intensity789rt.com

789rt.com  时间:2021-04-07  阅读:()
Structureandinfrared(IR)assignmentsfortheOLEDmaterial:N,N-diphenyl-N,N-bis(1-naphthyl)-1,1-biphenyl-4,4/-diamine(NPB)¤MathewD.
Halls,aCarlP.
Tripp*bandH.
BernhardSchlegel*aaDepartmentofChemistry,WayneStateUniversity,DetroitMI48202,USA.
E-mail:hbs=chem.
wayne.
edubDepartmentofChemistryandLASST,UniversityofMaine,OronoME04469,USA.
E-mail:ctripp=maine.
maine.
eduReceived19thFebruary2001,Accepted12thApril2001FirstpublishedasanAdvanceArticleontheweb10thMay2001Organiclight-emittingdiodes(OLEDs)arecurrentlyunderintenseinvestigationforuseinnext-generationdisplaytechnologies.
ResearchintothefundamentalpropertiesofthematerialsusedinOLEDs,suchasstructureandvibrationalmodes,willhelpprovideexperimentalprobeswhicharerequiredtogaininsightintotheprocessesleadingtodevicedegradationandfailure.
CalculationsusingthehybridB3LYPfunctionalandthesplit-valencepolarized6-31G(d)basissethavebeencarriedouttoassigntheIRbandsoftheOLEDholetransportmaterialN,N@-diphenyl-N,N@-bis(1-naphthyl)-1,1@-biphenyl-4,4A-diamine(NPB).
ExcellentagreementwasfoundbetweenthecomputedandexperimentalwavenumbersallowingthereliableassignmentofmajorIRbands.
ComparisonofthereectionabsorptionIR(RAIRS)spectraobtainedfromroomtemperatureandthermallyannealedNPBthinlmsindicatesthat,uponannealing,structuralchangesoccurandtheaverageorientationoftheNPBnaphthylgroupsbecomepredominatelyatwithrespecttothesurface.
IntroductionFollowingtheinitialreport,byTangandVanSlyke,1organiclight-emittingdiodes(OLEDs)havereceivedwidespreadattentionfortheirpotentialuseinnext-generationdisplaytechnologies.
2,3OLEDsaretypicallyamorphousthinsolidlmheterojunctiondevicesconstructedbyvacuumevapo-rationofthetransportlayersontoasupportingelectrode.
Theorganicmaterialscomposingtheactivelayersarechosenwithcloseregardtotheirrelativeorbitalenergyosets,usuallysuchthatexcitonformationandrecombinationoccursintheelectrontransportlayerofthedevice.
MaterialsdevelopmentforelectrontransportandemissioninOLEDshaslargelyfocusedonmetallo-quinolates,4,5withtris(8-hydroxy-quinoline)-aluminium(III)(Alq3)beingthemostoftenused.
AromaticaminesareoftenusedasholetransportmaterialsinOLEDdevicesandhavehadgoodsuccess.
Inparticular,thenaphthyldiamineN,N@-diphenyl-N,N@-bis(1-naphthyl)-1,1@-biphenyl-4,4A-diamine(NPB)wasshown,byTangandco-workers,6toaordimprovedstabilityoverpreviouslyusedamines.
Althoughshowingexcellentdevicecharacteristics,OLEDsstillsuerfromalackoflong-termdevicestability.
Numerouscausesofdevicedegradationhavebeenproposedintheliter-ature,includingthedelaminationofelectrodes,7cathodeoxi-dation,8electrochemicalreactionsatelectrode/organicinterfaces,9hydrolysisofthemetallo-quinolatelayer,10andanintrinsicinstabilityofthemetallo-quinolatecation.
11Devicefailurehasalsobeenattributedtocrystallizationoftheactivelayers,especiallytheholetransportlayer.
12DespitetheimportanceofthearchetypeholetransportmoleculeNPB,relativelyfewstudiesofitsfundamentalmolec-¤ElectronicSupplementaryInformationavailable.
Seehttp://www.
rsc.
org/suppdata/cp/b1/b101619i/ularpropertieshaveappearedintheliterature.
TheoreticalinvestigationsintotheelectronicdensityofstatesandtheeectofchargingontheelectronicstructureofNPBwerereportedbyLeeandco-workers.
13,14TheholetransportmobilityofNPBwasmeasuredbyDengetal.
15usingthetimeofighttechnique.
AlsoTangandco-workers16havestudiedthegrowthmodelsofNPBonITOsubstratesusingAFM.
Infrared(IR)spectroscopyisastandardtoolforstructuralcharacterizationandfollowingtheevolutionanddynamicsofchemicalsystems.
