uniformlyk8k8.com
k8k8.com 时间:2021-03-21 阅读:(
)
DynamicCollapseAnalysisofReticulatedShellStructureswithSubstructuresLiHong-mei,WangJun-lin,RenXiao-qiang,SunJian-hengCollegeofUrbanandRuralConstruction,AgriculturalUniversityofHebei,Baoding071001,ChinaLuWeiEngineeringandTechnicalcollegeofHebei,Cangzhou061001,Chinaxqren@126.
comAbstract—Dynamiccollapseanalysisisanimportantresearchsubjectforlargespansinglelayerreticulatedshellstructures.
Inthispaper,thedynamiccollapsebehaviorofthesinglelayerreticulatedshellwithsubstructurewhichsupportsthereticulatedshellisinvestigatedundertheearthquakeactions.
Intheanalysis,thegeometricimperfections,thematerialandthegeometricnonlinearofthestructuresareconsidered.
Theeffectsofthedifferentstiffnessofsubstructuretothecollapseearthquakeaccelerationsandtheplasticmemberdistributionofthereticulatedshellareinvestigated.
Keywords—Singlelayersphericalreticulatedshell;dynamiccollapse;Substructures;plasticityratioI.
INTRODUCTIONReticulatedshellstructureisabasictypeofthelargespatialstructures.
Anditiswidelyusedinengineeringduetoitsattractivearchitecturalperformanceandthegoodloadbearingcapacity.
Becausethemembraneforceisthemainresistanceforceofthereticulatedshellstructuresunderloads,thestabilitybehaviorofthistypestructureisacontrollingfactorintheanalysisanddesign.
Thestabilitybehaviorincludesstaticstabilityanddynamicstability.
Inthepastdecades,thestaticstabilityofthereticulatedshellstructureshasbeenextensivelystudied,andalotofresearchresultshavebeengot[1-4].
Inrecentyears,thedynamiccollapseofthereticulatedshellcausedbytheearthquakeactionalsoattractsalotofresearchers,andaseriesoftheinvestigationresultshavebeenpresented[5-8].
Butuptonow,mostofthedynamiccollapseanalysispapersconsideredonlythereticulatedshellitselfandneglectedthesupportingframestructures,namelysubstructures.
Inpractical,mostspatialstructureshaveasupportingframeorcalled,"substructure".
Duringanearthquake,theeffectsofseismicgroundmotionsactonthebaseofthesesubstructuresandthentheseeffectsaretransmittedupintothemainreticulatedshellstructure.
Inthisrespect,anaccurateandrealisticinvestigationofthebehaviorofearthquakeresistantspatialstructureswouldbeachievedifthereticulatedshellstructureandthesupportingframe(substructure)areconsideredasanintegralwhole.
Todate,thereareonlyafewpaperspublishedconcerningthisissue[9-11].
Thispaperconsidersthereticulatedsphericalshellstructureandthesubstructuresasanintegralwholeandinvestigatesthedynamiccollapsebehaviorofthereticulatedshellunderearthquakeactions.
Intheanalysis,theinitialgeometricimperfectionstogetherwithgeometricandmaterialnonlinearitiesareallincluded,andthereticulatedsphericalshellswithsubstructuresofthedifferentstiffnessareanalyzedtodemonstratetheeffectsofstiffnessonthedynamiccollapseofthestructures.
Fig.
1.
K8reticulatedshellFig.
2.
K8reticulatedshellwithsubstructureII.
RETICULATEDSHELLMODELSANDCOLLAPSEANALYSISMETHODThewidelyusedK8reticulatedsphericalshell,asshowninFig.
1andFig.
2,isusedasthemodelstructureinthenumericalanalysis.
Themodelreticulatedshellhasaspanof50mandriseof10mwhichgivethestructurearisetospanratioof0.
2.
ThesteelframeshowninFig.
2isusedasthesubstructuretosupportthemainreticulatedsphericalshellstructure.
Themainreticulatedsphericalshellisrigid-jointedwiththesubstructure.
