uniformlyk8k8.com
k8k8.com 时间:2021-03-21 阅读:(
)
DynamicCollapseAnalysisofReticulatedShellStructureswithSubstructuresLiHong-mei,WangJun-lin,RenXiao-qiang,SunJian-hengCollegeofUrbanandRuralConstruction,AgriculturalUniversityofHebei,Baoding071001,ChinaLuWeiEngineeringandTechnicalcollegeofHebei,Cangzhou061001,Chinaxqren@126.
comAbstract—Dynamiccollapseanalysisisanimportantresearchsubjectforlargespansinglelayerreticulatedshellstructures.
Inthispaper,thedynamiccollapsebehaviorofthesinglelayerreticulatedshellwithsubstructurewhichsupportsthereticulatedshellisinvestigatedundertheearthquakeactions.
Intheanalysis,thegeometricimperfections,thematerialandthegeometricnonlinearofthestructuresareconsidered.
Theeffectsofthedifferentstiffnessofsubstructuretothecollapseearthquakeaccelerationsandtheplasticmemberdistributionofthereticulatedshellareinvestigated.
Keywords—Singlelayersphericalreticulatedshell;dynamiccollapse;Substructures;plasticityratioI.
INTRODUCTIONReticulatedshellstructureisabasictypeofthelargespatialstructures.
Anditiswidelyusedinengineeringduetoitsattractivearchitecturalperformanceandthegoodloadbearingcapacity.
Becausethemembraneforceisthemainresistanceforceofthereticulatedshellstructuresunderloads,thestabilitybehaviorofthistypestructureisacontrollingfactorintheanalysisanddesign.
Thestabilitybehaviorincludesstaticstabilityanddynamicstability.
Inthepastdecades,thestaticstabilityofthereticulatedshellstructureshasbeenextensivelystudied,andalotofresearchresultshavebeengot[1-4].
Inrecentyears,thedynamiccollapseofthereticulatedshellcausedbytheearthquakeactionalsoattractsalotofresearchers,andaseriesoftheinvestigationresultshavebeenpresented[5-8].
Butuptonow,mostofthedynamiccollapseanalysispapersconsideredonlythereticulatedshellitselfandneglectedthesupportingframestructures,namelysubstructures.
Inpractical,mostspatialstructureshaveasupportingframeorcalled,"substructure".
Duringanearthquake,theeffectsofseismicgroundmotionsactonthebaseofthesesubstructuresandthentheseeffectsaretransmittedupintothemainreticulatedshellstructure.
Inthisrespect,anaccurateandrealisticinvestigationofthebehaviorofearthquakeresistantspatialstructureswouldbeachievedifthereticulatedshellstructureandthesupportingframe(substructure)areconsideredasanintegralwhole.
Todate,thereareonlyafewpaperspublishedconcerningthisissue[9-11].
Thispaperconsidersthereticulatedsphericalshellstructureandthesubstructuresasanintegralwholeandinvestigatesthedynamiccollapsebehaviorofthereticulatedshellunderearthquakeactions.
Intheanalysis,theinitialgeometricimperfectionstogetherwithgeometricandmaterialnonlinearitiesareallincluded,andthereticulatedsphericalshellswithsubstructuresofthedifferentstiffnessareanalyzedtodemonstratetheeffectsofstiffnessonthedynamiccollapseofthestructures.
Fig.
1.
K8reticulatedshellFig.
2.
K8reticulatedshellwithsubstructureII.
RETICULATEDSHELLMODELSANDCOLLAPSEANALYSISMETHODThewidelyusedK8reticulatedsphericalshell,asshowninFig.
1andFig.
2,isusedasthemodelstructureinthenumericalanalysis.
Themodelreticulatedshellhasaspanof50mandriseof10mwhichgivethestructurearisetospanratioof0.
2.
ThesteelframeshowninFig.
2isusedasthesubstructuretosupportthemainreticulatedsphericalshellstructure.
