1LactateprovidesastrongpH-independentventilatorysignalinthefacultativeair-breathingteleostPangasianodonhypophthalmusMikkelT.
Thomsen1,TobiasWang1,WilliamK.
Milsom2&MarkBayley1FishregulateventilationprimarilybysensingO2-levelsinthewaterandarterialblood.
Itiswellestablishedthatthissensoryprocessinvolvesseveralsteps,buttheunderlyingmechanismsremainfrustratinglyelusive.
HereweexaminetheeffectofincreasinglactateionsatconstantpHonventilationinateleost;specificallythefacultativeair-breathingcatfishPangasianodonhypophthalmus.
AtlactatelevelswithinthephysiologicalrangeobtainedbyNa-Lactateinjections(3.
5±0.
8to10.
9±0.
7mmolL1),gillventilationincreasedinadose-dependentmannertolevelscomparabletothoseelicitedbyNaCNinjections(2.
0molkg1),whichinducesahypoxicresponseandhigherthanthoseobservedinanylevelofambienthypoxia(lowestPO2=20mmHg).
Highlactateconcentrationsalsostimulatedair-breathing.
Denervationofthefirstgillarchreducedtheventilatoryresponsetolactatesuggestingthatpartofthesensorymechanismforlactateislocatedatthefirstgillarch.
However,sincearesidualresponseremainedafterthisdenervation,theothergillarchesorextrabranchiallocationsmustalsobeimportantforlactatesensing.
Weproposethatlactateplaysaroleasasignallingmoleculeinthehypoxicventilatoryresponseinfish.
AnimalsrelyonasuiteofphysiologicaladaptationstomaintainsufficientsupplyofO2totherespiringtissueswhenexposedtohypoxia.
Theseadaptationsvaryamongstvertebrateclasses,butnormallyincludeincreasedventilationandcardiovascularadjustments,withtheexacttypeandmagnitudeoftheresponsebeingaffectedbytheseverityanddurationofthehypoxia1–3.
ThefirststeprequiredinahypoxicresponseisobviouslyasensingmechanismrespondingtochangesinO2levels.
Yet,despitemucheffort,themechanismsunderlyingO2sensingremainfrustratinglyelusive,evenintheextensivelystudiedmammaliancarotidbody4.
DeterminingthemodalityofO2sensingisparamountinunderstandingventilatoryregulationandhypoxicresponses,whicharetypicallyassessedbyhypoxiaexposureperseorbyinjectionofvariouschemicalssuchasNaCN,whichstimulatesoxygensensitivereceptors5,6.
ThecapacitanceofO2isaround25–30timeslowerinwaterthaninair.
Hence,water-breathinganimalsmustventilatemorethanair-breatherstomeettheirmetabolicO2demand7,8.
ThesehighventilationratesresultinalowpartialpressureofCO2inarterialblood,andaventilatoryregulationofthearterialCO2-levelwouldunavoid-ablycompromiseO2uptake.
Hence,pH-regulationismainlyachievedbytransepithelialH+/HCO3–exchangeinfish9,10.
Inmammalsandotherair-breathingtetrapods,theventilatoryrequirementforO2uptakeislower,leadingtohigherarterialPCO2levels7,8.
ThisincreaseincombinationwiththehighO2availabilityhaschangedthemodeofventilatoryregulationinairbreathersintobeingprimarilycontrolledbyH+/CO2changesundernormoxicconditions11.
Thustheoxygenventilatorysignalinmostmammalshasutilityonlyinsituationsoutsidethenor-maladaptiverangesuchasathighaltitude,diving,burrowingorduringpulmonaryillness,butisthedominantregulatorymechanismofventilationinfish.
Hardarsonetal.
12showedforthefirsttimeinavertebratethatthelactateionpersegivesastimulationofven-tilationinratsthatisseparatefromtheeffectofthenormallyaccompanyingacidosis12,13Changetal.
14recentlydocumentedtheolfactoryreceptor78tobeinvolvedinthisresponsebydescribingahighlactateaffinityofthisreceptorinthecarotidbody.
Byknockingoutthecodinggene(Olfr78,alsoknownasOr51e2)inmicethey1DepartmentofBioscience,Zoophysiology,AarhusUniversity,Aarhus,Denmark.
2DepartmentofZoology,UniversityofBritishColumbia,Vancouver,BC,Canada.
