StrongEnhancementofNonlinearOpticalPropertiesThroughSupramolecularChiralityThierryVerbiest,*SvenVanElshocht,MarttiKauranen,LouisHellemans,JohanSnauwaert,ColinNuckolls,ThomasJ.
Katz,AndrePersoonsAnewapproachtosecond-ordernonlinearoptical(NLO)materialsisreported,inwhichchiralityandsupramolecularorganizationplaykeyroles.
Langmuir-Blodgettlmsofachiralhelicenearecomposedofsupramoleculararraysofthemolecules.
Thechiralsupramolecularorganizationmakesthesecond-orderNLOsusceptibilityabout30timeslargerforthenonracemicmaterialthanfortheracemicmaterialwiththesamechemicalstructure.
Thesusceptibilityofthenonracemiclmsisarespectable50picometerspervolt,eventhoughthehelicenestructurelacksfeaturescommonlyassociatedwithhighnonlinearity.
Susceptibilitycomponentsthatareallowedonlybychiralitydominatethesecond-orderNLOresponse.
Second-orderNLOeffectsareusuallyob-servedonlyfromnoncentrosymmetricmate-rials(1).
Commonly,suchmaterialsarecon-structedbyincorporatingdonor-acceptor–substitutedmoleculesthathaveanonvanish-ingmolecularhyperpolarizability(2)intononcentrosymmetricstructuressuchaspoledpolymerfilms,Langmuir-Blodgett(LB)films,self-assembledfilms,orcrystals(3,4).
Thenonlinearityofsuchmaterialshasbeenimprovedbyoptimizingthemicroscopicre-sponseofthemolecules(5)orbyimprovingtheiralignmentororientationinthemacro-scopicstructure(6).
Anotherwaytoachievenoncentrosymme-tryistousechiralmolecules.
Suchmoleculesarenecessarilynoncentrosymmetric,andtheirsecond-orderNLOresponseisthereforenonzero(7).
Evensuchhighlysymmetricmacroscopicassembliesasisotropicsolutionsofasingleenantiomer(asinglemirror-imageform)ofachiralmoleculearenoncentrosym-metricandcanbeusedforsecond-ordernon-linearoptics,asshownbysum-frequencygenerationinsugarsolutions(8,9).
Thein-trinsicvalueofthenonlinearsusceptibilityofsuchmaterialscanbequitehigh(0.
4pm/V).
However,theprocessisnotphasematch-able,anditsoverallefficiencyisthereforelow.
Amoreefficientapproachhasbeentousechiralityindirectly,toensuremolecularcrystallizationinanoncentrosymmetricgroup(10).
Recently,nonlinearopticshasalsobeenusedasasensitivetooltostudychiralsurfaces(11,12).
Weshowthathighnonlinearitycanbeachievedbyassemblingthemoleculesofanenantiomericallypurehelicene(13)intosu-pramoleculararrays.
TheNLOresponseoftheirfilmsismuchhigherthanthatoffilmsofthecorrespondingracemic(50/50)mixtureoftheenantiomers,eventhoughtheconstit-uentmoleculesinbothfilmshavethesamechemicalstructure.
ThemoleculeswestudiedwerethoseofthetetrasubstitutedhelicenebisquinoneshowninFig.
1(13,14).
Inbulksamples,thenonrace-mic,butnottheracemic,formofthematerialspontaneouslyorganizes(15)intolongfibersclearlyvisibleunderanopticalmicroscope.
Thesefiberscomprisecolumnarstacksofheli-cenemolecules(15).
Similarcolumnarstacksself-assembleinappropriatesolvents,suchasn-dodecane,whentheconcentrationsaregreat-erthan1mM,andwhentheyassemble,thecirculardichroisms(CD)ofthesolutionsin-creasesignificantly(13).
WepreparedLBfilms(16)oftheheli-cenebyspreadingadilutechloroformsolu-tion(210–4M)ontothepurewatersub-phaseofanLBtrough.