Thesubstructurehasaheightof8mandisalsorigid-jointedwiththebase.
Auniformlydistributedloadof1.
3kN/m2wasassumedtobeappliedoverthedome.
ThesteelmaterialusedforthemembersofboththedomeandsubstructurewasQ235withamodulusofelasticityE=206MPa,Poissonratioν=0.
26,yieldstrengthfy=235MPaandthematerialdensityis7850kg/m3.
Allofthematerialwasassumedtobeperfectlyelastic-plasticinbehavior.
TheRayleighdampingisusedinthenumericalanalysisandadampingratioof0.
02wasassumed.
Threetypeoftubularcross-sectionsareappliedforthemembersofthereticulatedsphericalshell,andtheyareΦ108*4,Φ83*4andΦ70*4respectivelyaccordingtotheinternalforceofmembersarisingfromstaticanalysis.
Theringbeamofthesubstructureismadeofsteelwitha'I'section250*250*10(flange)*8(web)cross-section.
Thecrosssectionsofthemembersofthestructurearealsotubularcrosssectionsandtheirdimensionisgiveninthefollowingsection.
ThenumericalanalysisofthestructuresiscarriedoutbyusingthefiniteelementanalysissoftwareANSYS[12].
IntheanalysisbyANSYS,thePIPE20elementisusedforallthetubularmembers.
Thiselementtypecandealwithboththegeometricandmaterialnonlinearbehaviorofthestructure.
Themembersofthemaindomeandthesubstructureareallrigidlyconnected.
Tomodeltheweightofthestructurefortheseismicanalysis,three-dimensionalMASS21elementsareusedtoconcentratetheweightofthestructureontothecorrespondingnodes.
ThethreedimensionalEl-Centroearthquakeaccelerationtimeseriesisselectedastheinputacceleration,inwhichthethreepeakaccelerationsofthetimeseriesinbothhorizontalandverticaldirectionsareax=2.
1014m/s2,ay=3.
4170m/s2,az=-2.
0635m/s2,respectively[13].
Tensecondtimehistorydurationisusedsothatallthepeakaccelerationsareincludedintheanalysis.
Forthemaindomestructure,avalueofD/300fortheinitialgeometricimperfectionwasconsidered,andthefirstbucklingmodeisemployedforthedistributionoftheimperfection.
Inthenumericalanalysis,theBudinsky-Roth[14]criterionisusedtodeterminethedynamiccollapseaccelerationofthemainreticulatedshellstructure.
Byusingthiscriterion,theseismicaccelerationincreasesgraduallybythesamefactorinthreedirectionswhilethecycleofthetimeseriesiskeptunchanged.
Thedynamicresponseofthestructureismonitoredunderincreasingacceleration,andasuddenincreaseofdisplacementduetoaverysmallincreaseinthemagnitudeoftheaccelerationisconsideredasanindicationofthedynamiccollapseofthestructure.
III.
DYNAMICCOLLAPSEANALYSISOFTHERETICULATEDSHELLWITHSUBSTRUCTURETodemonstratetheeffectofthesubstructuretothedynamiccollapseofthemainstructure,thereticulatedsphericalshellwithoutsubstructureisanalyzedfirstly.
Intheanalysis,thereticulatedsphericalshellispinconnectedwiththebase,andallthethreetranslationaldisplacementsoftheboundarynodesofthereticulatedstructuresarerestrained.
Fig.
3.
MaximumdisplacementofthereticulatedshellwithoutsubstructureFig.
4.
Dynamicresponseofthemaximumdisplacementofnode91Fig.
5.
Dynamicresponseofthemaximumdisplacementofnode91ThenumericaldynamicanalysisresultsofthereticulatedsphericalshellwithoutconsideringthesubstructureareshowninFig.
3,Fig.
4andFig.
5.
Theresultalsoshowsthatthemaximumdisplacementoccursintheverticaldisplacementofnode91.
Fig.