Themainreticulatedsphericalshellisrigid-jointedwiththesubstructure.
Thesubstructurehasaheightof8mandisalsorigid-jointedwiththebase.
Auniformlydistributedloadof1.
3kN/m2wasassumedtobeappliedoverthedome.
ThesteelmaterialusedforthemembersofboththedomeandsubstructurewasQ235withamodulusofelasticityE=206MPa,Poissonratioν=0.
26,yieldstrengthfy=235MPaandthematerialdensityis7850kg/m3.
Allofthematerialwasassumedtobeperfectlyelastic-plasticinbehavior.
TheRayleighdampingisusedinthenumericalanalysisandadampingratioof0.
02wasassumed.
Threetypeoftubularcross-sectionsareappliedforthemembersofthereticulatedsphericalshell,andtheyareΦ108*4,Φ83*4andΦ70*4respectivelyaccordingtotheinternalforceofmembersarisingfromstaticanalysis.
Theringbeamofthesubstructureismadeofsteelwitha'I'section250*250*10(flange)*8(web)cross-section.
Thecrosssectionsofthemembersofthestructurearealsotubularcrosssectionsandtheirdimensionisgiveninthefollowingsection.
ThenumericalanalysisofthestructuresiscarriedoutbyusingthefiniteelementanalysissoftwareANSYS[12].
IntheanalysisbyANSYS,thePIPE20elementisusedforallthetubularmembers.
Thiselementtypecandealwithboththegeometricandmaterialnonlinearbehaviorofthestructure.
Themembersofthemaindomeandthesubstructureareallrigidlyconnected.
Tomodeltheweightofthestructurefortheseismicanalysis,three-dimensionalMASS21elementsareusedtoconcentratetheweightofthestructureontothecorrespondingnodes.
ThethreedimensionalEl-Centroearthquakeaccelerationtimeseriesisselectedastheinputacceleration,inwhichthethreepeakaccelerationsofthetimeseriesinbothhorizontalandverticaldirectionsareax=2.
1014m/s2,ay=3.
4170m/s2,az=-2.
0635m/s2,respectively[13].
Tensecondtimehistorydurationisusedsothatallthepeakaccelerationsareincludedintheanalysis.
Forthemaindomestructure,avalueofD/300fortheinitialgeometricimperfectionwasconsidered,andthefirstbucklingmodeisemployedforthedistributionoftheimperfection.
Inthenumericalanalysis,theBudinsky-Roth[14]criterionisusedtodeterminethedynamiccollapseaccelerationofthemainreticulatedshellstructure.
Byusingthiscriterion,theseismicaccelerationincreasesgraduallybythesamefactorinthreedirectionswhilethecycleofthetimeseriesiskeptunchanged.
Thedynamicresponseofthestructureismonitoredunderincreasingacceleration,andasuddenincreaseofdisplacementduetoaverysmallincreaseinthemagnitudeoftheaccelerationisconsideredasanindicationofthedynamiccollapseofthestructure.
III.
DYNAMICCOLLAPSEANALYSISOFTHERETICULATEDSHELLWITHSUBSTRUCTURETodemonstratetheeffectofthesubstructuretothedynamiccollapseofthemainstructure,thereticulatedsphericalshellwithoutsubstructureisanalyzedfirstly.
Intheanalysis,thereticulatedsphericalshellispinconnectedwiththebase,andallthethreetranslationaldisplacementsoftheboundarynodesofthereticulatedstructuresarerestrained.
Fig.
3.
MaximumdisplacementofthereticulatedshellwithoutsubstructureFig.
4.
Dynamicresponseofthemaximumdisplacementofnode91Fig.
5.
Dynamicresponseofthemaximumdisplacementofnode91ThenumericaldynamicanalysisresultsofthereticulatedsphericalshellwithoutconsideringthesubstructureareshowninFig.
3,Fig.
4andFig.
5.
Theresultalsoshowsthatthemaximumdisplacementoccursintheverticaldisplacementofnode91.
