uniformlyk8k8.com
k8k8.com 时间:2021-03-21 阅读:(
)
DynamicCollapseAnalysisofReticulatedShellStructureswithSubstructuresLiHong-mei,WangJun-lin,RenXiao-qiang,SunJian-hengCollegeofUrbanandRuralConstruction,AgriculturalUniversityofHebei,Baoding071001,ChinaLuWeiEngineeringandTechnicalcollegeofHebei,Cangzhou061001,Chinaxqren@126.
comAbstract—Dynamiccollapseanalysisisanimportantresearchsubjectforlargespansinglelayerreticulatedshellstructures.
Inthispaper,thedynamiccollapsebehaviorofthesinglelayerreticulatedshellwithsubstructurewhichsupportsthereticulatedshellisinvestigatedundertheearthquakeactions.
Intheanalysis,thegeometricimperfections,thematerialandthegeometricnonlinearofthestructuresareconsidered.
Theeffectsofthedifferentstiffnessofsubstructuretothecollapseearthquakeaccelerationsandtheplasticmemberdistributionofthereticulatedshellareinvestigated.
Keywords—Singlelayersphericalreticulatedshell;dynamiccollapse;Substructures;plasticityratioI.
INTRODUCTIONReticulatedshellstructureisabasictypeofthelargespatialstructures.
Anditiswidelyusedinengineeringduetoitsattractivearchitecturalperformanceandthegoodloadbearingcapacity.
Becausethemembraneforceisthemainresistanceforceofthereticulatedshellstructuresunderloads,thestabilitybehaviorofthistypestructureisacontrollingfactorintheanalysisanddesign.
Thestabilitybehaviorincludesstaticstabilityanddynamicstability.
Inthepastdecades,thestaticstabilityofthereticulatedshellstructureshasbeenextensivelystudied,andalotofresearchresultshavebeengot[1-4].
Inrecentyears,thedynamiccollapseofthereticulatedshellcausedbytheearthquakeactionalsoattractsalotofresearchers,andaseriesoftheinvestigationresultshavebeenpresented[5-8].
Butuptonow,mostofthedynamiccollapseanalysispapersconsideredonlythereticulatedshellitselfandneglectedthesupportingframestructures,namelysubstructures.
Inpractical,mostspatialstructureshaveasupportingframeorcalled,"substructure".
Duringanearthquake,theeffectsofseismicgroundmotionsactonthebaseofthesesubstructuresandthentheseeffectsaretransmittedupintothemainreticulatedshellstructure.
Inthisrespect,anaccurateandrealisticinvestigationofthebehaviorofearthquakeresistantspatialstructureswouldbeachievedifthereticulatedshellstructureandthesupportingframe(substructure)areconsideredasanintegralwhole.
Todate,thereareonlyafewpaperspublishedconcerningthisissue[9-11].
Thispaperconsidersthereticulatedsphericalshellstructureandthesubstructuresasanintegralwholeandinvestigatesthedynamiccollapsebehaviorofthereticulatedshellunderearthquakeactions.
Intheanalysis,theinitialgeometricimperfectionstogetherwithgeometricandmaterialnonlinearitiesareallincluded,andthereticulatedsphericalshellswithsubstructuresofthedifferentstiffnessareanalyzedtodemonstratetheeffectsofstiffnessonthedynamiccollapseofthestructures.
Fig.
1.
K8reticulatedshellFig.
2.
K8reticulatedshellwithsubstructureII.
RETICULATEDSHELLMODELSANDCOLLAPSEANALYSISMETHODThewidelyusedK8reticulatedsphericalshell,asshowninFig.
1andFig.
2,isusedasthemodelstructureinthenumericalanalysis.
Themodelreticulatedshellhasaspanof50mandriseof10mwhichgivethestructurearisetospanratioof0.
2.
ThesteelframeshowninFig.
2isusedasthesubstructuretosupportthemainreticulatedsphericalshellstructure.