Afterthesolventhadbeenevaporatedat20°C,thefilmswereslowlycompressedtoasurfacepressureof20mN/m.
Afterstabilizingfor30min,thefilmsweredepositedbyhorizontaldippingontohydrophobicglass[forsecond-harmonicgen-eration(SHG)measurements],fusedquartz[forultraviolet(UV)–visibleabsorptionandatomicforcemicroscopy(AFM)measure-ments],orsilicon(forAFMmeasurements).
Theopticalqualityofthefilmswasexcellent.
Although60isthelargestnumberoflayersdepositedtodate,thereisnoindicationthatthequalityoffilmswithmorelayerswouldbelower.
Opticalmicroscopydetectednofibersorothermacroscopicfeaturesinthefilms.
ThismeansthatintheLBfilmsofeventhenonracemicmaterial,anysupramolecularorganizationextendsonlytosubmicrometerlengths.
Thesampleswereirradiatedata45°angleofincidencewithafundamentalbeamfromaNd–yttrium-aluminum-garnet(Nd:YAG)la-ser(1064nm,50Hz,8ns),andtheSHGsignals(532nm)weredetectedinthetrans-mitteddirection.
Half-andquarterwave-plateswereusedtocontrolthepolarizationoftheirradiatingbeam,andthesecond-harmon-iclightwasresolvedintop-(intheplaneofincidence)ands-(outoftheplaneofinci-dence)polarizedcomponents.
TheSHGsignalsmeasuredarisefromthequadraticresponseofthematerialtothefun-damentalbeam.
ThisresponseisrepresentedbytheNLOpolarization(1)Pi(2)j,kijkEj()Ek()whereijkrefertothecartesiancoordinates,Ej()andEk()arecomponentsoftheelec-tric-fieldamplitudeatthefundamentalfre-quency,Pi(2)isacomponentofthenon-linearsourcepolarizationatthesecond-har-monicfrequency2,andijkisacomponentofthesecond-ordersusceptibilitytensor.
Forsufficientlythinsamples,thepolarizationleadstotheamplitudeofthesecond-harmon-icfieldE(2)growinglinearlywiththickness(1).
Consequently,theintensityofthesec-ond-harmonicfield,whichisproportionaltothesquareoftheamplitude,shouldincreasequadraticallywithboththethicknessofthefilmandthevalueofthesusceptibility.
Thefilmsofthenonracemichelicenegen-eratedstrongSHGsignalswhoseintensityincreasedquadraticallyasafunctionofthenumberofdepositedlayers(Fig.
2A),whichconfirmsthegoodstructuralandopticalqual-ityofthefilms.
ThestrongestSHGsignalfromaone-layernonracemicfilmwasap-proximately1000timesasintenseasthatfromasimilarracemicfilm,correspondingtoa30-foldenhancementinthevalueofthesusceptibility.
Thisenhancementisextraordi-nary,becausetheindividualmoleculesinbothfilmshavethesamechemicalstructures.
Forthenonracemicsample,theSHGsig-nalwasstrongestwhentheincidentbeamwasp-polarizedandtheSHGbeamwass-polarized(p-in–s-outsignal),whereas,fortheracemicsample,thesignalwasstrongestwhenbothbeamswerep-polarized(p-in–p-outsignal).
Forisotropicsurfacesandthinfilms(17),thep-in–s-outsignalisduetothecomponentsofthesecond-ordersusceptibili-T.
Verbiest,S.
VanElshocht,M.
Kauranen,L.
Helle-mans,J.
Snauwaert,A.
Persoons,LaboratoryofChem-icalandBiologicalDynamics,KatholiekeUniversiteitLeuven,Celestijnenlaan200D,B-3001Heverlee,Bel-gium.
C.
NuckollsandT.
J.
Katz,DepartmentofChem-istry,ColumbiaUniversity,NewYork,NY10027,USA.