Fig.
3showsthevariationofthemaximumnodedisplacementofthereticulatedshellwiththeearthquakepeakacceleration.
Thefigureindicatesthatwhentheearthquake0510152025050100150200250300350400Displacement/mmSeismicaccelerate/m/s2Time/sDisplacement/mTime/sDisplacement/mpeakaccelerationincreasesfrom3.
4m/s2to11.
9m/s2,themaximumdisplacementincreasesfrom50mmto157mm.
Thedisplacementincreasesnearlylinearlywithearthquakepeakacceleration.
Whentheearthquakepeakaccelerationincreasesfrom11.
9m/s2to13.
2m/s2,themaximumdisplacementincreasesto206mmfrom157mm,whichismuchlargerthantheincreasingratiooftheearthquakeacceleration.
Fig.
4showsthatwhentheearthquakeaccelerationis11.
9m/s2,thedynamicresponseofthemaximumdisplacementmaintainsthecharacterofvibratingatitsinitialvibrationequilibriumposition.
Fig.
5showsthatwhentheearthquakeaccelerationreaches13.
2m/s2,thedynamicresponseofthemaximumdisplacementdeviatesfromitsinitialvibrationequilibriumposition.
BaseontheBudinsky-Rothcriterion,thecollapseaccelerationofthestructureisbetween11.
9m/s2and13.
2m/s2,andtheaveragenumber12.
6m/s2istakenasthedynamiccollapseaccelerationofthereticulatedsphericalshellwithoutasubstructure.
Whenthesubstructureisconsidered,thesteelframeshowninFig.
2isusedasthesubstructure.
ThetubularcrosssectionofФ194*8isadoptedforallthecolumnsofthesubstructure.
ThenumericalanalysisresultsareshowninFig.
6andFig.
7.
Themaximumdisplacementundertheactionofearthquakeoccursintheverticaldisplacementofnode53insteadofnode91whenthesubstructureisnotconsidered.
Fig.
6showsthemaximumdisplacementofnode53underdifferentpeakacceleration.
Whenthepeakaccelerationincreasesfrom3.
4m/s2to9.
2m/s2,themaximumdisplacementincreasefrom67mmto129mm,andwhenthepeakaccelerationincreasesfrom9.
2m/s2to9.
5m/s2only,themaximumdisplacementincreasesto144mmrapidly.
Fig.
7showsthatthedynamicresponseofnode53hasseriouslydeviatesfromitsinitialvibrationequilibriumpositionwhenthepeakaccelerationreaches9.
5m/s2.
BasedontheBudinsky-Rothcriterion,thedynamiccollapseaccelerationofthereticulatedsphericalshellwithsubstructureofthecrosssectionФ194*8is9.
2m/s2,whichisless24.
6%thanthecollapseaccelerationwithoutsubstructure.
Fig.
6.
MaximumdisplacementofthereticulatedshellwithsubstructureFig.
7.
Dynamicresponseofthemaximumdisplacementofnode53IV.
EFFECTOFTHESTIFFNESSOFTHESUBSTRUCTURETheaboveanalysisclearlyshowsthatthecollapseaccelerationdecreaseslargelywhenthesubstructureisconsidered.
Toillustratetheeffectofadifferentstiffnessofthesubstructuretothecollapseaccelerationofthemainreticulatedshellstructure,afurtheranalysisofadifferentcrosssectionofthesubstructureiscarriedout.
Inthenumericalanalysis,thetubularcrosssectionofΦ245*10,Φ152*6isusedrespectivelyforallthecolumnofthesubstructure.
Fig.
8showsthemaximumdynamicdisplacementofthereticulatedshellwithsubstructure'scrosssectionofΦ245*10,Φ152*6andΦ194*8respectively.
Thefigureshowsthatwhenthedynamicaccelerationisless4m/s2,thedifferentstiffnessofthesubstructurehaslittleeffecttothemaximumdisplacementofthemainreticulatedshell.