Themainreticulatedsphericalshellisrigid-jointedwiththesubstructure.
Thesubstructurehasaheightof8mandisalsorigid-jointedwiththebase.
Auniformlydistributedloadof1.
3kN/m2wasassumedtobeappliedoverthedome.
ThesteelmaterialusedforthemembersofboththedomeandsubstructurewasQ235withamodulusofelasticityE=206MPa,Poissonratioν=0.
26,yieldstrengthfy=235MPaandthematerialdensityis7850kg/m3.
Allofthematerialwasassumedtobeperfectlyelastic-plasticinbehavior.
TheRayleighdampingisusedinthenumericalanalysisandadampingratioof0.
02wasassumed.
Threetypeoftubularcross-sectionsareappliedforthemembersofthereticulatedsphericalshell,andtheyareΦ108*4,Φ83*4andΦ70*4respectivelyaccordingtotheinternalforceofmembersarisingfromstaticanalysis.
Theringbeamofthesubstructureismadeofsteelwitha'I'section250*250*10(flange)*8(web)cross-section.
Thecrosssectionsofthemembersofthestructurearealsotubularcrosssectionsandtheirdimensionisgiveninthefollowingsection.
ThenumericalanalysisofthestructuresiscarriedoutbyusingthefiniteelementanalysissoftwareANSYS[12].
IntheanalysisbyANSYS,thePIPE20elementisusedforallthetubularmembers.
Thiselementtypecandealwithboththegeometricandmaterialnonlinearbehaviorofthestructure.
Themembersofthemaindomeandthesubstructureareallrigidlyconnected.
Tomodeltheweightofthestructurefortheseismicanalysis,three-dimensionalMASS21elementsareusedtoconcentratetheweightofthestructureontothecorrespondingnodes.
ThethreedimensionalEl-Centroearthquakeaccelerationtimeseriesisselectedastheinputacceleration,inwhichthethreepeakaccelerationsofthetimeseriesinbothhorizontalandverticaldirectionsareax=2.
1014m/s2,ay=3.
4170m/s2,az=-2.
0635m/s2,respectively[13].
Tensecondtimehistorydurationisusedsothatallthepeakaccelerationsareincludedintheanalysis.
Forthemaindomestructure,avalueofD/300fortheinitialgeometricimperfectionwasconsidered,andthefirstbucklingmodeisemployedforthedistributionoftheimperfection.
Inthenumericalanalysis,theBudinsky-Roth[14]criterionisusedtodeterminethedynamiccollapseaccelerationofthemainreticulatedshellstructure.
Byusingthiscriterion,theseismicaccelerationincreasesgraduallybythesamefactorinthreedirectionswhilethecycleofthetimeseriesiskeptunchanged.
Thedynamicresponseofthestructureismonitoredunderincreasingacceleration,andasuddenincreaseofdisplacementduetoaverysmallincreaseinthemagnitudeoftheaccelerationisconsideredasanindicationofthedynamiccollapseofthestructure.
III.
DYNAMICCOLLAPSEANALYSISOFTHERETICULATEDSHELLWITHSUBSTRUCTURETodemonstratetheeffectofthesubstructuretothedynamiccollapseofthemainstructure,thereticulatedsphericalshellwithoutsubstructureisanalyzedfirstly.
Intheanalysis,thereticulatedsphericalshellispinconnectedwiththebase,andallthethreetranslationaldisplacementsoftheboundarynodesofthereticulatedstructuresarerestrained.
Fig.
3.
MaximumdisplacementofthereticulatedshellwithoutsubstructureFig.
4.
Dynamicresponseofthemaximumdisplacementofnode91Fig.
5.
Dynamicresponseofthemaximumdisplacementofnode91ThenumericaldynamicanalysisresultsofthereticulatedsphericalshellwithoutconsideringthesubstructureareshowninFig.
3,Fig.
4andFig.
5.
Theresultalsoshowsthatthemaximumdisplacementoccursintheverticaldisplacementofnode91.
