sourcescaleup
scaleup 时间:2021-03-28 阅读:(
)
Scale-upDesignofUltrasoundIrradiatorforAdvancedOxidationProcess(AOP)UsingCOMSOLSimulationZongsuWei*11TheOhioStateUniversity,Columbus,OH,USA*Correspondingauthor:HI470,2070NeilAvenue,Columbus,OH,43210,USA;Phone:(614)906-8511;Fax:(614)292-3780;E-mail:wei.
187@osu.
eduAbstract:Inthispaper,COMSOLMultiphysicswasusedasatooltodesignandcharacterizeanultrasoundirradiatorwithamulti-steppedconfiguration,whichaimstoovercomedisadvantagesoftypicalirradiatorsandtoenhancecontaminantremovalinlarge-scalewatertreatments.
Inthesimulation,threedifferentphysicswerecoupledtogetherforeachcomponentofthedesignedultrasonicsystem:piezoelectricmaterialmodelfortransducer,linearelasticmaterialmodelforirradiator,andpressureacousticsmodelforreactor.
TheCOMSOLadequatelysimulatedtheacousticwavegenerationinthepiezoelectrictransducerandpropagationthroughtheirradiator.
Thesimulatedacousticpressurelevelshowsthemulti-steppedirradiatorsuccessfullyintroducedmultiplehighpressureregionsandthusmorereactivezones.
Acousticsimulationsinthewatertanksuggestedthedesignedirradiatorhasagreatcapacityforlarge-scaleAOPs.
ThesecompatiblesimulationresultstoexperimentalmeasurementsindicateCOMSOLisareliabletoolinthedesignandcharacterizationofascaled-upultrasoundirradiator.
Keywords:Ultrasound,Irradiator,Piezoelectric,Cavitation,AdvancedOxidationProcess(AOP)1.
IntroductionUltrasoundhasbeenconsideredapromisinggreentechnologyfortheadvancedoxidationprocess(AOP)sinceitaddsnochemicalstothetreatedwater.
Ithasbeenshowntoeffectivelydestroyvariousorganicandinorganiccontaminantsinwater[1].
Ultrasoundinducescavitationbubblesintheaqueoussolution,andcollapseofthosebubblesgenerateslocalized"hotspots"wheretemperatureandpressureareashighas5000Kand1000atm,respectively[2].
Inthisextremecondition,thermolysisandOH(fromwatermoleculedissociationbyheat)oxidationaretwomechanismsforthecontaminantdegradation[1,2].
AlthoughultrasoundtechnologyshowsgreatpotentialintheAOP,thecommonly-usedultrasoundirradiator(e.
g.
,horntypeinFigure1a)generatesalocalizedcavitationandnon-uniformcavitationfieldintreatmentreactors.
Theinhomogeneoustreatmentmakesitverychallengingtoscale-uptheAOPwiththetypicalirradiator[3].
Therefore,anovelconfigurationdesignofultrasoundirradiatorisnecessarytoenhanceandmaximizethecavitation-inducedchemicaleffectsforlarge-scaleAOP.
Inthedesignprocess,computationalsimulationwascommonlyusedasreferences.
Whenexpectingefficiencyandeconomicsinthedesignofanexpensivelarge-scalesystemforAOP,thecomputationaltoolseemsmoreattractivesinceitcaneasilyinvestigatedifferentreactorgeometries,irradiatorconfigurations,andultrasoundfrequenciestooptimizethedesign.
Ofthosecomputationaltools,COMSOLMultiphysicshavebeenappliedtosimulateacousticfieldandsonochemistryinreactors[4-6],whichprovidedcompatibleresultstolaboratorymeasurements.
Thedesignandcharacterizationbecomemuchsimpleandstraightforwardwiththeaidofcomputationalsimulations.
Inthisstudy,COMSOLsimulationwascarriedouttoassistanultrasoundirradiatordesignandcharacterization.
Amulti-steppedconfiguration(Figure1b)wasintroducedtobringmoreenergy-emittingsurfaceandlargecavitationvolume.