CorrespondenceandrequestsformaterialsshouldbeaddressedtoM.
T.
T.
(email:Mikkel.
thomsen@bios.
au.
dk)Received:16February2017Accepted:16June2017Published:xxxxxxxxOPEN2abolishedthecarotidbodyresponsestobothlactateionsandhypoxia14.
Thus,itseemsthatlactateionsinduceaventilatoryresponsesimilartohypoxemia(lowbloodO2levels)andtheauthorsarguedthatlactateandlac-tatesensingmayhaveanimportantroleinenhancingthehypoxicventilatoryresponse.
Lactateisproducedbymostvertebratecellsunderhypoxicconditionsduetoabuild-upoftheglycolyticend-productpyruvate,whichisenzymaticallyconvertedtolactateandreleasedtotheblood.
Sincelactateisproducedbyallvertebrates,thislactate-inducedcomponentofthehypoxicresponsemaybeauniversaltraitamongstvertebrates,makingittimelytostudytheinfluenceofthelactateiononventilationinothervertebrateclasses.
InthisstudyweexplorethepresenceofapH-independentlactateventilatoryresponseinateleost,namelythefacultativeair-breathingfishPangasianodonhypophthalmus,whichusesgillsandamodifiedswimbladderforO2uptake.
Sincetheteleostfirstgillarchisontogeneticallyhomologoustothemammaliancarotidbody15,16,wealsoexaminedthelactateresponsesfollowingdenervationofthefirstgillarch.
Wehypothesisedthatthisdenervationshouldreduceorabolishthelactateventilatoryresponse.
Finally,weexaminedthecardiorespiratoryresponsestoprogressivehypoxiaand/orhypercarbiatosimulatenaturalconditions17–20forcomparisonoftheresponseelicitedbylactateions.
ResultsIntra-arterialinjections.
Intra-arterialinjectionsoflactateinthenon-denervatedfishcausedadose-de-pendentincreaseinbothgillventilationrate(fR,p=0.
0042,p=0.
0003,p=0.
0003forthelow,mediumandhighlactatedoses,respectively;mixedmodelANOVAwithpairwisecomparisonandBenjamini-Hochbergp-valueadjustment,n=14,Figs1and2a)andgillventilationamplitude(Vamp,p=0.
006,p=0.
0003,p=0.
0002forthelow,mediumandhighlactatedoses,respectively,mixedmodelANOVAwithpairwisecomparisonandBenjamini-Hochbergp-valueadjustment,n=14,Figs1and2b)independentofchangesinpH(pH=7.
82±0.
01,nodifferencebetweentreatments,p=0.
70,orbetweenG1-denervatedandnon-denervatedfish,p=0.
37,mixedmodelANOVA,n=14,Fig.
3).
Thisresponsealsoincludedair-breathingatthetwohigherdoses(25%and50%non-denervatedfishand0%and33%G1-denervatedfishperformedatleast1observableair-breathfollowingthemediumandhighlactatedoses,respectively),butthisresponsecouldnotbequantifiedfurtherinourexperi-mentalsetup.
Whiledenervationofthefirstgillarchfailedtocompletelyabolishthelactateventilatoryresponse,itdidcauseareduction.
TheresponseoftheG1-denervatedfishtoelevatedlactatewasstillsignificantatthetwohighestdoses(Fig.
2;fRp=0.
10,p=0.
003andp=0.
003atthelow,mediumandhighlactatedoses,respectively;Vampp=0.
27,p=0.
003andp=0.
002,atthelow,mediumandhighlactatedoses,respectively,mixedmodelANOVAwithpairwisecomparisonandBenjamini-Hochbergp-valueadjustment,n=14).
Noneofthecontrolinjections–isosmoticsaline,1MNaCl,orpyruvate–affectedventilation(noair-breathswereobservedandnoincreaseineitherfRorVamp)orpH(Figs2and3),confirmingthattheresponsestoothertreatmentswerenotaresultofstressfrominjections,increasedbloodpressure,alteredosmolality/[Na+],orametabolicresponsefromtheconversionoflactatetopyruvate.
NaCNinjections(2.
0molkg1)initiatedclearventilatoryresponsesinbothintactanddenervatedfish(Fig.
2c,d)inadditiontoair-breathing(50%ofthefishinbothgroupsperformedatleast1observableair-breath)andescapebehaviour(notquantified).
