehydrocarbonsasafoodsourcecanreadilybefoundinvastquantitiesnearplacessubjectedtooilpollution,suchasnaturaloilseeps,shippinglanes,harbors,oilfields,fuelterminals,andsimilarfacilities.
Relativelyfewhydrocarbonutilizersliveinvirginsoilorinthevastopensea.
Fewtononeresideinpetroleumasitemergesfromthedeepunderground,asshownbythevastamountofoilthatstillremainsundergroundevenaftermillionsofyears.
Thepopulationofmicroorganismswillvaryfromsampletosample,dependingonthelocationatwhichitwastaken.
Oilpollutedharborscancontain1EIOA3toIEI0A6microbes/ml.
Intermsofpercentages,waternotpollutedbyhydrocarbonstypicallyhaveonepercentofthepopulationmadeupofhydrocarbondegradingbacteria,whereasinpollutedareastheycanconstitutetenpercentormoreofthetotalmicrobialpopulation15.
Thuscleanupoflongstandingmilitaryfacilitiessuchasfueldepotsandharborsmaybeeasierthanthatofanisolatedaccidentusingbioremediationtechnologyduetoanincreaseofhydrocarbonutilizingmicroorganisms.
2.
7ConsortiumofMicroorganismsAconsortiummaybedefinedasamixtureofdifferenthydrocarbonsutilizingmicroorganism.
Hydrocarbonsrangeinsizefromsingletomanycarbonmolecules.
Themicroorganismsproduceenzymes(groupsofproteinsthatmediateorpromotethetransformationofthehydrocarbonintoasimplercompound)thatattackthehydrocarbonmolecule.
Somemicroorganismscanproduceenzymeswhicharecapableofattackingalmostanysizeortypeofhydrocarbon;otherscanonlyproduceenzymesthatattackandbreakdownonespecifictypeorsizemolecule.
Oncethehydrocarbonisbroken,otherenzymesmayberequiredtofurtherbreaktheremaininghydrocarbon.
Lackofaspecificenzymetoattacktheremainingmoleculefurthermayprovideabarriertowww.
ijpab.
com194ShalluSihagetalInt.
J.
PureApp.
Biosci.
2(3):185-202(2014)ISSN:2320–7051thecompletedegradationandstoptheprocess,untiloneisintroducedtothesystem.
Thiscomplexseriesofstepsbywhichdegradationoccursiscalledametabolicpathway.
Nosinglespeciesofmicroorganismiscapableofdegradingthemanydifferenthydrocarboncomponentsinoilproducts,thusmanydifferentenzymesandmetabolicpathwaysarerequiredtodegradethesignificantnumberofcompoundscontainedinpetroleumandrelatedproducts.
Whenapetroleumspilloccurs,certainmicroorganismsinthesystemwillexhibitrapidgrowthduetothevastavailabilityofeasilydegradablehydrocarbons.
Thesefastgrowingspeciesmayhinderotherspeciesbydepletingoxygenornutrientsinthesystem.
Whenthoseeasilydegradablehydrocarbonsaredepleted,themicroorganismsmaylacktheenzymenecessarytodegradetheotherhydrocarbonsavailable,anddieoff.
Othermicroorganismscapableofutilizingtheremaininghydrocarbonswillthenexhibitgrowthandflourishinthesystem.
Thus,thecyclecontinues,asspeciesflourishandrecedeasthehydrocarbonstheyexcelatdegradingbecomeavailable,thenaredepleted.
Microorganismsthatreadilydegradethehydrocarbonsfoundinpetroleumproductscanusuallybefoundnearthesurfacesofsoilandwater.
Themainreasonforthisistheavailabilityofoxygen,moisture,andthefoodsource(thehydrocarbon)nearthesurface.
Althoughsomemicrobesareanaerobic(notgrowinginthepresenceofmolecularoxygen),thevastmajorityofmicrobesthatdegradehydrocarbonsareaerobic(thosethatutilizemolecularoxygen).
2.
8BioavailabilityBioavailabilitycanbedefinedastheeffectofphysicochemicalandmicrobiologicalfactorsontherateandextentofbiodegradation83andisbelievedtobeoneofthemostimportantfactorsinbioremediation.
PAHcompoundshavealowbioavailability,andareclassedashydrophobicorganiccontaminants.
(84)Thesearechemicalswithlowwatersolubilitythatareresistanttobiological,chemicalandphotolyticbreakdown84.
ThelargerthemolecularweightofthePAH,theloweritssolubility,whichinturnreducestheaccessibilityofthePAHformetabolismbythemicrobialcell85,86.
Inaddition,PAHscanundergorapidsorptiontomineralsurfaces(i.
e.
clays)andorganicmatter(i.
e.
humicandfulvicacids)inthesoilmatrix.
ThelongerthatthePAHisincontactwithsoil,themoreirreversiblethesorption,andtheloweristhechemicalandbiologicalextractabilityofthecontaminant87.
Thisphenomenonisknownas'ageing'ofthecontaminant.
Thereforethebioavailabilityofapollutantislinkedtoitspersistenceinagivenenvironment.
ReleaseofPAHsfromthesurfaceofmineralsandorganicmattercanbeachievedbytheuseofsurface-activeagents(alsoknownassurfactantsordetergents).
Thesearecompoundsthatcontainbothahydrophobicandhydrophilicmoiety,thusprovidinga'bridge'betweenthehydrophobicPAHmoleculeandthehydrophilicmicrobialcell.
Somemicroorganismscanproducesurfactants(biosurfactants)thatcanenhancethedesorptionofPAHsfromthesoilmatrix88,89.
Thesearepotentiallymoreeffectivethanusingsyntheticsurfactants,astheyarethoughttobelesstoxictotheinsitumicrobialcommunityanddonotproducemicelles,whichcanencapsulatecontaminantPAHsandpreventmicrobialaccess89.
ThebioavailabilityofPAHsinsoilcanbeassessedusingbothchemicalandbiologicalmethods;thoughitisquestionablewhichtypeoftest(s)ismostrepresentativeofthebioavailabilityofhydrophobicorganiccontaminantsinsoil,asbothapproacheshaveinherentlimitations90.