Fig.
3showsthevariationofthemaximumnodedisplacementofthereticulatedshellwiththeearthquakepeakacceleration.
Thefigureindicatesthatwhentheearthquake0510152025050100150200250300350400Displacement/mmSeismicaccelerate/m/s2Time/sDisplacement/mTime/sDisplacement/mpeakaccelerationincreasesfrom3.
4m/s2to11.
9m/s2,themaximumdisplacementincreasesfrom50mmto157mm.
Thedisplacementincreasesnearlylinearlywithearthquakepeakacceleration.
Whentheearthquakepeakaccelerationincreasesfrom11.
9m/s2to13.
2m/s2,themaximumdisplacementincreasesto206mmfrom157mm,whichismuchlargerthantheincreasingratiooftheearthquakeacceleration.
Fig.
4showsthatwhentheearthquakeaccelerationis11.
9m/s2,thedynamicresponseofthemaximumdisplacementmaintainsthecharacterofvibratingatitsinitialvibrationequilibriumposition.
Fig.
5showsthatwhentheearthquakeaccelerationreaches13.
2m/s2,thedynamicresponseofthemaximumdisplacementdeviatesfromitsinitialvibrationequilibriumposition.
BaseontheBudinsky-Rothcriterion,thecollapseaccelerationofthestructureisbetween11.
9m/s2and13.
2m/s2,andtheaveragenumber12.
6m/s2istakenasthedynamiccollapseaccelerationofthereticulatedsphericalshellwithoutasubstructure.
Whenthesubstructureisconsidered,thesteelframeshowninFig.
2isusedasthesubstructure.
ThetubularcrosssectionofФ194*8isadoptedforallthecolumnsofthesubstructure.
ThenumericalanalysisresultsareshowninFig.
6andFig.
7.
Themaximumdisplacementundertheactionofearthquakeoccursintheverticaldisplacementofnode53insteadofnode91whenthesubstructureisnotconsidered.
Fig.
6showsthemaximumdisplacementofnode53underdifferentpeakacceleration.
Whenthepeakaccelerationincreasesfrom3.
4m/s2to9.
2m/s2,themaximumdisplacementincreasefrom67mmto129mm,andwhenthepeakaccelerationincreasesfrom9.
2m/s2to9.
5m/s2only,themaximumdisplacementincreasesto144mmrapidly.
Fig.
7showsthatthedynamicresponseofnode53hasseriouslydeviatesfromitsinitialvibrationequilibriumpositionwhenthepeakaccelerationreaches9.
5m/s2.
BasedontheBudinsky-Rothcriterion,thedynamiccollapseaccelerationofthereticulatedsphericalshellwithsubstructureofthecrosssectionФ194*8is9.
2m/s2,whichisless24.
6%thanthecollapseaccelerationwithoutsubstructure.
Fig.
6.
MaximumdisplacementofthereticulatedshellwithsubstructureFig.
7.
Dynamicresponseofthemaximumdisplacementofnode53IV.
EFFECTOFTHESTIFFNESSOFTHESUBSTRUCTURETheaboveanalysisclearlyshowsthatthecollapseaccelerationdecreaseslargelywhenthesubstructureisconsidered.
Toillustratetheeffectofadifferentstiffnessofthesubstructuretothecollapseaccelerationofthemainreticulatedshellstructure,afurtheranalysisofadifferentcrosssectionofthesubstructureiscarriedout.
Inthenumericalanalysis,thetubularcrosssectionofΦ245*10,Φ152*6isusedrespectivelyforallthecolumnofthesubstructure.
Fig.
8showsthemaximumdynamicdisplacementofthereticulatedshellwithsubstructure'scrosssectionofΦ245*10,Φ152*6andΦ194*8respectively.
Thefigureshowsthatwhenthedynamicaccelerationisless4m/s2,thedifferentstiffnessofthesubstructurehaslittleeffecttothemaximumdisplacementofthemainreticulatedshell.
