uniformlyk8k8.com

k8k8.com  时间:2021-03-21  阅读:()
DynamicCollapseAnalysisofReticulatedShellStructureswithSubstructuresLiHong-mei,WangJun-lin,RenXiao-qiang,SunJian-hengCollegeofUrbanandRuralConstruction,AgriculturalUniversityofHebei,Baoding071001,ChinaLuWeiEngineeringandTechnicalcollegeofHebei,Cangzhou061001,Chinaxqren@126.
comAbstract—Dynamiccollapseanalysisisanimportantresearchsubjectforlargespansinglelayerreticulatedshellstructures.
Inthispaper,thedynamiccollapsebehaviorofthesinglelayerreticulatedshellwithsubstructurewhichsupportsthereticulatedshellisinvestigatedundertheearthquakeactions.
Intheanalysis,thegeometricimperfections,thematerialandthegeometricnonlinearofthestructuresareconsidered.
Theeffectsofthedifferentstiffnessofsubstructuretothecollapseearthquakeaccelerationsandtheplasticmemberdistributionofthereticulatedshellareinvestigated.
Keywords—Singlelayersphericalreticulatedshell;dynamiccollapse;Substructures;plasticityratioI.
INTRODUCTIONReticulatedshellstructureisabasictypeofthelargespatialstructures.
Anditiswidelyusedinengineeringduetoitsattractivearchitecturalperformanceandthegoodloadbearingcapacity.
Becausethemembraneforceisthemainresistanceforceofthereticulatedshellstructuresunderloads,thestabilitybehaviorofthistypestructureisacontrollingfactorintheanalysisanddesign.
Thestabilitybehaviorincludesstaticstabilityanddynamicstability.
Inthepastdecades,thestaticstabilityofthereticulatedshellstructureshasbeenextensivelystudied,andalotofresearchresultshavebeengot[1-4].
Inrecentyears,thedynamiccollapseofthereticulatedshellcausedbytheearthquakeactionalsoattractsalotofresearchers,andaseriesoftheinvestigationresultshavebeenpresented[5-8].
Butuptonow,mostofthedynamiccollapseanalysispapersconsideredonlythereticulatedshellitselfandneglectedthesupportingframestructures,namelysubstructures.
Inpractical,mostspatialstructureshaveasupportingframeorcalled,"substructure".
Duringanearthquake,theeffectsofseismicgroundmotionsactonthebaseofthesesubstructuresandthentheseeffectsaretransmittedupintothemainreticulatedshellstructure.
Inthisrespect,anaccurateandrealisticinvestigationofthebehaviorofearthquakeresistantspatialstructureswouldbeachievedifthereticulatedshellstructureandthesupportingframe(substructure)areconsideredasanintegralwhole.
Todate,thereareonlyafewpaperspublishedconcerningthisissue[9-11].
Thispaperconsidersthereticulatedsphericalshellstructureandthesubstructuresasanintegralwholeandinvestigatesthedynamiccollapsebehaviorofthereticulatedshellunderearthquakeactions.
Intheanalysis,theinitialgeometricimperfectionstogetherwithgeometricandmaterialnonlinearitiesareallincluded,andthereticulatedsphericalshellswithsubstructuresofthedifferentstiffnessareanalyzedtodemonstratetheeffectsofstiffnessonthedynamiccollapseofthestructures.
Fig.
1.
K8reticulatedshellFig.
2.
K8reticulatedshellwithsubstructureII.
RETICULATEDSHELLMODELSANDCOLLAPSEANALYSISMETHODThewidelyusedK8reticulatedsphericalshell,asshowninFig.
1andFig.
2,isusedasthemodelstructureinthenumericalanalysis.
Themodelreticulatedshellhasaspanof50mandriseof10mwhichgivethestructurearisetospanratioof0.
2.
ThesteelframeshowninFig.
2isusedasthesubstructuretosupportthemainreticulatedsphericalshellstructure.
Themainreticulatedsphericalshellisrigid-jointedwiththesubstructure.
Thesubstructurehasaheightof8mandisalsorigid-jointedwiththebase.
Auniformlydistributedloadof1.
3kN/m2wasassumedtobeappliedoverthedome.