*Towhomcorrespondenceshouldbeaddressed.
E-mail:thierry@lcbdiris.
fys.
kuleuven.
ac.
beREPORTSwww.
sciencemag.
orgSCIENCEVOL28230OCTOBER1998913tytensorthatarenonvanishingonlyinthepresenceofchirality(chiralcomponents).
Thep-in–p-outsignal,however,isallowedforallsurfacesandthusisduetotheachiralcomponentsofthesusceptibilitytensor.
Theseresultssuggestthatinthenonracemicsamples,thedominantpartofthesusceptibil-itytensoristhatassociatedwithchirality.
Intheracemicsamples,thispartmustcancel.
Analternativeexplanationforthedifferentbehaviorofthetwotypesofsamplesisthatthehelicenepacksdifferentlyintheracemicandnonracemicfilms.
Toanalyzethesepossibilities,wefirstinvestigatedwhetherthedominantcompo-nentsofthesecond-ordersusceptibilityten-sorareallowedonlybychirality.
Althoughseparatingthechiralandachiraltensorcom-ponentsisstraightforwardforthinfilmsthatareisotropic,in-planeanisotropysignificant-lycomplicatessuchseparation(18).
There-fore,insteadofrelyingontypicalchiralef-fects(19),wedeterminedthesymmetryandnonvanishingtensorcomponentsofthesam-ples,usingseveraldifferentmeasurements.
WefirstmeasuredSHGsignalswhilero-tatingthesamplesabouttheirsurfacenormal(20).
Filmsoftheracemicmaterialwereiso-tropic(Cvsymmetry).
Ontheotherhand,therotationpatternobtainedforafive-layernonracemicfilmandp-in–s-outsignal(Fig.
2B)isanisotropicandsuggeststhatthenon-racemicfilmpossessesC2symmetry.
Ifsuchafilmwereachiral,thatis,ifithadC2vsymmetry,thesignalshowninFig.
2Bwouldvanishatsomerotationalangle.
Becauseitdoesnot,theremustbeafinitechiralsuscep-tibilitycomponent.
Moreover,thiscompo-nentprobablyplaysanimportantrole,be-causetheaveragesignalisverylarge.
ToseparatetheeffectsofchiralityandanisotropyontheNLOresponseofthenon-racemicfilms,wedeterminedthecompo-nentsofthenonlinearsusceptibilitytensorofafive-layerfilm.
Weuseacoordinatesystemwithzalongthesurfacenormalandxandyintheplaneofthesubstrate.
ThenonvanishingcomponentsofthesusceptibilitytensoroftheC2grouparezzz,zxx,zyy,xxzxzx,yyzyzy,xyzxzy,yxzyzx,andzxyzyx.
Forahypotheticalachiralsam-plewithtwofoldsymmetry(C2v),amirrorplanecontainingthesurfacenormalfixesthedirectionsofthein-planecoordinatesxandy.
Furthermore,reflectioninthatplaneimpliesthatthecomponentsxyz,yxz,andzxyareallowedonlybychirality.
However,ourchiralC2samplehasnomirrorplane,andthereforethechoiceofxandyisarbitrary.
Inaddition,rotationofthein-planecoordinatesmixestheachiralandchiraltensorcompo-nents.
Forexample,whenrotated,zxycon-tributestozxx,zyy,zxy,andzyx.
Hence,noneofthetensorcomponentscanuniquelybeassociatedwithchirality.
Tocircumventthisarbitrariness,itisnecessarytoconsiderlinearcombinationsofthetensorcomponentsthatdonotdependonthein-planerotationalangle.
Suchisotropiccombinationsare:zzz,zxxzyy,xxzyyz,andxyz–yxz.
Thelastofthesecombinationscanbeuniquelyassociatedwithchirality.