3showsthevariationofthemaximumnodedisplacementofthereticulatedshellwiththeearthquakepeakacceleration.
Thefigureindicatesthatwhentheearthquake0510152025050100150200250300350400Displacement/mmSeismicaccelerate/m/s2Time/sDisplacement/mTime/sDisplacement/mpeakaccelerationincreasesfrom3.
4m/s2to11.
9m/s2,themaximumdisplacementincreasesfrom50mmto157mm.
Thedisplacementincreasesnearlylinearlywithearthquakepeakacceleration.
Whentheearthquakepeakaccelerationincreasesfrom11.
9m/s2to13.
2m/s2,themaximumdisplacementincreasesto206mmfrom157mm,whichismuchlargerthantheincreasingratiooftheearthquakeacceleration.
Fig.
4showsthatwhentheearthquakeaccelerationis11.
9m/s2,thedynamicresponseofthemaximumdisplacementmaintainsthecharacterofvibratingatitsinitialvibrationequilibriumposition.
Fig.
5showsthatwhentheearthquakeaccelerationreaches13.
2m/s2,thedynamicresponseofthemaximumdisplacementdeviatesfromitsinitialvibrationequilibriumposition.
BaseontheBudinsky-Rothcriterion,thecollapseaccelerationofthestructureisbetween11.
9m/s2and13.
2m/s2,andtheaveragenumber12.
6m/s2istakenasthedynamiccollapseaccelerationofthereticulatedsphericalshellwithoutasubstructure.
Whenthesubstructureisconsidered,thesteelframeshowninFig.
2isusedasthesubstructure.
ThetubularcrosssectionofФ194*8isadoptedforallthecolumnsofthesubstructure.
ThenumericalanalysisresultsareshowninFig.
6andFig.
7.
Themaximumdisplacementundertheactionofearthquakeoccursintheverticaldisplacementofnode53insteadofnode91whenthesubstructureisnotconsidered.
Fig.
6showsthemaximumdisplacementofnode53underdifferentpeakacceleration.
Whenthepeakaccelerationincreasesfrom3.
4m/s2to9.
2m/s2,themaximumdisplacementincreasefrom67mmto129mm,andwhenthepeakaccelerationincreasesfrom9.
2m/s2to9.
5m/s2only,themaximumdisplacementincreasesto144mmrapidly.
Fig.
7showsthatthedynamicresponseofnode53hasseriouslydeviatesfromitsinitialvibrationequilibriumpositionwhenthepeakaccelerationreaches9.
5m/s2.
BasedontheBudinsky-Rothcriterion,thedynamiccollapseaccelerationofthereticulatedsphericalshellwithsubstructureofthecrosssectionФ194*8is9.
2m/s2,whichisless24.
6%thanthecollapseaccelerationwithoutsubstructure.
Fig.
6.
MaximumdisplacementofthereticulatedshellwithsubstructureFig.
7.
Dynamicresponseofthemaximumdisplacementofnode53IV.
EFFECTOFTHESTIFFNESSOFTHESUBSTRUCTURETheaboveanalysisclearlyshowsthatthecollapseaccelerationdecreaseslargelywhenthesubstructureisconsidered.
Toillustratetheeffectofadifferentstiffnessofthesubstructuretothecollapseaccelerationofthemainreticulatedshellstructure,afurtheranalysisofadifferentcrosssectionofthesubstructureiscarriedout.
Inthenumericalanalysis,thetubularcrosssectionofΦ245*10,Φ152*6isusedrespectivelyforallthecolumnofthesubstructure.
Fig.
8showsthemaximumdynamicdisplacementofthereticulatedshellwithsubstructure'scrosssectionofΦ245*10,Φ152*6andΦ194*8respectively.
Thefigureshowsthatwhenthedynamicaccelerationisless4m/s2,thedifferentstiffnessofthesubstructurehaslittleeffecttothemaximumdisplacementofthemainreticulatedshell.
Themaximumdisplacementofthemainreticulatedshellincreaseswiththedecreaseofthestiffnessofthesubstructurewhenthedynamicaccelerationislargerthan4m/s2.