TherearemanybiologicaltechniquestoassessthebioavailabilityofPAHsinsoil.
Thesecanbebaseduponthemonitoringofbiologicalfunction,suchasmicrobialrespirationrates(mineralization)of14C-labelledcontaminants,thebioluminescenceofmicroorganismssuchasluxmicroorganismsand/orlux-taggedpollutantsthatareincontactwithacontaminatedmaterial91andbyassessingthedegreeofdermaldiffusionandgastrointestinalsorptionofPAHsinearthwormsandhencethebioavailabilityandecotoxicityofPAHsinthesoil74.
Inaddition,bioavailabilitycanbemeasuredbymonitoringchangesintheexpressionofgenesthatcodeforPAHdegradationusingmolecularprobes,andalsobytheextractionofsoilpollutantsusingasimulatedmouthandgutdigestivefluidsuchassaliva,inordertodemonstratetheriskthatthecontaminantwillposeifingested.
(92)Biologicalassaysareoftensupportedbyperformingachemicalassayofthebioavailabilityofthecontaminantinthesoil,whichphysicallyextractsthecontaminantfromwww.
ijpab.
com195ShalluSihagetalInt.
J.
PureApp.
Biosci.
2(3):185-202(2014)ISSN:2320–7051thesoilmatrixusingachemicalsolvent.
Organicsolventshavebeentraditionallyusedtoextractorganiccontaminantsduringharshextractionprocesses(suchasSoxhletextraction),althoughthisdoesnotdemonstratethetruebioavailabilityofthecontaminant,butthetotalcontaminantconcentrationinthesoil.
However,amorerepresentativeapproachwasusedbyHatzingerandAlexander,86whoextractedthecontaminantswithmildorganicsolvents(suchasmethanol)torepresentthebioavailableproportioninthesoil.
Asmicroorganismscanmostlyonlyaccessthosecontaminantsthatareintheaqueousphase,water-basedsolventsarealsobeingusedtomoreaccuratelypredictthebioavailablefractionoforganiccontaminationinsoil.
Onesuchcompoundishydroxypropyl-β-cyclodextrin90(HPCD),whichcanencapsulatehydrophobiccontaminants.
Inaddition,HPCDdoesnotappeartoinhibitlux-typemicroorganisms,allowingforacombinedbiologicalandchemicalassessmentofbioavailability.
Thebioavailabilityofhydrocarbonsisalsodependentonphysicalstate,hydrophobicity;sorptionontosoilparticles,volatilizationandsolubilityofhydrocarbonsgreatlyaffectstheextentofbiodegradation.
Eveniftheoptimalconditionsforhydrocarbonbiodegradationareprovidedatthefield,ithasbeenshownthataresidualfractionofhydrocarbonremainsundegraded.
Mainly,afteritsarrivalinthesoil,anorganiccontaminantmaybelostbybiodegradation,leachingorvolatilization,oritmayaccumulatewithinthesoilbiotaorbesequesteredandcomplexwithinthesoil'smineralandorganicmatterfractions.
Therateatwhichhydrocarbon-degradingmicroorganismscanconvertchemicalsdependsontherateoftransfertothecellandtherateofuptakeandmetabolismbythemicroorganisms.
Itiscontrolledbyanumberofphysical-chemicalprocessessuchassorption/desorption,diffusion,anddissolution4,8.
Themasstransferofacontaminantdeterminesmicrobialbioavailability.
Theterm"bioavailability"referstothefractionofchemicalsinsoilthatcanbeutilizedortransformedbylivingorganisms.
Thebioavailabilityofacompoundisdefinedastheratioofmasstransferandsoilbiotaintrinsicactivities.
Mostsoilcontaminantsshowbiphasicbehaviour,wherebyintheinitialphaseofhydrocarbonbiodegradation,therateofremovalishighandremovalisprimarilylimitedbymicrobialdegradationkinetics.
Inthesecondphase,therateofhydrocarbonremovalislowandremovalisgenerallylimitedbyslowdesorption.
Altogether,lessbioavailablefractionofhydrocarboncontaminationisformedbyhydrocarbonswhichdesorbslowlyinthesecondphaseofbioremediation22.
Thebiodegradationofanoil-contaminatedsoilcanalsobeseriouslyaffectedbythecontaminationtime,duetoweatheringprocesses,whichdecreasethebioavailabilityofpollutantstomicroorganisms.
Weatheringreferstotheresultsofbiological,chemicalandphysicalprocessesthatcanaffectthetypeofhydrocarbonsthatremaininasoil22,24,42.
Thoseprocessesenhancethesorptionofhydrophobicorganiccontaminantstothesoilmatrix,decreasingtherateandextentofbiodegradation.
Moreover,aweatheredoil-contaminatedsoilnormallycontainsarecalcitrantfractionofcompoundscomposedbasicallyofhighmolecularweighthydrocarbons,whichcannotbedegradedbyindigenousmicroorganisms22,24,3.
Incontrast,arecentlyoil-contaminatedsoilcontainsahigheramountofsaturatedandaliphaticcompounds,whicharethemostsusceptibletomicrobialdegradation.
However,thepollutantcompoundsinarecentlycontaminatedsoilarepotentiallymoretoxictothenativemicroorganisms,leadingtoalongeradaptationtime(lagphase)beforedegradationofthepollutantandeventoaninhibitionofthebiodegradationprocess22,27,33.
Aswasmentionedabove,sequestrationandweatheringoforganiccontaminantsinthesoilreducesthebioavailabilityoforganiccompoundsandresultsinnon-degradedresiduesinthesoil.
Contaminantsthathavebeenweatheredandsequestratedinsoilarenotavailableforbiodegradationinsoil,eventhoughfreshlyaddedcompoundsarestillbiodegradable1.
Sorptionisamajorfactorpreventingthecompletebioremediationofhydrocarbonsinsoil.
Slowsorptionleadstothehydrocarbonfractionbecomingresistanttodesorptionandincreasesitspersistencewithinthesoilorganicmatrix.