Todeterminethecomponentsofthesus-ceptibilitytensor,weusedthepolarizationtechniqueof(21)tomeasuretheSHGsignalsfromsamplesatseveralin-planeazimuthalrotationalangles.
Wealsoverifiedthattheisotropiccombinationsareindependentoftheassumed0°orientationofthesample.
Themagnitudesdeterminedforthesecombina-tions,referencedtoaquartzwedge(d110.
3pm/V)(22),areshowninTable1.
Theachiralcombinationsareseentobeatleast10timessmallerthanthechiralone.
Thenonlinearityofthenonracemicsamplesisthereforedom-inatedbythechiraltensorcomponents.
Thus,thechiralityofthenonracemicsamplecon-tributessignificantlytothedifferentNLOresponsesoftheracemicandnonracemicsamples.
Thatitisessentiallythesolefactorresponsibleforthedifferencewasverifiedbyobservingthattheabsolutelevelsofthep-in–p-outsignals,averagedoverthein-planero-tationalangle,were,within20%error,equalfortheracemicandnonracemicsamples.
Hence,theachiralpartsofthenonlinearityareessentiallythesamefortheracemicandnonracemicsamples.
Whythechiralsuscep-tibilitycomponentsarelargeis,however,notexplainedbytheseresults.
TheUV-visibleabsorptionspectraofLBfilmsoftheracemicandnonracemicsamplesareidenticalandsimilartothoseofnonrace-micsolutionsinwhichthemoleculesareaggregated,notisolated(13).
Thissuggeststhatthemoleculesoftheracemicandnonra-cemicmaterialsareorganizedintosimilaraggregatesonasmallscale.
AFMimages(Fig.
3)supportthissuggestion,fortheyshowthattheaggregatedmoleculesinbothfilmsarefurtherassembledintofibrousstruc-tures.
However,theorganizationisgreaterinthefilmsofthenonracemicmaterial(Fig.
3,AandC).
Thestructuresintheseare5nmwide[aboutthewidth(4.
1nm)ofthecol-umnsintowhichthemoleculesassembleinbulk(14)],severaltensofnanometerslong,andarrangedinbundles.
However,thescaleoftheorganizationintheLBfilmsissuffi-cientlysmallthatthestructurescannotbeseenoptically,althoughthealignmentofthebundlesintheplaneofthesubstrateprobablyaccountsfortheC2symmetryevidencedinFig.
2B.
Intheracemicmaterial(Fig.
3B),thefibrousstructuresareshorterandnotaswellFig.
1.
(Top)Chemicalstructureoftheheliceneand(bottom)schematicrepresentationofcol-umnsofstackedhelicenemoleculesasob-servedinsolidbulksamples(thesidechainshavebeendeletedforclarity,andthersthelicenesarearbitrarilyshowntobeinthesamerotationalphase).
Fig.
2.
Second-harmonicsignalsfromthenon-racemicLBlms.
(A)Thesignalasafunctionofthenumberofdepositedlayers.
(B)Thes-polarizedsecond-harmonicsignalforp-polar-izedfundamentalbeamasafunctionoftheazimuthal(in-plane)rotationangleofave-layersample.
The0°azimuthalorientationischosenarbitrarily.
Table1.
Absolutevaluesofchiralandachiralisotropiccombinationsofsusceptibilitycompo-nentsofthenonracemicLBlms.
IsotropiccombinationAbsolutevalue(pm/V)Chiralityzzz6Achiralxxzyyz2Achiralzxxzyy4Achiralxyz–yxz50ChiralREPORTS30OCTOBER1998VOL282SCIENCEwww.
sciencemag.
org914organizedinbundles.
Thissuggeststhattheinteractionsbetweentheenantiomersarenotfavorableforlarge-scaleorganization,whichmayrelatetowhytheracematedoesnotformfibrousstructuresinbulk(15).
Thelesserdegreeoforganizationintheracemicmate-rialalsoconformswiththefailuretoseex-raydiffractionfromthesefilms,whereasitisseenfromfilmsofthenonracemicmaterial.