TheinfraredassignmentsofNPBhavenotyetbeenreported.
Forlargemolecules,quantumchemicalcal-culationspredictingharmonicfrequenciesandspectralinten-sitiesareessentialwheninterpretingexperimentalIRspectra,wherethehighdensityofstatesresultsinspectralcomplexityintheregionbelowca.
1700cm~1.
Theavailabilityofanalyti-calgeometricandelectriceldderivatives,17coupledwithadvancesincomputerperformancehasextendedtheapplica-bilityofelectronicstructuremethodstosystemsaslargeasNPB.
Inthetheoreticalpredictionofmolecularvibrationalproperties,densityfunctionaltheory(DFT)hasbeendemon-stratedtobeacost-eectivealternativetoconventionalabinitioapproaches,signicantlyoutperformingmethodssuchasHartreeFockandsecond-orderperturbationMllerPlessettheory(MP2).
18h20Inthepresentwork,theequilibriumgeometry,vibrationalfrequenciesandIRintensitiesforNPBarecomputedusinghybridDFTandamediumsizedsplit-valencebasissettoenabletheassignmentofmajorbandsintheexperimentalpelletIRspectrum.
TheobservedIRbandsareassignedonthebasisofthefrequencyagreementandIRintensitypatternsbetweenthetheoreticalandobservedspectraandvisual-izationofcomputernormalmodedisplacementvectors.
UsingtheNPBIRassignments,acomparisonofthesurfaceIRspectra,obtainedfromroomtemperatureandthermallyDOI:10.
1039/b101619iPhys.
Chem.
Chem.
Phys.
,2001,3,213121362131ThisjournalisTheOwnerSocieties2001(annealedNPBthinlms,providesinsightintotheconforma-tionalchangesarisinguponannealing.
MethodsN,N@-diphenyl-N,N@-bis(1-naphthyl)-1,1@-biphenyl-4,4A-diamine(NPB)wasobtainedfromtheXeroxResearchCenterCanada(XRCC).
ThetransmissionIRspectrumwasrecordedfromisotropicallydispersedNPBinKBr.
TheIRspectrumwascollectedoverthespectralregion400cm~1to4000cm~1onaBomem102FT-IRequippedwithaCsIbeamsplitterandaDTGSdetectorwith4cm~1resolution.
Toexaminethespec-tralchangesinthinsolidlmsuponthermalannealing,athinsolidlmofNPBwasdepositedontoasilvermirror.
Thesilverwasthermallyonaglassslidetoatotalevaporatedmassthicknessof1000usingastandardvacuumsystemAevaporatoroperatingatabackgroundpressureof10~6Torr.
TheNPBwasdepositedontotheAg/glasssubstratetoatotalmassthicknessof200usingasecondvacuumsystemevapo-Arator.
ReectionabsorptionIRspectra(RAIRS)werecol-lectedfromthethinsolidlmusingtheBomem102FT-IRequippedwithaSpectra-TechFT-80grazingangleaccessoryxedat80.
TheRAIRSspectrumoftheNPBthinlmwasrecordedatroomtemperatureandafterannealingat125Cfor30min,forcomparison.
ThetheoreticalresultsreportedherewereobtainedusingtheGAUSSIAN98suiteofprograms.
21ThegeometryofNPBwasoptimizedandharmonicfrequenciesandIRinten-sitieswerecomputedusingthehybridB3LYPdensityfunc-tional,correspondingtothecombinationoftheBeckesthree-parameterexchangefunctional(B3)22withtheLeeYangParrtforelectroncorrelation(LYP),23alongwiththepolarizedsplit-valencebasisset6-31G(d)(whichprovidesatotalof754basisfunctionsforNPB).
24ResultsanddiscussionStructureandmolecularvibrationsofNPBThemolecularstructureofNPBalongwiththepelletIRspec-trumisshowninFig.
1.
NPBiscomposedofterminalphenylamineswithnaphthylmoietiesjoinedbyabridgingbiphenylgroup.
ThenaphthylgroupsinNPBgiverisetoanumberofstructuralconformations,whichmaybepresentinthesolidstate.
ThegasphasegeometryofNPBwasoptimizedattheB3LYP/6-31G(d)leveloftheorywithoutsymmetryconstraintsstartingfromastructurethatcorrespondstotheglobal(C1)minimum,ascalculatedbyasemiempiricalPM3molecularorbitalstudybyotherauthors.
14TheoptimizedstructureofNPBisdeterminedtohaveapointofsymmetryatthecentralCCbondinthebiphenylbridgeinagreementwiththepre-vioussemiempiricalcalculations.
