1.0scaleup
scaleup 时间:2021-03-28 阅读:(
)
ArticleSupercriticalCO2ExtractionofExtractedOilfromPistacialentiscusL.
:MathematicalModeling,EconomicEvaluationandScale-UpAbdelkarimAydi1,*,AndréWüstZibetti2,AbdulaalZ.
Al-Khazaal3,AboulbabaELADEB1,3,ManefADBERRABA1andDanielleBARTH41LaboratoryMaterials,MoleculesandApplications,PreparatoryInstituteforScienticandTechnicalStudies,2070Marsa,Tunisia;eladebboulbaba@gmail.
com(A.
E.
);manef.
abderrabba@ipest.
RNU.
tn(M.
A.
)2LaboratoriodeControledeProcessos,DepartmentsofChemicalEngineeringandFoodEngineering,UniversidadeFederaldeSantaCatarina(UFSC),P.
O.
Box476,Florianópolis88010-970,Brazil;azibetti@gmail.
com3DepartmentofChemicalandMaterialsEngineering,FacultyofEngineering,NorthernBorderUniversity,ArarP.
O.
Box1321,SaudiArabia;abdulaal.
alkhazaal@gmail.
com4LaboratoireRéactionsetGéniedesProcédés,UniversitédeLorraine,CNRS,LRGPF-5400Nancy,France;danielle.
barth@univ-lorraine.
fr*Correspondence:aydiabdelkarim@gmail.
com;Tel.
:+49-152-377-50478Received:3December2019;Accepted:20December2019;Published:3January2020Abstract:Inthisstudy,theextractedoilofPistacialentiscusL.
theTunisregionwasextractedusingsupercriticalcarbondioxide(SC-CO2)extractioncontainingdierentmajorcomponentsintheoilsuchasα-pinene(32%)andterpinene-4-ol(13%).
Theinvestigationoftheeectofdierentvariablesontheextractionyieldwith5%levelofcondenceintervalshowedthattheCO2pressurewasthemainsignicantvariabletoinuencetheoilyield.
Inordertobetterunderstandthephenomena,threeparameterswereconsideredtoadjustallparametersofbrokenandintactcell(BIC)model:grindingeciency(G),theinternalmasstransferparameter(kSa0),andtheexternalmasstransferparameter(kfa0),whichwereestimatedbyexperimentalextractioncurvestocalculatethediusioncoecient.
Fromaneconomicpointofview,wefoundoutthatthehighcostofproductionoftheextractedoilwasduetothelowmassofextractedoilobtainedfromthistypeofplant.
Keywords:supercriticalcarbondioxide(SC-CO2)extraction;PistacialentiscusL.
;responsesurfacemethodology;diusioncoecient;masstransferparameter;economicstudy1.
IntroductionPlantspecieswithmedicinalpropertiesarebecomingcruciallyessentialinresearchduetotheirutilitiesinmanyareassuchastraditionalmedicine,food,cosmeticsandpharmaceuticals[1].
InTunisia,aspeciesofplantcalledPistacialentiscusL.
,commonlyknownas"Dharw"intheMaghreband"Elustaka"intheMiddleEast,hasmedicinalpropertiesinitsoilextract.
Theextractedoilhasnumerousmedicianalproperties,forinstanceanti-atherogenic[2],anti-inammatory[3–5],anti-oxidant[6–10],antimicrobial[9,11–13],hypotensive[14,15],anticancer[5,16],anti-arthritis[17],woundtreatment,andanti-asthmaticandanthelminticactivities[18–20].
Theessentialoilcanbeextractedfromspecicplantsbyseveralextractiontechniques:hydro-distillation[21],Soxhletextraction[22]andsupercriticalcarbondioxide(SC-CO2)extraction[23–25].
Themajorobjectiveoftheextractionprocessistoprovideamoreconcentratedformofthedesiredmaterial.
Althoughthecostnevercompromisesthequality,itcanbeadecisivefactorinchoosinganadequateprocess.
However,theextractioneectivenessandthesafetyprocessmustbepriorities.
Molecules2020,25,199;doi:10.
3390/molecules25010199www.
mdpi.
com/journal/moleculesMolecules2020,25,1992of19Infact,asthelimitsofsolventresiduesareincreasinglysubjectedtoreview,thesupercriticalsolventusedtoextracttheoilinsupercriticaluidextraction(SFE)canreplacetoxicsolvents.
Toobtainthedesiredproductwhichmeetstheneedsofconsumers,thiscanbeakeyelementindeningtheextractquality.
ModelingofSC-CO2extractionfromnaturalmatterisaveryimportanttoolanditrepresentsachallengeintheresearcheld.
Manymodelshavebeendevelopedandarecurrentlyusedinsupercriticaluidextraction[26–30].
ThemostwidelyusedmodelwasdevelopedbySovová[28,29].
Thismodelisknownasthebrokenandintactcell(BIC)model.
Itassumesdiusiveandconvectivetransportphenomenaduringtheextractionthatoccursinthreeperiods.
Also,hedevelopedananalyticalsolutiontoestimatetheextractionparametersbycomparingtheresultsoftheextractioncurvescalculatedbythemodelwiththeexperimentaldata.
Stástovaetal.
[30]simpliedthemodeldevelopedbySovová[29]todescribethebuckthornextractioncurvestoevaluategrindingeciency,masstransfercoecients,andowasymmetry.
Tothebestofourknowledge,thebulkofthepriorresearchinvolvingtheextractionofessentialoilsofPistacialentiscusarefocusedonhydro-distillationextraction.
FewstudieshavereportedthesupercriticalextractionprocessfortheplantofPistacialentiscus(PL).
Congiuetal.
[31]isolatedtheessentialoilfromtheleavesandtheberriesofPistacialentiscuscollectedintheregionofSardinia(CostaReyandCapoterra)usingasupercriticalCO2extractiontechniquecoupledwiththefractionalseparationtechnique(SFE).
Thus,theauthorsseparatedtheessentialoilfromcuticularwaxes.
Theobtainedyieldsoftheextractedoilfromtheleavesandtheberrieswere0.
45%and0.
20%,respectively,withthepresenceofmajorcompoundssuchasβ-caryophyllene,germacrene,β-myrcene,andα-pinene.
Itiswell-knownthatthequantityoftheextractyieldfromsupercriticalCO2extractionisaectedbyseveraloperatingparameterssuchastheCO2pressure,CO2massowrate,timeofextraction,andaverageparticlesize.
Inordertooptimizetheextractyieldoftheoilproducedfromtheleaves,anecientwaymightbetosystematicallycreatemodelsaroundthekeyingredientlevelsoftheproductviasometypeofresponsesurfaceexperimentaldesign[32].
Responsesurfacemethodology(RSM)isacollectionofmathematicalandstatisticaltechniquesthatmakeafulldescriptionoftheeectofindependentvariablesneartheoptimumconditions[21,33,34].
SeveralclassesoftreatmentstructurescanbeusedasRSMexperiments[35].
Themainobjectiveofourstudyistousetheresponsesurfacemethodology(RSM)tostudytheeectofthreeoperatingconditions(pressure,averageparticlesize,andCO2owrate)andtheirinteractionontheextractyield.
WealsoaimtostudytheinuenceofoperatingparametersonmasstransferbyevaluatingaprocessapplyingtheBICmodelproposedbySovová[29]in1994whichwassimpliedlaterbyStástovaetal.
[30]ontheessentialoilextractioncurvesthatareacquiredfromPistacialentiscusleavesgrowinginthenorthernpartsofTunisia.
Intheend,weobtainedaneconomicevaluationinthescale-upprocessfortheCO2extractoftheseplantleaves.
2.
MaterialsandMethods2.
1.
MaterialsThePistacialentiscus(PL)plantleaveswereobtainedfromalocalmarketinTunis(Tunisia).
Theleaveswereair-driedunderacontrolledtemperatureof37Cfor48h,thenstoredinvacuum-sealedplasticbagsunderrefrigerationpriortoextraction.
Immediatelypriortosupercriticaluidextraction,onlytheleavesofthesampleswereused,andtheywereroundedinablendertogetparticlepowderwithdiameters220mand650m.
Thechemicalsusedwereabsoluteethanol(CarloErba,ValdeReuil,France),ultrapurewaterandcarbondioxide(MesserGroup,Nancy,France,99.
95%).
2.
2.
TheProcedureofSupercriticalFluidExtractionThemainpurposeofusingsupercriticaluidextraction(SFE)wastoobtaintheextractedoils.
TheSFEapparatusisshowninFigure1.
Molecules2020,25,1993of19Figure1.
Fluidextractionandfractionationunitschematicdrawing.
E:Extractor;S1,S2,S3:Separators[34].
Theextractwascollectedasafunctionoftimeduringtheprocessthroughvalveslocatedatthebaseoftheseparators.
Thesampleswereweighedafter30minofcollectiontoavoidmeasuringCO2remaininginthebottle.
Thetemperatureofextractionwasmaintainedconstantinalltheexperiments(40C)topreventtheheatdegradationofthermolabilecomponentsintheextractedoil.
Table1showstheexperimentalconditionsoftheSFEunitwherePisCO2pressure,QCO2isCO2owrate,dPistheaverageparticlesizeoftheleave,ρCO2isCO2density,andCO2isCO2velocity.
ObservingTable1,wenotedthattheconditionsofextractionusedduringtheseexperimentsshowthattheCO2owwasmanuallycontrolled,andtheestimatedvarianceoftheexperimentsisbetween2.