Forthelatter,x-raydiffractionshowstheinterlayerdistancestobesimilartothediam-etersofthehelicenemoleculesandtothecolumnsobservedinbulk(23).
Theaboveresultssuggestthattheprimaryexplanationforthehighsecond-orderNLOresponseofthehelicenesistheaggregationintocolumnarstackswithlargechiral(xyz-type)nonlineartensorcomponents.
Sponta-neouschiralsegregation(24)probablyoccursintheracemicfilms,witheachenantiomeraggregatingwithitselfandmaintainingthelargechiralcomponents.
Intheracemicsam-pleshowever,thesedominantcomponentsofthetwoenantiomersareequalinmagnitudebutoppositeinsign,whichlowerstheoverallNLOresponse.
FurtherorganizationoftheaggregatesintobundlesappearstobelessimportantfortheNLOproperties,althoughitaccountsforthedifferentrotationalsymme-tryoftheracemicandnonracemicfilms.
The50pm/Vvalueofthedominantpartofthenonlinearity(xyz–yxz;Table1)issufficientlyhighthatthematerialcouldbeuseful(25).
Thelinearabsorptionspectrum,however,suggeststhattheNLOresponsemayberesonantlyenhanced.
Nevertheless,itiswithinoneorderofmagnitudeofthehigh-estvaluesreported(26).
Wefindtheresultremarkablebecause(i)thenonlinearityisdominatedbythechiraltensorcomponents,whichsuggeststhatthetraditionalrequire-mentsfornonlinearmoleculestobeorientedoutoftheplane(1)arenotimportantforstructuresbasedonthehelicenederivative,and(ii)althoughthechemicalstructuredoesnotfulfillclassicalrequirementsforhighmo-lecularnonlinearity(2),theNLOsusceptibil-ityisneverthelessrelativelyhigh,whichsug-geststhatfurtherimprovementsmightbeachievablethroughsynthesis.
Thefilmsofthenonracemichelicenehaveothervirtues.
Afive-layerfilmshowedim-pressivethermalstability.
Whenstoredfor250hoursinairat150°C,itlostnoSHGefficiency,andevenshortexcursionsabove200°ChadnodetrimentaleffectontheNLOresponse.
Moreover,topreparethickfilms,theverticaldippingprocedurecouldbeused,whichisdesirablebecauseitislesstime-consumingthanhorizontaldipping.
Althoughthetypeofdepositionachievedwhenthehelicenewasdippedverticallydependedonthehumidity,thetemperature,andthewaythesubstratewasprepared,wewereabletomakeY-typeLBfilms(thosedepositeddur-ingbothupanddownstrokes)whoseopticalqualitiesandnonlinearefficienciesequaledthoseoffilmsformedbyhorizontaldipping.
Thehelicenefilmsalsosuggestanewwaytoachievephasematching.
Phasematchingisanimportantconsiderationinfrequencycon-version,inwhichthephaserelationbetweenthedrivingnonlinearpolarizationandthegeneratedfieldcanusuallybemaintainedonlyoverthedistanceofcoherencelength(27).
However,phasematchingoverarbitrarydistancescanbeachievedbyusingmultilayerstructuresinwhichthesignofthenonlinearityisreversedaftereverycoherencelength(quasi–phasematching)(28).
Thesignofthechiralpartofthenonlinearitycanbereversedsimplybychang-ingtheenantiomerofthemoleculewithnoneedforadditionaldomainreversal.
Theuseofthetwoenantiomersinaquasi–phase-matchedstructurealsohastheadditionalbenefitthatnonetpolarizationrotationduetolinearop-ticalactivitywilloccur.
Asapreliminarytestofthemutualcompatibilityofthetwoenan-tiomersofthehelicene,wepreparedfourlayersofoneenantiomerbyverticaldippingandcoveredthemwithfourlayersoftheother.