Thefollowinghypotheseshavebeenproposedasaexplanationforweathering:1weatheringresultsinaslowdiffusionofthehydrocarbonfractioninthesolidfractionoftheorganicmatterinthesoil;2thecontaminantslowlydiffusesthroughthesoilandbecomessorbedandtrappedinthesoilnano-andmicropores42,46.
2.
9ContaminantCharacteristicsPetroleumhydrocarbonscontainacomplexmixtureofcompounds;allthecomponentsofpetroleumdonotdegradeatthesamerate.
Theratebywhichmicroorganismsdegradehydrocarbonsdependsuponwww.
ijpab.
com196ShalluSihagetalInt.
J.
PureApp.
Biosci.
2(3):185-202(2014)ISSN:2320–7051theirchemicalstructureandconcentration.
Petroleumhydrocarbonscanbecategorizedintofourfractions:saturatesaromatics,resinsandasphaltene.
Thevariouspetroleumfractions,n-alkanesofintermediatelength(C10-C25)arethepreferredsubstratesformicroorganismsandtendtobethemostreadilydegradable,whereasshorterchaincompoundsarerathermoretoxic.
Longerchainalkanes(C25-C40)arehydrophobicsolidsandconsequentlyaredifficulttodegradeduetotheirpoorwatersolubilityandbioavailability,andbranchedchainalkanesandcycloalkanesarealsodegradedmoreslowlythanthecorrespondingnormalalkanes.
Highlycondensedaromaticandcycloparaffinicstructures,tars,bitumenandasphalticmaterials,havethehighestboilingpointsandexhibitthegreatestresistancetobiodegradation.
Ithasbeensuggestedthattheresidualmaterialfromoildegradationisanalogousto,andcanevenberegardedas,humicmaterial3,22,4,45.
Therateofmicrobialuptakeandbiodegradationofhydrocarbonsisdependentonthesolventsolubilityofthehydrocarbons.
Hydrocarbonsthatarehighlysolubleinwatertheirdegradationratesarealmostproportionaltotheconcentrationbutitdiffersforlessaqueoushydrocarbons.
Itneedstobeconsideredthathighsolubilitymaybecomedetrimentaltothedegradingorganisms.
Usuallyoilloadinggreaterthan5%leadstodecreaseinthemicrobialactivity10,12.
InadditiontothishighconcentrationmaydisturbC:N:Pratioandcreateoxygenlimitations.
2.
10Toxicityofend-productsTheprincipleofbioremediationistoremoveordetoxifyacontaminantfromagivenenvironmentusingmicroorganisms.
Mostcommercialbioremediationtrialstendtomonitorthesuccessofthetreatmentbythedegreeofremovaloftheparentcontaminantanddonotconsiderthepossibilityofthebiologicalproductionofmoretoxicbreakdownmetabolites.
However,itisimportanttoensurethatthecontaminatedmaterialissuitablydetoxifiedattheendofthetreatment93,94.
ArecentstudyusingabioreactortotreatPAHcontaminatedgasworkssoilmonitoredboththeremovalofPAHsandtheaccumulationofoxy-PAHs,suchasPAH-ketones,quinonesandcoumarins94.
ThesecompoundsareformedduringthemicrobialmetabolismofPAHsandcanalsobeformedfromchemicaloxidationandphototransformationofPAHs95.
Suchtransformationproductscanbeequallytoxic,ifnotmoretoxic,tohumanhealthwhencomparedwiththeparentPAH,60withmanyoftheoxy-PAHsformedduringthetreatmentofPAHcontaminatedsoilsmorepersistentthantheparentcompounds94.
Inthisstudy,Lundstedtandcolleaguesinvestigatedthatalthoughtherewerenonewoxy-PAHsformedduringthebioremediationofanagedgasworkssoil,theconcentrationsof1-acenaphthenoneand4-oxapyrene-5-oneincreasedinthesoilby30%and60%respectivelyover30daysofbioslurrytreatment.
Inaddition,theyshowedthatsomeoxy-PAHsactuallyincreasedinconcentrationduringtreatment,andweresubsequentlymorepersistenttomicrobialdegradationthantheircorrespondingparentPAHcompound.
Asoxy-PAHsaremoretoxicthantheparentPAHs,thisstudyhighlightstheimportanceofmonitoringthemetabolitesofbioremediation,specificallyfortoxicdead-endproducts,andassessingthetoxicityofthematerialbothbeforeandaftertreatment.
However,itisimportanttounderstandtherelevanceofecotoxicityteststotheoveralltoxicityoftheremediatedland.
Manyofthesetestsmonitorfor'acute'toxicityofcompounds(viaorganismdeath),whereasitwouldbemorerepresentative,particularlywhenassessingthecarcinogenicandmutagenicPAHs,toconsiderthe'chronic'toxicityofthesesoils,suchasmonitoringfororganismDNAdamageandtheoccurrenceofDNAadducts60.
2.
11MoistureMoistureisrequiredforallbiologicalprocessestohelptransportnutrients,foods,andwasteproductsinandoutofthemicroorganisms.
Foroceans,lakes,andothersurfacewaterenvironments,thisposesnoimmediateproblems.
Forsoilenvironments,somemoisturemustbepresentfordegradationtooccur.
Toomuchwatercanimpedethereaerationofthesoil,andtheprocessmayturnanaerobic.
Theoptimumratioofmoisturewilldependontheclimateandsoiltype.
Ratiosrangefrom30-90%inonestudyand12-32%inothersandtheaerobicbiodegradationofhydrocarbonsinsoilsisgreatestinrangesof50-70%ofthesoilwaterholdingcapacity20,36whereaswavesandtidalactionsareusefulinsupplyingaeratedseawatertobeachesandmarshes,rainfallisusefulinthebiodegradationofinlandsoilsbysupplyingmoistureandusefuldissolvedoxygentothemicrobes.
www.
ijpab.
com197ShalluSihagetalInt.
J.
PureApp.
Biosci.
2(3):185-202(2014)ISSN:2320–70512.