5%to5%oftheaverageow.
Table1.
Conditionsofsupercriticaluidextraction.
ExperimentsP[bar]dP[m]QCO2[kgh1]*ρCO2[kgm3]CO2·105[kgms1]12206500.
604857.
208.
1822202200.
602857.
208.
183806501.
202277.
902.
234806501.
209277.
902.
235802200.
602277.
902.
236806500.
603277.
902.
2371406501.
204763.
276.
5181802200.
913819.
517.
4591802200.
904819.
517.
45101806500.
908819.
517.
45*Deviation±0.
03kgh1ofCO2.
Referringtoapreviouspublication[29]andinordertoensurethesolubilityofmajorcompounds[36–39],thecollectionofextractedoilsandwaxeswasconductedusingseparators.
Therstseparatorwasmaintainedatalowtemperature(5C)withthesameextractionpressureastheexperimenttoprecipitatewaxeswhilethesecondseparatorwasmaintainedat30Cand40barforoilextractcollection.
ThebulkdensityofmilledPistacialeaveswasabout291kgm3,andthevoidfractionofthebedwasequalto0.
53.
Glassbeadswereplacedonthebottomoftheextractor,thepowderofPistacialeaves(23±0.
05g)wasplacedabovethemandanotherlayerofglassbeadwasputonthetop.
Inaddition,twolters(frits<15m)wereusedinboththeinletandtheoutletoftheextractingvessel.
2.
3.
AnalysisGasChromatography-FlameIonizationDetector/MassSpectrometry(GC-FID/MS)GC-FIDanalysiswascarriedoutwithaShimadzuGC2010Plus(Nancy,France),equippedwithanHP-5capillarycolumn(Shimadzu,Nancy,France,withdimension:30m*0.
25mm,lmthicknessMolecules2020,25,1994of190.
25m).
Theinjectorandthedetectorweresetat250and300C.
Thetemperaturecolumnwasprogrammedat50Cfor1minthengraduallyincreasedto270Cat3C/min.
Next,itwasheldfor5minthenincreasedto300Cat20C/minandsubsequentlyheldfor5min.
Thesplitratiowas5:1whereasthesplitowwasequalto10mL/min.
Nitrogenwasusedasacarriergaswithaconstantpressureof100kPa.
TheGCwasalsoequippedwithanAuto-Injector(Shimadzu,Nancy,France,AOC-20i)andtheinjectedvolumewasequalto1L.
ForGC-FID-MSanalysis,aShimadzuGCMS-GC2010-QP2010PlusequippedwithaDB5-MScapillarycolumn(Shimadzu,Nancy,France,withdimension:30m*0.
25mm,lmthickness0.
25m)wasexploited.
Theinjectorandthedetectorweresetat250C.
Theoventemperaturewasprogrammedat50Cfor1min,graduallyincreasedto250Cat5C/min.
Itwasheldfor10minthenincreasedlaterto270Cat5C/minthenheldfor5min.
Afterthat,itwasincreasedto280Cat5C/minandheldfor10moreminutes.
Althoughthesplitratiowas10:1,thesplitowwasequalto10mL/min.
Inthisprocess,heliumwasusedasacarriergaswithaconstantspeedof1.
69mL/min.
TheGCwasalsoequippedwithanAuto-Injector(Shimadzu,Nancy,France,AOC-5000)andtheinjectedvolumewasequalto1L.
Massunitsweremonitoredfrom35to400m/zat70eV.
ThemassspectraofthecomponentswereidentiedusingdatafromtheNISTLibrary(NIST08s).
2.
4.
ResponseSurfaceMethodology(RSM)ResponsesurfacemethodologywasusedtostudytheinfluenceofsupercriticaloperatingextractionparameterssuchasCO2pressure(P),CO2flowrate(QCO2),andaverageparticlesizeoftheleaf(dP),ontheextractoilyield.
Thesethreeresponsevariableswerecodedasx1,x2,andx3,respectively.
TherangeandlevelsofindependentfactorswerechosenbasedupontheresultsofpreliminarytestsandaregatheredinTable2.
Theindividualandinteractiveeffectsoftheseparametersonthedependentvariablewerestudied.
Equation(1)representsthelinearmodelwithinteractionsforthethreeoperatingconditions,YD=a0+a1x1+a2x2+a3x3+a12x1x2+a13x1x3+a23x2x3(1)whereYDrepresentsadependentvariable(theyieldofextractoil),a0isaconstant,a1,a2,anda3areindividuallinearcoecient,a12,a13,anda23aretheinteractivelinearcoecient,andx1,x2,andx3arethecodedvaluesofindependentfactors(pressure,CO2owrate,andaverageparticlesizerespectively).
Table2.
Conditionsofsupercriticaluidextraction.
VariableSymbolFactorLevel11Pressure(bar)x180220CO2owrate(kg/h)x20.
61.
2Averageparticlesize(m)x3220650Nemrod-wsoftwarepackagewasusedfortheregressionanalysisoftheexperimentaldataobtained[33].
FitqualityofthemathematicalmodelequationwasexpressedbythedeterminationcoecientR2,anditsstatisticalsignicancewascheckedbyanF-test.
Thesignicanceoftheregressioncoecientwastestedbyat-test.
Signicancelevelwasgivenas***p<0.
001,**p<0.
01,*p<0.
05.
Dierenceswithp-valuesuperiorto0.
05werenotconsideredsignicant.
Forourexperimentaldesignvalidation,optimumconditionswerexedbasedonthedataobtainedfromtheexperimentaldesign.
2.
5.
ModelingoftheSupercriticalExtractionProcessStastováetetal.
[30]madeseveralsimplicationsonSovová'smodel[29]byintroducingtwoparameters:thegrindingeciency(G)andthedimensionlesstime(ψ),Molecules2020,25,1995of19ψ=tQysNx0(2)wheretistheextractiontime,Qrepresentsthesolventmassowrate,ysistheoilsolubilityinthesolvent,Nistheinitialmassofthesolid,andx0istheinitialoilconcentrationinthesolid.
Themassofextractedoil(E)canbecalculatedbythefollowingEquation(3)–(7):EN.
x0=ψ[1exp(Z)]forψhk=1Yln1+expYψGZ1G(5)ThedimensionlessquantitiesZandYareproportionaltothemasstransfercoecientsaccordingtotherstandsecondextractionperiod,Z=Nkfa0ρfQ(1ε)ρs(6)Y=Nksa0x0Q(1ε)ys(7)wherekfandksaretheexternalandtheinternalmasstransfercoecientsrespectively,a0istheparticlespecicinterfacialarea,ρfstandsforthesolventdensity,ρsrepresentsthesoliddensity,andεisthebedvoidvolume.
ThemodelwasimplementedinMATLABTM.
Threeadjustableparameterswereconsidered:thegrindingeciency(G),theinternalmasstransferparameter(ksa0),andtheexternalmasstransferparameter(kfa0).
Equilibriumtype"A"modelwasconsideredaccordingtoSovová[28].
Sincetheexternalmasstransferparameter(kfa0)hadnosensitivity[40,41],Fiorietal.
[39]suggestedanapproachtodeterminethisparameterreferringtotheliteraturecorrelations—Sherwood(Sh),Reynolds(Re)andSchmidt(Sc)numbersofexperimentalruns.
CO2physicalpropertieswereevaluatedaccordingtoNISTdatabase[42]andtheoilextractpropertieswereassumedtoberelatedtothemajorcompoundfoundinGC-FID/MSanalysis,α-pinene[43,44].
Binarydiusioncoecient(DAB)betweentheCO2andthemajorcompoundwasobtainedbycorrelations.
Inthecaseofthesupercriticaluidextraction,Sherwoodnumber(Equation(8))isafunctionofonlyReynoldsandSchmidtwhennaturalconvectionisnotsignicant[45–47],Sh=c0Rec1Scc2(8)where,c0,c1andc2aretheadjustableparameters.
Accordingtothemost-proposedcorrelationsintheliterature[45–47],c0shouldbehigherthan1,c1isconstrainedbetween0.
5and0.
8,andc2=1/3.
Catchpoleetal.
[48]andLitoetal.
[49]usedtheapproachtoestimateonlytwoadjustableparameters(G,andksa0)directlyusingtheexperimentalkineticcurve,andtheycalculatedtheotherparameter(kfa0)usingtheSherwoodcorrelationbecausetheyconsideredthatitwasnotsignicant.
However,inourapproach,weestimatednotonlythesetwoparameters(Gandksa0),butalsotheexternalmasstransferparameter(kfa0)usingtheexperimentalcurveformoreaccuracy.
Molecules2020,25,1996of19Therelevanceofthemodelttingtotheexperimentaldatawasassessedconsideringtwostatisticalcriteria,namelythecoecientofdeterminationR2detrminedusingEquation(9)andtherootmeanssquareerror(RMSE)givenbyEquation(10),R2=1niy(i)expy(i)model2niy(i)expyexp2(9)RMSE=niy(i)expy(i)model2n(10)wherenrepresentsthenumberofavailableexperimentaldata,andyexpandymodelaretheexperimentalextractionyieldandtheextractionyieldpredictedbythemodel,respectively.
2.
6.
CostEstimationofProcessesandScale-UpThemanufacturingcostofthesupercriticalextractwasestimatedthroughmethodologyproposedelsewhere[50,51].
Concerningmaterialcost,electricityandlabor,theywerecollectedfromregionalinformationinTunis(Tunisia2016).