ThetimebetweeninjectionandavisibleventilatoryresponsewassimilarforlactateandNaCNinjections,withthepeakresponseoccurringafter54±4secforlactateinjectionsandafter46±10secforNaCNinjections.
Hypoxiaandhypercarbia.
Hypoxiainducedchangesingillventilation(fRp=0.
002;Vampp=0.
002,mixedmodelANOVA,n=22),withmoderatedecreasesinwaterPO2(PwO2=40–60mmHg)elicitingincreasedgillventilationwiththelargestelevationinVamp,whereasmoreseverehypoxia(PwO2140–20mmHg,stepwiseover7hours),B)Progressivehypercarbia(n=6,PwCO2:0–37.
5mmHg,stepwiseover6hours,C)Progressivehypoxiainconstanthypercarbia(n=6,PwCO2:22.
5mmHg,PwO2asinA),D)Progressivehypercarbiainconstanthypoxia(n=6,PwO2:40mmHg,PwCO2asinB),E)control(n=10,PwO2:>140mmHg,PwCO2:0mmHgfor7hours).
Eachexposuresteplasted1hourtoallowventilationtostabi-lise.
1hstepswerechosenaschangingthewaterPO2andPCO2tookseveralminutes,preventingtherecordingofreliableacutehypoxiaresponsesdirectlycomparabletothoseinducedbythechemicalinjections.
Datasamplingandanalysis.
Measurementsfromthepressuretransducersandthegasanalyserwerecol-lectedwithaMP100BIOPACsystem(BiopacSystemsInc.
,SantaBarbara,CA,USA)at200HzandstoredinAcqKnowledgev.
3.
9.
1,wheredatawassmoothedbyafactor25toreducethenoiseandallowforautomatizationoftheanalysisinmostdata.
Intheambientgasexperimentthereportedvaluesaretakenfromthelast15minof8eachhouroftheprogressivehypoxiaorhypercarbia(45minutestostabilise).
Spontaneoushighactivitylevelswereexcludedbothtoreducetherandomvariationandbecauseofthehighlevelofnoiseonthesignalsduringtheseperiods.
Intheintra-arterialinjectionsexperiment,thereportedpost-injectionvaluesarethepeakresponseaveragedover30secondswhereasthepre-injectionvaluesaretheaverageof30secondimmediatelypriortoinjection.
Periodswithnoiseduetomovementwerefewandwereavoidedintheanalysis.
Alldataisavailableathttps://pastebin.
com/44d7jRdG.
Statistics.
Alldataarepresentedasmean±s.
e.
m.
Atwo-waymixedmodelanalysisofvariancefollowedbyapairwisecomparisonandaBenjamini-Hochbergp-valuecorrectionwasusedtoanalysemostresults.
Fortheinjectionexperiment,subjectwasincludedasarandomfactorandtreatmentandgroupasfixedfactors.
Thep-valuesreportedforaneffectofaninjectionaretheadjustedp-valuesfromthepairwisecomparisonbetweenpre-andpost-injectionforagivensubstanceforagivenvariable.
Fortheambientgasexperiment,subjectwasincludedasarandomfactorandtimeandgroupincludedasfixedfactors.
Pairwisecomparisonwasmadeateachtime-point,comparingthespecifictreatmenttothecontrolgroup.
TheanalysiswasperformedusingInVivoStatsoftware(v.
3.
6.
0.
0).
Alldataweretestedforvariancehomoscedacitywithresidualplotsandnormalitywithanormalprobabilityplot.
Inthefewcasesofheteroscedacity(air-breathingdataandgillventilationamplitudedataforhypoxiaexposureinnormocarbia)thedatawasrank-transformedpriortoperformingthemixedmodelANOVA.
Themaximaleffectofhypoxiaongillventilationvariables(Fig.
2c,d.
)wereanalysedwithatwotailedpairedT-test.
Differenceswereconsideredsignificantwhenp<0.
05.
References1.
Shelton,G.
,Jones,D.
R.
&Milsom,W.
K.
ControlofbreathinginectothermicvertebratesinHandbookofPhysiology(eds.
Cherniack,N.
S.
&Widdicombe,J.
G.
)857–909(AmericanPhysiologicalSociety,1986).
2.
Porteus,C.
,Hedrick,M.
S.
,Hicks,J.
W.
,Wang,T.
&Milsom,W.