12OrganicmatterThepresenceofnaturallyoccurringorganicmattercanhavedifferentaffectsonsoils,suchaswaterretention,soiltemperature,andtheabilityofmicroorganismstodegradepollutants36.
Theroleitplaysinsorptionprocessescanaffecttheavailabilityofnutrientsforthemicroorganisms.
Contaminantstargetedforbiodegradationcanberesistantofalterenzymaticattackbysorptionontosoilparticles.
Theboundmaterialbecomesunavailablefortheattack.
Additionoforganicmaterialcanslowthenaturalrateofbiodegradationduetoincreasedcompetition,butlongtermitcanincreaseinfiltrationandpermeabilityandporosity15.
Theadditionofthematerialcanbehelpfulinlowmoistureretainingsoilenvironments.
2.
13OilsurfaceandconcentrationSincethemajorityofthebiodegradationofhydrocarbonsoccursatorneartheair/waterinterfaceinwaterenvironmentsandtheair/soilinterfaceinsoilenvironments,theamountofoilsurfaceareaexposedattheseinterfaceswillaffecttherateofdegradation.
Thegreatertheareaexposed,thefasterstheproductwilldegrade.
Concentrationofthehydrocarbonisrelatedtooilsurfacearea.
Thickrafts,blankets,orpoolsofoilorotherpetroleumproductsconstituteahighconcentration/lowsurfaceareasituation.
Theavailablesitesthatcanbeattackedarereduced.
Theoilactsasablanket,hinderingthereplenishmentofnutrientsoroxygentothemicrobes.
Thus,athighconcentrationsthosecompoundsmostreadilydegradedwillbeattacked,leavingthemoreresistantcomponentsbehind.
Theseinturncombinetoformevenmoreresistantcompounds,suchastarballsthathavelimitedmoisturecontactandsurfacearea.
Concentrationsofhydrocarbonsintherangeof1to100ug/mlofwateror1to100ug/gofsoil(dryweight)arenotgenerallyconsideredtoxictocommonbacteriaorfungi36.
Thus,dispersantsandemulsifiersusedatseaonheavyconcentrationsofoilincreasetheoilsabilitytospreadandvolatilize,whichinturnallowsforanoverallincreaseintherateofdegradation,pendingtherearenoadversetoxiceffectsofthetypeofdispersantused.
Othermeansofremovingheavyconcentrationsofoilandproductsshouldfirstbeemployedpriortoremediation,suchasusingskimmers,vacuumtrucks,adsorbents,andearthmovingequipment.
2.
14SalinityMicroorganismsaretypicallywelladaptedtocopewiththewiderangeofsalinitiescommontotheworld'socean32.
Thereislittleevidencetosuggesttheyareaffectedbyotherthanhypersalineenvironments,suchassaltwaterfromoilwells.
Estuariesmaypresentaspecialcasebecausesalinityvalueswillvaryinlevelsascomparedtolevelsintheocean49.
Thus,ifmicrobesaretobeaddedtotheenvironments,itmustbeknowniftheyarecompatiblewiththesalinelevelspresentinthesystem.
CONCLUSIONInthepresentscenariomajorenvironmentalpollutionofsoilandwaterisduetohydrocarboncontaminationresultingbythepetrochemicalindustriesactivities.
Itcancausebyaccidentalliberationofpetroleumindustriesdischargeintheenvironmentoritcanalsocausebyhumanactivity.
Hydrocarboncompoundsareknownforitscarcinogenicandneurotoxicbehavior.
Manypublishedstudieshaveinvestigatedtheefficacyofbioremediationonabenchscaleandunderideallaboratoryconditions,suchasacircum-neutralpHandmesophilictemperatures.
However,itisapparentthatenvironmentalfactorsthatvaryfromsitetosite(suchassoilpH,nutrientavailabilityandthebioavailabilityofthecontaminantetc)caninfluencetheprocessofbioremediationbyinhibitinggrowthofthepollutant-degradingmicroorganisms.
Thesefactorsplaysignificantroleinthebiodegradationprocessofpolyaromatichydrocarbonandcontaminatedsoils,suchasphysicalconditions,nutrition,theratiosofvariousstructuralhydrocarbonspresent,thebioavailabilityofthesubstrateandthediversityofthebacterialcommunitiesinvolved,pH,waterholdingcapacityofthesoil,microorganisms.
Therearesomestandardconditionsonwhichthesefactorsplaytheirrolelikewaterholdingcapacityofthesoilforthemicrobialgrowthis25-28andforhydrocarbondegradationis40-80.
TherangeofpHisfrom5.
5-8.
8formicrobialgrowthandforhydrocarbondegradationis6.
5-8.
0.
Thefavorableconditionsoftemperatureforthegrowthofmicroorganismsvaryfrom10-450Candforthedegradationofcontaminantsarefrom20-300C.
Therefore,thisminireviewtouchesuponvariousaspectsofenvironmentalfactorswhichaffectsthebiodegradationofpolyaromatichydrocarbons.
www.
ijpab.
com198ShalluSihagetalInt.
J.
PureApp.
Biosci.
2(3):185-202(2014)ISSN:2320–7051AcknowledgementsIwishtoexpressmysinceregratitudetoDept.
ofBiotechnologyofJECRCUniversityforgivingmeanopportunityfordoingmyPh.
D.
IwouldalsoliketothankDr.
WidhiDubey(DirectorofSchoolofSciences,JECRCUniversity)forhermanualsupport.
AlsoverybigthankstoDr.
S.
K.
Sharma(Ph.
DCo-ordinator,JECRCuniversity)forhisalltechnicalsupportandguidancethroughoutthestudy.
Also,Iwouldliketothankmyfamilyandfriendsfortheirmanualsupport,strength,andhelpthroughoutthestudy.
REFERENCES1.
Alexander,M.
Agingbioavailability,andoverestimationofriskfromenvironmentalpollutants.
EnvironmentalScienceandTechnology,34(20):4259–4265(2000)2.
Awasthi,N.
Ahuja,R.
andKumar,A.
Factorsinfluencingthedegradationofsoil-appliedendosulfanIsomers.
SoilBiologyandBiochemistry32:1697-1705(2000)3.