ThefixedinvestmentcostwasobtainedfromtheliteratureproposedbyTurtonetal.
[52]toevaluatethecostofmanufacturingaccordingtoEquation(11)includingdepreciation(10%ofFCI).
COM=0.
340FCI+2.
73COL+1.
23(CUT+CWT+CRM)(11)whereCOMisthecostofmanufacturingofsupercriticalextractofPistacia,FCIcorrespondstothexedcostofinvestment,COLrepresentsthecostofoperationallabor,CUTisthecostofutilities,CWTthecostofwastetreatment,andCRMisthecostofrawmaterial.
AccordingtoCarvalho[53],Equation(12)canbeusedinordertodeterminethesolventowraterequiredtomaintainthesamekineticbehaviorindierentSFEunits(scale-up)foragivenfeedmassandbadgeometry.
Researchers[54–57]declaredthattheextractiontimehasaninuenceonanextraction'sCOMandtheextractionrateincreasesbyincreasingthesolventowrate.
Theyalsoreportedthatoilyieldintheextractioncanbepositivelyinuencedbythesolventowrateincreasesasthefollowingequation:Q2CO2Q1CO2=F2F12HB1HB2dB1dB2(12)TheextractorgeometrydataandtheinstalledsupercriticalextractioncostwereobtainedfromNúezanddelValle[58–60].
Infact,aplantwithtwoextractionvessels,eachonehavinginternalvolumevaryingbetween0.
2,0.
4,0.
6and1.
0m3,wasevaluated.
Forinstance,foraplantwithvesselsof1.
0m3,theaspectratiowasH/d=8(with0.
542m*4.
334mofinnerdiameterandheightrespectively).
Thewallthicknesswithstands390bar.
Thexedcostofinvestment(FCI)ofeachSFEunitwasdeterminedinUSDbasedonthevaluesofRocha-Uribeetal.
[59].
AllthevaluesarereportedinTable3andarecalculatedusingtheChemicalEngineeringPlantCostIndex(CPECI)valuefor2014(CPECI2014=580)[61].
AccordingtoExperiment(2),therelationsoflaboratory-scaleH/dis3.
6,withtheowratefrom3.
36*105kg/s,thebedapparentdensityρ=296kg/m3,withtheoperationalconditionsof220barand40Cfortheextractionprocessweretakenintoconsideration.
Figure2showsthecycleofsolvent(pureCO2)duringthesupercriticalextractionprocessinanoperatingunit.
Thestepsareconsideredasbeingprimarilysolventcollectioninreservoir(64barand25C),followedbyacoolingprocess(10C),pumpingandpressurizationoftheextractionvessel(220barand35C),followedbytemperatureincrease(40C)untilobtainingthedesiredextractionconditionandfinally,afterthisprocess,reducingthepressure(60barand60C)forsoluteprecipitationforreuse.
Molecules2020,25,1997of19Table3.
Estimatedcostofeachsupercriticaluidextraction(SFE)unit,includingallequipment(ChemicalEngineeringPlantCostIndex,CPECI,2014=580).
ExtractorVessel(liters)H(m)d(m)H/dFixedCost(FCI)(US$)1002.
010.
2528.
0$853,9752002.
540.
3178.
0$1,378,5504003.
190.
3998.
0$2,225,4006003.
660.
4578.
0$2,944,90010004.
340.
5428.
0$4,191,250Figure2.
Entropy(s)diagramofCO2cycleduringsupercriticaluidextraction.
Circlednumber1representssaturatedliquidat25Cand64bar;2ispumpinlet(10Cand64bar);3ispumpexit(35Cand220bar);4isextractionvessels(40Cand220bar);5isseparationvessel(60Cand60bar).
Inthiscase,itisassumedthatduringtheprocessofdecompression,thesoluteisseparated,andthepuresolventisreturnedtothesystem.
Basedonthendingsofthisandthemutualvaluesfoundinotherresearchpapers,itisidentiedthatextractionyields(massextract/Pistaciaload)wereestimatedtoreach0.
3%,0.
5%,0.
7%,1.
0%and1.
5%.
Thecostof8000hperyearoperationalwork,withcontinuous24hperday,8hdailyshifts(2workers/shift)wasconsidered.
Thecostoflaborwasoperationallyconsideredtobe6.
60USD/h(1475.
60USD/monthtaxincluded).
TheutilitycostwasestimatedrelyingonenergyconsumptioninvolvedinthesolventcycleCO2,coldwater,andelectricity[51,58].
ThespecicenergiesofCO2forcooling,heating,andpumpinginthesolventcyclewereequalto261.
29kJ/kg,219.
2kJ/kgand55.
0196kJ/kg,respectively.
ThesecalculationswerebasedupontheworkofRock-Uribeetal.
[59].
Theelectricitycostwasequalto217.
10USD/MWh(pricechargedinTunis,Tunisia,taxincluded).
Concerningrawmaterialcosts,theconsideredvalueswere:1.
35USD/kgofdriedandmilledPistacialeaves,0.
15USD/kgofCO2and0.
97USD/kgofethanolforcleaningpurposes[60].
Itwasconsideredthat2%ofCO2masswaslostduringtheextractioncycleforalltheSFEprocessscaleevaluatedinthiswork.
ThecostofwastetreatmentwasnotconsideredbecauseCO2wasfullyrecycledandPistacialeafcanbeusedinsoilenrichmentorenergygeneration.
3.
ResultsandDiscussionTable4showstheexperimentalyieldresultsandoperatingconditionsofsupercriticalextractionforthetenexperiments.
TheexperimentaloilextractyieldwascalculatedusingthefollowingEquation(13):Molecules2020,25,1998of19Yield(wt%)=MassofleafextractMassofrawmaterial*100(13)Table4.
Theyieldofsupercriticalextraction,withthreedierentvariables(P,dpandQCO2).
Experimentx1P[bar]x2dP.
[m]x3QCO2[kgh1]Yield[%]12206500.
6040.
23422202200.
6020.
2853806501.
2020.
0934806501.
2090.
1195802200.
6020.
1236806500.
6030.
11771406501.
2040.
22181802200.
9130.
22091802200.
9040.
229101806500.
9080.
174Theyieldobservedforthetestedconditionsvariedbetween0.
093%and0.
285%.
WefoundthatExperiment(2)withthehighestpressure,lowestowrate,andthelowestaverageparticlediametergavethegreatesttestedincomeextractionconditions.
Thereplicationsperformedat80bars(0.
10%±0.
0184%),whichwereExperiment(3)and(4),demonstratedhighervariabilitythanthoseperformedat180bar(0.
022%±0.
0057%)(Experiments(8)and(9));therefore,theyhavecoecientsofvariationequalto17.
3%and2.
5%respectively.
Bycomparingallresults,weobservethatthepresentworkprovideddierentyieldsthatwereinsomecasesinferiortothosereportedbyotherauthors[31,60].
Infact,Bampoulietal.
[62]obtainedanoutcomefromtheleavesofPistacialentiscus(PL)var.
chia(fromChios,Greece)varyingbetween1.
6%and5%w/w.
Theconditionswererangingfrom100to250barand45Cwithaowrateof1.
5to3.
0kgCO2/h.
Also,Congiuetal.
[31]acquiredyieldsbetween0.
25%and0.
45%fortheleavesofPistacialentiscus(PL)comingfromtheregionsofCostaReyandCapoterra(Sardinia,Italy)providing90barand50Cwithaowrateof0.
9kgCO2/h.
Thevariationoftheobtainedyieldsmustbeduetotheareasofcultivationprocessing,treatmentofrawmaterialsandexperimentalconditionsintheextractionprocess.
AppendixAshowsthecharacterizationsoftheessentialoilobtainedfromtheleavesandcarriedoutusingGC-MS-FID.
WeobservedthatthemajorcompoundsfortheextractionofPistacialentiscusintheTunisregionareα-pinene(32%),followedbyterpinene-4-ol(13%),1-8-cineole(6%),α-terpineol(4%),β-caryophyllene(4%)andborneol(4%),assummarizedinTable5.
Furthermore,asexpected,thesecompositionsarenotsignicantlyinuencedbychangingtheoperatingconditionsduetotheconstantextractiontemperature.
Table5.
AreasofcompoundsfoundintheoilsobtainedbySFEfromleaves.
CompoundsRIExp.
1Exp.
2Exp.
3Exp.
4Exp.
5Exp.
6Exp.
7Exp.
8Exp.
9Exp.
10α-pinene93933.
3030.
0034.
2130.
1033.
2132.
1034.
3131.
1032.
4132.
1Terpinene-4-ol117813.
0413.
2413.
0813.
6813.
0212.
0112.
7712.
0613.
1212.
161-8-cineole10335.
106.
106.
026.
625.
856.
425.
666.
115.
067.
11α-terpineol11894.
614.
014.
584.
884.
124.
214.
064.
674.
684.
55β-caryophyllene14344.
024.
924.
224.
824.
884.
034.
124.
434.
014.
93Borneol11653.
923.
124.
624.
024.
224.
124.
454.
164.
854.
66Others36.
0138.
6131.
2735.
8834.
7037.
1134.
6337.
4735.
8734.
493.
1.
StudytheEectofOperatingConditionsontheYieldUsingRSMResponsesurfacemethodology(RSM)wasusedtostudytheindividualandtheinteractiveinuenceofoperatingextractionparametersontheextractyieldtondtheoptimaloperatingconditions.
