sourcescaleup

scaleup  时间:2021-03-28  阅读:()
Scale-upDesignofUltrasoundIrradiatorforAdvancedOxidationProcess(AOP)UsingCOMSOLSimulationZongsuWei*11TheOhioStateUniversity,Columbus,OH,USA*Correspondingauthor:HI470,2070NeilAvenue,Columbus,OH,43210,USA;Phone:(614)906-8511;Fax:(614)292-3780;E-mail:wei.
187@osu.
eduAbstract:Inthispaper,COMSOLMultiphysicswasusedasatooltodesignandcharacterizeanultrasoundirradiatorwithamulti-steppedconfiguration,whichaimstoovercomedisadvantagesoftypicalirradiatorsandtoenhancecontaminantremovalinlarge-scalewatertreatments.
Inthesimulation,threedifferentphysicswerecoupledtogetherforeachcomponentofthedesignedultrasonicsystem:piezoelectricmaterialmodelfortransducer,linearelasticmaterialmodelforirradiator,andpressureacousticsmodelforreactor.
TheCOMSOLadequatelysimulatedtheacousticwavegenerationinthepiezoelectrictransducerandpropagationthroughtheirradiator.
Thesimulatedacousticpressurelevelshowsthemulti-steppedirradiatorsuccessfullyintroducedmultiplehighpressureregionsandthusmorereactivezones.
Acousticsimulationsinthewatertanksuggestedthedesignedirradiatorhasagreatcapacityforlarge-scaleAOPs.
ThesecompatiblesimulationresultstoexperimentalmeasurementsindicateCOMSOLisareliabletoolinthedesignandcharacterizationofascaled-upultrasoundirradiator.
Keywords:Ultrasound,Irradiator,Piezoelectric,Cavitation,AdvancedOxidationProcess(AOP)1.
IntroductionUltrasoundhasbeenconsideredapromisinggreentechnologyfortheadvancedoxidationprocess(AOP)sinceitaddsnochemicalstothetreatedwater.
Ithasbeenshowntoeffectivelydestroyvariousorganicandinorganiccontaminantsinwater[1].
Ultrasoundinducescavitationbubblesintheaqueoussolution,andcollapseofthosebubblesgenerateslocalized"hotspots"wheretemperatureandpressureareashighas5000Kand1000atm,respectively[2].
Inthisextremecondition,thermolysisandOH(fromwatermoleculedissociationbyheat)oxidationaretwomechanismsforthecontaminantdegradation[1,2].
AlthoughultrasoundtechnologyshowsgreatpotentialintheAOP,thecommonly-usedultrasoundirradiator(e.
g.
,horntypeinFigure1a)generatesalocalizedcavitationandnon-uniformcavitationfieldintreatmentreactors.
Theinhomogeneoustreatmentmakesitverychallengingtoscale-uptheAOPwiththetypicalirradiator[3].
Therefore,anovelconfigurationdesignofultrasoundirradiatorisnecessarytoenhanceandmaximizethecavitation-inducedchemicaleffectsforlarge-scaleAOP.
Inthedesignprocess,computationalsimulationwascommonlyusedasreferences.
Whenexpectingefficiencyandeconomicsinthedesignofanexpensivelarge-scalesystemforAOP,thecomputationaltoolseemsmoreattractivesinceitcaneasilyinvestigatedifferentreactorgeometries,irradiatorconfigurations,andultrasoundfrequenciestooptimizethedesign.
Ofthosecomputationaltools,COMSOLMultiphysicshavebeenappliedtosimulateacousticfieldandsonochemistryinreactors[4-6],whichprovidedcompatibleresultstolaboratorymeasurements.
Thedesignandcharacterizationbecomemuchsimpleandstraightforwardwiththeaidofcomputationalsimulations.
Inthisstudy,COMSOLsimulationwascarriedouttoassistanultrasoundirradiatordesignandcharacterization.
Amulti-steppedconfiguration(Figure1b)wasintroducedtobringmoreenergy-emittingsurfaceandlargecavitationvolume.
This"proof-of-concept"studywithCOMSOLsimulationstartedwiththesimplestscenario,inwhichitwasassumedthatmaterialsassignedincludingwaterandstainlesssteelwerelinearmedia.