AtableofcalculatedheavyatombondlengthsofNPBalongwithexperimentaldataforsmallermoleculesrepresentativeofthefragmentscomposingNPB(1-aminonaphthalene,anilineand1,1@-biphenyl-4,4@-diamine(benzidine))isavailable(seeESITableS1).
¤Fig.
1MolecularstructureofNPBandtheIRspectrumfromiso-tropicallydispersedNPBinKBr.
CharacteristicIRbandsarelabelled(ag).
NPBiscomposedof78atomsgivingriseto228vibrationaldegreesoffreedom.
Toallowinterpretationoftheexperimen-talpelletIRspectrum,harmonicvibrationalfrequencies,cor-respondingnormalmodesandIRintensitiescomputedinthedoubleharmonicapproximationwerecalcu-(IIRPodk/dQko2)lated.
WorkinourlaboratoryhasdemonstratedthatthehybridB3LYPfunctionalpredictsIRintensitiesincloseagreementwiththosecalculatedwiththeconventionalhighlycorrelatedabinitiomethodquadraticcongurationinter-actionincludingsinglyanddoublyexciteddeterminants(QCISD).
20Inparticular,theB3LYP/6-31G(d)leveloftheoryrepresentsacosteectivechoiceforthecalculationoftheo-reticalIRspectra,particularlyforlargemoleculessuchasNPB.
Thecalculatedvibrationalfrequenciesareallreal,veri-fyingthattheoptimizedgeometryisatrueminimumonthepotentialenergysurface.
Acompletetableoftheoreticalhar-monicfrequenciesandIRintensitiesforNPBisavailable(seeESITableS2).
¤Theoreticalharmonicfrequenciestypicallyoverestimateobservedfundamentalsduetotheneglectofmechanicalanharmonicity,electroncorrelationandbasisseteects.
Tocompensate,variousscalingstrategiesexisttobringthecom-putedharmonicsintogreateragreementwithexperi-ment.
18,19,25h28StudiesbyScottandRadom,18andWong19haveshownthatB3LYPcalculationsemployingthe6-31G(d)basissetprovidesharmonicfrequenciesthatcanbeeectivelyscaledforcomparisonwithexperimentalwavenumbers.
Inthiswork,toimprovetheagreementwithexperiment,theB3LYP/6-31G(d)harmonicfrequencieswerescaledbyafactorof0.
97asdiscussedbelow.
Tocomparewiththeexperimentalresults,asimulatedIRspectrumwasconstructedusingthescaledtheoreticalvibra-tionalfrequenciesandcomputedintensitiesbyrepresentingtheIRbandsbyGaussianlineshapeswithafullwidthathalfmaximum(FWHM)of4cm~1.
Thevibrationalspectraofcomplexmoleculesareusuallydiscussedintermsofdierentwavenumberregionsknowntogenerallycorrespondtodier-enttypesofvibrationalmodes.
Theupperwavenumberregion(ca.
3600cm~1to1700cm~1)containsvibrationscomposedlargelyoflocalisedhydrogenstretches,whereasthemid-wavenumberregion(ca.
1700cm~1to1000cm~1)containsheavyatomin-planestretchesandbends,andthelow-wavenumberregion(below1000cm~1),theout-of-planeandtorsionalmodes.
Itisinthelattertworegions,below1700cm~1(thengerprintregion),wherequantumchemicalpre-dictioncanbethemostusefulinmakingvibrationalbandassignmentsthatmaynototherwisebeinterpretable.
TheexperimentalpelletIRspectrumforNPBconsistsoftwogroupsofbandshavingsubstantialintensityasseeninFig.
1.
ThesimulatedandtheexperimentalIRspectraforthesetworegionsareexpandedandcomparedinFig.
2.
TheagreementbetweenthesimulatedandexperimentalIRspectraisexcel-lent,allowingreliablecorrelationbetweentheoreticallypre-dictedandexperimentallyobservedbands.
In-planeregionassignmentsThetoppanelinFig.
2presentstherstspectralrangeofsubstantialintensity,fromca.
1150cm~1to1650cm~1,whichgenerallycontainsheavyatomin-planestretchesandbends.
TheexperimentalandtheoreticalfrequenciesandgeneralmodeassignmentsforobservedIRbandsinthein-planeregionaregiveninTable1.
Thebandassignmentsweremadeonthebasisoffrequencyandintensitypatternagreementandthedescriptionfromvisualisationoftheatomicdisplacementvectors.
ThemostintensebandsinthisregionaredenotedinFig.
1andTable1withlettersa,c,dande.
Thebandmarkedaat1592cm~1intheexperimentalspectrumisassignedtoaCCstretchingvibrationlargelyinvolvingtheterminalphenylgroups(t-phenyl),predictedtohaveafrequencyof1606cm~1.