K.
Timedomainsofthehypoxicventilatoryresponseinectothermicvertebrates.
J.
Comp.
Physiol.
B181,311–333(2011).
3.
Powell,F.
L.
,Milsom,W.
K.
&Mitchell,G.
S.
Timedomainsofthehypoxicventilatoryresponse.
Respir.
Physiol.
112,123–134(1998).
4.
López-Barneo,J.
etal.
Oxygensensingbythecarotidbody:mechanismsandroleinadaptationtohypoxia.
Am.
J.
Physiol.
-CellPhysiol.
310,629–642(2016).
5.
Burleson,M.
L.
&Milsom,W.
K.
Cardio-ventilatorycontrolinrainbowtrout:I.
Pharmacologyofbranchial,oxygen-sensitivechemoreceptors.
Respir.
Physiol.
100,231–238(1995).
6.
Reid,S.
G.
&Perry,S.
F.
PeripheralO2chemoreceptorsmediatehumoralcatecholaminesecretionfromfishchromaffincells.
Am.
J.
Physiol.
-Regul.
Integr.
Comp.
Physiol.
284,990–999(2003).
7.
Rahn,H.
Aquaticgasexchange:Theory.
Respir.
Physiol.
1,1–12(1966).
8.
Dejours,P.
Carbondioxideinwater-andair-breathers.
Respir.
Physiol.
33,121–128(1978).
9.
Ultsch,G.
Gasexchange,hypercarbiaandacid-basebalance,paleoecology,andtheevolutionarytransitionfromwater-breathingtoair-breathingamongvertebrates.
Palaeogeogr.
Palaeoclimatol.
Palaeoecol.
123,1–27(1996).
10.
Evans,D.
,Piermarini,P.
&Choe,K.
Themultifunctionalfishgill:dominantsiteofgasexchange,osmoregulation,acid-baseregulation,andexcretionofnitrogenouswaste.
Physiol.
Rev.
85,97–177(2005).
11.
Hartzler,L.
K.
&Putnam,R.
W.
CentralchemosensitivityinmammalsinCardiorespiratorycontrolinvertebrates-Comparativeandevolutionaryaspects(eds.
Glass,M.
L.
&Wood,S.
C.
)475–500(Springer,2009).
12.
Hardarson,T.
,Skarphedinsson,J.
O.
&Sveinsson,T.
Importanceofthelactateanionincontrolofbreathing.
J.
Appl.
Physiol.
84,411–416(1998).
13.
Lindinger,M.
I.
,Kowalchuk,J.
M.
&Heigenhauser,G.
J.
F.
Applyingphysicochemicalprinciplestoskeletalmuscleacid-basestatus.
Am.
J.
Physiol.
-Regul.
Integr.
Comp.
Physiol.
289,891–894(2005).
14.
Chang,A.
J.
,Ortega,F.
E.
,Riegler,J.
,Daniel,V.
&Krasnow,M.
A.
Oxygenregulationofbreathingthroughanolfactoryreceptoractivatedbylactate.
Nature527,240–244(2015).
15.
Milsom,W.
K.
&Burleson,M.
L.
Peripheralarterialchemoreceptorsandtheevolutionofthecarotidbody.
Respir.
Physiol.
Neurobiol.
157,4–11(2007).
16.
Jonz,M.
G.
&Nurse,C.
A.
Oxygen-sensitiveneuroepithelialcellsinthegillsofaquaticvertebratesinAirwaychemoreceptorsinvertebrates(eds.
Zaccone,G.
,Cutz,E.
,Adriaensen,D.
,Nurse,C.
A.
&Mauceri,A.
)1–30(SciencePublishers,2009).
17.
Willmer,E.
N.
Someobservationsontherespirationofcertaintropicalfresh-waterfishes.
J.
Exp.
Biol.
11,283–306(1934).
18.
Heisler,N.
,Forcht,G.
,Ultsch,G.
R.
&Anderson,J.
F.
Acid-baseregulationinresponsetoenvironmentalhypercapniaintwoaquaticsalamanders,SirenlacertinaandAmphiumameans.
Respir.
Physiol.
49,141–158(1982).
19.
Diaz,R.
J.
Overviewofhypoxiaaroundtheworld.
J.
Environ.
Qual.
30,275–81(2001).
20.
Damsgaard,C.
etal.