TableIalsoclearlyshowsthatthedynamiccollapseaccelerationofthemainreticulatedshelldecreaseswiththeweakenedofthesubstructure.
WhenthetubularcrosssectionofΦ245*10,Φ194*8andΦ152*6isusedasthecolumnofthesubstructurerespectively,thedynamiccollapseaccelerationreduced19.
0%,24.
6%and35.
7%correspondinglycomparingwiththedynamiccollapseaccelerationofthemainstructurewithoutconsideringthesubstructure.
Themaximumdisplacementisaffectedlittlebythestiffnessofthesubstructurewhenthemainreticulatedshellcollapses.
Fig.
8.
Effectofthestiffnessofsubstructure051015050100150200250300350Displacement/mmSeismicaccelerate/m/s2Time/sDisplacement/m0501001502002503003500246810121416Φ152*6Φ194*8Φ245*10Displacement/mmSeismicaccelerate/m/s2TABLEI.
EFFECTOFSTIFFNESSOFSUBSTRUCTURE.
SectionofcolumnΦ245*10Φ194*8Φ152*6Dynamiccollapseacceleration(m/s2)10.
29.
28.
1Reducedratio19.
0%24.
6%35.
7%Maximumdisplacement(mm)158144157V.
THEPLASTICITYMEMBERSDISTRIBUTIONOFTHEMAINRETICULATEDSHELLSTRUCTUREWiththeincreaseofthedynamicacceleration,somemembersofthereticulatedshellwillreachintoplasticityfromelasticity,andthiswillaffectthedynamiccollapseaccelerationofthestructure.
Todemonstratehowthestiffnessofthesubstructureaffectstheplasticitydevelopmentofthememberofthemainstructure,theinvestigationofthewholeprocessoftheplasticitydevelopmentofmembersunderincreasingdynamicaccelerationispresentedbyFig.
9andFig.
10.
Fig.
9showstherationofplasticitymemberofwithoutconsideringthesubstructureandconsideringthesubstructureofdifferentstiffness.
Thefigureshowsthatforthesamedynamicacceleration,theratioofplasticitymemberofthereticulatedshellwithsubstructureismuchhigherthanthatofthereticulatedshellwithoutsubstructureandthattherationofplasticitymemberincreasesrapidlywiththedecreaseofthestiffnessofthesubstructure.
Whenthedynamicaccelerationis3.
4m/s2,1.
5%ofthemembersofthereticulatedshellwithasubstructureofΦ152*6hasreachedintoplasticity,butnoplasticitymembersappearfortheotherconditions.
Whenthedynamicaccelerationreaches5.
1m/s2,theplasticityratioofthememberofthereticulatedshellwithasubstructureofΦ152*6increasesto4.
6%,andthereticulatedshellwithoutsubstructurehasnoplasticitymemberstill.
Thenwiththeincreaseofthedynamicacceleration,theplasticitymembersappearforreticulatedshellofallconditions,andtheplasticityratioofmembersalsoincreases.
Theplasticityratioofmemberschangesfrom14%to16.
5%accordingtodifferentsupportconditionwhenthedynamiccollapseofthemainreticulatedshelloccurs.
Theinvestigationindicatesthatwhenmoreandmoremembersreachintoplasticitybehavior,thestiffnessofthemainreticulatedshellisreduced,andwhichfinallycausesthecollapseofthestructure.
Theplasticitymembersofthemainreticulatedshellwiththeweakersubstructureappearmuchmoreearlyandtheratioofplasticitymemberincreasemuchfasterthanthatofthereticulatedshellwithstrongersubstructureandwithoutsubstructure.
Therefore,thedynamiccollapseaccelerationofthereticulatedshellwithweakersubstructureismuchlessthanthatofthereticulatedshellwithstrongersubstructureandwithoutsubstructure.
Fig.
9.
Theplasticratioofthememberofreticulatedshellwithandwithoutsubstructure.