Themaximumdisplacementofthemainreticulatedshellincreaseswiththedecreaseofthestiffnessofthesubstructurewhenthedynamicaccelerationislargerthan4m/s2.
TableIalsoclearlyshowsthatthedynamiccollapseaccelerationofthemainreticulatedshelldecreaseswiththeweakenedofthesubstructure.
WhenthetubularcrosssectionofΦ245*10,Φ194*8andΦ152*6isusedasthecolumnofthesubstructurerespectively,thedynamiccollapseaccelerationreduced19.
0%,24.
6%and35.
7%correspondinglycomparingwiththedynamiccollapseaccelerationofthemainstructurewithoutconsideringthesubstructure.
Themaximumdisplacementisaffectedlittlebythestiffnessofthesubstructurewhenthemainreticulatedshellcollapses.
Fig.
8.
Effectofthestiffnessofsubstructure051015050100150200250300350Displacement/mmSeismicaccelerate/m/s2Time/sDisplacement/m0501001502002503003500246810121416Φ152*6Φ194*8Φ245*10Displacement/mmSeismicaccelerate/m/s2TABLEI.
EFFECTOFSTIFFNESSOFSUBSTRUCTURE.
SectionofcolumnΦ245*10Φ194*8Φ152*6Dynamiccollapseacceleration(m/s2)10.
29.
28.
1Reducedratio19.
0%24.
6%35.
7%Maximumdisplacement(mm)158144157V.
THEPLASTICITYMEMBERSDISTRIBUTIONOFTHEMAINRETICULATEDSHELLSTRUCTUREWiththeincreaseofthedynamicacceleration,somemembersofthereticulatedshellwillreachintoplasticityfromelasticity,andthiswillaffectthedynamiccollapseaccelerationofthestructure.
Todemonstratehowthestiffnessofthesubstructureaffectstheplasticitydevelopmentofthememberofthemainstructure,theinvestigationofthewholeprocessoftheplasticitydevelopmentofmembersunderincreasingdynamicaccelerationispresentedbyFig.
9andFig.
10.
Fig.
9showstherationofplasticitymemberofwithoutconsideringthesubstructureandconsideringthesubstructureofdifferentstiffness.
Thefigureshowsthatforthesamedynamicacceleration,theratioofplasticitymemberofthereticulatedshellwithsubstructureismuchhigherthanthatofthereticulatedshellwithoutsubstructureandthattherationofplasticitymemberincreasesrapidlywiththedecreaseofthestiffnessofthesubstructure.
Whenthedynamicaccelerationis3.
4m/s2,1.
5%ofthemembersofthereticulatedshellwithasubstructureofΦ152*6hasreachedintoplasticity,butnoplasticitymembersappearfortheotherconditions.
Whenthedynamicaccelerationreaches5.
1m/s2,theplasticityratioofthememberofthereticulatedshellwithasubstructureofΦ152*6increasesto4.
6%,andthereticulatedshellwithoutsubstructurehasnoplasticitymemberstill.
Thenwiththeincreaseofthedynamicacceleration,theplasticitymembersappearforreticulatedshellofallconditions,andtheplasticityratioofmembersalsoincreases.
Theplasticityratioofmemberschangesfrom14%to16.
5%accordingtodifferentsupportconditionwhenthedynamiccollapseofthemainreticulatedshelloccurs.
Theinvestigationindicatesthatwhenmoreandmoremembersreachintoplasticitybehavior,thestiffnessofthemainreticulatedshellisreduced,andwhichfinallycausesthecollapseofthestructure.
Theplasticitymembersofthemainreticulatedshellwiththeweakersubstructureappearmuchmoreearlyandtheratioofplasticitymemberincreasemuchfasterthanthatofthereticulatedshellwithstrongersubstructureandwithoutsubstructure.
Therefore,thedynamiccollapseaccelerationofthereticulatedshellwithweakersubstructureismuchlessthanthatofthereticulatedshellwithstrongersubstructureandwithoutsubstructure.