2132Phys.
Chem.
Chem.
Phys.
,2001,3,21313136Fig.
2ExperimentalIRspectrumandtheB3LYP/6-31G(d)simu-latedIRspectrumofthein-planeregion(toppanel)andtheout-of-planeregion(bottompanel)forcomparison.
ThisiscomparabletotheCCstretchingvibrationofanilineobservedat1604cm~1intheliquidphaseandcalculatedtobe1608cm~1usingscaledB3LYP/6-31G(d).
29Althoughitislessintensethantheotherbandsdiscussedhere,thevibrationmarkedbinFig.
1andTable1at1573cm~1isnotable,sinceitisassignedasanaphthylCCstretchingmodecomputedat1578cm~1.
Thecbandobservedat1491cm~1ispredictedat1494cm~1andcorrespondstoaCC/CNstretching]CHbendingvibrationassociatedwithboththeterminalandbridgingphenylgroupsinNPB.
Thedvibrationat1392cm~1ispredictedtooccurat1393cm~1andinvolvesCC/CNstretching]CHbendingofthenaphthylmoietiesofNPB.
AnenvelopeofoverlappingbandsisobservedintheexperimentalIRwithanobviouspeakwithmaximumintensityat1293cm~1,labellede.
Theebandiscomputedat1279cm~1andisattributedtoaCH/CCNbending]CNstretchingvibrationinvolvingtheterminalandbridgingphenylgroups.
Out-of-planeregionassignmentsThebottompanelofFig.
2showsthesecondintenseregion,fromca.
860cm~1to400cm~1,whichgenerallycontainsout-of-planevibrationalmodes.
Theexperimentalandtheo-reticalwavenumbersandgeneralmodeassignmentsforobservedIRbandsintheout-of-planeregionaregiveninTable2.
ThemostintenseabsorptioninthiswavenumberregionisdenotedfinFig.
1andTable2andisobservedat772cm~1.
Thisbandiscomputedtohaveafrequencyof769cm~1andisassignedtotheout-of-planeCHwagofthenaph-thylgroupsofNPB.
Thisbandiscomparabletothatcom-putedat767cm~1for1-aminonaphthaleneusingthescaledB3LYP/4-31Gleveloftheory,asreportedrecentlybyBausch-licher.
30Thebandmarkedg,observedat424cm~1intheexperimentalspectrum,correspondstoanaphthylCCtorsionvibration,predictedat424cm~1.
AgreementbetweenscaledharmonicfrequenciesandexperimentTheoreticalharmonicfrequenciesareoftenscaledtocomparewithexperimentalwavenumbers.
Thescalingfactoremployedinthepresentstudyof0.
97iscomparabletothescalingfactorsuggestedbyScottandRadomof0.
9614.
18Theaverageabsolutedierence,averagedierenceandstandarddeviationbetweenthetheoreticalandexperimentalfrequenciesfortheassignmentspresentedhereareca.
25cm~1,25cm~1and14cm~1,respectively.
Afterscaling,theagreementimprovessig-nicantly,givinganaverageabsolutedierence,averagedier-enceandstandarddeviationofca.
6cm~1,[4cm~1and6cm~1.
UnscaledB3LYP/6-31G(d)harmonicfrequenciesshowatendencytooverestimateexperimentalfundamentals,withalargenumberoffrequenciesoverestimatingtheexperimentaldatabymorethan50cm~1.
Afterscaling,theerrordistribu-tionismuchmorefavourable,beingpeakedatzerodierence(seeESI¤Fig.
S1forhistogram).
TherawB3LYP/lcalc[lexpt6-31G(d)frequenciesareincludedinTables1and2forindi-vidualcomparisonwiththescaledandexperimentallyobservedwavenumbers.
Table1ExperimentalandB3LYP/6-31G(d)calculatedfrequencies,andgeneralmodeassignmentsforobservedIRbandsinthein-planeregionofthespectrumB3LYP/6-31G(d)/cm~1Scaleda/cm~1Observed/cm~1Assignmentb167116211610CCstretch(biphenyl)a165616061592CCstretch(t-phenyl)b162715781573CCstretch(naphthyl)154514981504shCCstretch]CHbend(phenyl)c154014941491CCstretch]CHbend]CNstretch(phenyl)150814631463CCstretch]CHbend]CNstretch(naphthyl)148714431434CCstretch]CHbend(naphthyl)d143613931392CCstretch]CHbend]CNstretch(naphthyl)138513431343CCbend(naphthyl)133912991310CHbend]CHstretch]CCNbend(phenyl)e131912791293CHbend]CNstretch]CCNbend(phenyl)130312641274CCstretch]CHbend]CNstretch128412451251CCstretch]CHbend]CNstretch(naphthyl)121711811183CHbend]CNstretch(biphenyl)119311571156CHbend]CCstretch(naphthyl)111910861087CHbend]CCstretch(t-phenyl]naphthyl)111010771074CHbend]CCstretch(t-phenyl]naphthyl)107810461051CHbend]CCdeformation105610251028Ringdeformation105010191015Ringdeformation10179861001Ringdeformation(biphenyl)aHarmonicfrequencieswerescaledby0.