Table6showstheexperimentaldesignyieldforthetenexperiments.
Molecules2020,25,1999of19Table6.
Designyield(YD)forsupercriticalextractionofPistacialentiscus.
Experimentx1x2x3YD(%)11.
00001.
00000.
99340.
2321.
00001.
00001.
00000.
2831.
00001.
00000.
97690.
0941.
00001.
00001.
00000.
1251.
00001.
00001.
00000.
1261.
00001.
00000.
99670.
1270.
14291.
00000.
98350.
2280.
42861.
00000.
02470.
2290.
42861.
00000.
00490.
23100.
42861.
00000.
00820.
17Weusedtheanalysisofvariance(ANOVA)toevaluatethestatisticalsignicanceofthelinearmodelrepresentedinEquation(1).
Themodelcandescribethevariationoftheresultsbecauseitissignicantat<5%.
We,also,veriedthemodeleciencyandtheadaptabilitytotheexperimentaldatabyestimatingthecoecientofactualandpredicteddetermination(R2andpredictedR2respectively)calculatedbytheanalysisofvariance.
Wefoundoutthattheactualdeterminationcoecientindicatesthatthettedmodelexplains91.
2%ofthevariabilityintheextractionyield.
ThepredictedR2was0.
998(agoodagreement)indicatingthatourexperimentaldesigncanbeusedformodelingtheresponsevariablesemployed,asshowninFigure3.
Figure3.
Experimentaldesignyield(YD)versusexperimentalyield(Y).
Table7gathersthestatisticalresultsoftheconstantparametersinEquation(1):thelinearinterceptconstant(a0),theindividuallineareectsofthethreeindependentvariables(a1,a2,anda3),andtheirinteractivelineareects(a12,a13,anda23).
Therefore,thelinearregressionequationusedtoevaluatetheexperimentalyieldbecomes(YD),YD=0.
183+0.
084x1(14)ThisequationindicatesthatthemainfactorthatsignicantlyinuencestheyieldwastheCO2pressurewhenthecondenceof5%wasconsidered.
Theequationidentiesthebestconditionsthroughvariationofchosenparameterstomaximizetheextractioneciency,whichispresentedinExperiment(2).
Forabetterunderstandingofthestatisticalresults,Figure4representsthe2Dresponsesurfaceoftheexperimentalyieldsbythefunctionofpressure,averageparticlesizeandtheowrateofCO2.
AscanbeobservedinFigure4,thehighestyieldwasobtainedaroundthemaximumpointofpressure(P=220bar)whentheowrateofCO2andaverageparticlesizewerearoundminimumpoints.
Molecules2020,25,19910of19Table7.
Coecientofalinearregressionequation(Equation(1)).
CoecientCoecientValueTestExperimentp-ValuealongwithCondence%a00.
18312.
43***a10.
0843.
71*a20.
0000.
0199.
1%a30.
0020.
1092.
2%a120.
0130.
8048.
5%a130.
0170.
7153.
3%a230.
0190.
8645.
3%*p<0.
05;***p<0.
001.
Figure4.
Surfaceplotsoftheexperimentaldesignyieldasafunctionof(a)CO2pressureandaverageparticlesize(b)CO2pressureandCO2owrate.
3.
2.
AnalysisandValidationofExperimentalDesignThestatisticalanalysisforthenalselectedmodelshowsthattheeectoftheCO2pressureistheonlyvariablethathasasignicanteectontheyield,comparedtotheothervariablesthathavenoeects.
Forthisreason,weanalyzedtheselectioneectoftheidenticationandvalidationpointsusedforourexperimentaldesign.
Theexistenceofacorrelationbetweentheparametersincreasesthesizeofthecondenceintervals[63],thereforeweneedtocontrolthevalueofthecorrelationcoecients2to2.
Inourinvestigation,wehaveusedtheD-optimalitycriterion[64]toseparatetheexperimentsusedforbothparametricidenticationandvalidationmodel.
ThismethodconsistsofchoosingasetofparametricidenticationpointstoobtainthehighestdeterminantoftheFischermatrixinformation[65].
Toinvestigatetheinuenceofselectiononthecondenceintervalsofeachparameter,westudiedthecorrelationsbetweentheparametersusingthefollowingmatrixcorrelationcoecientssummarizedinTable8.
Table8.
Matrixcorrelationcoecients.
Parametersa1a2a3a12a13a23a11.
00000.
30390.
32910.
26080.
36230.
2981a20.
30391.
00000.
39090.
04550.
23350.
2095a30.
32910.
39091.
00000.
37480.
37710.
4994a120.
26080.
04550.
37481.
00000.
25650.
2247a130.
36230.
23350.
37710.
25651.
00000.
2563a230.
29810.
20950.
49940.
22470.
25631.
0000Molecules2020,25,19911of19Figure5,whichrepresentsthefrequencyofthecorrelationcoecient,mimics87%ofthecorrelationbetweentheparameterspairsareintherangeof0.
2to0.
4.
ThisindicatestheuseoftheDetmaxFedrovalgorithm[66]thathasnoeectonthecorrelationbetweentheparameters.
Therefore,theusedsupportsofalinearmodelwithinteraction,andsubsequentlytheexperimentaldesign,areapplicableatleastinthisstudy.
Figure5.
Percentageofcorrelationcoecientsbetweenparamaters.
3.
3.
EectofOperatingConditionsontheMassTransferAllexperimentaldatawereusedtodeterminethemodelparameters(G,andksa0,andkfa0)(seeAppendixB).
Table9showsthatthetwoadjustedparameters(grindingefficiency(G)andinternalmasstransferparameter(ksa0),whichisestimatedbytheexperimentalkineticcurves,havenosignificantchangebetweenthetwoapproaches.
Asexpected[3,13,31],thevalueofgrindingefficiency(G)increasesbydecreasingtheaverageparticlesize.
Thisparameterisnotonlyrelatedtotheparticlesize,butalsototheshapeofitsdistribution(normal,bimodal).
Asaresult,itinfluencesthecurveshapeduetothesolventflowasymmetryeffect.
Table9.
Theadjustedparameters(Gandksa0)betweentwoapproaches.
Exp.
P[bar]dP[m]QCO2[kg.
h1]Gksa0.
105(s1)1stApp.
2ndApp.
1stApp.
2ndApp.
LitoCatchpoleAYDIA.
LitoCatchpoleAYDIA.
12206500.
6040.
360.
360.
377.
487.
487.
3522202200.
6020.
610.
610.
617.
017.
017.
013806501.
2020.
390.
390.
400.
1820.
1820.
1824806501.
2090.
360.
360.
370.
1070.
1070.
1075802200.
6020.
520.
520.
529.
289.
289.
306806500.
6030.
440.
440.
457.
587.
587.
5871406501.
2040.
350.
350.
377.
837.
847.
7181802200.
9130.
620.
620.
662.
752.
752.
3191802200.
9040.
540.
540.
592.
322.
321.
91101806500.
9080.
230.
230.
230.
1080.
1080.
108Intherstapproach,weappliedthecorrelationsproposedbyLito,Catchpole,andKingusingonlythebinarydiusioncoecient(CO2-α-pinene)toestimatetheexternalmasstransferparameter(kfa0).
Ontheotherhand,theadjustedparameterswerenotonlygrindingeciency(G)andtheinternalmasstransferparameter(ksa0)butalsotheexternalmasstransferparameter,whichwasestimatedbyexperimentalextractioncurvesinthesecondapproach.
Molecules2020,25,19912of19Table10showstheparameters(kfa0,andDAB)forbothapproaches.
Theadjustedparameter(kfa0)estimatedbytheexperimentalkineticcurvesinthesecondapproachisdierentthanthecorrelatedparameterproposedbyLitoandCatchpoleintherstapproach.
ThisparameteraectsthevaluesofthediusioncoecientasshowninTable10.
Table10.
Parameters(kfa0,andDAB)betweentwoapproaches.
Exp.
P[bar]dP[m]QCO2[kg.
h1]kfa0.
103(s1)DAB.
109(m2s1)1stApp.
2ndApp.
1stApp.
2ndApp.
LitoCatchpoleAYDIA.
LitoCatchpoleAYDIA.
12206500.
6041.
411.
460.
7368.
639.
062.
9722202200.
6026.
566.
771.
728.
639.
061.
063806501.
2020.
1140.
1188.
7038.
040.
20.
734806501.
2090.
1140.
1198.
9538.
040.
20.
765802200.
6020.
3550.
3693.
4238.
040.
21.
046806500.
6037.
637.
934.
0338.
040.
213.
371406501.
2042.
672.
771.
2610.
711.
33.
1581802200.
9139.
199.
510.
7739.
49.
96.
6191802200.
9049.
149.
460.
9299.
49.
98.
79101806500.
9081.
972.
042.
649.
49.
913.
4Inthesecondapproach,theparametervaluesoftheSherwoodnumberwereexperimentallyobtainedfromtheextractioncurvesandkfvalues.
Theparametercorrelationsuggestedinthesecondapproachwasdeterminedfromc0andc1settings,resultingintheequationasshowninTable11.
Sh=0.
0349Re0.
58Sc1/3(15)Theadjustedparametersarewithintherangereportedby[19]andtheirapplicabilityforReynoldsandSchmidtvaluesareintheranges2≤Re≤60and2≤Sc≤12.
Table11.
Numberandthecoecientofdeterminationr2betweentwoapproaches.
Exp.
P[bar]dP[m]QCO2[kg.
h1]Shr21stApp.