Inaddition,anotherassumptionwasmadethatacousticwavesweretime-harmonicsincesinusoidalalternatingcurrent(AC)wasthepowersource.
Figure1.
Configurationsofatypicalirradiator(a)andthedesignedirradiator(b).
2.
MethodologyThesimulationwasestablishedto2Dsymmetricdimensionduetothesymmetricconfigurationofthescaled-upultrasoundsystemwithapiezoelectrictransducer,anewlydesignedirradiator(20kHz,2638mmindiameter,and28.
0cminlength)andawatertank(610mm*610mm*450mmindimensionand167.
5Linvolume).
Theultrasonicsysteminvolvesdifferentphysicalphenomena[3,7,8].
Thepiezoelectricmaterialinthetransducerconvertselectricalenergytomechanicalvibrationwhichpassesthroughtheultrasoundirradiatorandisintensifiedattheendoftheirradiator.
Theirradiatoremitsthoseamplifiedmechanicalwaves(ultrasoundwaves)towater,andthosewavesthenpropagateinthewatertankradially.
Therefore,threedifferentmodelswereselectedtosimulatetheultrasonicsystem:piezoelectricmaterialmodelfortransducer,linearelasticmaterialmodelforirradiator,andpressureacousticsmodelforwater.
Eachmodelisgovernedbyitsownequations.
2.
1PiezoelectricMaterialModelThepiezoelectriceffectisaphenomenonthatanappliedstressonpiezoelectricmaterialsinduceselectricpolarizationoranappliedelectricfieldinducesdimensionchangeforpiezoelectricmaterials[3,8-10].
Inthetransducer,thesyntheticceramicsofPZT(leadzirconatetitanate)providesanelectricalfieldandamechanicalfieldatthesametime.
TheelectromechanicalbehaviorsoftheisotropicPZTcanbeexpressedbytwolinearizedconstitutiveequations[7,9-11]:{{whereTisstressvector(6*1matrix),Sisstrainvector(6*1matrix),Eiselectricfieldintensityvector(3*1matrix),Diselectricfluxdensityvector(3*1matrix),cEiselasticcoefficients(6*6matrix)atconstantelectricfieldstrength,eTisdielectricpermittivitymatrix(6*3),eisdielectricpermittivity(3*6matrix),εSisdielectricmatrix(3*3)atconstantmechanicalstrain,sEiselasticcompliance(6*6matrix)inaconstantelectricfield,dTispiezoelectricstrainconstantmatrix(6*3),dispiezoelectricstrainconstant(3*6matrix),εTisdielectricmatrix(3*3)atconstantmechanicalstress.
2.
2LinearElasticMaterialModelTheparticledisplacementsgeneratedinthepiezoelectrictransduceraretransmittedtotheirradiatorsincetheyareconnectedtoeachother[7,8].
BothPZTandstainlesssteelareisotropicandelasticmaterials.
Therefore,theirlinearelasticbehaviorisgovernedbytheNewton'sSecondLaw[11,12]:whereuisparticledisplacement,σisstress,FVisforcepervolume,andeiφindicatestheAC.
2.
3PressureAcousticsModelThepressureacousticsmodelhasbeenusedtosimulatetheultrasoundpropagationinthewater.
Theacousticwaveequationisgivenasfollows[7,8,10-12]:Table1:InitialinputforthreedomainsLiquiddomainMaterialWaterρ1000kg/m3cS1418m/sIrradiatordomainMaterial1000kg/m3ρ7850kg/m3E(Young'smodulus)205E09Paν(Poisson'sratio)0.
28TransducerdomainMaterialPZT-5Hρ7500kg/m3cE(6*6matrix)[]eT(6*3matrix)[]εS(3*3matrix)[]sE(6*6matrix)[]dT(6*3matrix)[]εT(3*3matrix)[](())wherep(Pa)isacousticpressure,ρ(kg/m3)isdensityofwater,andc(m/s)isspeedofultrasoundpropagationinthewater.
Thedipolesourceq(N/m3)andthemonopolesourceQ(1/s2)arebothoptional.