97.
bTerminalphenylgroupsareindicatedby"t-phenyl.
Phys.
Chem.
Chem.
Phys.
,2001,3,213121362133Table2ExperimentalandB3LYP/6-31G(d)calculatedfrequencies,andgeneralmodeassignmentsforobservedIRbandsintheout-of-planeregionofthespectrumB3LYP/6-31G(d)/cm~1Scaleda/cm~1Observed/cm~1Assignment975946966CHwag(naphthyl)962933953CHwag914887896CHwag(naphthyl)881854861CHwag(naphthyl)866840848CHwag(biphenyl)840,842,843815,816,818821CHwag(phenyl)818793798CHwag(naphthyl)804780789CHwag]CCdeformation(naphthyl]t-phenyl)f793769772CHwag(naphthyl)767744751CHwag(t-phenyl)751,755729,733742CHwag(naphthyl)]CHwag(t-phenyl)730708717CCtorsion(biphenyl)711690697CCtorsion(t-phenyl)706685691shCCtorsion(t-phenyl)]CCdeformation679658662CCtorsion(naphthyl)]CCdeformation661641644CCdeformation]CCtorsion(biphenyl)640621624CCtorsion]CCdeformation632614616CCtorsion]CCdeformation(t-phenyl)619601606CCtorsion]CCdeformation575558558CCtorsion(biphenyl]naphthyl)550534538CCtorsion(biphenyl]naphthyl)533517521CCtorsion]CCdeformation528512508CCtorsion(biphenyl)508493497CCtorsion(phenyl)]CCdeformation(naphthyl)477,483463,469467CCtorsion]CCdeformation]CCNwag443430439CCtorsion]CCbend(biphenyl]naphthyl)g437424424CCtorsion(naphthyl)aHarmonicfrequencieswerescaledby0.
97.
AnnealingofNPBthinlmsReectionabsorptioninfraredspectroscopy(RAIRS)iscom-monlyusedtostudytheorientationofnanometriclmsdepositedonareectingmetalsubstrate.
InRAIRS,theelec-triceldcouplingtothevibrationalmodesofthematerialisnormaltothesurface,allowingthedeterminationofaveragemolecularorientationthroughcomparisonofrelativeexperi-mentalbandintensities.
RAIRSisawellestablishedtechniqueandhasbeenusedtoinvestigatetheeectsofthermalanneal-ingfororganicsemiconductormaterials,suchasperylenebasedphotoconductors31h33andtheOLEDelectrontrans-portmaterialAlq3.
34,35Recently,Popovicetal.
36usedRAIRStomonitortheeectofdopantmoleculesonthestruc-turalchangesoccurringinNPBthinsolidlmsuponthermalannealing,howeverdetaileddiscussionwasnotgiven.
Inthepresentwork,withtheIRassignmentsofNPBestablishedbycomparisonwiththeDFTcalculations,wewilldiscusstheeectofannealingonNPBthinlmsisgreaterdetail.
TheRAIRSspectrumofa200NPBlmonasilvermirrorwasAcollectedatroomtemperatureandthenagainafterannealingat125Cfor30min.
Fig.
3ExperimentalpelletIRandthinlmrefectionabsorptionIR(RAIRS)spectraofNPBforcomparison.
Notethedierenceinrela-tiveintensitiesbetweenthetwo.
ThepelletIRspectrumandtheroomtemperaturethinlmRAIRSspectrumareshowninFig.
3.
Comparisonoftherela-tiveintensitiesoftheout-of-planenaphthylCHwagatca.
772cm~1andthein-planenaphthylCCstretchingvibrationobservedatca.
1392cm~1,withtransitiondipolesperpen-dicularandparalleltothenaphthylgroupplanerespectively,indicatesthatonaveragethenaphthylgroupsofNPBinthethinlmadoptapartiallyatorientationrelativetotheFig.
4TheRAIRSspectraforaNPBthinlmatroomtemperatureandafterannealingfor30minat125Cforthein-planeregion(toppanel)andtheout-of-planeregion(bottompanel).