Balba,M.
T.
Al-Awadhi,N.
andAl-Daher,R.
Bioremediationofoil-contaminatedsoil:microbiologicalmethodsforfeasibilityassessmentandfieldevaluation.
JournalofMicrobiologicalMethods,32(2):155–164(1998)4.
Brassington,K.
J.
Hough,R.
L.
Paton,G.
I.
Semple,K.
T.
Risdon,G.
C.
Crossley,J.
Hay,I.
Askari,K.
andPollard,S.
J.
T.
WeatheredHydrocarbonWastes:ARiskManagementPrimer.
CriticalReviewsinEnvironmentalScienceandTechnology,37(3):199-232(2007)5.
Cerniglia,C.
E.
"Microbialmetabolismofpolycyclicaromatichydrocarbons",Adv.
App.
Microbiology,(30):3171(1984)6.
Cunningham,D.
"TheBiodegradationofCrudeOilintheMarineEnvironment".
MastersofScienceThesis,DepartmentofCivilEngineering,TexasAandMUniversity.
(1990)7.
Curtis,F.
andLammey,J.
Intrinsicremediationofadieselfuelplumeingoosebay,labrador,Canada.
Environmentalpollution,103:203-210(1998)8.
Cuypers,C.
Pancras,T.
Grotenhuis,T.
andRulkens,W.
TheestimationofPAHbioavailabilityincontaminatedsedimentsusinghydroxypropyl-β-cyclodextrinandtritonX-100extractiontechniques.
Chemosphere,46(8):(2002)9.
DasNilanjanaandChandranPreethy.
Microbialdegradationofpetroleumhydrocarboncontaminants:anoverview,SAGE-HindawiaccesstoresearchBiotechnologyresearchinternational,1-13.
(2011)10.
Delarco,J.
P.
andDeFrancea,F.
P.
Influenceofoilcontaminationlevelsonhydrocarbonbiodegradationinsandysediment,Environmentalpollution;Elsevier,110:515-519(2001)11.
DesaiAnjanaandVyasPranav.
(2006).
Petroleumandhydrocarbonmicrobiology,MSUniversity,Baroda,India.
12.
El-Tarabily,K.
A.
Totalmicrobialactivityandmicrobialcompositionofamangrovesedimentarereducedbyoilpollutionatasiteinthearabiangulf,Canadianjournalofmicrobiology,48(2):176-182(2002)13.
GallegoJose,L.
R.
Bioremediationofdieselcontaminatedsoil:evaluationofpotentialin-situtechniquesbystudyofbacterialdegradation,Biodegradation,(12):325(2001)14.
Gibson,D.
T.
"Biodegradation,biotransformationandtheBelmont".
IndianMicrobiology,112(12):(1993)15.
Green,J.
(1990).
"TheFateandEffectsofOilinFreshwater".
ElsevierSciencePublishingCo.
,Inc.
,NewYork.
16.
Hiller,E.
,Jurkovic,LandBartal,M.
EffectofTemperatureontheDistributionofPolycyclicAromaticHydrocarbonsinSoilandSediment".
SoilandWaterRes.
,3(4):231–240(2008)17.
Howsam,M.
J.
K.
C.
SourcesofPAHsintheenvironment.
In:NeilsonAH(ed).
Anthropogeniccompounds.
PAHsandrelatedcompounds.
Springer,Berlin,Germany,137-174(1998)18.
Jain,P.
K.
Bioremediationofpetroleumoilcontaminatedsoilandwater,Researchjournalofenvironmentaltoxicology,5(1):1-26(2011)www.
ijpab.
com199ShalluSihagetalInt.
J.
PureApp.
Biosci.
2(3):185-202(2014)ISSN:2320–705119.
Khashayar,TabariandMahasa,Tabari.
Bidegradationpotentialofpetroleumhydrocarbonsbymicrobialdiversityinsoil,Worldappliedsciencesjournal,8(6):750-755(2010)20.
Leahy,J.
G.
andColwell,R.
R.
Microbialdegradationofhydrocarbonsintheenvironment.
Microbiol.
Mol.
BiolRev.
54:305-315(1990)21.
Leys,N.
M.
Bastiaens,L.
VerstraeteWandSpringaelD.
Influenceofthecarbon/nitrogen/phosphorusratioonpolycyclicaromatichydrocarbondegradationbyMycobacteriumandSphingomonasinsoil.
AppliedMicrobiologyandBiotechnology.
66(6):726-36(2005)22.
Loeher,R.
C.
,McMillen,S.
J.
andWebster,M.
T.
Predictionsofbiotreatabilityandactualresults:soilswithpetroleumhydrocarbons.
Praticeperiodicalofhazardous,toxic,andradioactivewastemanagement,5(2):78–87(2001)23.
Maggioni,P.
andBrignoli,P.
IntegratedStudyOnRealScaleRemediationOfSoilPollutedByHeavyHydrocarbonsAndPahsByApplicationofBiologicalPromoters.
24.
Maletic,S.
Dalmacija,B.
Roncevic,S.
Agbaba,J.
andUgarcinaPerovic,S.
Impactofhydrocarbontype,concentrationandweatheringonitsbiodegradabilityinsoil.
JournalofEnvironmentalScienceandHealth,PartA,46(10):1042-1049(2011)25.
Malik,J.
N.
Sohoni,P.
S.
Merh,S.
S.
andKaranth,R.
V.
ActiveTectoniccontrolonAlluvialfanArchitecturealongtheKachchhMainlandHillRange,WesternIndia;ZeithschriftfurGeomorphologie45(1):81–100(2001)26.
MarEnvironRes.
Effectofenvironmentalfactorsonphotodegradationofpolycyclicaromatichydrocarbons(PAHs)inthewater-solublefractionofKuwaitcrudeoilinseawater.
72(3):143-50(2011)27.
Margesin,R.
Labbe,D.
Schninner,F.
Greer,C.
W.
andWhyte,L.
G.
CharacterisationofHydrocarbon-DegradingMicrobialPopulationsinContaminatedandPristineContaminatedSoils.