Highcapacityforextracellularacid-baseregulationintheair-breathingfishPangasianodonhypophthalmus.
J.
Exp.
Biol.
218,1290–1294(2015).
21.
Milsom,W.
K.
Newinsightsintogillchemoreception:receptordistributionandrolesinwaterandairbreathingfish.
Respir.
Physiol.
Neurobiol.
184,326–39(2012).
22.
Dunel-Erb,S.
,Bailly,Y.
&Laurent,P.
Neuroepithelialcellsinfishgillprimarylamellae.
J.
Appl.
Physiol.
53,1342–1353(1982).
23.
Jonz,M.
G.
,Fearon,I.
M.
&Nurse,C.
A.
Neuroepithelialoxygenchemoreceptorsofthezebrafishgill.
J.
Physiol.
560,737–752(2004).
24.
Qin,Z.
,Lewis,J.
E.
&Perry,S.
F.
Zebrafish(Daniorerio)gillneuroepithelialcellsaresensitivechemoreceptorsforenvironmentalCO2.
J.
Physiol.
588,861–872(2010).
25.
Zhang,L.
,Nurse,C.
A.
,Jonz,M.
G.
&Wood,C.
M.
Ammoniasensingbyneuroepithelialcellsandventilatoryresponsestoammoniainrainbowtrout.
J.
Exp.
Biol.
214,2678–2689(2011).
26.
Abdallah,S.
J.
,Jonz,M.
G.
&Perry,S.
F.
ExtracellularH+inducesCa2+signalsinrespiratorychemoreceptorsofzebrafish.
PflügersArch.
Eur.
J.
Physiol.
467,399–413(2015).
27.
Porteus,C.
S.
etal.
Theroleofhydrogensulphideinthecontrolofbreathinginhypoxiczebrafish(Daniorerio).
J.
Physiol.
592,3075–88(2014).
28.
Porteus,C.
S.
etal.
Arolefornitricoxideinthecontrolofbreathinginzebrafish(Daniorerio).
J.
Exp.
Biol.
218,3746–3753(2015).
29.
Tzaneva,V.
&Perry,S.
F.
Theroleofendogenouscarbonmonoxideinthecontrolofbreathinginzebrafish(Daniorerio).
Am.
J.
Physiol.
-Regul.
Integr.
Comp.
Physiol.
311,1262–1270(2016).
30.
Perry,S.
F.
&Abdallah,S.
Mechanismsandconsequencesofcarbondioxidesensinginfish.
Respir.
Physiol.
Neurobiol.
184,309–15(2012).
31.
Jonz,M.
G.
,Zachar,P.
C.
,Fonte,D.
F.
,Da&Mierzwa,A.
S.
Peripheralchemoreceptorsinfish:Abriefhistoryandalookahead.
Comp.
Biochem.
Physiol.
PartA186,27–38(2015).
932.
Perry,S.
F.
&Reid,S.
G.
CardiorespiratoryadjustmentsduringhypercarbiainrainbowtroutOncorhynchusmykissareinitiatedbyexternalCO2receptorsonthefirstgillarch.
J.
Exp.
Biol.
205,3357–3365(2002).
33.
Daxboeck,C.
&Holeton,G.
F.
Oxygenreceptorsintherainbowtrout.
Salmogairdneri.
Can.
J.
Zool.
56,1254–1259(1978).
34.
Wathen,R.
L.
,Ward,R.
A.
,Harding,G.
B.
&Meyer,L.
C.
Acid-baseandmetabolicresponsestoanioninfusionintheanesthetizeddog.
KidneyInt.
21,592–599(1982).
35.
Brooks,G.
A.
Glycolyticproductandoxidativesubstrateduringsustainedexerciseinmammls-the'lactateshuttle'inComparativephysiologyandbiochemistry:Currenttopicsandtrends,VolA,Respiration-Metabolism-Circulation(ed.
Gilles,R.
)208–218(Springer,1985).
36.
Lefevre,S.
,Huong,D.
T.
T.
,Wang,T.
,Phuong,N.
T.
&Bayley,M.
Hypoxiatoleranceandpartitioningofbimodalrespirationinthestripedcatfish(Pangasianodonhypophthalmus).
Comp.
Biochem.
Physiol.
PartA158,207–14(2011).
37.
Perry,S.
F.
&Gilmour,K.
M.
Sensingandtransferofrespiratorygasesatthefishgill.