This"proof-of-concept"studywithCOMSOLsimulationstartedwiththesimplestscenario,inwhichitwasassumedthatmaterialsassignedincludingwaterandstainlesssteelwerelinearmedia.
Inaddition,anotherassumptionwasmadethatacousticwavesweretime-harmonicsincesinusoidalalternatingcurrent(AC)wasthepowersource.
Figure1.
Configurationsofatypicalirradiator(a)andthedesignedirradiator(b).
2.
MethodologyThesimulationwasestablishedto2Dsymmetricdimensionduetothesymmetricconfigurationofthescaled-upultrasoundsystemwithapiezoelectrictransducer,anewlydesignedirradiator(20kHz,2638mmindiameter,and28.
0cminlength)andawatertank(610mm*610mm*450mmindimensionand167.
5Linvolume).
Theultrasonicsysteminvolvesdifferentphysicalphenomena[3,7,8].
Thepiezoelectricmaterialinthetransducerconvertselectricalenergytomechanicalvibrationwhichpassesthroughtheultrasoundirradiatorandisintensifiedattheendoftheirradiator.
Theirradiatoremitsthoseamplifiedmechanicalwaves(ultrasoundwaves)towater,andthosewavesthenpropagateinthewatertankradially.
Therefore,threedifferentmodelswereselectedtosimulatetheultrasonicsystem:piezoelectricmaterialmodelfortransducer,linearelasticmaterialmodelforirradiator,andpressureacousticsmodelforwater.
Eachmodelisgovernedbyitsownequations.
2.
1PiezoelectricMaterialModelThepiezoelectriceffectisaphenomenonthatanappliedstressonpiezoelectricmaterialsinduceselectricpolarizationoranappliedelectricfieldinducesdimensionchangeforpiezoelectricmaterials[3,8-10].
Inthetransducer,thesyntheticceramicsofPZT(leadzirconatetitanate)providesanelectricalfieldandamechanicalfieldatthesametime.
TheelectromechanicalbehaviorsoftheisotropicPZTcanbeexpressedbytwolinearizedconstitutiveequations[7,9-11]:{{whereTisstressvector(6*1matrix),Sisstrainvector(6*1matrix),Eiselectricfieldintensityvector(3*1matrix),Diselectricfluxdensityvector(3*1matrix),cEiselasticcoefficients(6*6matrix)atconstantelectricfieldstrength,eTisdielectricpermittivitymatrix(6*3),eisdielectricpermittivity(3*6matrix),εSisdielectricmatrix(3*3)atconstantmechanicalstrain,sEiselasticcompliance(6*6matrix)inaconstantelectricfield,dTispiezoelectricstrainconstantmatrix(6*3),dispiezoelectricstrainconstant(3*6matrix),εTisdielectricmatrix(3*3)atconstantmechanicalstress.
2.
2LinearElasticMaterialModelTheparticledisplacementsgeneratedinthepiezoelectrictransduceraretransmittedtotheirradiatorsincetheyareconnectedtoeachother[7,8].
BothPZTandstainlesssteelareisotropicandelasticmaterials.
Therefore,theirlinearelasticbehaviorisgovernedbytheNewton'sSecondLaw[11,12]:whereuisparticledisplacement,σisstress,FVisforcepervolume,andeiφindicatestheAC.
2.
3PressureAcousticsModelThepressureacousticsmodelhasbeenusedtosimulatetheultrasoundpropagationinthewater.
Theacousticwaveequationisgivenasfollows[7,8,10-12]:Table1:InitialinputforthreedomainsLiquiddomainMaterialWaterρ1000kg/m3cS1418m/sIrradiatordomainMaterial1000kg/m3ρ7850kg/m3E(Young'smodulus)205E09Paν(Poisson'sratio)0.
28TransducerdomainMaterialPZT-5Hρ7500kg/m3cE(6*6matrix)[]eT(6*3matrix)[]εS(3*3matrix)[]sE(6*6matrix)[]dT(6*3matrix)[]εT(3*3matrix)[](())wherep(Pa)isacousticpressure,ρ(kg/m3)isdensityofwater,andc(m/s)isspeedofultrasoundpropagationinthewater.