ThesteelmaterialusedforthemembersofboththedomeandsubstructurewasQ235withamodulusofelasticityE=206MPa,Poissonratioν=0.
26,yieldstrengthfy=235MPaandthematerialdensityis7850kg/m3.
Allofthematerialwasassumedtobeperfectlyelastic-plasticinbehavior.
TheRayleighdampingisusedinthenumericalanalysisandadampingratioof0.
02wasassumed.
Threetypeoftubularcross-sectionsareappliedforthemembersofthereticulatedsphericalshell,andtheyareΦ108*4,Φ83*4andΦ70*4respectivelyaccordingtotheinternalforceofmembersarisingfromstaticanalysis.
Theringbeamofthesubstructureismadeofsteelwitha'I'section250*250*10(flange)*8(web)cross-section.
Thecrosssectionsofthemembersofthestructurearealsotubularcrosssectionsandtheirdimensionisgiveninthefollowingsection.
ThenumericalanalysisofthestructuresiscarriedoutbyusingthefiniteelementanalysissoftwareANSYS[12].
IntheanalysisbyANSYS,thePIPE20elementisusedforallthetubularmembers.
Thiselementtypecandealwithboththegeometricandmaterialnonlinearbehaviorofthestructure.
Themembersofthemaindomeandthesubstructureareallrigidlyconnected.
Tomodeltheweightofthestructurefortheseismicanalysis,three-dimensionalMASS21elementsareusedtoconcentratetheweightofthestructureontothecorrespondingnodes.
ThethreedimensionalEl-Centroearthquakeaccelerationtimeseriesisselectedastheinputacceleration,inwhichthethreepeakaccelerationsofthetimeseriesinbothhorizontalandverticaldirectionsareax=2.
1014m/s2,ay=3.
4170m/s2,az=-2.
0635m/s2,respectively[13].
Tensecondtimehistorydurationisusedsothatallthepeakaccelerationsareincludedintheanalysis.
Forthemaindomestructure,avalueofD/300fortheinitialgeometricimperfectionwasconsidered,andthefirstbucklingmodeisemployedforthedistributionoftheimperfection.
Inthenumericalanalysis,theBudinsky-Roth[14]criterionisusedtodeterminethedynamiccollapseaccelerationofthemainreticulatedshellstructure.
Byusingthiscriterion,theseismicaccelerationincreasesgraduallybythesamefactorinthreedirectionswhilethecycleofthetimeseriesiskeptunchanged.
Thedynamicresponseofthestructureismonitoredunderincreasingacceleration,andasuddenincreaseofdisplacementduetoaverysmallincreaseinthemagnitudeoftheaccelerationisconsideredasanindicationofthedynamiccollapseofthestructure.
III.
DYNAMICCOLLAPSEANALYSISOFTHERETICULATEDSHELLWITHSUBSTRUCTURETodemonstratetheeffectofthesubstructuretothedynamiccollapseofthemainstructure,thereticulatedsphericalshellwithoutsubstructureisanalyzedfirstly.
Intheanalysis,thereticulatedsphericalshellispinconnectedwiththebase,andallthethreetranslationaldisplacementsoftheboundarynodesofthereticulatedstructuresarerestrained.
Fig.
3.
MaximumdisplacementofthereticulatedshellwithoutsubstructureFig.
4.
Dynamicresponseofthemaximumdisplacementofnode91Fig.
5.
Dynamicresponseofthemaximumdisplacementofnode91ThenumericaldynamicanalysisresultsofthereticulatedsphericalshellwithoutconsideringthesubstructureareshowninFig.
3,Fig.
4andFig.
5.
Theresultalsoshowsthatthemaximumdisplacementoccursintheverticaldisplacementofnode91.
Fig.
3showsthevariationofthemaximumnodedisplacementofthereticulatedshellwiththeearthquakepeakacceleration.
Thefigureindicatesthatwhentheearthquake0510152025050100150200250300350400Displacement/mmSeismicaccelerate/m/s2Time/sDisplacement/mTime/sDisplacement/mpeakaccelerationincreasesfrom3.
4m/s2to11.
9m/s2,themaximumdisplacementincreasesfrom50mmto157mm.
Thedisplacementincreasesnearlylinearlywithearthquakepeakacceleration.
Whentheearthquakepeakaccelerationincreasesfrom11.
