tumorsww.4399.com

ww.4399.com  时间:2021-03-22  阅读:()
miRNAINPATHOBIOLOGY(TPATEL,SECTIONEDITOR)MicroRNAandEpigenetics:DiagnosticandTherapeuticOpportunitiesPalomadelC.
MonroigGeorgeA.
CalinPublishedonline:19January2013SpringerScience+BusinessMediaNewYork2013AbstractMicroRNAs(miRNAs)arealargefamilyofpost-transcriptionalregulatorsofgeneexpressionthatcontrolcellularanddevelopmentalprocessesbytargetingmessengerRNAs.
Thesesmallnon-codingRNAs(ncRNAs)areaber-rantlyexpressedincancerandareknowntocontributetotumorigenesisanddiseaseprogression.
TherapeuticstrategiesbasedonmodulatingmiRNAsactivityareemergingduetotheabilityofthesencRNAstoinuencecellularbehavior.
MiRNAlevelspredictdiseaseprognosisandoverallpatientsurvival,andreconstitutingtheirbasallevelshasbeenproventoinhibittumorgrowthandmetastasis.
Differentdeliverymechanismshavebeentestedinvivo,howevermanychal-lengesneedtobeovercomebeforetheirutilizationintheclinic.
Moreover,ithasbeenfoundthatcirculatingmiRNAsinbodyuidshavethepotentialtoreshapecancerdiagnosisandprognosisbyfunctioningasbiomarkersandindicatorsofprogressionandmetastasis.
ThesemiRNAsasbiouids-basedbiomarkersprovideanalternativestrategyforearlydiagnosisandtreatmentofcancerpatients.
KeywordsMicroRNAEpigeneticsCancerDiagnosisTherapyBiomarkersPathobiologyIntroductionMicroRNAs(miRNAs)aresmallnon-codingRNAs(ncRNAs)of*22ntwhichpost-transcriptionallyregulategeneexpression.
ThemajorityofthesesmallRNAmole-culesaretranscribedbyRNApolymeraseIIasindependentgenes,orasintronsofprotein-codinggenes[1].
MiRNAstargetmessengerRNAs(mRNAs)causingcriticalchangesandinstabilitythatconsequentlyinhibittranslation.
Apercentageofapproximately60%ofgenesinthehumangenomearepredictedtobetargetedbymiRNAs,astheyconservepairinghomology[2].
MechanismsofActionMiRNAsareinitiallytranscribedbyRNApolymeraseIIenzymeaslongprimarytranscripts(pri-miRNAs).
Thistranscriptfoldsonitselfformingadoublestrandedhairpinstructure.
AnRNaseendonucleaseIIIDrosha,alongwithDGCR8(molecularanchorpartofamicroprocessorcom-plex),cleavesthissecondarystructure,resultingin*70ntprecursormiRNAs(pre-miRNAs).
Exportin5andRAN-GTPpromotenucleartranslocationofthepre-miRNAstothecytoplasm.
Dicer,anotherdoublestrandedRNA-spe-cicnucleaselocatedinthecytoplasm,denesacleavagesitethatresultsin*22ntlongdoublestrandeddsRNAcontainingamaturemiRNAguidestrandandapassengerstrand[3].
TheguidestrandpromotestheassociationofaproteincomplextermedRNA-inducedsilencingcomplex(RISC)withthe30untranslatedregionofthetargetedmRNAs.
TheprimarycomponentoftheRISCcomplexisanArgonaute(Ago)protein,whichcausemiRNA-medi-atedmRNArepression.
TheAgoproteiniscrucialforthemiRNAtoformacomplexwithRISC;moreover,itallowsmiRNAmaturationevenintheabsenceofDicerbyacquiringtheabilitytocleavepre-miRs.
ThisevidencewasidentiedbyChelouetal.
,whoobservedthatmiR-451couldenterRISCthroughanalternativebiogenesispath-way.
AfterDrosha-mediatedcleavage,thepre-miRwasP.
d.
C.
MonroigG.
A.
Calin(&)DepartmentofExperimentalTherapeutics,UniversityofTexasM.
D.
AndersonCancerCenter,Houston,TX77030,USAe-mail:gcalin@mdanderson.
orgP.
d.
C.
Monroige-mail:Paloma.
D.
Monroig@uth.
tmc.
edu123CurrPathobiolRep(2013)1:43–52DOI10.
1007/s40139-013-0008-9loadeddirectlyintoAgoomittingthecatalyticactivityofDicerandformingacomplexwithRISC[4].
RolesandGenomicRegulationMiRNAsregulatetheexpressionofspecictargets.
How-ever,sincethenucleotidepairingbycomplementarityofthesesequencesisimperfect,itallowskeymiRNAstoregulatetheexpressionlevelsofhundredsofgenessimultaneously[5].
MiRNAprolesindifferenttissuesaresubjecttoregulatingmechanismsthatincreaseordecreasetheirdownstreameffect(s).
Thismechanismofactionimplicatestheminvariousimportantprocessessuchastissuemorphogenesis,apoptosisandsignaltransductionsimultaneously[6,7].
This,alongwithotherevidence,hasprovedthatmiRNAexpressionsignaturesareassociatedwithhumanpathologiessuchascancer.
MiRNAsaresubjecttogenomicregulation,whichcanbesegregatedinfourgroups:amplication,deletions,mutations/translocations,andepigeneticalterations[8].
AllelicamplicationofmiRNAsresultsindecreasedexpressionofthetargetgene,proportionaltomiRNAlevelsinthecell.
Genomicdeletiondecreasestheexpres-sionofmiRNAs,increasingthegeneticexpressionofthetargetedgenes.
Translocationsandsequencevariations,suchasmutationsorsinglenucleotidepolymorphisms(SNPs),canalterthetranscribedmiRNAs,causingchangesinthebindingsitesandinhibitingorpromotingrepression.
Finally,epigeneticalterationssuchasmethylationofthepromoterregionalsocausechangesinthemiRNAsthatmatureinacell,decreasingtheirbasallevels[8](Fig.
1).
TherapeuticOpportunitiesinCancerMiRNAsnegativelyregulategenesinvolvedineukaryoticsurvivalandproliferation,andcancauseadisturbanceinproteinexpression,translationandstability.
TherstassociationsobservedbetweenmiRNAsexpressionandcancerdevelopmentwasthemiR-15andmiR-16dysreg-ulationinBcellchroniclymphocyticleukemia,asaresultofchromosome13q14deletion[9].
ManymiRNAgenesarelocatedinfragilegenomicsites(regionsmoresuscep-tibletomutations,rearrangementsandlossofheterozy-gosity),whicharefrequentlyfoundintumordevelopment[10].
AlterationofproteinsinvolvedinmiRNAregulationandthetargetingofimportantmessengerRNAs(mRNAs)areinvolvedintumorinitiationandprogression,asthesecodinggenesbehaveasoncogenesortumorsuppressorgenes[11].
TumorsuppressivemiRNAsfunctionbyreducingtheexpressionofproto-oncogenes,delayingcar-cinogenesis,andtumormaintenance.