Thedipolesourceq(N/m3)andthemonopolesourceQ(1/s2)arebothoptional.
Thecombinationρc2iscalledtheadiabaticbulkmodulus(Pa).
Sinceultrasoundislongitudinalwaves[13],thereisnopolarization(q=0andQ=0)[14].
Waterisassumedasanidealliquid(ρ=constantandη=0).
Therefore,thewaveequationfortheacousticpressurecanbesimplifiedto[7]:Thisequationdescribestheacousticpressureatanygivenpoint(x,y,z)andtimet.
2.
4BoundaryConditionandInitialInputThesettingofboundaryconditionsreferstoCOMSOLModelingGuideandprevioussimulationstudies[7,8,12,15-17].
Astructure-acousticboundarywassettotheinterfacebetweenirradiatorandwater[8,12].
Sinceultrasoundwavesarelongitudinalwaves,thehornsidewassetassoundhardboundaryatwhichthenormalcomponentoftheaccelerationiszero(thereisnoparticlemovementsinthedirectionperpendiculartohornaxis)[7]:(())Displacementsattheinterfacebetweenwaterandwallofthetankwasalsoconsideredaszero(u=0orP=0)assumingthetankmaterialwithalargeacousticimpedancesufficientlyabsorbedthosecomingacousticwaves.
Theparticledisplacementattheinterfaceoftransducerandirradiatorwassettobeequal[15-17].
Boundaryconditionsforsurfacescontactingairweresettofree(P=0)[12].
TheInitialvalueofelectricpotentialwassetto110V,anddefaulttemperaturewas293.
15K.
Theliquid,transducer,andirradiatordomainswereassignedtolinearwatermedia,piezoelectricmaterial(PZT-5H),andstainlesssteelmaterial(AISI4340),respectively.
TheinputinformationofthosethreematerialsissummarizedinTable1.
3.
ResultsandDiscussionFirst,inordertoevaluateandcomparetheperformanceofourirradiator,theacousticpressurelevelwascalculatedinCOMSOLforbothtypical(Figure2)anddesignedirradiators(Figure3).
Thetypicalirradiatoronlydeliversonehighacousticpressureareabelowitstip,whereasourmulti-steppeddesignbringsmultiplehighacousticpressureregionsaroundthe"edges".
Figure2.
Scatteredsoundpressurelevelsurroundingthetypicalirradiator(UnitforcolorlabelisdB).
Figure3.
Scatteredsoundpressurelevelsurroundingthedesignedirradiator(UnitforcolorlabelisdB).
Figure4.
Deformationoftransducerandirradiator(Unitforcolorlabelisμm).
Thesimulationresultsareconsistentwithlaboratoryhydrophonemeasurementsandsonochemiluminescenceimaging[18].
Sinceahighacousticpressureistheprerequisiteforcavitationresponsibleforcontaminantoxidation,thesimulationresultsinFigure3demonstratethatthedesignedirradiatorintroducedmoreenergy-emittingsurfacesandthereforemultiplereactivezones.
Fortheothertwodomainsbesideswater,theparticledisplacement(u)forthepiezoelectrictransducerandstainlesssteelirradiatoris1.
24μmatmaximumundertheappliedelectricalandmechanicalfield,showninFigure4.
Next,theacousticpressuredistributioninthewatertankwassimulatedtoevaluatethelarge-scaleapplicationwithdesignedirradiator,asshowninFigure5(2D)andFigure6(3D).
Inthesimulatedacousticfield,theredoryellowcoloralongirradiatorneckandbelowitstipalsoindicatesahighacousticpressureinthoseregions.
Atfurtherregions,ultrasoundwavespropagateinthewaterformingrippleshapes.
Acousticattenuationisalsoobservedbycolorchangingfromredtoyellow,thentolightyellow.
Themappingofacousticpressureinthewatertankindicatesthedesignedultrasoundirradiatorwithalargeradiationradius(>20cm)showsagreatcapacityforlarge-scaleAOP.
4.