Fig.
9.
Theplasticratioofthememberofreticulatedshellwithandwithoutsubstructure.
(a)a=5.
1m/s2(b)a=6.
8m/s2(c)a=8.
5m/s2(d)a=10.
2m/s2(e)a=11.
9m/s2Fig.
10.
DevelopmentProcessoftheplasticitymembersofthereticulatedshell051015202502468101214Proportionofplasticmembers/%Seismicaccelerate/m/s2withoutsubstructureΦ245*10Φ194*8Φ152*6Fig.
10showsthedevelopmentprocessofplasticitymembersofthemainreticulatedshellwithasubstructureoftubularcrosssectionΦ194*8,anditclearlydemonstratesthatwiththeincreaseofthedynamicacceleration,themoreandmoremembersofthereticulatedshellreachintoplasticitybehaviorfromelasticitybehavior.
VI.
CONCLUSIONThispaperinvestigatestheeffectofsubstructuretothedynamiccollapseofthereticulatedshell.
Intheanalysis,thegeometricimperfections,thematerialandthegeometricnonlinearofthestructuresareconsidered.
Theeffectsofthedifferentstiffnessofsubstructuretothecollapseearthquakeaccelerationsandtheplasticmemberdistributionofthereticulatedshellarealsoinvestigated.
(1)Thesubstructurewillreducethedynamiccollapseaccelerationsofthemainreticulatedshellstructure,andwhenthedynamiccollapseofthereticulatedshellstructureisanalyzed,themainstructureandthesubstructureshouldbeconsideredasanintegralwhole.
(2)Thedynamiccollapseaccelerationreducedwiththedecreaseofthestiffnessofthesubstructure.
Thisindicatesthatthestiffnessofthesubstructureshouldhaveacertainstiffnesstoensurethatthemainreticulatedshellhasenoughearthquakeresistancecapability(3)Theplasticitymembersofthemainreticulatedshellwiththeweakersubstructureappearmuchmoreearlyandtheplasticityratioofmembersalsoincreasemuchfasterthanthatofthereticulatedshellwithstrongersubstructureandwithoutsubstructure.
Therefore,thedynamiccollapseaccelerationofthereticulatedshellwithweakersubstructureismuchlessthanthatofthereticulatedshellwithstrongersubstructureandwithoutsubstructure.
REFERENCES[1]S.
Z.
Shen.
etal.
StabilityofReticulatedShells.
SciencePress,Beijing,China,1995.
[2]M.
Fujimoto,andK.
Imai,etal.
BucklingExperimentofSingle-layerTwo-wayGridCylinderShellRoofunderCentrallyConcentratedLoading.
SpaceStructures5,ThomasTelford,London,2002.
[3]W.
Chen,G.
Fu,andY.
He.
GeometricallyNonlinearStabilityPerformanceforPatialDoubleLayerReticulatedSteelShellStructures.
SpaceStructures5,ThomasTelford,London,2002.
[4]M.
Zeinoddini,G.
A.
R.
Parke,andP.
Disney.
"TheStabilityStudyofanInnovativeSteelDome,"Int.
J.
SpaceStruct.
vol.
19,no.
2,pp.
109-125,2004.
[5]S.
Jianheng.
StabilityofBracedDomesUnderDynamicLoads.
SpaceStructures4,ThomasTelford,London,1993.
[6]S.
Kato,T.
Ueki,andY.
Mukaiyama,"StudyofDynamicCollapseofSingle-layerReticularDomesSubjectedtoEarthquakeMotionsandEstimationofStaticallyEquivalentSeismicForce",Int.
J.
SpaceStruct.
vol.
12,no.
3/4,pp.
191-204,1997.
[7]I.
Ario,andT.
Kaita,DynamicStabilityofDomeStructureswithHomoclinicOrbit.
SpaceStructures5,ThomasTelford,London,2002.
[8]F.
Fan,S.
Z.
Shen,andG.
A.
R.