9m/s2to13.
2m/s2,themaximumdisplacementincreasesto206mmfrom157mm,whichismuchlargerthantheincreasingratiooftheearthquakeacceleration.
Fig.
4showsthatwhentheearthquakeaccelerationis11.
9m/s2,thedynamicresponseofthemaximumdisplacementmaintainsthecharacterofvibratingatitsinitialvibrationequilibriumposition.
Fig.
5showsthatwhentheearthquakeaccelerationreaches13.
2m/s2,thedynamicresponseofthemaximumdisplacementdeviatesfromitsinitialvibrationequilibriumposition.
BaseontheBudinsky-Rothcriterion,thecollapseaccelerationofthestructureisbetween11.
9m/s2and13.
2m/s2,andtheaveragenumber12.
6m/s2istakenasthedynamiccollapseaccelerationofthereticulatedsphericalshellwithoutasubstructure.
Whenthesubstructureisconsidered,thesteelframeshowninFig.
2isusedasthesubstructure.
ThetubularcrosssectionofФ194*8isadoptedforallthecolumnsofthesubstructure.
ThenumericalanalysisresultsareshowninFig.
6andFig.
7.
Themaximumdisplacementundertheactionofearthquakeoccursintheverticaldisplacementofnode53insteadofnode91whenthesubstructureisnotconsidered.
Fig.
6showsthemaximumdisplacementofnode53underdifferentpeakacceleration.
Whenthepeakaccelerationincreasesfrom3.
4m/s2to9.
2m/s2,themaximumdisplacementincreasefrom67mmto129mm,andwhenthepeakaccelerationincreasesfrom9.
2m/s2to9.
5m/s2only,themaximumdisplacementincreasesto144mmrapidly.
Fig.
7showsthatthedynamicresponseofnode53hasseriouslydeviatesfromitsinitialvibrationequilibriumpositionwhenthepeakaccelerationreaches9.
5m/s2.
BasedontheBudinsky-Rothcriterion,thedynamiccollapseaccelerationofthereticulatedsphericalshellwithsubstructureofthecrosssectionФ194*8is9.
2m/s2,whichisless24.
6%thanthecollapseaccelerationwithoutsubstructure.
Fig.
6.
MaximumdisplacementofthereticulatedshellwithsubstructureFig.
7.
Dynamicresponseofthemaximumdisplacementofnode53IV.
EFFECTOFTHESTIFFNESSOFTHESUBSTRUCTURETheaboveanalysisclearlyshowsthatthecollapseaccelerationdecreaseslargelywhenthesubstructureisconsidered.
Toillustratetheeffectofadifferentstiffnessofthesubstructuretothecollapseaccelerationofthemainreticulatedshellstructure,afurtheranalysisofadifferentcrosssectionofthesubstructureiscarriedout.
Inthenumericalanalysis,thetubularcrosssectionofΦ245*10,Φ152*6isusedrespectivelyforallthecolumnofthesubstructure.
Fig.
8showsthemaximumdynamicdisplacementofthereticulatedshellwithsubstructure'scrosssectionofΦ245*10,Φ152*6andΦ194*8respectively.
Thefigureshowsthatwhenthedynamicaccelerationisless4m/s2,thedifferentstiffnessofthesubstructurehaslittleeffecttothemaximumdisplacementofthemainreticulatedshell.
Themaximumdisplacementofthemainreticulatedshellincreaseswiththedecreaseofthestiffnessofthesubstructurewhenthedynamicaccelerationislargerthan4m/s2.
TableIalsoclearlyshowsthatthedynamiccollapseaccelerationofthemainreticulatedshelldecreaseswiththeweakenedofthesubstructure.
WhenthetubularcrosssectionofΦ245*10,Φ194*8andΦ152*6isusedasthecolumnofthesubstructurerespectively,thedynamiccollapseaccelerationreduced19.
0%,24.
6%and35.
7%correspondinglycomparingwiththedynamiccollapseaccelerationofthemainstructurewithoutconsideringthesubstructure.
Themaximumdisplacementisaffectedlittlebythestiffnessofthesubstructurewhenthemainreticulatedshellcollapses.
Fig.
8.