J.
Exp.
Zool.
293,249–63(2002).
38.
Lefevre,S.
etal.
Air-breathingfishesinaquaculture.
WhatcanwelearnfromphysiologyJ.
FishBiol.
84,705–31(2014).
39.
Phuong,L.
M.
,Huong,D.
T.
T.
,Nyengaard,J.
R.
&Bayley,M.
GillremodellingandgrowthrateofstripedcatfishPangasianodonhypophthalmusunderimpactsofhypoxiaandtemperature.
Comp.
Biochem.
Physiol.
PartA203,288–296(2017).
40.
Lefevre,S.
,Wang,T.
,Huong,D.
T.
T.
,Phuong,N.
T.
&Bayley,M.
Partitioningofoxygenuptakeandcostofsurfacingduringswimmingintheair-breathingcatfishPangasianodonhypophthalmus.
J.
Comp.
Physiol.
B183,215–221(2012).
41.
Graham,J.
B.
,Kramer,D.
L.
&Pineda,E.
Comparativerespirationofanair-breathingandanon-air-breathingcharacoidfishandtheevolutionofaerialrespirationincharacins.
Physiol.
Zool.
51,279–288(1978).
42.
Mattias,A.
T.
,Rantin,F.
T.
&Fernandes,M.
N.
Gillrespiratoryparametersduringprogressivehypoxiainthefacultativeair-breathingfish,Hypostomusregani(Loricariidae).
Comp.
Biochem.
Physiol.
-AMol.
Integr.
Physiol.
120,311–315(1998).
43.
Oliveira,R.
D.
etal.
Cardiorespiratoryresponsesofthefacultativeair-breathingfishjeju,Hoplerythrinusunitaeniatus(Teleostei,Erythrinidae),exposedtogradedambienthypoxia.
Comp.
Biochem.
Physiol.
A.
Mol.
Integr.
Physiol.
139,479–85(2004).
44.
Perry,S.
F.
,Jonz,M.
G.
&Gilmour,K.
M.
OxygenSensingandtheHypoxicVentilatoryResponse.
FishPhysiologyVol.
27:Hypoxia27,(ElsevierInc.
,2009).
45.
Belo,T.
C.
,Leite,C.
A.
C.
,Florindo,L.
H.
,Kalinin,A.
L.
&Rantin,F.
T.
CardiorespiratoryresponsestohypoxiaintheAfricancatfish,Clariasgariepinus(Burchell1822),anair-breathingfish.
J.
Comp.
Physiol.
B181,905–916(2011).
46.
Belo,T.
C.
etal.
Controlofcardiorespiratoryfunctioninresponsetohypoxiainanair-breathingfish,theAfricansharptoothcatfish,Clariasgariepinus.
Comp.
Biochem.
Physiol.
PartA187,130–140(2015).
47.
Smatresk,N.
VentilatoryandcardiacreflexresponsestohypoxiaandNaCNinLepisosteusosseus,anair-breathingfish.
Physiol.
Zool.
59,385–397(1986).
48.
Chapman,L.
J.
&McKenzie,D.
J.
BehavioralresponsesandecologicalconsequencesinFishphysiologyvol27.
Hypoxia(eds.
Richards,J.
,Farrell,A.
&Brauner,C.
)27,25–77(AcademicPress,2009).
49.
Domenici,P.
,Herbert,N.
A.
,Lefranois,C.
,Steffensen,J.
F.
&Mckenzie,D.
J.
TheeffectofenvironmentalhypoxiaonfishswimmingperformanceandbehaviourinSwimmingphysiologyoffish(eds.
Palstra,A.
P.
&Planas,J.
V.
)129–159(Springer,2013).
doi:10.
1007/978-3-642-31049-2.
50.
Hvas,M.
etal.
Theeffectofenvironmentalhypercapniaandsizeonnitritetoxicityinthestripedcatfish(Pangasianodonhypophthalmus).
Aquat.
Toxicol.
176,151–160(2016).
51.
Soivio,A.
,Nynolm,K.
&Westman,K.
Atechniqueforrepeatedsamplingofthebloodofindividualrestingfish.
J.
Exp.
Biol.
63,207–217(1975).
52.
Beecham,R.
V.
,Small,B.
C.
&Minchew,C.
D.