ThemiR-200familyisanexampleofatumorsuppressivemiRNA,proventoinuencetheepithelialphenotypeofcellsbydownregu-lationofE-cadherin(promotingepithelial-to-mesenchymaltransition)[12].
Ontheotherhand,oncogenicmiRNAsreduceexpressionoftumorsuppressorcodinggenesandareover-expressedorampliedintumorcells,contributingtotumordevelopment.
SomeoncogenicmiRNAsinhibitrepressors,causinganincreaseintranscriptionfactorsorgrowthfactors(e.
g.
,R-Smads,ER-a,p53)andauxiliaryproteins(e.
g.
,hnRNPA1).
InthiswaytheyinuencethemRNAprocessingmachineryandcausealterationsintheirbasallevels[13].
ThedysregulationofmiRNAsincells,andthesubsequentgain/lossoffunctions,dictatetreatmentefcacy,therapeuticresponse,andpatientprognosis.
Twoimportantstrategieshaveguidedtheuseofthesemoleculesasnoveltherapies.
First,miRNAmoleculeshavebeenmodiedtoachieveaprolongedinvivohalf-lifeandefciency(e.
g.
,anti-miRNAandlockednucleicacid(LNA)-modiedoligonucleotides,andantagomirs).
Sec-ond,invivodevelopmentofmiRNAtransgenicmice(suchasthemiR-155,miR-21,miR17–92)andknockouts(suchasmiR-15,miR-16,miR-146andmiR-29)haveofferedvaluableinformationthathasguidedtherapeuticopportu-nitiesforcancerpatients[8].
Thestrategiesarebasedontwoprinciples:targetingoncogenicmiRNAs(todecreasetheirlevels),orrestoringtumorsuppressivemiRNA(torescuetheirbasallevels).
TargetingOncogenicmiRNAsCancercellscontainmanygeneticandepigeneticabnor-malities,butdespitetheircomplexity,theirgrowthandsurvivalcanoftenbeimpairedbyinactivatingasingleoncogene.
Thisphenomenon,called''oncogeneaddiction,''providesarationaleformoleculartargetedtherapy[14].
CorrelationsbetweenregulatorymiRNAsandcancerhaverevealedthatthisconceptappliestomiRNAdysregulationinpatients.
TherapiesagainstoncogenicmiRNAfocusondecreas-ingmiRNAlevelsbyinhibitingthemthroughcomple-mentarybasepairing.
AlthoughinhibitinganindividualmiRNArolewastheinitialstrategy,studieshavehigh-lightedtheimportanceoftargetingthe''collaborativerole''ofmiRNAgroupsasthesecooperateintheacquisitionofapleiotropicbiologyincancercells.
Bothoftheseapproa-cheshavebeenpointedoutinmiR-17–92,anoncogenicpolycistronicallyexpressedclustercomposedofsixmiR-NAs:miR-17,-18a,-19a,-20a,-19b-1and-92a-1onchromosome13.
OverexpressionofthemiR-19familymembers(relativetotheircluster),provedtoincreasethelatencyoflymphomas,whiletheirinactivationpromotedMYC-inducedlymphomagenesis[15].
BothoftheseresultssuggestanimportantindividualroleofthemiR-19family.
Furthermore,multiplemembersoftheclusterarecapable44CurrPathobiolRep(2013)1:43–52123ofindividuallypromotingNOTCH1-inducedTcellacutelymphoblasticleukemiainamousemodel[16].
Thesend-ingsontheotherhandemphasizethecollaborativeroleofthreemiRNAsofthecluster(miR-19b-1,-20aand-92a-1)inreducingdiseaselatencybydecreasingtheexpressionofthetumorsuppressorsPTENandBIM(typicallydown-regulatedinT-ALL)[16].
BecauseofthediversityofmechanismsbywhichmiRNAlevelscontributetotumorinitiationandprogression,severaltherapeuticmodelshavebeendevelopedtotargettheseprocesses.
TherapiestodecreasetheeffectofaspecicmiRNAhavebeenproposedbyusingantisenseoligonucleotides(ASOs)thatinhibittargetsbyadheringtothemiRNA,formingmiRNA-anti-miRNAbindingcomplexes.
Threetypeshavebeendescribed:antagomirs,LNAsandASOswithchemicalalterationstooptimizeefcacy(AMOs)[17,18,19](Table1).
WiththeuseofASOs,Fontanaetal.
[20]demonstratedthattumorgrowthwasinhibitedwheninjectingtheantagomir-17-pintherapyresistantneuroblas-tomacelllines.
Inreferencetothechemicallymodiedforms,Maetal.
[21]usedAMOstointravenouslyinhibitmiR-10binamammarymousetumormodel,andobservedthatmetastasiswasinhibited.
Parketal.
testedanotherchemicallymodiedantagomir,chol-anti-miR-221.
Intheirorthotopicmousemodelofhepatocellularcarcinoma,theyprovedthatchol-anti-miR-221signicantlyreducedmiR-221levelsintheliver,andthatthis,correlatedwithareductionintumorcellproliferation,anincreaseinapoptosismarkersandcellcyclearrest[22].
LNA's,anothertypeofASOhavealsoproventobeefcient,asaliverregenerationmousemodeltestedbySapraetal.
[23],demonstratedthatusingalockednucleicacidASOagainstsurvivin(anapoptosisinhibitor),reduceditsmRNAlevelsin80%.
Researchershaverecentlyengineeredasinglesubunittermed''multiple-targetanti-miRNAantisenseoligode-oxyribonucleotide''(MTg-AMO),throughwhichsimulta-neoussilencinghasbeenachieved[24].
MTg-AMO'shavebeenproventoallowtherestorationofdysregulatedmiRNAlevelsbytargetingseveralkeyaspectsofthebiologyofcancercellsintumortissueatonce.
Luetal.
,demonstratedthattheMTg-AMOtargetingmiR-21,miR-155andmiR-17-5pproducedagreaterinhibitoryeffectoncancercellgrowth,comparedwiththeregularsingle-targetAMOs[24].
AnothertherapeuticapproachtodecreasemiRNAlevelsinvolvesexpressingcompetitiveinhibitorsoftheirfunction.
Fig.
1MicroRNAlevelsarealteredincancerthroughdifferentmechanisms:(a)amplicationofoncogenicmiRNAsresultsindecreasedexpressionoftargetgenes,(b)mutationscandecreasetheexpressionoftumorsuppressivemiRNAsorcouldpotentiatetheexpressionofoncogenicones,(c)epigeneticchangessuchaspromotermethylationortrans-actingfactorschangetheexpressionproleofmiRNAsinacellbydecreasingorincreasingtheirbasallevels,(d)deletionseliminatetheexpressionoftumorsuppressivemiRNAsincreasingtheexpressionoftargetgenes.
TherapeuticstrategiestargetthesealterationsandaimtorestoremiRNAbasallevelsCurrPathobiolRep(2013)1:43–5245123Atypeoftheseare''microRNAsponges''whicharevectorscontainingmultiplearticialmiRNAbindingsitesthatareplacedunderthecontrolofstrongpromoterstoproducelargequantitiesoftranscript[25].
ThesetranscriptsexpressmultipletandemsitestoanmiRNAofinterest[26].