AppliedandEnvironmentalMicrobiology69(6):3985-3092(2003)28.
Margesin,R.
Zimmerbauer,A.
andSchinner,F.
Monitoringofbioremediationbysoilbiologicalactivities.
Chemosphere,40(4):339–346(2000)29.
Obuekwe,C.
O.
High-temperaturehydrocarbonbiodegradationactivitiesinkuwaitidesertsoilsamples,Foliamicrobiology,46(6):535-539(2001)30.
OganMichael,G.
(2010)Occupationalsafetyandhealthadministration,CutlerCleveland,Theencyclopediaofearth.
31.
OkohAnthony,I.
Biodegradationalternativeinthecleanupofpetroleumhydrocarbonpollutants,Academicjournals,Biotechnologyandmolecularbiologyreview,1(2):38-50(2006)32.
Okpokwasili,G.
C.
"EffectofSalinityonBiodegradationofOilSpillDispersants".
WasteIManagement,10:(1990)33.
Pawar,R.
M.
TheeffectofsoilpHondegradationofpolycyclicaromatichydrocarbons(PAHs)(2012)34.
Petrovic,O.
Knezevic,P.
Markovic,J.
andRoncevic,S.
Screeningmethodfordetectionofhydrocarbon-oxidizingbacteriainoil-contaminatedwaterandsoilspecimens.
JournalofMicrobiologicalMethods.
(74):110–113(2008)35.
Piola,R.
F.
andJohnston,E.
L.
Pollutionreducesnativediversityandincreasesinvaderdominanceinmarinehard-substratecommunities.
DiversityDistributions14:329–342(2008)36.
Potin,O.
Veignie,E.
andRafin,C.
"Biodegradationofpolycyclicaromatichydrocarbon(PAHs)contaminatedsoil",FEMSMicrobiolEco.
,51-71(2004)37.
Riser-Roberts,E.
BioremediationofPetroleumContaminatedSites.
BocaRaton(FL):CRCPressInc.
(1992)38.
Rodriguez-MartinezEnid,M.
Microbialdiversityandbioremediationofahydrocarboncontaminatedaquifer,Internationaljournalofenvironmentalresearchandpublichealth,3(3):292-300(2006)39.
Roling,W.
F.
M.
CoutodeBritoI.
R.
Swannell,R.
P.
J.
andHead,I.
M.
ResponseofArchaelCommunitiesinBeachSedimentstoSpilledOilandBioremediationAppliedandEnvironmentalMicrobiology,70(5):2614-2620(2004)www.
ijpab.
com200ShalluSihagetalInt.
J.
PureApp.
Biosci.
2(3):185-202(2014)ISSN:2320–705140.
Saeed,T.
Ali,L.
N.
Al-Bloushi,A.
Al-Hashash,H.
Al-Bahloul,M.
Al-Khabbaz,A.
Al-Khayat,A.
EnvironmentalSciencesDepartment,Environmental&UrbanDevelopmentDivision,KuwaitInstituteforScientificResearch,Safat.
EuropeanBioremediationConference-Chania,Crete,Greece–3:(2008)41.
SalehAbuBakar.
Bioremediationofpetroleumhydrocarbonpollution,Indianjournalofbiotechnology,(2):411-425(2003)42.
ScraggAlan.
[2005].
EnvironmentalBiotechnology,2ndedition,Oxforduniversitypress,179-182.
43.
Semple,K.
T.
Morriss,A.
W.
J.
andPatori,G.
I.
Bioavailabilityofhydrophobicorganiccontentsinsoils:fundamentalconceptsandtechniquesforanalysis.
EuropeanJournalofSoilScience54(4):809(2003)44.
Simarro,R.
Gonzalez,N.
Bautista,L.
F.
Sanz,R.
andMolina,M.
C.
(2011)OptimisationofKeyAbioticFactorsofPAH(Naphthalene,PhenanthreneandAnthracene)45.
Sims,R.
C.
,andOvercash,M.
R"Fateofpolynucleararomaticcompounds(PNAs)insoilplantsystems",Res.
Rev.
,88-167(1983)46.
Stroud,J.
L.
Paton,G.
I.
andSemple,K.
T.
Microbe–aliphatichydrocarboninteractionsinsoil:implicationsforbiodegradationandbioremediation.
JournalofAppliedMicrobiology,102(5):1239–1253(2007)47.
Trinidade,P.
V.
O.
Sobral,A.
C.
L.
Rizzo,S.
G.
F.
andLeiteSoriano,A.
U.
Bioremediationofweatheredandrecentlyoil-contaminatedsoilsfromBrazil:acomparasionstudy.
Chemosphere,58(4):515-522(2005)48.
TulevaaB.
,ChristovaaN.
,JordanovbB.
,DamyanovabB.
N.
,andPetrovcP.
[2005].
NaphthaleneDegradationandBiosurfactantActivitybyBacilluscereus28BN,60c,577D582.
49.
U.
S.
CongressOfficeofTechnologyAssessment,"BioremediationforMarineOilSpills-BackgroundPaper".
50.
U.
S.
EPA.
HandbookonInSituTreatmentofHazardousWasteContaminatedSoils,EPA/540/2-90/002.
51.
U.
S.
GovernmentPrintingOffice,May,1991.
52.
Vidali,M.
"Bioremediation:Anoverview",PureAppl.
Chem.
,73(7):1163–1172(2001)53.
WilliamsShannon,D.
FateandtransportofpetroleumhydrocarbonsinsoilandgroundwateratbigsouthforkNationalRiverandrecreationarea,TennesseeandKentucky,7-10(2006)54.
Wilson,S.
C.
andJones,K.
C.
"Bioremediationofsoilcontaminatedwithpolynucleararomatichydrocarbons(PAHs)areview",EnvironmentalPollution,(81):229-249(1993)55.
Zaidi,ImamB.
andSyed.
FactorsAffectingMicrobialDegradationOfPolycyclicAromaticHydrocarbonPhenanthreneInTheCaribbeanCoastalWaterUniversityOfPuertoRico.
MarinePollutionBulletinPublicationReviewedJournalPublication.