UsingPortableLactateandGlucoseMetersforCatfishResearch:AcceptableAlternativestoEstablishedLaboratoryMethodsN.
Am.
J.
Aquac.
68,291–295(2006).
AcknowledgementsTheauthorswouldliketothankHeidiMeldgaardandPerHenriksenforanimalcare.
ThisstudywasfundedbytheGraduateSchoolofScienceandTechnology,AarhusUniversity,Denmark,theDanishMinistryofForeignAffairs(DANIDA)[DFCno.
12-014AU]andbytheDanishNaturalScienceResearchCouncil.
AuthorContributionsM.
T.
T.
conductedtheexperiments,analyseddata,preparedfiguresanddraftedthemanuscript.
Allauthorsplannedanddesignedthestudy,interpretedtheresults,editedthemanuscriptandapproveditsfinalversion.
AdditionalInformationSupplementaryinformationaccompaniesthispaperatdoi:10.
1038/s41598-017-06745-4CompetingInterests:Theauthorsdeclarethattheyhavenocompetinginterests.
Publisher'snote:SpringerNatureremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.
OpenAccessThisarticleislicensedunderaCreativeCommonsAttribution4.
0InternationalLicense,whichpermitsuse,sharing,adaptation,distributionandreproductioninanymediumorformat,aslongasyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCre-ativeCommonslicense,andindicateifchangesweremade.
Theimagesorotherthirdpartymaterialinthisarticleareincludedinthearticle'sCreativeCommonslicense,unlessindicatedotherwiseinacreditlinetothematerial.
Ifmaterialisnotincludedinthearticle'sCreativeCommonslicenseandyourintendeduseisnotper-mittedbystatutoryregulationorexceedsthepermitteduse,youwillneedtoobtainpermissiondirectlyfromthecopyrightholder.
Toviewacopyofthislicense,visithttp://creativecommons.
org/licenses/by/4.
0/.
TheAuthor(s)2017
丽萨主机怎么样?丽萨主机,团队于2017年成立。成立之初主要做的是 CDN 和域名等相关业务。最近开辟新领域,新增了独立服务器出租、VPS 等业务,为了保证业务质量从一开始就选择了中美之间的 CN2 GIA 国际精品网络,三网回程 CN2 GIA,电信去程 CN2 GIA + BGP 直连智能路由,联通移动去程直连,原生IP。适合对网络要求较高的用户,同时价格也比较亲民。点击进入:丽萨主机官方网站...
至今为止介绍了很多UCLOUD云服务器的促销活动,UCLOUD业者以前看不到我们的个人用户,即使有促销活动,续费也很少。现在新用户的折扣力很大,包括旧用户在内也有一部分折扣。结果,我们的用户是他们的生存动力。没有共享他们的信息的理由是比较受欢迎的香港云服务器CN2GIA线路产品缺货。这不是刚才看到邮件注意和刘先生的通知,而是补充UCLOUD香港云服务器、INTELCPU配置的服务器。如果我们需要他...
npidc全称No Problem Network Co.,Limited(冇問題(香港)科技有限公司,今年4月注册的)正在搞云服务器和独立服务器促销,数据中心有香港、美国、韩国,走CN2+BGP线路无视高峰堵塞,而且不限制流量,支持自定义内存、CPU、硬盘、带宽等,采用金盾+天机+傲盾防御系统拦截CC攻击,非常适合建站等用途。活动链接:https://www.npidc.com/act.html...
pastebin.com为你推荐
安徽汽车网合肥汽车站网上售票今日油条天天吃油条,身体会怎么样硬盘的工作原理硬盘的工作原理?是怎样存取数据的?嘉兴商标注册如何注册商标怎样商标注册冯媛甑夏如芝是康熙来了的第几期?钟神发战旗TV ID:新年快乐丶未央不见是哪个主播seo优化工具SEO优化工具哪个好用点啊?百度关键词分析百度关键字分析是什么意思?www.qq530.com谁能给我一个听歌的网站?m.kan84.net经常使用http://www.feikan.cc看电影的进来帮我下啊
老域名失效请用户记下 org域名 中国十大域名注册商 idc测评网 payoneer 湖南服务器托管 卡巴斯基试用版 免费高速空间 百度云1t 卡巴斯基免费试用 网游服务器 新世界服务器 外贸空间 下载速度测试 中国域名 atom处理器 godaddy空间 黑科云 免 restart 更多