MiRNAspongeswereusedinmetastaticbreastcancermousemodel,whereinvivoexperimentsdemonstratedthatthedownregulationofanover-expressedbreastcancermiRNA(miR-19)couldbeachieved,alongwithmetastasicinhibi-tion[27].
ApproacheshavealreadybeendevelopedtorapidlygeneratesingleorcombinedmiRNAspongesthatcanbeusedforlong-termmiRNAloss-of-functionstudies[28].
RestoringExpressionofTumorSuppressivemiRNAsAlthoughspecicmiRNAsareoverexpressedincancertissue,severalmiRNAsaredownregulatedintumors[29].
GlobalrepressionofmiRNAexpressionhasbeenproventoincreasetumorigenesisinbothinvitroandinvivomodels[30].
Thedownregulationofelementsofthebiogenesispathway(processingmachinery),isoneofthemechanismsbywhichmaturemiRNAlevelsarereducedinsometypesofcancer.
AnexampleofthiswasseenbyMerritetal.
whentheystudiedDicerandDroshalevelsinpatientswithovariancancer.
TheyfoundthatpatientswithalowerexpressionweresignicantlyassociatedwithlowmiRNAlevels,aswellasadvancedtumorstageandsuboptimalsurgicalcytoreduction[31].
FortumorswithreducedexpressionofmiRNAs,resto-rationoftheirbasallevelsisthekeystrategy,whichcanbeachievedthroughmiRNAmimeticsorbyregenerating''miRNAome''(fullspectrumofexpressedmiRNAsinacellataspecictime)functionality(Table2).
ThemostwidelyusedapproachisusingmiRNAmimeticswhicharesyntheticsmallRNAsthatcontaintheexactsequenceoftheendogenousones.
Toachievethedeliveryofastablemolecule,miRNA'saredeliveredasperfectlycomple-mentaryduplexes,similarinarchitecturetosiRNAs[32].
Themajorityofthetherapiesthathavetriedtorestoretumor-suppressivemiRNAwithmimeticshaveachievedtheirgoalbyadministeringthemlocally.
However,nowa-daysthechallengeofdevelopingasystemictherapyinatissue/cell-typespecicmannerhasbeenproventobeachievablethroughdifferentdeliverymechanisms.
Ibrahimetal.
[33]usedbothsystemicandlocalapplicationoflowmolecularweightpolyethylenimine/miR-145andmiR-33acomplexeswhichweredeliveredintomousexenograftTable1InhibitorymiRNAdrugsAgentWhataretheseagentsMechanismofactionExampleAntagomirsSingle-stranded23ntRNAmoleculescomplementarytothetargetedmicroRNAthathavebeenmodiedtoincreasethestabilityoftheRNAandprotectitfromdegradation.
Themodicationsincludedapartialphosphorothioatebackboneinadditionto20-O-methoxyethylThemechanismisnotcompletelyknown,howeveritisbelievedtoactbyformingaduplex:(miRNA/antagomir)thatinducesthedegradationofthetargetedmiRNAandrecyclingoftheantagomirAntagomir-17-5p:ShowntoabolishthegrowthofMYCN-ampliedandtherapy-resistantneuroblastomaleadingtocellcyclingblockadeandapoptosis[20]AMOsanti-miRsSingle-strandedASOs,chemicallymodiedtoenhancebindingafnitytoacomplementarymicroRNA.
UsuallyshorterthantheirtargetmiRNA*17–20ntinlengthandinhibitsinaspecicmannerthegeneticexpressionofitstargetgeneProduceanASO-miRNAdoublestrandedcomplexthroughcomplementarybasebinding,leadingtonon-specicendonucleasecleavageofthetargetedmiRNAAnti-miR-10b:Chemicallymodiedanti-miRNAoligonucleotideshowntosuppressbreastcancermetastasisinmousemammarytumormodel[21]LNAanti-miRsAnucleicacidanaloguecontainingoneormoreLNAnucleotidemonomerswithabicyclicfuranoseunitlockedinanRNAmimickingsugarconformationSameastheAMOEZN-3042:ALNA-ASOproventodownregulatesurviving(apoptosisinhibitor),andtherebyinhibittumorgrowthinvivo[23]MTg-AMOsModiedAMO,inwhichmultipleantisenseunitsareengineeredintoasingleunitSameastheAMO,exceptthatthemultiplicityofunitsenablesittosimultaneouslysilencemultipletargetmiRNAsMTg-AMOagainstmiR-21,miR-155andmiR-17-5p:Producedagreaterinhibitoryeffectoncancercellgrowth,comparedwiththeregularsingle-targetAMOs[24]MicroRNAspongesTranscriptsthatcontainmultipletandem-bindingsitestoamiRNAofinterestandaretranscribedfromexpressionvectorsBycompetingwiththenativetargetsofmiRNAs,thesehighlyexpressedtranscriptsresultinincreasedexpressionofthemiRNA'snativetargetsmiRNAspongetoincreasemiR-9targeting:Metastasisformationwasinhibitedinhighlymalignantbreastcancercells[25]46CurrPathobiolRep(2013)1:43–52123tumorsofcoloncarcinoma,obtainingantitumoreffectssuchasreducedproliferationandincreasedapoptosis.
Inanothermodel,thesystemicadministrationofmiR-26athroughanadenoviralvectorwasgiventomicewithhepatocellularcarcinoma,resultingintheinhibitionofcancercellproliferation,inductionoftumorcellapoptosisandprotectionfromdiseaseprogression[34].
Averyrecentorthotopicmodelforhepatocellularcarcinomaachievedahighertherapeuticefcacythanpreviousones;consistentlydecreasedlevelsofmiR-34awheretargetedwithliposomaldeliveryofthemiRNAinarelevantNOV340/miR-34aformulation.
Theeffectivenessofdecreasingtumorigenesisinthismodelhasledtheresearcherstoanticipatetheini-tiationofclinicaltrialsin2013,withmiR-34abeingoneoftherstmiRNAmimicstoreachtheclinic[35].
Alongwithmimetics,othertherapieshaveaimedatrestoringmiRNAlevelsina''globalmanner''.
TwoofthesetherapiesareepigeneticmodiersandenhancersofthemiRNAprocessingmachinery.
Epigeneticmodiersaddresschangessuchashyper-methylationandhistonemodicationpatterns,whichhavebeenlinkedtomiRNAdysregulation.
SaitoandcolleaguesaimedattargetingthehypermethylationthatsilencedthetumorsuppressormiR-127inhumancancercells.
Forthis,theyusedchromatin-modifyingdrugssuchas5-aza-20-deoxycytidineand4-phenylbutyricacidinhumancancercells.
AfterthetreatmenttheyobservedarestorationinmiR-127levelsandsubsequentinactivationofBCL6proto-oncogene[36].
Otherresearchgroupshavefurther-morecombinedstrategiesusingDNAdemethylatingagentsandhistonedeacetylaseinhibitors.
HuangandcolleaguestestedboththerapiestoregeneratebasallevelsoftumorsuppressormiR-129-2.
TheirtreatmentresultedinthereactivationofmiR-129-2incancercells,withthedownstreameffectofdecreasingSOX4(transcriptionfac-tor)levelsandreducingproliferationinendometrialcancercells[37].