Thecombinationρc2iscalledtheadiabaticbulkmodulus(Pa).
Sinceultrasoundislongitudinalwaves[13],thereisnopolarization(q=0andQ=0)[14].
Waterisassumedasanidealliquid(ρ=constantandη=0).
Therefore,thewaveequationfortheacousticpressurecanbesimplifiedto[7]:Thisequationdescribestheacousticpressureatanygivenpoint(x,y,z)andtimet.
2.
4BoundaryConditionandInitialInputThesettingofboundaryconditionsreferstoCOMSOLModelingGuideandprevioussimulationstudies[7,8,12,15-17].
Astructure-acousticboundarywassettotheinterfacebetweenirradiatorandwater[8,12].
Sinceultrasoundwavesarelongitudinalwaves,thehornsidewassetassoundhardboundaryatwhichthenormalcomponentoftheaccelerationiszero(thereisnoparticlemovementsinthedirectionperpendiculartohornaxis)[7]:(())Displacementsattheinterfacebetweenwaterandwallofthetankwasalsoconsideredaszero(u=0orP=0)assumingthetankmaterialwithalargeacousticimpedancesufficientlyabsorbedthosecomingacousticwaves.
Theparticledisplacementattheinterfaceoftransducerandirradiatorwassettobeequal[15-17].
Boundaryconditionsforsurfacescontactingairweresettofree(P=0)[12].
TheInitialvalueofelectricpotentialwassetto110V,anddefaulttemperaturewas293.
15K.
Theliquid,transducer,andirradiatordomainswereassignedtolinearwatermedia,piezoelectricmaterial(PZT-5H),andstainlesssteelmaterial(AISI4340),respectively.
TheinputinformationofthosethreematerialsissummarizedinTable1.
3.
ResultsandDiscussionFirst,inordertoevaluateandcomparetheperformanceofourirradiator,theacousticpressurelevelwascalculatedinCOMSOLforbothtypical(Figure2)anddesignedirradiators(Figure3).
Thetypicalirradiatoronlydeliversonehighacousticpressureareabelowitstip,whereasourmulti-steppeddesignbringsmultiplehighacousticpressureregionsaroundthe"edges".
Figure2.
Scatteredsoundpressurelevelsurroundingthetypicalirradiator(UnitforcolorlabelisdB).
Figure3.
Scatteredsoundpressurelevelsurroundingthedesignedirradiator(UnitforcolorlabelisdB).
Figure4.
Deformationoftransducerandirradiator(Unitforcolorlabelisμm).
Thesimulationresultsareconsistentwithlaboratoryhydrophonemeasurementsandsonochemiluminescenceimaging[18].
Sinceahighacousticpressureistheprerequisiteforcavitationresponsibleforcontaminantoxidation,thesimulationresultsinFigure3demonstratethatthedesignedirradiatorintroducedmoreenergy-emittingsurfacesandthereforemultiplereactivezones.
Fortheothertwodomainsbesideswater,theparticledisplacement(u)forthepiezoelectrictransducerandstainlesssteelirradiatoris1.
24μmatmaximumundertheappliedelectricalandmechanicalfield,showninFigure4.
Next,theacousticpressuredistributioninthewatertankwassimulatedtoevaluatethelarge-scaleapplicationwithdesignedirradiator,asshowninFigure5(2D)andFigure6(3D).
Inthesimulatedacousticfield,theredoryellowcoloralongirradiatorneckandbelowitstipalsoindicatesahighacousticpressureinthoseregions.
Atfurtherregions,ultrasoundwavespropagateinthewaterformingrippleshapes.
Acousticattenuationisalsoobservedbycolorchangingfromredtoyellow,thentolightyellow.
Themappingofacousticpressureinthewatertankindicatesthedesignedultrasoundirradiatorwithalargeradiationradius(>20cm)showsagreatcapacityforlarge-scaleAOP.
4.
ConclusionThecomputedresultshaveshowedthattheultrasoundirradiatordesignwithamulti-steppedFigure5.
Simulationofacousticpressuredistributioninwatertankin2D(UnitforcolorlabelisPa).
Figure6.