2ndApp.
1stApp.
2ndApp.
LitoCatchpoleAYDIA.
LitoCatchpoleAYDIA.
12206500.
6040.
240.
240.
9698.
47898.
47798.
47222202200.
6020.
130.
134.
1699.
35299.
35299.
3553806501.
2020.
450.
440.
0699.
71699.
71699.
7184806501.
2090.
450.
440.
0599.
63299.
63299.
6265802200.
6020.
160.
161.
2499.
29799.
29799.
3576806500.
6030.
300.
300.
1398.
30298.
30198.
32271406501.
2040.
370.
370.
4098.
54898.
54198.
66381802200.
9130.
170.
165.
8498.
26898.
26899.
13791802200.
9040.
170.
165.
1198.
42198.
42199.
019101806500.
9080.
310.
310.
2999.
38199.
38199.
381Thevaluesofthemasstransfercoecients(kfa0)rangedfrom1.
4*102to3.
7*101fortheestimationperformedwiththecorrelationsofLitoandCatchpole.
ConcerningtheadjustmentmadewiththethreeparametersG,kfa0andksa0(thevalueofkfa0is0.
020),itrangedfrom7.
3*103s1to8.
9*102s1.
Thesevaluesarelowerthanthoseobtainedbyadjustmentwiththecorrelations.
Theparametersksa0wereinallcasesbetween1.
9*105s1and1.
8*104s1.
3.
4.
CostEstimationofProcessesandScale-UpThegreatestimpactonthecostofmanufacturingextractedoilproductionofP.
lentiscusinTunisiaisrepresentedbytherawmaterialcost(RMC),followedbythexedcostofinvestmentandtheutilitycost,asindicatedinFigure6.
Molecules2020,25,19913of19Figure6.
EachcostcategoryinthemanufacturingcostofPistacialentiscussupercriticalextract.
Table12showsthemanufacturingcostsofthesupercriticalextractofPistacialentiscusintheUS.
Wenotethatforthesameyield,thelowestcostswerethoseobtainedatthehighestproductionvolume,aswasexpected.
Table12.
ManufacturingcostofasupercriticalextractofPistacialentiscusleaves,inabatchof60min(220barand40C).
Volume(m3)COM(US$/kg)ExpectedOilYield(%)0.
30.
50.
71.
01.
50.
1999.
63599.
78428.
41299.
89199.
930.
2942.
63565.
58403.
99282.
79188.
530.
4952.
04571.
22408.
02285.
61190.
410.
6945.
12567.
07405.
05283.
53189.
021.
0813.
95488.
37348.
83244.
18162.
79Concerningyieldvaluesobtainedonapilotscale(0.
30%),thecostofthemanufacturingprocessofthesupercriticalextractweasbetween999.
63USD/kgand813.
95USD/kg.
Thesevaluesareconsideredveryhighwhencomparedtothecostsofothervegetablerawmaterialssuchasrosemaryextractwhichisworth49.
71USD/kg[21],gingeroleoresinwhichcosts99.
80USD/kg[20],CurcumalongaL.
extractwhichisworth164.
4USD/kg[40]andhabaneropepperextractwithacostof540.
19USD/kg[33].
Ayieldincreaseintheextractionprocessreducesthecostofmanufacturing.
Thus,thehighcostofproductionisduetothelowyieldsgainedfromthiskindofplant.
PricesoftradedextractedoilsofPistacialentiscussoldin5mL,10mLor30mLvialsareabout5.
83USD/g(5830.
00USD/kg).
ThesevaluesareobtainedfromthelocalmarketinTunis,Tunisia.
4.
ConclusionsPistacialentiscusL.
plantfromtheTunisianregionisappeasedofmedicinalpropertiesinitsextractoilthatcanbeproducedusingsupercriticalcarbondioxide(SC-CO2)extraction.
Inthisstudy,weobservedthattheα-pinene(32%)wasthemajorcompoundoftheextractedoilofPistacialentiscusintheTunisregion.
Theexperiment(2)havingthehighestpressure,lowestowrate,andthelowestaverageparticlediametergavethegreatesttestedincomeextractionconditions.
WeinvestigatedtheinuenceofCO2pressure,averageparticlesize,andCO2owrateandtheirinteractionontheextractyieldusingtheresponsesurfacemethodology(RSM).
ItwasobservedthatthemainfactorthatsignicantlyinuencestheyieldwastheCO2pressureand,therefore,thebestconditionsthroughvariationofchosenparameterstomaximizetheextractioneciencywerepresentedinExperiment(2).
Westudiedtheinuenceofoperatingparametersonmasstransferbyevaluatingaprocessapplyingbrokenandintactcell(BIC)ontheessentialoilextractioncurvesthatareacquiredfromtheMolecules2020,25,19914of19leavesofPistacialentiscusL.
Thetwoadjustedparameters(grindingeciency(G)andinternalmasstransferparameter(ksa0)),whichwereestimatedbytheexperimentalkineticcurves,havenosignicantchangebetweenthetwoapproaches(LitoandCatchpoleapproach,andAYDIAapproach).
However,theexternalmasstransferparameter(kfa0)proposedbyAYDIAwasdierentfromthecorrelatedparameterintherstapproachthatsignicantlyinuencesthevaluesofthediusioncoecient.
Theeconomicevaluationinthescale-upprocesswasobtainedfortheSC-CO2extractionoftheseplantleaves.
Weindicatedthatthelowestcostswereobtainedatthehighestproductionvolumeforthesameyield.
Themanufacturingcostofoilproductionisreducedbyayieldincreaseintheextractionprocessbecauseofthelowyieldsobtainedfromthistypeofplant.
AuthorContributions:A.
A.
,A.
Z.
A.
-K.
andA.
W.
Z.
conceivedanddesignedtheexperiments;A.
A.
andA.
W.
Z.
simulatedtheexperimentaldatausingBICmodelandcalculatedthemanufacturingcost;A.
A.
andA.
E.
Analysedandcommentedthemodelingpart;A.
A.
andA.
W.
Z.
preparedandanalyzedtheGC-MSanalysis;M.
A.
andD.
B.
supervisedallthework;A.
A.
,A.
W.
Z.
andA.
Z.
A.
-K.
wrotethearticle.
Allauthorshavereadandagreedtothepublishedversionofthemanuscript.
Funding:Thisresearchreceivednoexternalfunding.
Acknowledgments:TheauthorsaregratefulforthenancialsupportreceivedfromIPESTandLRGP.
ConictsofInterest:Theauthorsdeclarenoconictofinterest.
AppendixATableA1.
PercentagesareasofcompoundsfoundintheoilsobtainedbySFEfromleavesineachexperiment.
CompoundsRIExp.
1Exp.
2Exp.
3Exp.
4Exp.
5Exp.
6Exp.
7Exp.
8Exp.
9Exp.
10Tricyclene9241.
050.
90.
480.
580.
481.
20.
750.
640.
460.
14α-pinene93933.
330.
034.
2130.
133.
2132.
134.
3131.
132.
4132.
1Z-3-hexenol8550.
120.
150.
320.
220.
230.
110.
86b0.
820.
640.
32E-2-hexenol8560.
090.
0100000.
0330.
080.
030.
01Hexanol8650.
250.
360.
310.
510.
410.
450.
630.
840.
650.
8E-2-hexenal8500.
190.
120.
280.
480.
580.
580.
650.
670.
910.
56α-thujene9280.
20.
210.
410.
210.
310.
240.
560.
580.
560.
88Camphor9541.
61.
81.
451.
051.
651.
151.
661.
532.
061.
43xxCamphene9540.
89*1.
21.
021.
421.
121.
221.
081.
020.
66Sabinene9750.
190.
220.
220.
320.
420.
220.
560.
130.
640.
23β-pinene9802.
042.
542.
172.
072.
372.
172.
812.
832.
252.
12Myrcene9910.
240.
260.
170.
270.
370.
170.
40.
240.
30.
14α-phellandrène10060.
240.
250.
30.
220.
320.
280.
240.
140.
180.
24-3-carene10110.
220.
1200000000p-cymene10261.
72.
73.
043.
542.
953.
842.
63.
012.
053.
11Limonene10301.
191.
892.
012.
412.
212.
512.
021.
552.
121.
951-8-cineole10335.
16.
16.
026.
625.
856.
425.
666.
115.
067.
11(E)-β-Ocimene10500.
520.
820.
820.
620.
920.
720.
780.
620.
440.
44γ-terpinene10530.
50.
660.
560.
360.
330.
560.
120.
120.
180.
44OxydedeCis-linalool10740.
941.
41.
791.
491.
091.
441.
721.
681.
021.
38OxydedeTranslinalool10880.
60.
80.
980.
580.
880.
580.
850.
660.
750.
76Terpinolene10920.
060.
160.
480.
680.
580.
740.
640.
920.
20.
82Linalool10982.
592.
892.
892.
292.
692.
192.
942.
062.
862.
26Borneol11653.
923.
124.
624.
024.
224.
124.
454.
164.
854.
66Terpinene-4-ol117813.
0413.
2413.
0813.
6813.
0212.
0112.
7712.
0613.
1212.
16α-terpineol11894.
614.
014.
584.
884.
124.
214.
064.
674.
684.
55Geraniol12550.
690.
890.
790.
990.
590.
590.
690.
40.
550.
65Acetatedebornyle12952.
822.
122.
022.
122.
012.
192.
782.
852.
082.
15Tridecane13000.