ThedisruptionofthemiRNAprocessingmachineryhasalsobeenknowntocontributetothedevelopmentofhumantumors,aspreviouslymentioned[31].
Scientistshaverecentlycomeupwithasmallmolecule/drugthatenhancesRNAiandpromotesmiRNAprocessing:Enox-acin[38].
ThisisauoroquinolonethatincreasestheproductionoftumorsuppressivemiRNAbybindingtothetransactivation-responsiveRNA-bindingprotein2(TRBP).
Inhumanculturesandametastaticmousemodel,theuseofthisdrughadacancer-specicgrowth-inhibitoryeffect[38].
TheseresultssuggestthatnovelstrategiesaimingtorestorethemiRNAomemightbepromising.
DeliveryMechanismsInvivodeliveryisthemainfocusofmiRNAbasedther-apies,andeitherlocalorsystemictechniqueshavebeendeveloped.
Localstrategies,suchasdirectsiteinjection,haveseveraladvantagesastheyevadenucleasedegrada-tion,decreasemiRNAmodulatoruptakebynon-targetedtissuesandincreasebioavailabilityintumorsites.
Never-thelesstheyaremerelyapplicabletoaverylimitedlistoftargettissuessuchasocular,brain,sarcomas,mesothelio-mas[39];andeveninthesetissuesnotalltargetedtumorcellscanbereachedbythemiRNAmodulators[40].
Thesecondapproach,asystemicdelivery,consistsofabloodstreaminjectionthat—intheory—shouldhaveamuchmoreefcientdisseminationtothetargettissues.
However,thesemechanismsneedtoovercomeinvivobarrierssuchasnucleasedegradationandnon-specicTable2DrugsthatrestoremiRNAAgentWhataretheseagentsMechanismofactionExamplesmiRNAmimeticsSyntheticsmallRNAsthatcontaintheexactsequenceofendogenousmiRNA.
TheycanbemodiedtohaveenhancedefciencybyincreasingtheafnityforaspecictargetandreducingotherunwantedmiRNAeffectsDeliveredasperfectcomplementaryduplexesandtheyactbyimprovingtheRISCloadingofmiRNAmiR-26a:Inahepatocellularcarcinomamousemodelthismimeticinhibitedcellgrowthandapoptosis[34]EpigeneticmodiersMoleculesthatreverseDNAmethylationandposttranslationalhistonemodicationsEitherinhibitmethylation,orinteractwithenzymesthatremoveacetylgroups5-aza-20-deoxycytidineand4-phenylbutyricacid:RestoredtumorsuppressivemiR-127levelsandsubsequentlyinactivatedBCL6proto-oncogene[36]EnhancersofmiRNAprocessingmachinerySmallmolecule/drugthatenhancesRNAiandpromotesmiRNAprocessingIncreasetheproductionoftumor-suppressivemiRNAyinteractingwiththebindingproductsoftheproteinsthatregulatemiRNAmaturationEnoxacin:AuoroquinolonethathasbeenproventoincreasetheproductionoftumorsuppressivemiRNAbybindingtothetransactivation-responsiveRNA-bindingprotein2(TRBP)[38]CurrPathobiolRep(2013)1:43–5247123targetingofallthetissuesthatarereachedbybloodves-sels,specicallytheliver,jejunum,lungandkidney[40].
Chemicalmodications,encapsulationsandconjugationshaveaimedtoprotectthesetherapeuticmiRNAs,becauseonceinthebloodstreamtheyarerequiredtomaintainintact.
Conservingtheirstructureallowsthemtotraversecellularmembranesandmoreimportantlyreachthecytosoloncereleasedfromtheirendosomevesicle[41].
CarriersSynthesizingastable,biodegradableandbiocompatiblemiRNAmodulatorisveryimportant,butensuringanadequatecellularpenetrationofthedeliverymoleculeisalsocrucial.
Carrierscanbedividedintwogroups:viralandnon-viral,andbothtypesaimtotargettumorsystemswhilesimultaneouslyevadingimmunetoxicity.
Viralstrategieshavebeenusedwithvectorssuchaslentiviruses,adenovirusesandadeno-associatedviruses(AAVs),andgeneticmanipulationcantargettheseentitiestothecellsofchoice[42,43].
Althoughpreclinicalmousemodelsusingvirusasvectormediateddeliveryhaveshownpromisingresults,theypresentsomeawsthatstillneedtobeaddressedbeforeadvancingintotheclinicalpractice.
Someofthestrategiestoovercometheseawscouldfocusonobtainingefcientnuclearlocalization,evadingtheactivationofoncogenesorinactivationoftumorsuppressorgenes,andeliminatingundesiredimmunogenicresponsesinpatients[41].
Non-viralstrategiessuchasliposomaldeliveryhavebeenwidelyused,andtheyhavebeendemonstratedtoinducetumorsuppressioninseveralmicemodels[44–46].
Theirsuccesshasbeenattributedtotheprotectionofoli-gonucleotidesfromnucleasemediateddegradation,alongwiththeirabilitytoincreasethecirculatinghalf-lifewhensystemicallydelivered[39].
However,invivosystemshavehadadverseeffectsrelatedtothepositivechargeofthelipidcomponent[39,47].
Onestrategytoovercomethesetoxiceffectsisdevel-opmentofneutralnano-liposomesbasedon1,2-dioleoyl-sn-glycero-3-phosphatidylcholine(DOPC)[48].
Thesenano-liposomescandelivermiRNAinvivointotumorcells10-and30-foldmoreeffectivelythancationiclipo-somes[49],andhavebeenproveninmousemodels.
Forexample,inamousemodelforlungcancer,Trangetal.
[50],systemicallydeliveredthetumorsuppressormiR-34ainaneutrallipidemulsionandobtaineda60%reductionintumorareacomparedtocontrols.
Inanothermodel,micewithovariancancertumorsweretreatedwithsiRNAincorporatedintotheneutral-DOPCliposomestotargettheoncoproteinEphA2.
IntheseexperimentsLandenetal.
[49],observedreducedtumorgrowthwhencomparedwithanonsilencingsiRNA.
Otheralternativesincludecoatingcationicbilayerswithhydrophilicpolyethyleneglycol(PEG),whichalsodecreasesimmunogenicresponses[51].
Finally,theaddi-tionofbiodegradablesyntheticornaturalpolymerscouldalsorepresentaneffectivealternativetofacilitatesustaineddeliveryinvivo(e.
g.
,polyethyleneimines);nevertheless,toxicityremainsachallenge.
BodyFluidExpressedmiRNAs:BiomarkersandTreatment-ResponsePredictorsDifferenttypesofcancershavespecicmiRNAprolesthatallowtumorstobeclassiedbasedontheirmiRNAexpressionlevels.
ThelackofcomplextranscriptionalandtranslationalmodicationscomparedtomRNAsandpro-teinssuggestthattheuseofmiRNAsasbiomarkersforcancerhasgreatpotential.
Sincetheremustbesomemethodofcommunicationbetweencancercellsandtheirmicroenvironment,researchhassuggestedthatmiRNAsshouldbeconsideredmoleculesofsecretionalongwithcytokines,growthfactorsandotherproteins[52].