ConclusionThecomputedresultshaveshowedthattheultrasoundirradiatordesignwithamulti-steppedFigure5.
Simulationofacousticpressuredistributioninwatertankin2D(UnitforcolorlabelisPa).
Figure6.
Simulationofacousticpressuredistributioninwatertankin3D(UnitforcolorlabelisPa).
configurationimprovedcavitationeffectsascomparedtotypicalirradiatorsgeneratinglocalizedcavitation.
TheCOMSOLprovidingcompatibleresultstoexperimentaldataseemstobeareliableandconvenienttoolforsuchscale-updesignofultrasoundirradiatorforAOP.
Thissimulationworkappliedtheidealconditionforallphysicalmodels.
Forexample,thesimulationresultsmayoverestimatetheparticledisplacementsforbothpiezoelectricmaterialandstainlesssteelirradiatorsinceitisassumedthereisnoenergylossforpiezoelectriceffectsandtransmittingofmechanicalenergyfromtransducertoirradiator.
Theacousticpressuredistributioninthetankissymmetricandlinearlydecreasingfromcentertoedgesduetothelinearityofwatermedia.
Actually,thehydrophonemeasurementsinthelaboratoryillustrateasymmetricanddiscretedistributionofacousticpressureduetotheacousticcavitation,wavecollision,andwatermovementbyultrasoundirradiation.
Therefore,waterviscosity,heatproduction,cavitationbubble,andmodelmodification[8,10,19]willbeaddedonebyonetocurrentsimulationtoobtainmorereliabledatainthefuturestudy.
Eventhoughthissimplestsimulationisnotanaccuratereflectionoftherealsystem,itisaworthystartingplatformandvaluablereferenceforfuturesimulationdesignwhichcanrepresenttherealsystemsetup.
5.
References1.
Weavers,L.
K.
,F.
H.
Ling,andM.
R.
Hoffmann,Aromaticcompounddegradationinwaterusingacombinationofsonolysisandozonolysis,EnvironmentalScience&Technology,32(18),2727-2733(1998).
2.
Suslick,K.
S.
,Thechemicaleffectsofultrasound,ScientificAmerican,0,80-86(1989).
3.
Mason,J.
M.
andA.
Tiehm,Advancesinsonochemistry,Vol.
6,Connecticut:JaiPress(2001).
4.
Csoka,L.
,S.
N.
Katekhaye,andP.
R.
Gogate,Comparisonofcavitationalactivityindifferentconfigurationsofsonochemicalreactorsusingmodelreactionsupportedwiththeoreticalsimulations,ChemicalEngineeringJournal,178,384-390(2011).
5.
Klima,J.
,A.
Frias-Ferrer,J.
Gonzalez-Garcia,J.
Ludvik,V.
Saez,andJ.
Iniesta,Optimisationof20kHzsonoreactorgeometryonthebasisofnumericalsimulationoflocalultrasonicintensityandqualitativecomparisonwithexperimentalresults,UltrasonicsSonochemistry,14(1),19-28(2007).
6.
Trujillo,F.
J.
andK.
Knoerzer,Acomputationalmodelingapproachofthejet-likeacousticstreamingandheatgenerationinducedbylowfrequencyhighpowerultrasonichornreactors,UltrasonicsSonochemistry,18(6),1263-1273(2011).
7.
Xie,Y.
,Modelanalysisandexperimentofsonochemicalcell,MasterThesis,NationalChengKungUniversity(2008).
8.
Yao,M.
,Analysisandexperimentofresonantsonochemicalcell,MasterThesis,NationalChengKungUniversity(2009).
9.
Ikeda,T.
,Fundamentalsofpiezoelectricity,Oxford,UK:OxfordUniversityPress(1996).
10.
Nygren,M.
W.
,Finiteelementmodelingofpiezoelectricultrasonictransducers,inDepartmentofElectronicsandTelecommunications,MasterThesis,NorwegianUniversityofScienceandTechnology(2011).
11.
COMSOL,COMSOLMultiphysicsuser'sguide,version4.
2(2012).
12.
COMSOL,COMSOLMultiphycismodelingguide,version4.