(a)a=5.
1m/s2(b)a=6.
8m/s2(c)a=8.
5m/s2(d)a=10.
2m/s2(e)a=11.
9m/s2Fig.
10.
DevelopmentProcessoftheplasticitymembersofthereticulatedshell051015202502468101214Proportionofplasticmembers/%Seismicaccelerate/m/s2withoutsubstructureΦ245*10Φ194*8Φ152*6Fig.
10showsthedevelopmentprocessofplasticitymembersofthemainreticulatedshellwithasubstructureoftubularcrosssectionΦ194*8,anditclearlydemonstratesthatwiththeincreaseofthedynamicacceleration,themoreandmoremembersofthereticulatedshellreachintoplasticitybehaviorfromelasticitybehavior.
VI.
CONCLUSIONThispaperinvestigatestheeffectofsubstructuretothedynamiccollapseofthereticulatedshell.
Intheanalysis,thegeometricimperfections,thematerialandthegeometricnonlinearofthestructuresareconsidered.
Theeffectsofthedifferentstiffnessofsubstructuretothecollapseearthquakeaccelerationsandtheplasticmemberdistributionofthereticulatedshellarealsoinvestigated.
(1)Thesubstructurewillreducethedynamiccollapseaccelerationsofthemainreticulatedshellstructure,andwhenthedynamiccollapseofthereticulatedshellstructureisanalyzed,themainstructureandthesubstructureshouldbeconsideredasanintegralwhole.
(2)Thedynamiccollapseaccelerationreducedwiththedecreaseofthestiffnessofthesubstructure.
Thisindicatesthatthestiffnessofthesubstructureshouldhaveacertainstiffnesstoensurethatthemainreticulatedshellhasenoughearthquakeresistancecapability(3)Theplasticitymembersofthemainreticulatedshellwiththeweakersubstructureappearmuchmoreearlyandtheplasticityratioofmembersalsoincreasemuchfasterthanthatofthereticulatedshellwithstrongersubstructureandwithoutsubstructure.
Therefore,thedynamiccollapseaccelerationofthereticulatedshellwithweakersubstructureismuchlessthanthatofthereticulatedshellwithstrongersubstructureandwithoutsubstructure.
REFERENCES[1]S.
Z.
Shen.
etal.
StabilityofReticulatedShells.
SciencePress,Beijing,China,1995.
[2]M.
Fujimoto,andK.
Imai,etal.
BucklingExperimentofSingle-layerTwo-wayGridCylinderShellRoofunderCentrallyConcentratedLoading.
SpaceStructures5,ThomasTelford,London,2002.
[3]W.
Chen,G.
Fu,andY.
He.
GeometricallyNonlinearStabilityPerformanceforPatialDoubleLayerReticulatedSteelShellStructures.
SpaceStructures5,ThomasTelford,London,2002.
[4]M.
Zeinoddini,G.
A.
R.
Parke,andP.
Disney.
"TheStabilityStudyofanInnovativeSteelDome,"Int.
J.
SpaceStruct.
vol.
19,no.
2,pp.
109-125,2004.
[5]S.
Jianheng.
StabilityofBracedDomesUnderDynamicLoads.
SpaceStructures4,ThomasTelford,London,1993.
[6]S.
Kato,T.
Ueki,andY.
Mukaiyama,"StudyofDynamicCollapseofSingle-layerReticularDomesSubjectedtoEarthquakeMotionsandEstimationofStaticallyEquivalentSeismicForce",Int.
J.
SpaceStruct.
vol.
12,no.
3/4,pp.
191-204,1997.
[7]I.
Ario,andT.
Kaita,DynamicStabilityofDomeStructureswithHomoclinicOrbit.
SpaceStructures5,ThomasTelford,London,2002.
[8]F.
Fan,S.
Z.
Shen,andG.
A.
R.
Parke,"StudyoftheDynamicStrengthofReticulatedDomesunderSevereEarthquakeLoading",Int.
J.
SpaceStruct.
vol.