SerumandplasmacanbothbeusedtomeasurespecicmiRNAlevels,astherecomparisoninseveralstudieshasledtoequaldistributionofmiRNAs.
Mitchelletal.
[53],foundastrongcorrelationwhencomparingbothoftheseinthebloodofmiceinprostatecancerxenograftmodel;more-over,aprolestudydoneinserumandplasmaoflungcancerpatientsledtothesameconclusions[54].
StudieshavealreadydemonstratedcorrelationbetweencirculatingmiRNA-expressionlevelsandresponsetoanti-cancertreatment[55],givingmiRNAacrucialroleinthera-peuticmanagementofcancerpatients.
ResearchgroupshavefocusedonsegregatingcirculatingmiRNAsinspecicpat-ternsbasedonthedifferentcancertypes(foramoredetailedreviewseeAllegraetal.
[56]).
InthisreviewIwillrefertofourofthecancertypeswiththehighestincidence(lung,breast,colonandhematologicmalignancies),andcurrentresearchndingsoncharacteristicuidexpressedmiRNAs.
LungCancerMorepeoplediefromlungcancerthanfromanyothertype,andintheUSover200,000caseswerediagnosedin2012,andapproximately160,000diedfromthedisease[57].
ThishasincreasedresearchincludingstudiesinthemiRNAeld.
Inlungcancer,circulatingmiRNAshavebeenlinkedtopre-diseasepatterns,diseasestaging,tumoractivityandmetastasisdevelopment.
Researchhasrecentlygeneratedahigh-throughputstudy,inwhichforthersttimeitwasdemonstratedthatpre-diseasesignaturesofmiRNAexpressioninplasmasamplescanpredictdevel-opmentoflungcancerbeforeacquiringadiagnosisfrom48CurrPathobiolRep(2013)1:43–52123conventionaltechniques[58].
MiR-21wasrecentlydescribedasamiRNAthatcoulddifferentiateearlystagelungcancerpatientsfromhealthyindividuals;furthermore,itsplasmalevelsnotonlyserveasacirculatingtumorbio-marker,butcouldalsodeterminesensitivitytoplatinum-basedchemotherapy[59,60].
HighcirculatingmiR-155,miR-197andmiR-182werealsocorrelatedwithdiseasestageI,asplasmasamplesfrompatientsdemonstratedsignicantlyhigherlevelsthantheirrespectivecontrols[61].
Finally,miR-486-5phasbeenalsostudiedinplasmaoflungcancerpatients,andatumor-suppressiverolehasbeenassociatedwithitsdownregulation[59,62].
ThesendingssuggestthatspecicmiRNAsserveasmarkersofdiseasestageandaprognosisindicator[61].
BreastCancerBreastcanceristhemostcommoncanceramongAmericanwomen(asidefromskin),andmiRNAshavealsoacquiredsignicanceinthisdisease.
IntheUnitedStatesin2008,210,203womenwerediagnosedwiththedisease,and40,589womendiedfromit[63].
AlteredmiRNAshavebeenstudiedbyseveralgroups:Rothandcolleaguesreportedndingsofalteredlevelsintheserumofbreastcancerpatients[64].
Moreover,Mitchelletal.
[53]andHeneghanetal.
[65]demonstratedtumorigenicrolesofmiR-195andlet-7ainbreastcancer,astheyprovedthatlevelswereincreasedwiththepresenceofthetumor,anddecreasedinserum2weeksaftersurgicalresection.
ColorectalCancer(CRC)Ofcancersaffectingbothmenandwomen,colorectalcanceristhesecondleadingcancerkillerintheUnitedStates[66].
CRChasalsobeenstudiedtondalternativebiomarkersofdiseaseprogression.
Forstagingtechniques,Chengetal.
,foundthatcirculatingmiR-141wassigni-cantlyassociatedwithstageIVcoloncancerinacohortofplasmasamples.
TheyalsoobservedthatcombiningthedetectionofmiR-141andcarcinoembryonicantigen(CRCmarker)furtherimprovedtheaccuracyofdetectionandpatientsthathavebothofthemwereassociatedwithapoorprognosis[67].
OtherpotentialbiomarkersstudiedhavebeenthecirculatinglevelsofmiRs-17-3pand-92.
Thesewereshowntodecreaseaftersurgery,andingthatservedtodifferentiateCRCpatientsinrecoveryfromothergastriccancerpatientsandfromnormalindividuals[68].
HematologicalMalignanciesIntheUSin2009,therewereapproximately271,880menandwomenalivewhohadahistoryofleukemia,andover10%ofthesearediagnosedbeforetheageof20[69].
Inthereachofdiscoveringnewtherapeuticmodalitiesforthesepatients,theroleofmiRNAsisstillbeingelucidated[69].
Inhematologicalmalignancies,miRNAshaveanimportantrole,astheyparticipateinleukemogenesisbycoordinatingeffectswithkeytranscriptionfactorsrequiredforhematopoiesis.
Moussayetal.
studied14miRNAsassociatedwithCLLandfoundthatthreeofthem—miR-195,miR-29-aandmiR-222—stronglyseparatedcontrolsversusCLLpatients.
Moreover,increasedlevelsofmiR-150increasedwithdiseaseseverity,suggestingthepoten-tialofthisbiomarkerindiseasestaging[70].
Inothermalignancies,suchasBcelllymphoma,miRNAssuchasmiR-21,miR-155andmiR-210werefoundtocorrelatewithfavorableclinicaloutcome,astheywereassociatedwithrelapse-freesurvival[71].
AlthoughnotmanystudieshavebeendoneofcirculatingmiRNAinacuteleukemias,recentevidencehavepointedoutthatdecreasedplasmalevelsofmiRNA-92isasignicantbiomarkerforpatientspresentingacutemyeloidleukemia[72].
ConclusionThegeneralideaofreconstitutingthemiRNAomeas''awhole''hasresultedinimprovingstrategiestoachieveareductionintumorgrowthandmetastasisinhibition.
ThedevelopmentofmiRNA-basedtherapies(suchasmolec-ulardrugs,mimeticsandAMOs)hascontinuedtopro-gress,astheinvivomodelsanddeliverymechanismsbeingdevelopedaimtobelesstoxicandmoreefcientinreachingtheirtargets.
Thesynthesisofnanoparticlescomposedofpolymers,neutrallipids,chimerasorcon-jugateswillcontinueimprovinglocalaswellassystemicdelivery.
Nevertheless,severalimmunogenic/nonspeciceffectspointtothenecessityofvalidatingtheefciencyoftherapeuticresponsesinamorepersonalized,patient-specicmanner.
CirculatingmiRNAsnotonlycontributetodiseasestaging,buttheycanimproveprognosisbyemphasizingdiseaseprogressionorregressionandbypredictingmeta-staticpatternsindividuallyinpatients.
CombiningtheuseofknowntherapeuticmechanismswithuidmiRNApro-lescouldresultinanimprovedstrategyagainstcancer.
However,itshouldbetakenintoconsiderationthatmiRNAlevelsintumormicroenvironmentsmightbeacontributionfromcellsthatarenotcancerrelated.