080.
080.
030.
050.
050.
060.
040.
060.
030.
05Linalyldeproprionate13251.
551.
551.
951.
851.
552.
011.
841.
271.
121.
2Acetated'αterpenyle13440.
730.
730.
630.
690.
770.
740.
880.
980.
180.
48α-cubebene13510.
040.
040.
260.
330.
460.
530.
770.
670.
470.
7Copaene13720.
770.
960.
860.
660.
850.
670.
660.
610.
440.
81B-elemene13910.
830.
780.
930.
91.
21.
11.
431.
311.
131.
41β-caryophyllene14344.
024.
924.
224.
824.
884.
034.
124.
434.
014.
93α-humulene14540.
640.
640.
290.
310.
250.
420.
430.
710.
120.
91Allo-aromandrene14740.
510.
110.
210.
310.
210.
610.
240.
510.
410.
15Deltamuurolene4760.
110.
410.
660.
650.
860.
780.
940.
310.
440.
39GermacreneD14800.
120.
310.
720.
770.
620.
840.
910.
550.
770.
65Nonadecanone19000.
040.
0800000.
020.
0400.
05*Notidentiedcompound.
Molecules2020,25,19915of19AppendixBTableA2.
OperatingconditionsestimatedTWOparametersfrombestttingandmodelingerrorsusedbyLito.
ExperimentP(bar)QCO2(kgh1)dP.
104(m)G(dimensionless)kfa0102(s1)ksa0105(s1)ys104(kgkg1)kf106(ms1)ks109(ms1)DAB109(m2s1)ShReScr2RMSE10212200.
6046.
50.
361.
417.
484.
13.
250.
1728.
630.
247.
3311.
0698.
4783.
7322200.
6022.
20.
616.
567.
015.
25.
125.
478.
630.
132.
4711.
0699.
3522.
413801.
2026.
50.
390.
1140.
1820.
90.
2630.
4200.
380.
4553.
532.
1199.
7161.
734801.
2096.
50.
360.
1140.
1070.
90.
2630.
2460.
380.
4553.
832.
1199.
6321.
965800.
6022.
20.
520.
3559.
282.
20.
2777.
240.
380.
169.
082.
1199.
2972.
626800.
6036.
50.
447.
637.
582.
60.
1760.
1750.
380.
3026.
842.
1198.
3023.
7771401.
2046.
50.
352.
677.
831.
56.
160.
1800.
1070.
3718.
377.
9898.
5483.
8581800.
9132.
20.
629.
192.
752.
47.
172.
159.
400.
174.
129.
6798.
2683.
3791800.
9042.
20.
549.
142.
322.
97.
131.
819.
400.
174.
089.
6798.
4213.
00101800.
9086.
50.
231.
970.
1081.
84.
532.
499.
400.
3112.
109.
6799.
3812.
73TableA3.
OperatingconditionsestimatedTWOparametersfrombestttingandmodelingerrorsusedbyCatchpole.
ExperimentP(bar)QCO2(kgh1)dP.
104(m)G(dimensionless)kfa0102(s1)ksa0105(s1)ys104(kgkg1)kf106(ms1)ks109(ms1)DAB109(m2s1)ShReScr2RMSE10212200.
6046.
50.
361.
467.
484.
13.
360.
1729.
060.
247.
3310.
5498.
4773.
7322200.
6022.
20.
616.
777.
015.
25.
295.
479.
060.
132.
4710.
5499.
3522.
413801.
2026.
50.
390.
1180.
1820.
90.
2730.
4200.
4020.
4453.
532.
0099.
7161.
734801.
2096.
50.
360.
1190.
1070.
90.
2740.
2470.
4020.
4453.
832.
0099.
6321.
965800.
6022.
20.
520.
3699.
282.
20.
2887.
240.
4020.
169.
082.
0099.
2972.
626800.
6036.
50.
447.
937.
582.
60.
1830.
1750.
4020.
3026.
842.
0098.
3013.
7771401.
2046.
50.
352.
777.
841.
56.
390.
1800.
1130.
3718.
377.
5598.
5413.
8581800.
9132.
20.
629.
512.
752.
47.
422.
159.
900.
164.
129.
1898.
2683.
3791800.
9042.
20.
549.
462.
322.
97.
381.
819.
900.
164.
089.
1898.
4213.
00101800.
9086.
50.
232.
040.
1081.
84.
692.
499.
900.
3112.
109.
1899.
3812.
73Molecules2020,25,19916of19TableA4.
OperatingconditionsestimatedTHREEparametersfrombestttingandmodelingerrorsusedbyAYDIA.
ExperimentP(bar)QCO2(kgh1)dP.
104(m)G(dimensionless)kfa0102(s1)ksa0105(s1)ys104(kgkg1)kf106(ms1)ks109(ms1)DAB109(m2s1)ShReScr2RMSE10212200.
6046.
50.
3773.
67.
354.
11.
700.
16999.
10.
117.
330.
9698.
4723.
7422200.
6022.
20.
611.
727.
015.
21.
345.
4722.
90.
092.
474.
1699.
3552.
403801.
2026.
50.
408.
700.
1820.
90.
2010.
41914400.
1453.
530.
0699.
7181.
734801.
2096.
50.
378.
950.
1070.
90.
2060.
24614700.
1353.
830.
0599.
6261.
985800.
6022.
20.
523.
429.
302.
22.
677.
2565.
000.
139.
081.
2499.
3572.
56800.
6036.
50.
454.
037.
582.
69.
290.
175597.
00.
1226.
840.
1398.
3223.
7571401.
2046.
50.
371.
267.
711.
52.
900.
178215.
00.
1418.
370.
4098.
6633.
6981800.
9132.
20.
6677.
32.
312.
46.
031.
8115.
600.
144.
125.
8499.
1372.
3891800.
9042.
20.
5992.
91.
912.
97.
251.
4917.
80.
144.
085.
1199.
0193.
26101800.
9086.
50.
232.
640.
1081.
86.
100.
25318.
00.
1012.
100.
2999.
3812.
73Molecules2020,25,19917of19References1.
Hatano,T.
;Kagawa,H.
;Yasuhara,T.
;Okuda,T.
Twonewavonoidsandotherconstituentsinlicoriceroot:Theirrelativeastringencyandradicalscavengingeects.
Chem.
Pharm.
Bull.
1988,6,2090–2097.
2.
Dedoussis,G.
V.
Z.
;Kaliora,A.
C.
;Psarras,S.
;Chiou,A.
;Mylona,A.
;Papadopoulos,N.
G.
;Andrikopoulos,N.
K.
AntiatherogeniceectofPistacialentiscusviaGSHrestorationanddownregulationofCD36mRNAexpression.
Atherosclerosis2004,174,293–303.
[CrossRef][PubMed]3.
Berboucha,M.
;Ayouni,K.
;Atmani,D.
;Atmani,D.
;Benboubetra,M.
KineticStudyontheInhibitionofXanthineOxidasebyExtractsfromTwoSelectedAlgerianPlantsTraditionallyUsedfortheTreatmentofInammatoryDiseases.
J.
Med.
Food.
2010,13,896–904.
[CrossRef][PubMed]4.
Mahmoudi,M.
;Ebrahimzadeh,M.
A.
;Nabavi,S.
F.
;Hafezi,S.
;Nabavi,S.
M.
;Eslami,S.
H.
Anti-InammatoryandAntioxidantActivitiesofEthanolic.
Eur.
Rev.
Med.
Pharmacol.
Sci.
2010,1,765–769.
5.
Remila,S.
;Atmani-Kilani,D.
;Delemasure,S.
;Connat,J.
L.
;Azib,L.
;Richard,T.
;Atmani,D.
Antioxidant,cytoprotective,anti-inammatoryandanticanceractivitiesofPistacialentiscus(Anacardiaceae)leafandfruitextracts.
Eur.
J.
Integr.
Med.
2015,7,274–286.
[CrossRef]6.
Munné-Bosch,S.
;Peuelas,J.
Photo-andantioxidativeprotectionduringsummerleafsenescenceinPistacialentiscusL.
grownundermediterraneaneldconditions.
Ann.
Bot.
2003,92,385–391.
[CrossRef]7.
Abdelwahed,A.
;Bouhlel,I.
;Skandrani,I.
;Valenti,K.
;Kadri,M.
;Guiraud,P.
;Steiman,R.
;Mariotte,A.
M.
;Ghedira,K.
;Laporte,F.
;etal.
StudyofantimutagenicandantioxidantactivitiesofGallicacidand1,2,3,4,6-pentagalloylglucosefromPistacialentiscus.
Confirmationbymicroarrayexpressionprofiling.
Chem.
Biol.
Interact.
2007,165,1–13.
[CrossRef]8.
Barra,A.
;Coroneo,V.
;Dessi,S.
;Cabras,P.
;Angioni,A.
CharacterizationoftheVolatileConstituentsintheEssentialOilofPistacialentiscusL.
fromDierentOriginsandItsAntifungalandAntioxidantActivity.
J.
Agric.
FoodChem.
2007,55,7093–7098.
[CrossRef]9.
Benhammou,N.
;Atik,F.
;Panovska,T.
K.
AntioxidantandantimicrobialactivitiesofthePistacialentiscusandPistaciaatlanticaextracts.
AfricanJ.
Pharm.
Pharmacol.
2008,2,22–28.
10.
Gardeli,C.
;Vassiliki,P.
;Athanasios,M.
;Kibouris,T.