Forsuchthinfilms,thenonlinearitiesofthetwoenantiomersshouldcancel.
TheSHGsignalfromthesamplevanished,whichsuggeststhatitmightbepossibletousehelicenestopreparequasi–phase-matchedstructures.
ReferencesandNotes1.
P.
N.
PrasadandD.
J.
Williams,IntroductiontoNon-linearOpticalEffectsinMoleculesandPolymers(Wiley,NewYork,1991).
2.
T.
Verbiest,S.
Houbrechts,M.
Kauranen,K.
Clays,A.
Persoons,J.
Mater.
Chem.
7,2175(1997).
3.
Ch.
Bosshardetal.
,OrganicNonlinearOpticalMate-rials(Gordon&Breach,Basel,Switzerland,1995).
4.
T.
J.
MarksandM.
A.
Ratner,Angew.
Chem.
Int.
Ed.
Engl.
34,155(1995).
5.
S.
R.
Marder,D.
N.
Beratan,L.
-T.
Cheng,Science252,103(1991).
6.
T.
Verbiestetal.
,Adv.
Mater.
8,757(1996).
7.
L.
D.
Barron,MolecularLightScatteringandOpticalActivity(CambridgeUniv.
Press,Cambridge,1982).
8.
J.
A.
Giordmaine,Phys.
Rev.
138,A1599(1965).
9.
P.
M.
Rentzepis,J.
A.
Giordmaine,K.
W.
Wecht,Phys.
Rev.
Lett.
16,792(1966).
10.
J.
ZyssandD.
S.
Chemla,inNonlinearOpticalProp-ertiesofOrganicMoleculesandCrystals,D.
S.
ChemlaandJ.
Zyss,Eds.
(AcademicPress,Orlando,FL,1987),vol.
1.
11.
T.
Petralli-Mallow,T.
M.
Wong,J.
D.
Byers,H.
I.
Lee,J.
M.
Hicks,J.
Phys.
Chem.
97,1383(1993).
12.
M.
Kauranenetal.
,Adv.
Mater.
7,641(1995).
13.
C.
Nuckolls,T.
J.
Katz,L.
Castellanos,J.
Am.
Chem.
Soc.
118,3767(1996).
14.
A.
J.
Lovinger,C.
Nuckolls,T.
J.
Katz,ibid.
120,264(1998).
15.
C.
Nuckolls,T.
J.
Katz,G.
Katz,P.
J.
Collings,L.
Castellanos,inpreparation.
16.
G.
Roberts,Langmuir-BlodgettFilms(Plenum,NewYork,1990).
17.
J.
J.
Maki,M.
Kauranen,A.
Persoons,Phys.
Rev.
B51,1425(1995).
18.
T.
Verbiest,M.
Kauranen,Y.
VanRompaey,A.
Per-soons,Phys.
Rev.
Lett.
77,1456(1996).
19.
M.
Kauranen,T.
Verbiest,A.
Persoons,J.
Mod.
Opt.
45,403(1998).
20.
X.
Zhuang,D.
Wilk,L.
Marrucci,Y.
R.
Shen,Phys.
Rev.
Lett.
75,2144(1995).
21.
M.
Kauranen,J.
J.
Maki,T.
Verbiest,S.
VanElshocht,A.
Persoons,Phys.
Rev.
B55,R1985(1997).
22.
D.
Roberts,IEEEJ.
QuantumElectron.
28,2057(1992).
23.
C.
Nuckollsetal.
,J.
Am.
Chem.
Soc.
120,8656(1998).
24.
P.
Nassoy,M.
Goldmann,O.
Bouloussa,F.
Rondelez,Phys.
Rev.
Lett.
75,457(1995).
25.
D.
M.
Burland,R.
D.
Miller,C.
A.
Walsh,Chem.
Rev.
94,31(1994).
26.
G.