Simulationofacousticpressuredistributioninwatertankin3D(UnitforcolorlabelisPa).
configurationimprovedcavitationeffectsascomparedtotypicalirradiatorsgeneratinglocalizedcavitation.
TheCOMSOLprovidingcompatibleresultstoexperimentaldataseemstobeareliableandconvenienttoolforsuchscale-updesignofultrasoundirradiatorforAOP.
Thissimulationworkappliedtheidealconditionforallphysicalmodels.
Forexample,thesimulationresultsmayoverestimatetheparticledisplacementsforbothpiezoelectricmaterialandstainlesssteelirradiatorsinceitisassumedthereisnoenergylossforpiezoelectriceffectsandtransmittingofmechanicalenergyfromtransducertoirradiator.
Theacousticpressuredistributioninthetankissymmetricandlinearlydecreasingfromcentertoedgesduetothelinearityofwatermedia.
Actually,thehydrophonemeasurementsinthelaboratoryillustrateasymmetricanddiscretedistributionofacousticpressureduetotheacousticcavitation,wavecollision,andwatermovementbyultrasoundirradiation.
Therefore,waterviscosity,heatproduction,cavitationbubble,andmodelmodification[8,10,19]willbeaddedonebyonetocurrentsimulationtoobtainmorereliabledatainthefuturestudy.
Eventhoughthissimplestsimulationisnotanaccuratereflectionoftherealsystem,itisaworthystartingplatformandvaluablereferenceforfuturesimulationdesignwhichcanrepresenttherealsystemsetup.
5.
References1.
Weavers,L.
K.
,F.
H.
Ling,andM.
R.
Hoffmann,Aromaticcompounddegradationinwaterusingacombinationofsonolysisandozonolysis,EnvironmentalScience&Technology,32(18),2727-2733(1998).
2.
Suslick,K.
S.
,Thechemicaleffectsofultrasound,ScientificAmerican,0,80-86(1989).
3.
Mason,J.
M.
andA.
Tiehm,Advancesinsonochemistry,Vol.
6,Connecticut:JaiPress(2001).
4.
Csoka,L.
,S.
N.
Katekhaye,andP.
R.
Gogate,Comparisonofcavitationalactivityindifferentconfigurationsofsonochemicalreactorsusingmodelreactionsupportedwiththeoreticalsimulations,ChemicalEngineeringJournal,178,384-390(2011).
5.
Klima,J.
,A.
Frias-Ferrer,J.
Gonzalez-Garcia,J.
Ludvik,V.
Saez,andJ.
Iniesta,Optimisationof20kHzsonoreactorgeometryonthebasisofnumericalsimulationoflocalultrasonicintensityandqualitativecomparisonwithexperimentalresults,UltrasonicsSonochemistry,14(1),19-28(2007).
6.
Trujillo,F.
J.
andK.
Knoerzer,Acomputationalmodelingapproachofthejet-likeacousticstreamingandheatgenerationinducedbylowfrequencyhighpowerultrasonichornreactors,UltrasonicsSonochemistry,18(6),1263-1273(2011).
7.
Xie,Y.
,Modelanalysisandexperimentofsonochemicalcell,MasterThesis,NationalChengKungUniversity(2008).
8.
Yao,M.
,Analysisandexperimentofresonantsonochemicalcell,MasterThesis,NationalChengKungUniversity(2009).
9.
Ikeda,T.
,Fundamentalsofpiezoelectricity,Oxford,UK:OxfordUniversityPress(1996).
10.
Nygren,M.
W.
,Finiteelementmodelingofpiezoelectricultrasonictransducers,inDepartmentofElectronicsandTelecommunications,MasterThesis,NorwegianUniversityofScienceandTechnology(2011).
11.
COMSOL,COMSOLMultiphysicsuser'sguide,version4.
2(2012).
12.
COMSOL,COMSOLMultiphycismodelingguide,version4.
2(2012).
13.
Kinsler,L.
E.
,A.
R.
Frey,A.
B.
Coppens,andJ.
V.
Sanders,Fundamentalsofacoustics,fourthedition,NewYork,NY:JohnWiley&Sons(2000).
14.
Mason,T.
J.
andJ.
P.