2(2012).
13.
Kinsler,L.
E.
,A.
R.
Frey,A.
B.
Coppens,andJ.
V.
Sanders,Fundamentalsofacoustics,fourthedition,NewYork,NY:JohnWiley&Sons(2000).
14.
Mason,T.
J.
andJ.
P.
Lorimer,Appliedsonochemistry:Theuseofpowerultrasoundinchemistryandprocessing,VerlagGmbH,Weinheim:Wiley-VCH(2002).
15.
Fu,Z.
Q.
,X.
J.
Xian,S.
Y.
Lin,C.
H.
Wang,W.
X.
Hu,andG.
Z.
Li,Investigationsofthebarbellultrasonictransduceroperatedinthefull-wavevibrationalmode,Ultrasonics,52(5),578-586(2012).
16.
Lin,Z.
,Theoryanddesignofultrasonichorn,Beijing:SciencePress(1987).
17.
Peshkovsky,S.
L.
andA.
S.
Peshkovsky,Matchingatransducertowateratcavitation:Acoustichorndesignprinciples,UltrasonicsSonochemistry,14,313-322(2007).
18.
Wei,Z.
,R.
Xiao,M.
Cai,andL.
K.
Weavers,Designingandcharacterizingamulti-steppedultrasonichornforenhancedacousticcavitation,UltrasonicsSonochemistry(tobesubmitted).
19.
Vogler,E.
T.
andC.
V.
Chrysikopoulos,Experimentalinvestigationofacousticallyenhancedsolutetransportinporousmedia,GeophysicalResearchLetters,29(15),1-4(2002).
Megalayer 商家算是比较新晋的国内主机商,主要方向是美国、香港、菲律宾等机房的独立服务器为主,以及站群服务器和显卡服务器。同时也有新增价格并不是特别优惠的VPS云服务器。上午的时候有网友问问有没有CN2线路的美国独立服务器的,这里我推荐他选择Megalayer看看,目前也是有活动截止到月底的。Megalayer 商家创办2年左右时间,如果我们初次使用建议月付体验。目前在进行且可能截止到6月...
华纳云(HNCloud Limited)是一家专业的全球数据中心基础服务提供商,总部在香港,隶属于香港联合通讯国际有限公司,拥有香港政府颁发的商业登记证明,保证用户的安全性和合规性。 华纳云是APNIC 和 ARIN 会员单位。主要提供数据中心基础服务、互联网业务解决方案, 以及香港服务器租用、香港服务器托管、香港云服务器、美国云服务器,云计算、云安全技术研发等产品和服务。其中云服务器基于成熟的 ...
TmhHost是一家国内正规公司,具备ISP\ICP等资质,主营国内外云服务器及独立服务器租用业务,目前,商家新上香港三网CN2 GIA线路VPS及国内镇江BGP高防云主机,其中香港三网CN2 GIA线路最低每月45元起;同时对美国洛杉矶CN2 GIA线路高防及普通VPS进行优惠促销,优惠后美国洛杉矶Cera机房CN2 GIA线路高防VPS季付99元起。香港CN2 GIA安畅机房,三网回程CN2 ...
scaleup为你推荐
h连锁酒店什么连锁酒店好甲骨文不满赔偿如果合同期不满被单位辞退,用人单位是否需要赔偿陈嘉垣陈浩民狼吻陈嘉恒是什么时候的事同一服务器网站服务器建设:一个服务器有多个网站该如何设置?www.44ri.comwww.yydcsjw.comwww.5any.com重庆哪里有不是全日制的大学?www.7788k.comwww.6601txq.com.有没有这个网站bbs2.99nets.com让(bbs www)*****.cn进入同一个站广告法中国的广告法有哪些。175qq.com查询QQ登录地址
中文国际域名 lnmp 阿里云搜索 新世界机房 美国主机推荐 免备案空间 网站监控 日志分析软件 国外空间 全能主机 java虚拟主机 777te 国外代理服务器软件 免费美国空间 vip购优惠 能外链的相册 360云服务 酸酸乳 数据湾 ncp是什么 更多