;Komaitis,M.
EssentialoilcompositionofPistacialentiscusL.
andMyrtuscommunisL.
:Evaluationofantioxidantcapacityofmethanolicextracts.
FoodChem.
2008,107,1120–1130.
[CrossRef]11.
Tassou,C.
C.
;Nychas,G.
J.
E.
Antimicrobialactivityoftheessentialoilofmasticgum(Pistacialentiscusvar.
chia)onGrampositiveandGramnegativebacteriainbrothandinModelFoodSystem.
Int.
Biodeterior.
Biodegrad.
1995,36,411–420.
[CrossRef]12.
Iauk,L.
;Ragusa,S.
;Rapisarda,A.
;Franco,S.
;Nicolosi,V.
M.
InvitroantimicrobialactivityofPistacialentiscusL.
extracts:Preliminaryreport.
J.
Chemother.
1996,8,207–209.
[CrossRef][PubMed]13.
Magiatis,P.
;Melliou,E.
;Skaltsounis,A.
-L.
;Chinou,I.
B.
;Mitaku,S.
ChemicalCompositionandAntimicrobialActivityoftheEssentialOilsofPistacialentiscusvar.
chia.
PlantaMed.
1999,65,749–752.
[CrossRef][PubMed]14.
Villar,A.
;Sanz,M.
J.
;Paya,M.
HypotensiveeectofPistacialentiscusL.
Int.
J.
CrudeDrugRes.
1987,25,1–3.
[CrossRef]15.
Sanz,M.
J.
;Terencio,M.
C.
;Paya,M.
IsolationandhypotensiveactivityofapolymericprocyanidianfractionfromPistacialentiscusL.
Pharmazie1992,47,466–470.
16.
Alma,M.
H.
;Nitz,S.
;Kollmannsberger,H.
;Digrak,M.
;Efe,F.
T.
;Yilmaz,N.
ChemicalcompositionandantimicrobialactivityoftheessentialoilsfromthegumofTurkishPistachio(PistaciaveraL.
).
J.
Agric.
FoodChem.
2004,52,3911–3914.
[CrossRef]17.
Nahida,A.
S.
;Siddiqui,A.
N.
Pistacialentiscus:Areviewonphytochemistryandpharmacologicalproperties.
Int.
J.
Pharm.
Pharm.
Sci.
2012,4,16–20.
18.
Landau,S.
;Muklada,H.
;Markovics,A.
;Azaizeh,H.
TraditionalUsesofPistacialentiscusinVeterinaryandHumanMedicine.
InMedicinalandAromaticPlantsoftheMiddle-East;Yaniv,Z.
,Dudai,N.
,Eds.
;Springer:Dordrecht,TheNetherland,2014;Volumn2,pp.
163–180.
19.
Boukeloua,A.
;Belkhiri,A.
;Yilmaz,M.
A.
;Temel,H.
;Sabatini,S.
Chemicalprofilingandtotalthickness-excisedwound-healingactivityofPistacialentiscusL.
fruitsgrowinginAlgeria.
CogentBiol.
2016,2,1182611.
[CrossRef]20.
BenKhedir,S.
;Bardaa,S.
;Chabchoub,N.
;Moalla,D.
;Sahnoun,Z.
;Rebai,T.
Thehealingeectofpistacialentiscusfruitoilonlaserburn.
Pharm.
Biol.
2017,55,1407–1414.
[CrossRef]Molecules2020,25,19918of1921.
Chow,E.
T.
;Wei,L.
S.
;Devor,R.
E.
;Steinberg,M.
P.
Performanceofingredientsinasoybeanwhippedtopping:Aresponsesurfaceanalysis.
J.
FoodSci.
1988,53,1761–1765.
[CrossRef]22.
Rezzoug,S.
A.
;Boutekedjiret,C.
;Allaf,K.
Optimizationofoperatingconditionsofrosemaryessentialoilextractionbyafastcontrolledpressuredropprocessusingresponsesurfacemethodology.
J.
FoodEng.
2005,71,9–17.
[CrossRef]23.
Kiewicz,K.
;Konkol,M.
;Rój,E.
TheApplicationofSupercriticalFluidExtractioninPhenolicCompoundsIsolationfromNaturalPlantMaterials.
Molecules2018,23,2625.
24.
Benincasa,C.
;Santoro,I.
;Nardi,M.
;Alfredo,C.
;Giovanni,S.
Eco-FriendlyExtractionandCharacterisationofNutraceuticalsfromOliveLeaves.
Molecules2019,24,3481.
[CrossRef][PubMed]25.
Mejri,J.
;Aydi,A.
;Abderrabba,M.
;Mejri,M.
AsianJournalofGreenChemistryReviewArticleEmergingextractionprocessesofessentialoils:Areview.
AsianJ.
GreenChem.
2018,2,246–267.
26.
Oliveira,E.
L.
G.
;Silvestre,A.
J.
D.
;Silva,C.
M.
Reviewofkineticmodelsforsupercriticaluidextraction.
Chem.
Eng.
Res.
Des.
2011,89,1104–1117.
[CrossRef]27.
DelValle,J.
M.
;DeLaFuente,J.
C.
SupercriticalCO2ExtractionofOilseeds:ReviewofKineticandEquilibriumModels.
Crit.
Rev.
FoodSci.
Nutr.
2006,46,131–160.
[CrossRef]28.
Sovová,H.
Mathematicalmodelforsupercriticaluidextractionofnaturalproductsandextractioncurveevaluation.
J.
Supercrit.
Fluids2005,33,35–52.
[CrossRef]29.
Sovova,H.
RateoftheVegetableOilExtractionwithSupercriticalCO2-IModelingofExtractionCurves.
Chem.
Eng.
Sci.
1994,49,409–414.
[CrossRef]30.
Stastova,J.
;Jez,J.
;Bartlova,M.
;Sovova,H.
RateoftheVegetableOilExtractionWithSupercriticalCO2-Iii.
ExtractionFromSeaBuckthorn.
Chem.
Eng.
Sci.
1996,51,4347–4352.
[CrossRef]31.
Congiu,R.
;Falconieri,D.
;Marongiu,B.
;Piras,A.
;Porcedda,S.
ExtractionandisolationofPistacialentiscusL.
essentialoilbysupercriticalCO2.
FlavourFragr.
J.
2002,17,239–244.
[CrossRef]32.
Maldao-Martins,M.
;Beirao-da-Costa,S.
;Neves,C.
;Cavaleiro,C.
;Salgueiro,L.
;Beirao-da-Costa,M.
L.
OliveOilFlavouredbytheEssentialOilsofMenthaxPiperitaandThymusmastichinaL.
FoodQual.
Prefer.
2004,15,447–452.
[CrossRef]33.
Guillou,A.
A.
;Floros,J.
D.
MultiresponseOptimizationMinimizesSaltinNaturalCucumberFermentationandStorage.
J.
FoodSci.
1993,58,1381–1389.
[CrossRef]34.
Montgomery,D.
C.
DesignandAnalysisofExperiments,2nded.
;Willey:NewYork,NY,USA,1991.
35.
Meilgaard,M.
;Civille,G.
V.
;Carr,B.
T.
SesoryEvalutionTechniques,2nded.
;CRCPressInc.
:BocaRaton,FL,USA,1991.
36.
Zermane,A.
;Abdeslam-Hassan,M.
;Ouassila,L.
;Barth,D.
ExtractionandModelingofAlgerianRosemaryEssentialOilUsingSupercriticalCO2:EectofPressureandTemperature.
EnergyProcedia2012,18,1038–1046.
37.
Francisco,J.
D.
C.
;Sivik,B.
Solubilityofthreemonoterpenes,theirmixturesandeucalyptusleafoilsindensecarbondioxide.
J.
Supercrit.
Fluids2002,23,11–19.
[CrossRef]38.
Kopcak,U.
;Mohamed,R.
S.
Caeinesolubilityinsupercriticalcarbondioxide/co-solventmixtures.
J.
Supercrit.
Fluids2005,34,209–214.
[CrossRef]39.
Anderson,K.
E.
;Siepmann,J.
I.
SolubilityinSupercriticalCarbonDioxide:ImportanceofthePoyntingCorrectionandEntrainerEects.
J.
Phys.
Chem.
B2008,112,11374–11380.
[CrossRef]40.
Fiori,L.
;Calcagno,D.
;Costa,P.
Sensitivityanalysisandoperativeconditionsofasupercriticaluidextractor.
J.
Supercrit.
Fluids2007,41,31–42.
[CrossRef]41.
Fiori,L.
;Lavelli,V.
;Duba,K.
S.
;SriHarsha,P.
S.
C.
;BenMohamed,H.
;Guella,G.
SupercriticalCO2extractionofoilfromseedsofsixgrapecultivars:Modelingofmasstransferkineticsandevaluationoflipidprolesandtocolcontents.
J.
Supercrit.
Fluids2014,94,71–80.
[CrossRef]42.
Linstrom,P.
J.
;Mallard,W.
G.
NISTChemistryWebBook,NISTStandardReferenceDatabaseNumber69.
Natl.
Inst.
Stand.
Technol.
Gaithersburg2011.
Availableonline:https://webbook.
nist.
gov/chemistry/(accessedon21September2019).
43.
Shimoyama,Y.
;Tokumoto,H.
;Matsuno,T.
;Iwai,Y.
Analysisofcosolventeectonsupercriticalcarbondioxideextractionforα-pineneand1,8-cineole.
Chem.