Lorimer,Appliedsonochemistry:Theuseofpowerultrasoundinchemistryandprocessing,VerlagGmbH,Weinheim:Wiley-VCH(2002).
15.
Fu,Z.
Q.
,X.
J.
Xian,S.
Y.
Lin,C.
H.
Wang,W.
X.
Hu,andG.
Z.
Li,Investigationsofthebarbellultrasonictransduceroperatedinthefull-wavevibrationalmode,Ultrasonics,52(5),578-586(2012).
16.
Lin,Z.
,Theoryanddesignofultrasonichorn,Beijing:SciencePress(1987).
17.
Peshkovsky,S.
L.
andA.
S.
Peshkovsky,Matchingatransducertowateratcavitation:Acoustichorndesignprinciples,UltrasonicsSonochemistry,14,313-322(2007).
18.
Wei,Z.
,R.
Xiao,M.
Cai,andL.
K.
Weavers,Designingandcharacterizingamulti-steppedultrasonichornforenhancedacousticcavitation,UltrasonicsSonochemistry(tobesubmitted).
19.
Vogler,E.
T.
andC.
V.
Chrysikopoulos,Experimentalinvestigationofacousticallyenhancedsolutetransportinporousmedia,GeophysicalResearchLetters,29(15),1-4(2002).

sharktech:老牌高防服务器商,跳楼价,1G独享$70、10G共享$240、10G独享$800

不知道大家是否注意到sharktech的所有服务器的带宽价格全部跳楼跳水,降幅简直不忍直视了,还没有见过这么便宜的独立服务器。根据不同的机房,价格也是不一样的。大带宽、不限流量比较适合建站、数据备份、做下载、做流媒体、做CDN等多种业务。 官方网站:https://www.sharktech.net 付款方式:比特币、信用卡、PayPal、支付宝、西联汇款 以最贵的洛杉矶机器为例,配置表如...

819云互联(800元/月),香港BGP E5 2650 16G,日本 E5 2650 16G

819云互联 在本月发布了一个购买香港,日本独立服务器的活动,相对之前的首月活动性价比更高,最多只能享受1个月的活动 续费价格恢复原价 是有些颇高 这次819云互联与机房是合作伙伴 本次拿到机房 活动7天内购买独立服务器后期的长期续费价格 加大力度 确实来说这次的就可以买年付或者更长时间了…本次是5个机房可供选择,独立服务器最低默认是50M带宽,不限制流量,。官网:https://ww...

DediPath($1.40),OpenVZ架构 1GB内存

DediPath 商家成立时间也不过三五年,商家提供的云服务器产品有包括KVM和OPENVZ架构的VPS主机。翻看前面的文章有几次提到这个商家其中机房还是比较多的。其实对于OPENVZ架构的VPS主机以前我们是遇到比较多,只不过这几年很多商家都陆续的全部用KVM和XEN架构替代。这次DediPath商家有基于OPENVZ架构提供低价的VPS主机。这次四折的促销活动不包括512MB内存方案。第一、D...

scaleup为你推荐
在线教育平台在线教育平台有哪些的最新相关信息美国互联网瘫痪2000年美国的互联网危机事件的原因?留学生认证留学生回国学历认证 需要带什么材料杰景新特我准备在网上买杰普特711RBES长笛,10700元,这价格合理吗?还有,这是纯银的吗,是国内组装的吗?psbc.com95580是什么诈骗信息不点网址就安全吧!同一ip网站同一个IP不同的30个网站,是不是在一个服务器上呢?seo优化工具seo优化软件有哪些?www.765.com下载小说地址baqizi.cc和空姐一起的日子电视剧在线观看 和空姐一起的日子全集在线观看www.toutoulu.com安装好派克滤芯后要检查其是否漏气
域名买卖 域名查询系统 广州主机租用 域名服务器上存放着internet主机的 hostigation hawkhost优惠码 主机屋免费空间 免费个人博客 新站长网 网站被封 云鼎网络 最好的空间 元旦促销 河南移动m值兑换 香港亚马逊 免费邮件服务器 空间租赁 web服务器是什么 新加坡空间 lamp是什么意思 更多