TheIRdierencespectrumisshownindicatingthebandsofsignicant(IR125]C[IRRT)intensitychangediscussedinthetext.
Theordinatescalesofthespectrahavebeenexpandedforclarity.
2134Phys.
Chem.
Chem.
Phys.
,2001,3,21313136surface.
TheroomtemperatureandtheannealedRAIRSspectra,andtheIRdierencespectrumfor(IR125C[IRRT)theNPBthinlmareshowninFig.
4.
Theordinatescalesofthespectrahavebeenexpandedforclarity.
TheIRdierencespectrumintheout-of-planeregion(ca.
860cm~1to400cm~1)(lowerpanel))indicateskeydierencesbetweentheroomtemperatureandannealedspectra.
MostsignicantisthemarkedincreaseinintensityofthenaphthylCHwagatca.
772cm~1andthedecreaseinintensityofvibrationsatca.
821cm~1and751cm~1,assignedtoCHwagingvibrationsinvolvingthephenylgroups,withthelatterbeingmainlylocalisedontheterminalphenylgroupsofNPB.
Theseinten-sitychangessuggestthat,uponannealing,thenaphthylgroupsofNPBrelaxfurtherintoaataverageorientationandthephenylgroupstendtopreferaperpendicularconfor-mationwithrespecttothesurface.
Lookingtothein-planeregion(ca.
1150cm~1to1650cm~1(Fig.
4,toppanel))forindicationsoforientationalchangesshowsthatthebandatca.
1491cm~1,assignedtoaphenylCC/CNstretching]CHbendingvibration,gainssig-nicantintensityuponannealing.
OtherbandsthatgainintensityaretheCCstretchlargelyinvolvingtheterminalphenylgroupsandthephenylCHbendingvibration,atca.
1592cm~1and1293cm~1,respectively.
Theatomicdisplace-mentvectorsofthevibrationshavingthelargestincreaseinintensityuponannealingassignedtothecandfIRbandsareshowninFig.
5.
ThereectionabsorptionIRspectraindicatethatuponannealingtheNPBlmsundergoorientationalchangesconsistentwiththenaphthylgroupsbeinglargelyparalleltothesurface.
ApotentialconformationofNPBonthesurfaceinwhichthenaphthylgroupscouldbepredomi-nantlyatisthatwherethenaphthylgroupsarecistoeachother,asopposedtothegasphaseglobalminimumtranscon-formation.
Insuchaconformationtheterminalphenylgroupscouldbedirectedupfromthesurface,whichwouldcauseanincreaseintheintensityofthephenylCCstretchingbandsandadecreaseinthephenylCHout-of-planewags,asisobservedintheannealedIR.
ConclusionThemajorIRmodesoftheOLEDmaterialNPBhavebeenassignedusingtheB3LYP/6-31G(d)leveloftheory.
ExcellentagreementwasfoundbetweentheexperimentalIRspectrumandthesimulatedDFTspectrum,allowingthereliableassign-mentofobservedbands.
ReectionabsorptionIRspectros-copy(RAIRS)wasusedtoinvestigateorientationalchangesinNPBthinlmsuponthermalannealing.
Withannealing,thenaphthylgroupsofNPBarefoundtoadoptapredominatelyatorientationwithrespecttothesurface.
Fig.
5Normalmodeatomicdisplacementvectorsforthecandfvibrations,whichshowthelargestincreaseinintensityuponannealing.
Theexperimentalfrequenciesareindicated.
Phys.
Chem.
Chem.
Phys.
,2001,3,213121362135AcknowledgementsHBSandMDHgratefullyacknowledgenancialsupportfromtheNationalScienceFoundation(GrantNo.
CHE9874005)andagrantforcomputingresourcesfromNCSA(GrantNo.
CHE980042N).
MDHwouldalsoliketothanktheDepartmentofChemistry,WayneStateUniversityfornancialsupportprovidedbyaWilfredHellerGraduateFellowship.
References1C.
W.
TangandS.
A.
VanSlyke,Appl.
Phys.
Lett.
,1987,51,913.
2J.
R.
Sheats,H.
Antoniadis,M.
Hueschen,W.
Leonard,J.
Miller,R.
Moon,D.
RoitmanandA.
Stocking,Science,1996,273,884.
3J.
L.
RothbergandA.
J.
Lovinger,J.
Mater.
Res.
,1996,11,3174.
4Y.
Hamada,IEEETrans.
ElectronDevices,1997,44,1208.
5C.
H.
ChenandJ.
Shi,Coord.
Chem.
Rev.
,1998,171,161.
6S.
A.
VanSlyke,C.
H.