Moreover,othertypesofpathologiescouldalsobegeneratingsimilarmiRNAproles,whichcouldoverlaptheanalysisdoneincancerpatients.
Finally,thefactthatRNA-extractingandquanticationmethods,aswellasnormalizers,varybetweenpublishedstudiesmakeconclusionslesspreciseanduniform.
CurrPathobiolRep(2013)1:43–5249123Biologicaluid-basedmiRNAsproles,alongwithmiRNA-basedtherapies,representanattractiveareaforcurrentcancerresearchbecausetheycouldpotentiallyrevertcancercellsfromtheirtransformedphenotypebacktotheirnormalone.
Inthisway,pharmaceuticaltherapiesareheadedtowardsindividualization,andtheefciencyoftreatmentscouldpotentiallyincrease.
AcknowledgmentsDr.
CalinisTheAlanM.
GewirtzLeukemia&LymphomaSocietyScholar.
HeissupportedalsoasaFellowatTheUniversityofTexasMDAndersonResearchTrust,asaUni-versityofTexasSystemRegentsResearchScholar,andbytheCLLGlobalResearchFoundation.
WorkinDr.
Calin'slaboratoryissupportedinpartbytheNIH/NCI(CA135444),aDepartmentofDefenseBreastCancerIdeaAward,DevelopmentalResearchAwardsinBreastCancer,OvarianCancer,BrainCancer,ProstateCancer,MultipleMyeloma,Leukemia(P50CA100632)andHeadandNeck(P50CA097007)SPOREs,aSINFMDACC_DKFZgrantinCLL,aSINFgrantincolorectalcancer,theLauraandJohnArnoldFoundation,theRGKFoundation,andtheEstateofC.
G.
Johnson,Jr.
DisclosureNopotentialconictsofinterestrelevanttothisarticlewerereported.
ReferencesPapersofparticularinterest,publishedrecently,havebeenhighlightedas:OfimportanceOfmajorimportance1.
KrolJ,LoedigeI,FilipowiczW(2010)Thewidespreadregula-tionofmicroRNAbiogenesisfunctionanddecay.
NatRev11:597–6102.
FriedmanRC,FarhKK,BurgeCBetal(2009)MostmammalianmRNAsareconservedtargetsofmicroRNAs.
GenomeRes19(1):92–1053.
DenliAM,TopsBB,PlasterkRHetal(2004)ProcessingofprimarymicroRNAsbytheMicroprocessorcomplex.
NatRev432:231–2354.
ChelouS,DosSantosCO,ChongMMetal(2010)Adicer-independentmiRNAbiogenesispathwaythatrequiresAgocatalysis.
Nature465:584–5895.
HeL,HannonGJ(2004)MicroRNAs:smallRNAswithabigroleingeneregulation.
NatRevGenet5(7):522–5316.
InuiM,MartelloG,PiccoloS(2010)MicroRNAcontrolofsignaltransduction.
NatRevMolCellBiol11(4):252–2637.
WangY,LeeCG(2009)MicroRNAandcancer—focusonapoptosis.
JCellMolMed13(1):12–238.
KasinskiAL,SlackFJ(2011)Epigeneticsandgenetics.
Micro-RNAsenroutetotheclinic:progressinvalidatingandtargetingmicroRNAsforcancertherapy.
NatRev11:849–864.
ThisstudydiscussestheprogressusingmousemodelstounderstandtherolesofmiRNAsincancerandthepotentialformanipulatingmiRNAsforcancertherapy.
9.
CalinGA,DumitruCD,ShimizuMetal(2002)Frequentdeletionsanddown-regulationofmicro-RNAgenesmiR15andmiR16at13q14inchroniclymphocyticleukemia.
ProcNatlAcadSciUSA99(24):15524–15529.
Thisreportpresentsevi-dencefortheinvolvementofmiRNAgenesinhumantumors,andprovidesfurtherevidenceofthesignicanceofthisgrowingfamilyofregulatorygenes.
10.
CalinGA,SevignaniC,DumitruCDetal(2004)Humanmicr-oRNAgenesarefrequentlylocatedatfragilesitesandgenomicregionsinvolvedincancers.
ProcNatlAcadSciUSA101(9):2999–300411.
NegriniM,NicolosoMS,CalinGA(2009)MicroRNAsandcancer—newparadigmsinmolecularoncology.
CurrOpinCellBiol21(3):470–47912.
DavalosV,MoutinhoC,VillanuevaAetal(2012)Dynamicepi-geneticregulationofthemicroRNA-200familymediatesepithelialandmesenchymaltransitionsinhumantumorigenesis.
Oncogene31(16):2062–207413.
Davis-DusenberyBN,HataA(2010)MechanismsofcontrolofmicroRNAbiogenesis.
JBiochem148(4):381–39214.
ChengCJ,SlackFJ(2012)ThedualityofoncomiRaddictioninthemaintenanceandtreatmentofcancer.
CancerJ18(3):232–23715.
OliveV,BennettMJ,WalkerJCetal(2009)miR-19isakeyoncogeniccomponentofmir-17-92.
GenesDev23(24):2839–284916.
MuP,HanYC,BetelDetal(2009)GeneticdissectionofthemiR-17*92clusterofmicroRNAsinMyc-inducedB-celllym-phomas.
GenesDev23(24):2806–281117.
ElmenJ,LindowM,Schu¨tzSetal(2008)LNA-mediatedmicroRNAsilencinginnon-humanprimates.
Nature452(7189):896–89918.
EsauC(2008)InhibitionofmicroRNAwithantisenseoligo-nucleotides.
MethodsMolBiol41(1):55–60.
Thefocusofthisreviewwastheuseofantisenseoligonucleotides(antimiRs)inmiRNAinhibitionforloss-of-functionstudies.
ItsummarizestheemployedantisensechemistriesandtheirutilityindesigningantimiRoligonucleotides,anddescribesinvivodeliverystrate-giesandapproachesforassessmentofmiRNAinhibitionandpotentialoff-targeteffects.
19.
Kru¨tzfeldtJ,RajewskyN,BraichRetal(2005)SilencingofmicroRNAsinvivowith'antagomirs'.
Nature438(7068):685–689.
ThendingsofthisarticleshowthatantagomirsarepowerfultoolstosilencespecicmiRNAsinvivoandmayrep-resentatherapeuticstrategyforsilencingmiRNAsindisease.
20.
FontanaL,FioriME,AlbiniSetal(2008)Antagomir-17-5pabolishesthegrowthoftherapy-resistantneuroblastomathroughp21andBIM.
PLoSONE3(5):e223621.
MaL,ReinhardtF,PanEetal(2010)TherapeuticsilencingofmiR-10binhibitsmetastasisinamousemammarytumormodel.
NatBiotechnol28(4):341–34722.
ParkJK,KogureT,NuovoGJetal(2011)miR-221silencingblockshepatocellularcarcinomaandpromotessurvival.
CancerRes71(24):7608–7616.
Thesendingsprovedthepreclinicalefcacyofchol-anti-miR-221inavalidorthotopicmousemodelofhepatocellularcarcinoma.