Themaximumdisplacementofthemainreticulatedshellincreaseswiththedecreaseofthestiffnessofthesubstructurewhenthedynamicaccelerationislargerthan4m/s2.
TableIalsoclearlyshowsthatthedynamiccollapseaccelerationofthemainreticulatedshelldecreaseswiththeweakenedofthesubstructure.
WhenthetubularcrosssectionofΦ245*10,Φ194*8andΦ152*6isusedasthecolumnofthesubstructurerespectively,thedynamiccollapseaccelerationreduced19.
0%,24.
6%and35.
7%correspondinglycomparingwiththedynamiccollapseaccelerationofthemainstructurewithoutconsideringthesubstructure.
Themaximumdisplacementisaffectedlittlebythestiffnessofthesubstructurewhenthemainreticulatedshellcollapses.
Fig.
8.
Effectofthestiffnessofsubstructure051015050100150200250300350Displacement/mmSeismicaccelerate/m/s2Time/sDisplacement/m0501001502002503003500246810121416Φ152*6Φ194*8Φ245*10Displacement/mmSeismicaccelerate/m/s2TABLEI.
EFFECTOFSTIFFNESSOFSUBSTRUCTURE.
SectionofcolumnΦ245*10Φ194*8Φ152*6Dynamiccollapseacceleration(m/s2)10.
29.
28.
1Reducedratio19.
0%24.
6%35.
7%Maximumdisplacement(mm)158144157V.
THEPLASTICITYMEMBERSDISTRIBUTIONOFTHEMAINRETICULATEDSHELLSTRUCTUREWiththeincreaseofthedynamicacceleration,somemembersofthereticulatedshellwillreachintoplasticityfromelasticity,andthiswillaffectthedynamiccollapseaccelerationofthestructure.
Todemonstratehowthestiffnessofthesubstructureaffectstheplasticitydevelopmentofthememberofthemainstructure,theinvestigationofthewholeprocessoftheplasticitydevelopmentofmembersunderincreasingdynamicaccelerationispresentedbyFig.
9andFig.
10.
Fig.
9showstherationofplasticitymemberofwithoutconsideringthesubstructureandconsideringthesubstructureofdifferentstiffness.
Thefigureshowsthatforthesamedynamicacceleration,theratioofplasticitymemberofthereticulatedshellwithsubstructureismuchhigherthanthatofthereticulatedshellwithoutsubstructureandthattherationofplasticitymemberincreasesrapidlywiththedecreaseofthestiffnessofthesubstructure.
Whenthedynamicaccelerationis3.
4m/s2,1.
5%ofthemembersofthereticulatedshellwithasubstructureofΦ152*6hasreachedintoplasticity,butnoplasticitymembersappearfortheotherconditions.
Whenthedynamicaccelerationreaches5.
1m/s2,theplasticityratioofthememberofthereticulatedshellwithasubstructureofΦ152*6increasesto4.
6%,andthereticulatedshellwithoutsubstructurehasnoplasticitymemberstill.
Thenwiththeincreaseofthedynamicacceleration,theplasticitymembersappearforreticulatedshellofallconditions,andtheplasticityratioofmembersalsoincreases.
Theplasticityratioofmemberschangesfrom14%to16.
5%accordingtodifferentsupportconditionwhenthedynamiccollapseofthemainreticulatedshelloccurs.
Theinvestigationindicatesthatwhenmoreandmoremembersreachintoplasticitybehavior,thestiffnessofthemainreticulatedshellisreduced,andwhichfinallycausesthecollapseofthestructure.
Theplasticitymembersofthemainreticulatedshellwiththeweakersubstructureappearmuchmoreearlyandtheratioofplasticitymemberincreasemuchfasterthanthatofthereticulatedshellwithstrongersubstructureandwithoutsubstructure.
Therefore,thedynamiccollapseaccelerationofthereticulatedshellwithweakersubstructureismuchlessthanthatofthereticulatedshellwithstrongersubstructureandwithoutsubstructure.