Eng.
Res.
Des.
2010,88,1563–1568.
[CrossRef]44.
Silva,C.
M.
;Filho,C.
A.
;Quadri,M.
B.
;Macedo,E.
A.
Binarydiusioncoecientsofα-pineneandβ-pineneinsupercriticalcarbondioxide.
J.
Supercrit.
Fluids2004,32,167–175.
[CrossRef]45.
Shi,J.
;Kakuda,Y.
;Zhou,X.
;Mittal,G.
;Pan,Q.
CorrelationofmasstransfercoecientintheextractionofplantoilinaxedbedforsupercriticalCO2.
J.
FoodEng.
2007,78,33–40.
[CrossRef]Molecules2020,25,19919of1946.
Taher,H.
;Al-Zuhair,S.
;Al-Marzouqi,A.
H.
;Haik,Y.
;Farid,M.
MasstransfermodelingofScenedesmussp.
lipidsextractedbysupercriticalCO2.
BiomassBioenergy2014,70,530–541.
[CrossRef]47.
Mongkholkhajornsilp,D.
;Douglas,S.
;Douglas,P.
L.
;Elkamel,A.
;Teppaitoon,W.
;Pongamphai,S.
SupercriticalCO2extractionofnimbinfromneemseeds-Amodellingstudy.
J.
FoodEng.
2005,71,331–340.
[CrossRef]48.
Catchpole,O.
J.
;King,M.
B.
MeasurementandCorrelationofBinaryDiusionCoecientsinNearCriticalFluids.
Ind.
Eng.
Chem.
Res.
1994,33,1828–1837.
[CrossRef]49.
Lito,P.
F.
;Magalhes,A.
L.
;Gomes,J.
R.
B.
;Silva,C.
M.
Universalmodelforaccuratecalculationoftracerdiusioncoecientsingas,liquidandsupercriticalsystems.
J.
Chromatogr.
A2013,1290,1–26.
[CrossRef][PubMed]50.
Rosa,P.
T.
V.
;Meireles,M.
A.
A.
Rapidestimationofthemanufacturingcostofextractsobtainedbysupercriticaluidextraction.
J.
FoodEng.
2005,67,235–240.
[CrossRef]51.
WüstZibetti,A.
;Aydi,A.
;AraucoLivia,M.
;Bolzan,A.
;Barth,D.
Solventextractionandpuricationofrosmarinicacidfromsupercriticaluidextractionfractionationwaste:Economicevaluationandscale-up.
J.
Supercrit.
Fluids2013,83,133–145.
[CrossRef]52.
Turton,R.
;Bailie,R.
C.
;Whiting,W.
B.
;Shaeiwitz,J.
A.
;Bhattacharyya,D.
Analysis,Synthesis,andDesignofChemicalProcesses;PrenticeHall:UpperSaddleRiver,NJ,USA,2012;pp.
394–397.
53.
Carvalho,J.
R.
N.
;Moura,L.
S.
;Rosa,P.
T.
V.
;Meireles,M.
A.
A.
Supercriticaluidextractionfromrosemary(Rosmarinusocinalis):Kineticdata,extract'sglobalyield,composition,andantioxidantactivity.
J.
Supercrit.
Fluids2005,35,197–204.
[CrossRef]54.
Duba,K.
S.
;Fiori,L.
SupercriticalCO2extractionofgrapeseedoil:Eectofprocessparametersontheextractionkinetics.
J.
Supercrit.
Fluids2015,98,33–43.
[CrossRef]55.
Ayas,N.
;Yilmaz,O.
AshrinkingcoremodelandempiricalkineticapproachesinsupercriticalCO2extractionofsaowerseedoil.
J.
Supercrit.
Fluids2014,94,81–90.
[CrossRef]56.
zkal,S.
G.
;Yener,M.
E.
;Bayindirli,L.
Masstransfermodelingofapricotkerneloilextractionwithsupercriticalcarbondioxide.
J.
Supercrit.
Fluids2005,35,119–127.
[CrossRef]57.
Sánchez-Vicente,Y.
;Cabaas,A.
;Renuncio,J.
A.
R.
;Pando,C.
Supercriticaluidextractionofpeach(Prunuspersica)seedoilusingcarbondioxideandethanol.
J.
Supercrit.
Fluids2009,49,167–173.
[CrossRef]58.
Núez,G.
A.
;DelValle,J.
M.
SupercriticalCO2oilseedextractioninmulti-vesselplants.
2.
Eectofnumberandgeometryofextractorsonproductioncost.
J.
Supercrit.
Fluids2014,92,324–334.
[CrossRef]59.
Rocha-Uribe,J.
A.
;Novelo-Pérez,J.
I.
;AraceliRuiz-Mercado,C.
CostestimationforCO2supercriticalextractionsystemsandmanufacturingcostforhabanerochili.
J.
Supercrit.
Fluids2014,93,38–41.
[CrossRef]60.
Fiori,L.
Supercriticalextractionofgrapeseedoilatindustrial-scale:Plantandprocessdesign,modeling,economicfeasibility.
Chem.
Eng.
Process.
ProcessIntensif.
2010,49,866–872.
[CrossRef]61.
ICIS.
EthanolPriceReport—ChemicalPricingInformation-ICISPricing.
Availableonline:http://www.
icispricing.
com/il_shared/chemicals/Sub(accessedon20September2013).
62.
Bampouli,A.
;Kyriakopoulou,K.
;Papaefstathiou,G.
;Louli,V.
;Krokida,M.
;Magoulas,K.
ComparisonofdifferentextractionmethodsofPistacialentiscusvar.
chialeaves:Yield,antioxidantactivityandessentialoilchemicalcomposition.
J.
Appl.
Res.
Med.
Aromat.
Plants2014,1,81–91.
[CrossRef]63.
Sim,J.
;Reid,N.
Statisticalinferencebycondenceintervals:Issuesofinterpretationandutilization.
Phys.
Ther.
1999,79,186–195.
[CrossRef]64.
Harman,R.
;Pronzato,L.
Improvementsonremovingnon-optimalsupportpointsinD-optimumdesignalgorithms.
Stat.
Probab.
Lett.
2007,77,90–94.
[CrossRef]65.
Zimmer,C.
ExperimentalDesignforStochasticModelsofNonlinearSignalingPathwaysUsinganInterval-WiseLinearNoiseApproximationandStateEstimation.
PublicLibr.
Sci.
ONE2016,11,1–37.
[CrossRef]66.
Nguyen,N.
-K.
;Miller,A.
J.
AreviewofsomeexchangealogrithmsforconstructngdiscreteD-optimaldesigns.
Comput.
Stat.
DataAnal.
1992,14,489–498.
[CrossRef]2020bytheauthors.
LicenseeMDPI,Basel,Switzerland.
ThisarticleisanopenaccessarticledistributedunderthetermsandconditionsoftheCreativeCommonsAttribution(CCBY)license(http://creativecommons.
org/licenses/by/4.
0/).
水墨云怎么样?本站黑名单idc,有被删除账号风险,建议转出及数据备份!水墨云ink cloud Service是成立于2017年的商家,自2020起开始从事香港、日本、韩国、美国等地区CN2 GIA线路的虚拟服务器租赁,同时还有台湾、国内nat vps相关业务,也有iplc专线产品,相对来说主打的是大带宽服务器产品。注意:本站黑名单IDC,有被删除账号风险,请尽量避免,如果已经购买建议转出及数据备...
LOCVPS(全球云)发布了新上韩国机房KVM架构主机信息,提供流量和带宽方式,适用全场8折优惠码,优惠码最低2G内存套餐月付仅44元起。这是一家成立较早的国人VPS服务商,目前提供洛杉矶MC、洛杉矶C3、和香港邦联、香港沙田电信、香港大埔、日本东京、日本大阪、新加坡、德国和荷兰等机房VPS主机,基于KVM或者XEN架构。下面分别列出几款韩国机房KVM主机配置信息。韩国KVM流量型套餐:KR-Pl...
轻云互联成立于2018年的国人商家,广州轻云互联网络科技有限公司旗下品牌,主要从事VPS、虚拟主机等云计算产品业务,适合建站、新手上车的值得选择,香港三网直连(电信CN2GIA联通移动CN2直连);美国圣何塞(回程三网CN2GIA)线路,所有产品均采用KVM虚拟技术架构,高效售后保障,稳定多年,高性能可用,网络优质,为您的业务保驾护航。官方网站:点击进入广州轻云网络科技有限公司活动规则:1.用户购...
scaleup为你推荐
网罗设计网络工程是什么啊?毕业后能干什么工作啊?安徽汽车网想在合肥买辆二手车,想问在哪里买比较放心?18comic.fun18岁以后男孩最喜欢的网站www.yahoo.com.hk香港的常用网站www.622hh.comwww.710av.com怎么不可以看了mole.61.com摩尔庄园RK的秘密是什么?www.baitu.com谁有免费的动漫网站?百度指数词百度指数是指,词不管通过什么样的搜索引擎进行搜索,都会被算成百度指数吗?抓站工具抓鸡要什么工具?javbibitreebibi是什么牌子的
科迈动态域名 香港vps99idc 主机 国外私服 商家促销 个人空间申请 个人域名 昆明蜗牛家 微软服务器操作系统 如何注册阿里云邮箱 支持外链的相册 百度云加速 域名和主机 双十二促销 重庆联通服务器托管 google搜索打不开 傲盾代理 neicun qq部落24-5 西安电信测速网 更多