(1999)56.
Zavala,M.
A.
L.
Funamizu,N.
andTakakuwa,T.
Temperatureeffectonaerobicbiodegradationoffecesusingsawdustasamatrix.
WaterResearch,(38):2406–2416(2004)57.
Zekri,A.
Y.
andOmar,C.
EffectofTemperatureonBiodegradationofCrudeOilEnergySources,27:233–244(2005)58.
Zhu,L.
Chen,Y.
andZhou,R.
Distributionofpolyaromatichydrocarbons(PAHs)inwater,sedimentsandsoilindrinkingwaterresourcesofzhejiangprovince",China,Journalofhazardousmatter,150-08(2008)59.
Genthner,B.
R.
S.
Townsend,G.
T.
Lantz,S.
E.
andMueller,J.
G.
Persistenceofpolycyclicaromatichydrocarboncomponentsofcreosoteunderanaerobicenrichmentconditions.
ArchEnvironContamToxicol32:99–105(1997)60.
Harvey,R.
G.
Mechanismsofcarcinogenesisofpolycyclicaromatichydrocarbons.
PolycyclicAromaticCompounds9:1–23(1996)61.
Sutherland,J.
B.
Rafii,F.
Khan,A.
A.
andCerniglia,C.
E.
Mechanismsofpolycyclicaromatichydrocarbondegradation,inMicrobialTransformationandDegradationofToxicOrganicChemicals,Wiley-Liss,NewYork,269–306(1995)www.
ijpab.
com201ShalluSihagetalInt.
J.
PureApp.
Biosci.
2(3):185-202(2014)ISSN:2320–705162.
Cerniglia,C.
E.
Biodegradationofpolycyclicaromatichydrocarbons.
Biodegradation3:351–368(1992)63.
Renner,R.
EPAtostrengthenpersistent,bioaccumulativeandtoxicpollutantcontrols—mercuryfirsttobetargeted.
EnvironSciTechnol33:62A(1999)64.
Alexander,M.
HowtoxicaretoxicchemicalsinsoilEnvironSciTechnol29:2713–2717(1995)65.
Wong,J.
W.
C.
Lai,K.
M.
Wan,C.
K.
Ma,K.
K.
andFang,M.
IsolationandoptimisationofPAH-degradativebacteriafromcontaminatedsoilforPAHbioremediation.
WaterAirSoilPollut139:1–13(2002)66.
Kastner,M.
Breuer-Jammali,M.
andMahro,B.
Impactofinoculationprotocols,salinity,andpHonthedegradationofpolycyclicaromatichydrocarbons(PAHs)andsurvivalofPAH-degradingbacteriaintroducedintosoil.
AppEnvironMicrobiol64:359–362(1998)67.
Stapleton,R.
D.
Savage,D.
C.
Sayler,G.
S.
andStacey,G.
Biodegradationofaromatichydrocarbonsinanextremelyacidicenvironment.
AppEnvironMicrobiol64:4180–4184(1998)68.
Gibson,D.
T.
Koch,J.
R.
andKallio,R.
E.
Oxidativedegradationofaromatichydrocarbonsbymicroorganisms.
I.
Enzymaticformationofcatecholfrombenzene.
Biochemistry7:2653–2661(1968)69.
Bewley,R.
J.
F.
andWebb,G.
Insitubioremediationofgroundwatercontaminatedwithphenols,BTEXandPAHsusingnitrateaselectronacceptor.
LandContamReclam9:335–347(2001)70.
Coates,J.
D.
Michaelidou,U.
Bruce,R.
A.
O'Connor,S.
M.
Crespi,J.
N.
andAchenbach,L.
A.
Theubiquityanddiversityof(per)chloratereducingbacteria.
AppMicrobiolBiotechnol65:52345241(1999)71.
Rockne,K.
J.
andStrand,S.
E.
Biodegradationofbicyclicandpolycyclicaromatichydrocarbonsinanaerobicenrichments.
EnvironSciTechnol32:2962–2967(1998)72.
McNally,D.
L.
Mihelcic,J.
R.
andLueking,D.
R.
Biodegradationofthree-andfour-ringpolycyclicaromatichydrocarbonsunderaerobicanddenitrifyingconditions.
EnvironSciTechnol32:2633–2639(1998)73.
Coates,J.
D.
Woodward,J.
Allen,J.
Philp,P.
andLovley,D.
R.
Anaerobicdegradationofpolycyclicaromatichydrocarbonsandalkanesinpetroleum-contaminatedmarineharborsediments.
AppEnvironMicrobiol63:3589–3593(1997)74.
StummWandMorgan,J.
J.
(1981)AquaticChemistry.
Wiley-Interscience,NewYork.
75.
Banks,D.
Younger,P.
L.
Arnesen,R.
Iversen,E.
R.
andBanks,S.
B.
Mine-waterchemistry:thegood,thebadandtheugly.
EnvironGeol32:157–174(1997)76.
Ponnamperuma,F.
N.
Thechemistryofsubmergedsoils.
AdvAgron24:29–96(1972)77.
Graves,J.
andReavey,D.
(1996)GlobalEnvironmentalChange.
Longman,Harlow,UK.
78.
Alexander,M.
(1994)BiodegradationandBioremediation.
AcademicPress,SanDiego.
79.
Atagana,H.
I.
Haynes,R.
J.
andWallis,F.
M.
Optimizationofsoilphysicalandchemicalconditionsforthebioremediationofcreosote-contaminatedsoil.
Biodegradation14:297–307(2003)80.
Zitrides,T.
G.
Mutantbacteriaovercomegrowthinhibitioninindustrialwastefacility.
IndustrialWaste24:42–44(1978)81.
AlexanderM[1977].
IntroductiontoSoilMicrobiology.
JohnWileyandSons,NewYork.
82.
Bogan,B.
W.
Schoenike,B.
Lamar,R.
T.
andCullen,D.
ExpressionoflipgenesduringgrowthinsoilandoxidationofanthracenebyPhanerochaetechrysosporium.
AppEnvironMicrobiol62:3697–3703(1996)83.
Mueller,J.
G.