ResultssuggestthattargetingthismiRNAservesatherapeuticbenetforpatientswithadvanceddisease.
23.
SapraP,WangM,BandaruRetal(2010)Down-modulationofsurvivinexpressionandinhibitionoftumorgrowthinvivobyEZN-3042,alockednucleicacidantisenseoligonucleotide.
NucleosidesNucleotidesNucleicAcids29(2):97–11224.
LuY,XiaoJ,LinHetal(2009)Asingleanti-microRNAantisenseoligodeoxyribonucleotide(AMO)targetingmultiplemicroRNAsoffersanimprovedapproachformicroRNAinterference.
NucleicAcidsRes37(3):e2425.
EstellerM(2011)Non-codingRNAsinhumandisease.
NatRevGenet12(12):861–87426.
StenvangJ,KauppinenS(2008)MicroRNAsastargetsforantisense-basedtherapeutics.
ExpertOpinBiolTher8(1):59–8150CurrPathobiolRep(2013)1:43–5212327.
MaL,YoungJ,PrabhalaHetal(2010)miR-9,aMYC/MYCN-activatedmicroRNA,regulatesE-cadherinandcancermetastasis.
NatCellBiol12(3):247–25628.
KluiverJ,Slezak-ProchazkaI,Smigielska-CzepielKetal(2012)GenerationofmiRNAspongeconstructs.
MethodsMolBiol58(2):113–11729.
GaurA,JewellDA,LiangYetal(2007)CharacterizationofmicroRNAexpressionlevelsandtheirbiologicalcorrelatesinhumancancercelllines.
CancerRes67(6):2456–246830.
KumarMS,LuJ,MercerKLetal(2007)ImpairedmicroRNAprocessingenhancescellulartransformationandtumorigenesis.
NatGenet39(5):673–67731.
MerrittWM,LinYG,HanLYetal(2008)Dicer,Drosha,andoutcomesinpatientswithovariancancer.
NEnglJMed359(25):2641–265032.
LoveTM,MoffettHF,NovinaCD(2008)NotmiR-lysmallRNAs:bigpotentialformicroRNAsintherapy.
JAllergyClinImmunol121(2):309–31933.
IbrahimAF,WeirauchU,ThomasMetal(2011)MicroRNAreplacementtherapyformiR-145andmiR-33aisefcaciousinamodelofcoloncarcinoma.
CancerRes71(15):5214–522434.
KotaJ,ChivukulaRR,O'DonnellKAetal(2009)TherapeuticmicroRNAdeliverysuppressestumorigenesisinamurinelivercancermodel.
Cell137(6):1005–101735.
BaderAG(2012)miR-34—amicroRNAreplacementtherapyisheadedtotheclinic.
FrontGenet3:120.
ThisreviewfocusesonthemolecularmechanismsofmiR-34-mediatedtumorsuppres-sion,pharmacologiesinanimalmodelsofcancer,andastatusupdateofamiR-34therapythatmaybeamongtherstmiRNAmimicstoreachtheclinic.
36.
SaitoY,LiangG,EggerGetal(2006)SpecicactivationofmicroRNA-127withdownregulationoftheproto-oncogeneBCL6bychromatin-modifyingdrugsinhumancancercells.
CancerCell9(6):435–44337.
HuangYW,LiuJC,DeatherageDEetal(2009)EpigeneticrepressionofmicroRNA-129-2leadstooverexpressionofSOX4oncogeneinendometrialcancer.
CancerRes69(23):9038–904638.
MeloS,VillanuevaA,MoutinhoCetal(2011)Smallmoleculeenoxacinisacancer-specicgrowthinhibitorthatactsbyenhancingTARRNA-bindingprotein2-mediatedmicroRNAprocessing.
ProcNatlAcadSciUSA108(11):4394–439939.
GarzonR,MarcucciG,CroceCM(2010)TargetingmicroRNAsincancer:rationale,strategiesandchallenges.
NatRevDrugDiscovery9:775–78940.
BaderAG,BrownD,StoudemireJetal(2011)DevelopingtherapeuticmicroRNAsforcancer.
GeneTher18:1121–112641.
PereiraDM,RodriguesPM,BorralhoPMetal(2012)Deliv-eringthepromiseofmiRNAcancertherapeutics.
DrugDiscovToday.
ThisreviewfocusesoninvivostrategiesofmiRNAmodulatordeliveryincancermodels.
42.
BonciD,CoppolaV,MusumeciMetal(2008)ThemiR-15a-miR-16-1clustercontrolsprostatecancerbytargetingmultipleoncogenicactivities.
NatMed14(11):1271–1277.
ThisarticleproposedthatmiR-15aandmiR-16actastumorsuppressorgenesinprostatecancerthroughthecontrolofcellsurvival,proliferationandinvasion.
Moreover,theysuggestthatthetherapeuticimplicationsfoundmaybeexploitedforfuturetreatmentofprostatecancer.
43.
NadimintyN,TummalaR,LouWetal(2012)MicroRNAlet-7cisdownregulatedinprostatecancerandsuppressesprostatecancergrowth.
PLoSONE7(3):e3283244.
AkaoY,NakagawaY,HirataIetal(2010)Roleofanti-oncomirsmiR-143and-145inhumancolorectaltumors.
CancerGeneTher17(6):398–40845.
PramanikD,CampbellNR,KarikariCetal(2011)RestitutionoftumorsuppressormicroRNAsusingasystemicnanovectorinhibitspancreaticcancergrowthinmice.
MolCancerTher10(8):1470–148046.
RaiK,TakigawaN,ItoSetal(2011)LiposomaldeliveryofMicroRNA-7-expressingplasmidovercomesepidermalgrowthfactorreceptortyrosinekinaseinhibitor-resistanceinlungcancercells.
MolCancerTher10(9):1720–172747.
PecotCV,CalinGA,ColemanRLetal(2011)RNAinterferenceintheclinic:challengesandfuturedirections.
NatRevCancer11(1):59–6748.
Gutierrez-PuenteY,TariAM,FordRJetal(2003)CellularpharmacologyofP-ethoxyantisenseoligonucleotidestargetedtoBcl-2inafollicularlymphomacellline.
LeukLymphoma44(11):1979–198549.
LandenCNJr,Chavez-ReyesA,BucanaCetal(2005)TherapeuticEphA2genetargetinginvivousingneutrallipo-somalsmallinterferingRNAdelivery.
CancerRes65(15):6910–691850.
TrangP,WigginsJF,DaigeCLetal(2011)SystemicdeliveryoftumorsuppressormicroRNAmimicsusinganeutrallipidemulsioninhibitslungtumorsinmice.
MolTher19(6):1116–112251.
deAntonellisP,MedagliaC,CusanelliEetal(2011)MiR-34atargetingofnotchliganddelta-like1impairsCD15/CD133tumor-propagatingcellsandsupportsneuraldifferentiationinmedulloblastoma.
PLoSONE6(9):e2458452.
Wentz-HunterKK,PotashkinJA(2011)TheroleofmiRNAsaskeyregulatorsintheneoplasticmicroenvironment.
MolBiolInt.
doi:10.
4061/2011/83987253.