Parke,"StudyoftheDynamicStrengthofReticulatedDomesunderSevereEarthquakeLoading",Int.
J.
SpaceStruct.
vol.
20,no.
4,2005.
[9]A.
Sadeghi.
HorizontalEarthquakeLoadingandLinear/NonlinearSeismicBehaviorofDoubleLayerBarrelVaults.
InternationalJournalofSpaceStructures,Vol.
19,No.
1,pp.
235-244,2004.
[10]T.
Thkeuchi,andT.
Orawa,etal.
ResponseEvaluationofMediumSpanLatticeDomeswithSubstructuresUsingResponseSpectrumAnalysis.
ProceedingsoftheIASS,2004.
[11]S.
Jianheng,L.
Hongmei,andA.
RahimiNoshnagh.
EarthquakeEffectsonSingle-layerLatticeDomeswithSupportingFrames.
ProceedingofIABSE-IASS2011,London,2011.
[12]L.
Liming,ANSYSHandbookforFiniteElementAnalysis.
TuinghuaPublishingHouse,Bejing,2005.
[13]F.
P.
Ulrich,"TheImperialValleyEarthquakeof1940",Bull.
Seismolog.
Soc.
Am.
vol.
31,no.
2,pp.
13-31,1941.
[14]B.
Budiansky,andR.
S.
Roth,Axisymmetricdynamicbucklingofclampedshallowsphericalshells.
CollectedPapersonInstabilityofShellStructures,NASATND1510,pp.
597-606,1962.
10gbiz怎么样?10gbiz在本站也多次分享过,是一家成立于2020的国人主机商家,主要销售VPS和独立服务器,机房目前有中国香港和美国洛杉矶、硅谷等地,线路都非常不错,香港为三网直连,电信走CN2,洛杉矶线路为三网回程CN2 GIA,10gbiz商家七月连续推出各种优惠活动,除了延续之前的VPS产品4折优惠,目前增加了美国硅谷独立服务器首月半价的活动,有需要的朋友可以看看。10gbiz优惠码...
webhosting24决定从7月1日开始对日本机房的VPS进行NVMe和流量大升级,几乎是翻倍了硬盘和流量,当然前提是价格依旧不变。目前来看,国内过去走的是NTT直连,服务器托管机房应该是CDN77*(也就是datapacket.com),加上高性能平台(AMD Ryzen 9 3900X+NVMe),这样的日本VPS还是有相当大的性价比的。官方网站:https://www.webhosting...
在刚才更新Vultr 新年福利文章的时候突然想到前几天有网友问到自己有在Vultr 注册账户的时候无法用支付宝付款的问题,当时有帮助他给予解决,这里正好顺带一并介绍整理出来。毕竟对于来说,虽然使用的服务器不多,但是至少是见过世面的,大大小小商家的一些特性特征还是比较清楚的。在这篇文章中,和大家分享如果我们有在Vultr新注册账户或者充值购买云服务器的时候,不支持支付宝付款的原因。毕竟我们是知道的,...
k8k8.com为你推荐
陈嘉垣大家觉得陈嘉桓漂亮还是钟嘉欣漂亮?www.gegeshe.com有什么好听的流行歌曲百度指数词百度指数为0的词 为啥排名没有广告法新广告法哪些广告词不能用,广告违禁词大全33tutu.com33gan.com改成什么了555sss.comms真的是500万像素?www.toutoulu.com外链方案到底应该怎么弄呢www.diediao.com谁知道台湾的拼音怎么拼啊?有具体的对照表最好!dpscycle寻求LR 高输出宏月风随笔散文校园月色600字初中作文
西安域名注册 绍兴服务器租用 网站域名备案 warez 腾讯云盘 香港vps99idc fastdomain ion gomezpeer godaddy支付宝 贵州电信宽带测速 网站实时监控 中国特价网 租空间 免费申请个人网站 网通服务器托管 流媒体加速 空间登陆首页 中国联通宽带测速 1美元 更多