20,no.
4,2005.
[9]A.
Sadeghi.
HorizontalEarthquakeLoadingandLinear/NonlinearSeismicBehaviorofDoubleLayerBarrelVaults.
InternationalJournalofSpaceStructures,Vol.
19,No.
1,pp.
235-244,2004.
[10]T.
Thkeuchi,andT.
Orawa,etal.
ResponseEvaluationofMediumSpanLatticeDomeswithSubstructuresUsingResponseSpectrumAnalysis.
ProceedingsoftheIASS,2004.
[11]S.
Jianheng,L.
Hongmei,andA.
RahimiNoshnagh.
EarthquakeEffectsonSingle-layerLatticeDomeswithSupportingFrames.
ProceedingofIABSE-IASS2011,London,2011.
[12]L.
Liming,ANSYSHandbookforFiniteElementAnalysis.
TuinghuaPublishingHouse,Bejing,2005.
[13]F.
P.
Ulrich,"TheImperialValleyEarthquakeof1940",Bull.
Seismolog.
Soc.
Am.
vol.
31,no.
2,pp.
13-31,1941.
[14]B.
Budiansky,andR.
S.
Roth,Axisymmetricdynamicbucklingofclampedshallowsphericalshells.
CollectedPapersonInstabilityofShellStructures,NASATND1510,pp.
597-606,1962.
Virmach 商家算是比较久且一直在低价便宜VPS方案中玩的不亦乐乎的商家,有很多同时期的商家纷纷关闭转让,也有的转型到中高端用户。而前一段时间也有分享过一次Virmach商家推出所谓的一次性便宜VPS主机,比如很低的价格半年时间,时间到服务器也就关闭。这不今天又看到商家有提供这样的产品。这次的活动产品包括圣何塞和水牛城两个机房,为期六个月,一次性付费用完将会取消,就这么特别的产品,适合短期玩玩...
RAKsmart怎么样?RAKsmart是一家由华人运营的国外主机商,提供的产品包括独立服务器租用和VPS等,可选数据中心包括美国加州圣何塞、洛杉矶、中国香港、韩国、日本、荷兰等国家和地区数据中心(部分自营),支持使用PayPal、支付宝等付款方式,网站可选中文网页,提供中文客服支持。本月商家继续提供每日限量秒杀服务器月付30.62美元起,除了常规服务器外,商家美国/韩国/日本站群服务器、1-10...
妮妮云的来历妮妮云是 789 陈总 张总 三方共同投资建立的网站 本着“良心 便宜 稳定”的初衷 为小白用户避免被坑妮妮云的市场定位妮妮云主要代理市场稳定速度的云服务器产品,避免新手购买云服务器的时候众多商家不知道如何选择,妮妮云就帮你选择好了产品,无需承担购买风险,不用担心出现被跑路 被诈骗的情况。妮妮云的售后保证妮妮云退款 通过于合作商的友好协商,云服务器提供2天内全额退款,超过2天不退款 物...
k8k8.com为你推荐
sonicchatwe chat和微信区别firetrap你们知道的有多少运动品牌的服饰?firetrap流言终结者 中的银幕神偷 和开保险柜 的流言是 取材与 那几部电影的丑福晋大福晋比正福晋大么郭泊雄郭佰雄最后一次出现是什么时候?www.zjs.com.cn我的信用卡已经申请成功了,显示正在寄卡,怎么查询寄卡信息?www.baitu.com谁有免费的动漫网站?haole10.comwww.qq10eu.in是QQ网站吗javbibitreebibi是什么牌子的16668.com香港最快开奖现场直播今晚开
域名主机基地 什么是域名解析 怎样申请域名 嘉洲服务器 789电视 域名评估 lol台服官网 国外代理服务器软件 亚马逊香港官网 绍兴电信 国外视频网站有哪些 阿里云邮箱登陆地址 七牛云存储 广州服务器托管 万网服务器 mteam websitepanel 瓦工工具 国内云主机 长沙服务器托管 更多