ChenandC.
W.
Tang,Appl.
Phys.
Lett.
,1996,15,2160.
7J.
McElvain,H.
Antoniadis,M.
R.
Hueschen,J.
N.
Miller,D.
M.
Roitman,J.
R.
SheetsandR.
L.
Moon,J.
Appl.
Phys.
,1996,80,6002.
8P.
E.
Burrows,V.
Bulovic,S.
R.
Forrest,L.
S.
Sapochak,D.
M.
McCartyandM.
E.
Thompson,Appl.
Phys.
Lett.
,1994,65,2922.
9H.
AzizandG.
Xu,J.
Phys.
Chem.
B,1997,101,4009.
10F.
Papadimitrakipoulos,X.
M.
Zhang,D.
L.
ThomsenandK.
A.
Higginson,Chem.
Mater.
,1996,8,1363.
11H.
Aziz,Z.
D.
Popovic,N.
X.
Hu,A.
M.
HorandG.
Xu,Science,1999,284,1900.
12L.
Do,E.
Han,N.
YamamotoandM.
Fujihira,Mol.
Cryst.
Liq.
Cryst.
,1996,280,373.
13R.
Q.
Zhang,C.
S.
LeeandS.
T.
Lee,Appl.
Phys.
Lett.
,1999,75,2418.
14R.
Q.
Zhang,C.
S.
LeeandS.
T.
Lee,J.
Chem.
Phys.
,2000,112,8614.
15Z.
Deng,S.
T.
Lee,D.
P.
Webb,Y.
C.
ChanandW.
A.
Gambling,Synth.
Met.
,1999,107,107.
16F.
M.
Avendano,E.
W.
Forsythe,Y.
GaoandC.
W.
Tang,Synth.
Met.
,1999,102,910.
17P.
Pulay,inModernElectronicStructureTheory,ed.
D.
Yarkony,WorldScientic,Singapore,1995,p.
1191.
18A.
P.
ScottandL.
Radom,J.
Phys.
Chem.
,1996,100,16502.
19M.
W.
Wong,Chem.
Phys.
Lett.
,1996,256,391.
20M.
D.
HallsandH.
B.
Schlegel,J.
Chem.
Phys.
,1998,109,10587.
21M.
J.
Frisch,G.
W.
Trucks,H.
B.
Schlegel,G.
E.
Scuseria,M.
A.
Robb,J.
R.
Cheeseman,V.
G.
Zakrzewski,J.
A.
Montgomery,Jr.
,R.
E.
Stratmann,J.
C.
Burant,S.
Dapprich,J.
M.
Millam,A.
D.
Daniels,K.
N.
Kudin,M.
C.
Strain,O.
Farkas,J.
Tomasi,V.
Barone,M.
Cossi,R.
Cammi,B.
Mennucci,C.
Pomelli,C.
Adamo,S.
Cliord,J.
Ochterski,G.
A.
Petersson,P.
Y.
Ayala,Q.
Cui,K.
Morokuma,D.
K.
Malick,A.
D.
Rabuck,K.
Raghava-chari,J.
B.
Foresman,J.
Cioslowski,J.
V.
Ortiz,B.
B.
Stefanov,G.
Liu,A.
Liashenko,P.
Piskorz,I.
Komaromi,R.
Gomperts,R.
L.
Martin,D.
J.
Fox,T.
Keith,M.
A.
Al-Laham,C.
Y.
Peng,A.
Nanayakkara,C.
Gonzalez,M.
Challacombe,P.
M.
W.
Gill,B.
Johnson,W.
Chen.
M.
W.
Wong,J.
L.
Andres,C.
Gonzalez,M.
Head-Gordon,E.
S.
ReplogleandJ.
A.
Pople,GAUSSIAN98,RevisionA.
6,Gaussian,Inc.
,Pittsburgh,PA,1998.
22A.
D.
Becke,Can.
J.
Phys.
,1993,98,5648.
23C.
Lee,W.
YangandR.
G.
Parr,Phys.
Rev.
B,1988,37,785.
24W.
J.
Hehre,R.
DitcheldandJ.
A.
Pople,J.
Chem.
Phys.
,1972,56,2257.
25P.
Botschwina,W.
MeyerandA.
M.
Semkow,Chem.
Phys.
,1976,15,25.
26G.
FogarasiandP.
Pulay,J.
Mol.
Struct.
,1977,39,275.
27P.
Pulay,G.
Fogarasi,G.
Pongor,J.
E.
BoggsandA.
Vargha,J.
Am.
Chem.
Soc.
,1983,105,7037.
28Y.
N.
Panchenko,Russ.
Chem.
Bull.