MitchellPS,ParkinRK,KrohEMetal(2008)Circulatingmicro-RNAsasstableblood-basedmarkersforcancerdetection.
ProcNatlAcadSciUSA105(30):10513–1051854.
ChenX,BaY,MaLetal(2008)CharacterizationofmicroRNAsinserum:anovelclassofbiomarkersfordiagnosisofcancerandotherdiseases.
CellRes18(10):997–100655.
LeeY,AhnC,HanJetal(2003)ThenuclearRNaseIIIDroshainitiatesmicroRNAprocessing.
Nature425(6956):415–41956.
AllegraA,AlonciA,CampoSetal(2012)Circulatingmicro-RNAs:newbiomarkersindiagnosis,prognosisandtreatmentofcancer(review).
IntJOncol41(6):1897–1912.
ThismanuscriptemphasizesthatmiRNAprolingcouldimprovethediagnosisofcancerandcouldpredictpatientoutcome.
Alterationsincircu-latingmiRNAmaysignalapredispositiontocancer,exaltingtheimportanceoftheseprolesastherapeutictargetsincancerpatients.
57.
NationalCancerInstitute(2012)Cancerstatistics.
Availableathttp://www.
cancer.
gov/statistics/nd.
AccessedDecember201258.
BoeriM,VerriC,ConteDetal(2011)MicroRNAsignaturesintissuesandplasmapredictdevelopmentandprognosisofcom-putedtomographydetectedlungcancer.
ProcNatlAcadSciUSA108(9):3713–371859.
ShenJ,LiuZ,ToddNWetal(2011)DiagnosisoflungcancerinindividualswithsolitarypulmonarynodulesbyplasmamicroR-NAbiomarkers.
BMCCancer.
doi:10.
1186/1471-2407-11-37460.
WeiJ,GaoW,ZhuCJetal(2011)IdenticationofplasmamicroRNA-21asabiomarkerforearlydetectionandchemo-sensitivityofnon-smallcelllungcancer.
ChinJCancer30(6):407–41461.
ZhengD,HaddadinS,WangYetal(2011)PlasmamicroRNAsasnovelbiomarkersforearlydetectionoflungcancer.
IntJClinExpPathol4(6):575–58662.
HuangX,DingL,BennewithKLetal(2009)Hypoxia-induciblemir-210regulatesnormoxicgeneexpressioninvolvedintumorinitiation.
MolCell35(6):856–86763.
CenterforDiseaseControlandPrevention(2012)Breastcan-cer.
Availableathttp://www.
cdc.
gov/cancer/breast/.
AccessedDecember2012CurrPathobiolRep(2013)1:43–525112364.
RothC,RackB,Mu¨llerVetal(2010)CirculatingmicroRNAsasblood-basedmarkersforpatientswithprimaryandmetastaticbreastcancer.
BreastCancerRes12(6):R9065.
HeneghanHM,MillerN,KerinMJ(2011)CirculatingmicroR-NAs:promisingbreastcancerbiomarkers.
BreastCancerRes13(1):40266.
CenterforDiseaseControlandPrevention(2012)Colorectalcancer.
Availableathttp://www.
cdc.
gov/cancer/colorectal/.
AccessedDecember201267.
ChengH,ZhangL,CogdellDEetal(2011)CirculatingplasmaMiR-141isanovelbiomarkerformetastaticcoloncancerandpredictspoorprognosis.
PLoSONE6(3):e1774568.
NgEK,ChongWW,JinHetal(2009)DifferentialexpressionofmicroRNAsinplasmaofpatientswithcolorectalcancer:apotentialmarkerforcolorectalcancerscreening.
Gut58(10):1375–138169.
NationalCancerInstitute(2012)SEERstatfactsheets:leukemia.
Availableathttp://seer.
cancer.
gov/statfacts/html/leuks.
html.
AccessedDecember201270.
MoussayE,WangK,ChoJHetal(2011)MicroRNAasbio-markersandregulatorsinB-cellchroniclymphocyticleukemia.
ProcNatlAcadSciUSA108(16):6573–657871.
LawrieCH,GalS,DunlopHMetal(2008)Detectionofelevatedlevelsoftumour-associatedmicroRNAsinserumofpatientswithdiffuselargeB-celllymphoma.
BrJHaematol141(5):672–67572.
TanakaM,OikawaK,TakanashiMetal(2009)Down-regulationofmiR-92inhumanplasmaisanovelmarkerforacuteleukemiapatients.
PLoSONE4(5):e553252CurrPathobiolRep(2013)1:43–52123

LOCVPS全场8折,香港云地/邦联VPS带宽升级不加价

LOCVPS发布了7月份促销信息,全场VPS主机8折优惠码,续费同价,同时香港云地/邦联机房带宽免费升级不加价,原来3M升级至6M,2GB内存套餐优惠后每月44元起。这是成立较久的一家国人VPS服务商,提供美国洛杉矶(MC/C3)、和中国香港(邦联、沙田电信、大埔)、日本(东京、大阪)、新加坡、德国和荷兰等机房VPS主机,基于XEN或者KVM虚拟架构,均选择国内访问线路不错的机房,适合建站和远程办...

弘速云20.8元/月 ,香港云服务器 2核 1g 10M

弘速云元旦活动本公司所销售的弹性云服务器、虚拟专用服务器(VPS)、虚拟主机等涉及网站接入服务的云产品由具备相关资质的第三方合作服务商提供官方网站:https://www.hosuyun.com公司名:弘速科技有限公司香港沙田直营机房采用CTGNET高速回国线路弹性款8折起优惠码:hosu1-1 测试ip:69.165.77.50​地区CPU内存硬盘带宽价格购买地址香港沙田2-8核1-16G20-...

GigsGigsCloud:$16/月KVM-1GB/30GB/1TB/1.6T高防/洛杉矶CN2 GIA+AS9929

GigsGigsCloud是一家成立于2015年老牌国外主机商,提供VPS主机和独立服务器租用,数据中心包括美国洛杉矶、中国香港、新加坡、马来西亚和日本等。商家VPS主机基于KVM架构,绝大部分系列产品中国访问速度不错,比如洛杉矶机房有CN2 GIA、AS9929及高防线路等。目前Los Angeles - SimpleCloud with Premium China DDOS Protectio...

ww.4399.com为你推荐
美国互联网瘫痪2000年美国的互联网危机事件的原因?百度商城百度商城里抽奖全是假的access数据库ACCESS数据库和SQL有什么区别?老虎数码我想买个一千左右的数码相机!最好低于一千五!再给我说一下像素是多少?www.kkk.com谁有免费的电影网站,越多越好?冯媛甑夏如芝是康熙来了的第几期?同ip网站同IP的两个网站,做单向链接,会不会被K掉??777k7.comwww.777tk.com.怎么打不 开www.gegeshe.com有什么好听的流行歌曲www.se222se.com请问http://www.dibao222.com这个网是做什么
深圳域名注册 bbr cloudstack l5520 mediafire下载 godaddy 轻博 qq数据库 java虚拟主机 河南m值兑换 adroit 1元域名 海外空间 论坛主机 石家庄服务器托管 域名转入 睿云 云销售系统 广州主机托管 博客域名 更多