Cerniglia,C.
E.
andPritchard,P.
H.
Bioremediationofenvironmentscontaminatedbypolycyclicaromatichydrocarbons,inBioremediation:PrinciplesandApplications,CambridgeUniversityPress,Idaho,125–194(1996)84.
Semple,K.
T.
Morriss,W.
J.
andPaton,G.
I.
Bioavailabilityofhydrophobicorganiccontaminantsinsoils:fundamentalconceptsandtechniquesforanalysis.
EurJSoilSci54:809–818(2003)85.
Fewson,C.
A.
Biodegradationofxenobioticandotherpersistentcompounds:thecausesofrecalcitrance.
TrendsBiotechnol6:148–153(1988)86.
Miller,R.
M.
andBartha,R.
Evidenceofliposomeencapsulationfortransport-limitedmicrobialmetabolismofsolidalkanes.
AppEnvironMicrobiol55:269–274(1989)www.
ijpab.
com202ShalluSihagetalInt.
J.
PureApp.
Biosci.
2(3):185-202(2014)ISSN:2320–705187.
Hatzinger,P.
B.
andAlexander,M.
Effectofagingonchemicalsinsoilontheirbiodegradabilityandextractability.
EnvironSciTechnol29:537–545(1995)88.
VanDyke,M.
I.
Lee,H.
andTrevors,J.
T.
Applicationsofmicrobialsurfactants.
BiotechnolAdv9:241–252(1991)89.
Makkar,R.
S.
andRockne,K.
J.
Comparisonofsyntheticsurfactantsandbiosurfactantsinenhancingbiodegradationofpolycyclicaromatichydrocarbons.
EnvironToxicolChem22:2280–2292(2003)90.
Reid,B.
J.
Jones,K.
C.
andSemple,K.
T.
Bioavailabilityofpersistantorganicpollutantsinsoilsandsediments—aperspectiveonmechanisms,consequencesandassessment.
EnvironPollut108:103–112(2000)91.
Reid,B.
J.
Semple,K.
T.
Macleod,C.
J.
Weitz,H.
andPaton,G.
I.
Feasibilityofusingprokaryotebiosensorstoassessacutetoxicityofpolycyclicaromatichydrocarbons.
FEMSMicrobiolLett169:227–233(1998)92.
Weston,D.
P.
andMayer,L.
M.
Comparisonofinvitrodigestivefluidextractionandtraditionalinvivoapproachesasmeasuresofpolycyclicaromatichydrocarbonbioavailabilityfromsediments.
EnvironToxicolChem17:830–840(1998)93.
Mendonca,E.
andPicado,A.
Ecotoxicologicalmonitoringofremediationinacokeovensoil.
EnvironToxicol17:74–79(2002)94.
Lundstedt,S.
Haglund,P.
andO¨berg,L.
Degradationandformationofpolycyclicaromaticcompoundsduringbioslurrytreatmentofanacidagedgasworkssoil.
EnvironToxicolChem22:1413–1420(2003)95.
Kochany,J.
andMaguire,R,J.
Abiotictransformationsofpolynucleararomatichydrocarbonsandpoly-nuclearnitrogenheterocyclesinaquaticenvironments.
SciTotalEnviron144:17–31(1994)

Virmach$7.2/年,新款月抛vps上线,$3.23/半年,/1核640M内存/10 GB存储/ 1Gbps/1T流量

Virmach自上次推出了短租30天的VPS后,也就是月抛型vps,到期不能续费,直接终止服务。此次又推出为期6个月的月抛VPS,可选圣何塞和水牛城机房,适合短期有需求的用户,有兴趣的可以关注一下。VirMach是一家创办于2014年的美国商家,支持支付宝、PayPal等方式,是一家主营廉价便宜VPS服务器的品牌,隶属于Virtual Machine Solutions LLC旗下!在廉价便宜美国...

腾讯云CVM云服务器大硬盘方案400GB和800GB数据盘方案

最近看到群里的不少网友在搭建大数据内容网站,内容量有百万篇幅,包括图片可能有超过50GB,如果一台服务器有需要多个站点的话,那肯定默认的服务器50GB存储空间是不够用的。如果单独在购买数据盘会成本提高不少。这里我们看到腾讯云促销活动中有2款带大数据盘的套餐还是比较实惠的,一台是400GB数据盘,一台是800GB数据盘,适合他们的大数据网站。 直达链接 - 腾讯云 大数据盘套餐服务器这里我们看到当前...

inux国外美老牌PhotonVPS月$2.5 ,Linux系统首月半价

PhotonVPS 服务商我们是不是已经很久没有见过?曾经也是相当的火爆的,我们中文习惯称作为饭桶VPS主机商。翻看之前的文章,在2015年之前也有较多商家的活动分享的,这几年由于服务商太多,乃至于有一些老牌的服务商都逐渐淡忘。这不有看到PhotonVPS商家发布促销活动。PhotonVPS 商家七月份推出首月半价Linux系统VPS主机,首月低至2.5美元,有洛杉矶、达拉斯、阿什本机房,除提供普...

www.55fang.com为你推荐
1头牛168万人民币越南本地一头牛值多少越南盾?sherylsandberg谷歌怎么看自己的详细资料access数据库access数据库的组成是什么百度关键词价格查询在百度设置关键字是怎么收费的同一服务器网站服务器建设:一个服务器有多个网站该如何设置?789se.comhttp://gv789.com/index.php这个网站可信吗?是真的还是假的!www.vtigu.com初三了,为什么考试的数学题都那么难,我最多也就135,最后一道选择,填空啊根本没法做,最后几道大题倒www.ijinshan.com金山毒霸的网站是多少www.175qq.com最炫的qq分组bk乐乐bk乐乐和CK是什么关系?
vps服务器租用 vps优惠码cnyvps linode日本 awardspace 20g硬盘 evssl证书 lighttpd 河南服务器 国外免费全能空间 域名和空间 t云 万网空间管理 广州服务器托管 腾讯服务器 建站论坛 ping值 crontab 泥瓦工 紫田网络 新浪轻博客 更多