Fig.
9.
Theplasticratioofthememberofreticulatedshellwithandwithoutsubstructure.
(a)a=5.
1m/s2(b)a=6.
8m/s2(c)a=8.
5m/s2(d)a=10.
2m/s2(e)a=11.
9m/s2Fig.
10.
DevelopmentProcessoftheplasticitymembersofthereticulatedshell051015202502468101214Proportionofplasticmembers/%Seismicaccelerate/m/s2withoutsubstructureΦ245*10Φ194*8Φ152*6Fig.
10showsthedevelopmentprocessofplasticitymembersofthemainreticulatedshellwithasubstructureoftubularcrosssectionΦ194*8,anditclearlydemonstratesthatwiththeincreaseofthedynamicacceleration,themoreandmoremembersofthereticulatedshellreachintoplasticitybehaviorfromelasticitybehavior.
VI.
CONCLUSIONThispaperinvestigatestheeffectofsubstructuretothedynamiccollapseofthereticulatedshell.
Intheanalysis,thegeometricimperfections,thematerialandthegeometricnonlinearofthestructuresareconsidered.
Theeffectsofthedifferentstiffnessofsubstructuretothecollapseearthquakeaccelerationsandtheplasticmemberdistributionofthereticulatedshellarealsoinvestigated.
(1)Thesubstructurewillreducethedynamiccollapseaccelerationsofthemainreticulatedshellstructure,andwhenthedynamiccollapseofthereticulatedshellstructureisanalyzed,themainstructureandthesubstructureshouldbeconsideredasanintegralwhole.
(2)Thedynamiccollapseaccelerationreducedwiththedecreaseofthestiffnessofthesubstructure.
Thisindicatesthatthestiffnessofthesubstructureshouldhaveacertainstiffnesstoensurethatthemainreticulatedshellhasenoughearthquakeresistancecapability(3)Theplasticitymembersofthemainreticulatedshellwiththeweakersubstructureappearmuchmoreearlyandtheplasticityratioofmembersalsoincreasemuchfasterthanthatofthereticulatedshellwithstrongersubstructureandwithoutsubstructure.
Therefore,thedynamiccollapseaccelerationofthereticulatedshellwithweakersubstructureismuchlessthanthatofthereticulatedshellwithstrongersubstructureandwithoutsubstructure.
REFERENCES[1]S.
Z.
Shen.
etal.
StabilityofReticulatedShells.
SciencePress,Beijing,China,1995.
[2]M.
Fujimoto,andK.
Imai,etal.
BucklingExperimentofSingle-layerTwo-wayGridCylinderShellRoofunderCentrallyConcentratedLoading.
SpaceStructures5,ThomasTelford,London,2002.
[3]W.
Chen,G.
Fu,andY.
He.
GeometricallyNonlinearStabilityPerformanceforPatialDoubleLayerReticulatedSteelShellStructures.
SpaceStructures5,ThomasTelford,London,2002.
[4]M.
Zeinoddini,G.
A.
R.
Parke,andP.
Disney.
"TheStabilityStudyofanInnovativeSteelDome,"Int.
J.
SpaceStruct.
vol.
19,no.
2,pp.
109-125,2004.
[5]S.
Jianheng.
StabilityofBracedDomesUnderDynamicLoads.
SpaceStructures4,ThomasTelford,London,1993.
[6]S.
Kato,T.
Ueki,andY.
Mukaiyama,"StudyofDynamicCollapseofSingle-layerReticularDomesSubjectedtoEarthquakeMotionsandEstimationofStaticallyEquivalentSeismicForce",Int.
J.
SpaceStruct.
vol.
12,no.
3/4,pp.
191-204,1997.
[7]I.
Ario,andT.
Kaita,DynamicStabilityofDomeStructureswithHomoclinicOrbit.
SpaceStructures5,ThomasTelford,London,2002.
[8]F.
Fan,S.
Z.