J.
Ashwell,R.
C.
Hargreaves,C.
E.
Baldwin,G.
S.
Bahra,C.
R.
Brown,Nature357,393(1992).
27.
R.
W.
Boyd,NonlinearOptics(AcademicPress,SanDiego,CA,1992).
28.
M.
M.
Fejer,G.
A.
Magel,D.
H.
Jundt,R.
L.
Byer,IEEEJ.
QuantumElectron.
28,2631(1992).
29.
WeacknowledgenancialsupportfromtheBelgiangovernment,theBelgianNationalScienceFounda-tion,andtheKatholiekeUniversiteitLeuven.
T.
V.
isapostdoctoralfellowandL.
H.
isaresearchassociateoftheFundforScienticResearch-Flanders.
M.
K.
ac-knowledgesthesupportoftheAcademyofFinland.
C.
N.
andT.
J.
K.
thanktheKanagawaAcademyofScienceandTechnologyandNSFforsupport.
31July1998;accepted29September1998Fig.
3.
AFMimages(80nmby80nm)offour-layerLBlmsofthehelicenemeasuredinthetappingmode.
(A)Phase-contrastimageofanonracemiclmonsilanizedsilicon.
(B)Phase-contrastimageofaracemiclmonsilanizedsilicon.
(C)Topographicimageofanonracemiclmonsilanizedglass.
REPORTSwww.
sciencemag.
orgSCIENCEVOL28230OCTOBER1998915
tmhhost放出了2021年的端午佳节+618年中大促的优惠活动:日本软银、洛杉矶200G高防cn2 gia、洛杉矶三网cn2 gia、香港200M直连BGP、韩国cn2,全都是高端优化线路,所有这些VPS直接8折,部分已经做了季付8折然后再在此基础上继续8折(也就是6.4折)。 官方网站:https://www.tmhhost.com 香港BGP线路VPS ,200M带宽 200M带...
WebHorizon是一家去年成立的国外VPS主机商,印度注册,提供虚拟主机和VPS产品,其中VPS包括OpenVZ和KVM架构,有独立IP也有共享IP,数据中心包括美国、波兰、日本、新加坡等(共享IP主机可选机房更多)。目前商家对日本VPS提供一个8折优惠码,优惠后最低款OpenVZ套餐年付10.56美元起。OpenVZCPU:1core内存:256MB硬盘:5G NVMe流量:200GB/1G...
如何低价香港服务器购买?想要做一个个人博客,想用香港服务器,避免繁琐备案,性能不需要多高,只是记录一些日常而已,也没啥视频之类的东西,想问问各位大佬有没有低价的香港服务器推荐?香港距大陆近,相比美国服务器最大的优势在于延迟低,ping值低,但是带宽紧张,普遍都是1M,一般戏称其为“毛细血管”。同时价格普遍高,优质稳定的一般价格不菲。大厂云梯队阿里云、腾讯云两家都有香港服务器,要注意的是尽量不要选择...
zzz13.com为你推荐
哈利波特罗恩升级当爸哈利波特和罗恩的相同处和不同处vc组合洛天依的组合都有谁access数据库ACCESS数据库有什么用同ip网站查询同ip地址站点查询 我本地怎么查询不了冯媛甑冯媛甄 康熙来了同ip网站同IP网站9个越来越多,为什么?百度关键词分析关键词怎么分析?avtt4.comwww.51kao4.com为什么进不去啊?www.kknnn.com求有颜色的网站!要免费的www.se222se.comhttp://www.qqvip222.com/
动态域名解析软件 拜登买域名批特朗普 justhost 便宜建站 谷歌香港 服务器日志分析 铁通流量查询 vip购优汇 免费测手机号 100mbps 空间登入 上海电信测速网站 美国盐湖城 日本代理ip 工信部icp备案查询 腾讯网盘 apnic 服务器托管价格 cdn加速 godaddy退款 更多