,1996,45,753.
29M.
Ilic,E.
Koglin,A.
Pohlmeier,H.
D.
NarresandM.
J.
Schwu-ger,Langmuir,2000,16,8946.
30C.
W.
Bauschlicher,Chem.
Phys.
,1998,234,87;(http://ccf.
arc.
nasa.
gov/Dcbauschl/astro.
data2)31A.
Kam,R.
Aroca,J.
DuandC.
P.
Tripp,Chem.
Mater.
,1998,10,172.
32A.
P.
Kam,R.
Aroca,J.
DuandC.
P.
Tripp,Langmuir,2000,16,1185.
33A.
Kam,R.
Aroca,J.
DuandC.
P.
Tripp,Int.
J.
Vib.
Spectrosc.
,2000,4,2.
34H.
Aziz,Z.
Popovic,S.
Xie,A.
M.
Hor,N.
X.
Hu,C.
P.
TrippandG.
Xu,Appl.
Phys.
Lett.
,1998,72,765.
35H.
Aziz,Z.
Popovic,C.
P.
Tripp,N.
X.
Hu,A.
M.
HorandG.
Xu,Appl.
Phys.
Lett.
,1998,72,2642.
36Z.
D.
Popovic,S.
Xie,N.
Hu,A.
Hor,D.
Fork,G.
AndersonandC.
P.
Tripp,ThinSolidFilms,2000,363,6.
2136Phys.
Chem.
Chem.
Phys.
,2001,3,21313136

Spinservers:美国独立服务器(圣何塞),$111/月

spinservers是Majestic Hosting Solutions,LLC旗下站点,主营美国独立服务器租用和Hybrid Dedicated等,spinservers这次提供的大硬盘、大内存服务器很多人很喜欢。TheServerStore自1994年以来,它是一家成熟的企业 IT 设备供应商,专门从事二手服务器和工作站业务,在德克萨斯州拥有40,000 平方英尺的仓库,库存中始终有数千台...

Hosteons - 限时洛杉矶/达拉斯/纽约 免费升级至10G带宽 低至年$21

Hosteons,一家海外主机商成立于2018年,在之前还没有介绍和接触这个主机商,今天是有在LEB上看到有官方发送的活动主要是针对LEB的用户提供的洛杉矶、达拉斯和纽约三个机房的方案,最低年付21美元,其特点主要在于可以从1G带宽升级至10G,而且是免费的,是不是很吸引人?本来这次活动是仅仅在LEB留言提交账单ID才可以,这个感觉有点麻烦。不过看到老龚同学有拿到识别优惠码,于是就一并来分享给有需...

易探云香港云服务器价格多少钱1个月/1年?

易探云怎么样?易探云是目前国内少数优质的香港云服务器服务商家,目前推出多个香港机房的香港云服务器,有新界、九龙、沙田、葵湾等机房,还提供CN2、BGP及CN2三网直连香港云服务器。近年来,许多企业外贸出海会选择香港云服务器来部署自己的外贸网站,使得越来越多的用户会选择易探云作为网站服务提供平台。今天,云服务器网(yuntue.com)小编来谈谈易探云和易探云服务器怎么样?具体香港云服务器多少钱1个...

789rt.com为你推荐
怎么查询商标怎样查询商标有没有被注册方法有哪些?广东GDP破10万亿广东省城市经济排名bbs.99nets.com送点卷的冒险岛私服地陷裂口天上顿时露出一个大窟窿地上也裂开了,一到黑幽幽的深沟可以用什么四字词语来?www.7788dy.com回家的诱惑 哪个网站更新的最快啊5xoy.com求个如月群真汉化版下载地址www.78222.com我看一个网站.www.snw58.com里面好有意思呀,不知道里面的信息是不是真实的haole10.com空人电影网改网址了?www.10yyy.cn是空人电影网么www.vtigu.com如图所示的RT三角形ABC中,角B=90°(初三二次根式)30 如图所示的RT三角形ABC中,角B=90°,点p从点B开始沿BA边以1厘米每秒的速度向A移动;同时,点Q也从点B开始沿BC边以2厘米每秒的速度向点C移动。问:几秒后三角形PBQ的面积为35平方厘米?PQ的距离是多少m.kan84.net经常使用http://www.feikan.cc看电影的进来帮我下啊
windows虚机 代理域名备案 winscp lunarpages 便宜域名 台湾服务器 免费网站监控 好看的桌面背景图片 租空间 台湾谷歌网址 警告本网站美国保护 微信收钱 日本bb瘦 seednet 徐正曦 服务器硬件防火墙 美国盐湖城 独立主机 百度云空间 金主 更多