Shen,andG.
A.
R.
Parke,"StudyoftheDynamicStrengthofReticulatedDomesunderSevereEarthquakeLoading",Int.
J.
SpaceStruct.
vol.
20,no.
4,2005.
[9]A.
Sadeghi.
HorizontalEarthquakeLoadingandLinear/NonlinearSeismicBehaviorofDoubleLayerBarrelVaults.
InternationalJournalofSpaceStructures,Vol.
19,No.
1,pp.
235-244,2004.
[10]T.
Thkeuchi,andT.
Orawa,etal.
ResponseEvaluationofMediumSpanLatticeDomeswithSubstructuresUsingResponseSpectrumAnalysis.
ProceedingsoftheIASS,2004.
[11]S.
Jianheng,L.
Hongmei,andA.
RahimiNoshnagh.
EarthquakeEffectsonSingle-layerLatticeDomeswithSupportingFrames.
ProceedingofIABSE-IASS2011,London,2011.
[12]L.
Liming,ANSYSHandbookforFiniteElementAnalysis.
TuinghuaPublishingHouse,Bejing,2005.
[13]F.
P.
Ulrich,"TheImperialValleyEarthquakeof1940",Bull.
Seismolog.
Soc.
Am.
vol.
31,no.
2,pp.
13-31,1941.
[14]B.
Budiansky,andR.
S.
Roth,Axisymmetricdynamicbucklingofclampedshallowsphericalshells.
CollectedPapersonInstabilityofShellStructures,NASATND1510,pp.
597-606,1962.
VoLLcloud LLC是一家成立于2020年12月互联网服务提供商企业,于2021年1月份投入云计算应用服务,为广大用户群体提供云服务平台,已经多个数据中心部署云计算中心,其中包括亚洲、美国、欧洲等地区,拥有自己的研发和技术服务团队。现七夕将至,VoLLcloud LLC 推出亚洲地区(香港)所有产品7折优惠,该产品为CMI线路,去程三网163,回程三网CMI线路,默认赠送 2G DDoS/C...
月神科技是由江西月神科技有限公司运营的一家自营云产品的IDC服务商,提供香港安畅、香港沙田、美国CERA、成都电信等机房资源,月神科技有自己的用户群和拥有创宇认证,并且也有电商企业将业务架设在月神科技的平台上。本次带来的是全场八折促销,续费同价。并且上新了国内成都高防服务器,单机100G集群1.2T真实防御,上层屏蔽UDP,可定制CC策略。非常适合网站用户。官方网站:https://www.ysi...
Hostio是一家成立于2006年的国外主机商,提供基于KVM架构的VPS主机,AMD EPYC CPU,NVMe硬盘,1-10Gbps带宽,最低月付5欧元起。商家采用自己的网络AS208258,宿主机采用2 x AMD Epyc 7452 32C/64T 2.3Ghz CPU,16*32GB内存,4个Samsung PM983 NVMe SSD,提供IPv4+IPv6。下面列出几款主机配置信息。...
k8k8.com为你推荐
梦之队官网NBA梦之队是什么游戏?bbs.99nets.com怎么制作RO单机www.622hh.comwww.710av.com怎么不可以看了125xx.com115xx.com是什么意思www.03ggg.comwww.tvb33.com这里好像有中国性戏观看吧??dadi.tvApple TV是干嘛的?怎么用?多少钱?干支论坛干支计时的干支计时国风商讯国风快胃片多少钱雀嘴鳝请介绍下鳄雀鳝这种鱼?雀嘴鳝什么是雀鳝鱼 雀鳝可以吃吗
独立ip空间 百度域名 香港服务器租用 免费cn域名 香港vps99idc 美国主机论坛 免费个人博客 云图标 网通代理服务器 云鼎网络 台湾谷歌地址 国外视频网站有哪些 移动服务器托管 ebay注册 德隆中文网 中国域名 镇江高防 网页加速 稳定空间 电信宽带测速软件 更多