Effectofthestiffnessofsubstructure051015050100150200250300350Displacement/mmSeismicaccelerate/m/s2Time/sDisplacement/m0501001502002503003500246810121416Φ152*6Φ194*8Φ245*10Displacement/mmSeismicaccelerate/m/s2TABLEI.
EFFECTOFSTIFFNESSOFSUBSTRUCTURE.
SectionofcolumnΦ245*10Φ194*8Φ152*6Dynamiccollapseacceleration(m/s2)10.
29.
28.
1Reducedratio19.
0%24.
6%35.
7%Maximumdisplacement(mm)158144157V.
THEPLASTICITYMEMBERSDISTRIBUTIONOFTHEMAINRETICULATEDSHELLSTRUCTUREWiththeincreaseofthedynamicacceleration,somemembersofthereticulatedshellwillreachintoplasticityfromelasticity,andthiswillaffectthedynamiccollapseaccelerationofthestructure.
Todemonstratehowthestiffnessofthesubstructureaffectstheplasticitydevelopmentofthememberofthemainstructure,theinvestigationofthewholeprocessoftheplasticitydevelopmentofmembersunderincreasingdynamicaccelerationispresentedbyFig.
9andFig.
10.
Fig.
9showstherationofplasticitymemberofwithoutconsideringthesubstructureandconsideringthesubstructureofdifferentstiffness.
Thefigureshowsthatforthesamedynamicacceleration,theratioofplasticitymemberofthereticulatedshellwithsubstructureismuchhigherthanthatofthereticulatedshellwithoutsubstructureandthattherationofplasticitymemberincreasesrapidlywiththedecreaseofthestiffnessofthesubstructure.
Whenthedynamicaccelerationis3.
4m/s2,1.
5%ofthemembersofthereticulatedshellwithasubstructureofΦ152*6hasreachedintoplasticity,butnoplasticitymembersappearfortheotherconditions.
Whenthedynamicaccelerationreaches5.
1m/s2,theplasticityratioofthememberofthereticulatedshellwithasubstructureofΦ152*6increasesto4.
6%,andthereticulatedshellwithoutsubstructurehasnoplasticitymemberstill.
Thenwiththeincreaseofthedynamicacceleration,theplasticitymembersappearforreticulatedshellofallconditions,andtheplasticityratioofmembersalsoincreases.
Theplasticityratioofmemberschangesfrom14%to16.
5%accordingtodifferentsupportconditionwhenthedynamiccollapseofthemainreticulatedshelloccurs.
Theinvestigationindicatesthatwhenmoreandmoremembersreachintoplasticitybehavior,thestiffnessofthemainreticulatedshellisreduced,andwhichfinallycausesthecollapseofthestructure.
Theplasticitymembersofthemainreticulatedshellwiththeweakersubstructureappearmuchmoreearlyandtheratioofplasticitymemberincreasemuchfasterthanthatofthereticulatedshellwithstrongersubstructureandwithoutsubstructure.
Therefore,thedynamiccollapseaccelerationofthereticulatedshellwithweakersubstructureismuchlessthanthatofthereticulatedshellwithstrongersubstructureandwithoutsubstructure.
Fig.
9.
Theplasticratioofthememberofreticulatedshellwithandwithoutsubstructure.
(a)a=5.
1m/s2(b)a=6.
8m/s2(c)a=8.
5m/s2(d)a=10.
2m/s2(e)a=11.
9m/s2Fig.
10.
DevelopmentProcessoftheplasticitymembersofthereticulatedshell051015202502468101214Proportionofplasticmembers/%Seismicaccelerate/m/s2withoutsubstructureΦ245*10Φ194*8Φ152*6Fig.
10showsthedevelopmentprocessofplasticitymembersofthemainreticulatedshellwithasubstructureoftubularcrosssectionΦ194*8,anditclearlydemonstratesthatwiththeincreaseofthedynamicacceleration,themoreandmoremembersofthereticulatedshellreachintoplasticitybehaviorfromelasticitybehavior.
VI.
CONCLUSIONThispaperinvestigatestheeffectofsubstructuretothedynamiccollapseofthereticulatedshell.
Intheanalysis,thegeometricimperfections,thematerialandthegeometricnonlinearofthestructuresareconsidered.
Theeffectsofthedifferentstiffnessofsubstructuretothecollapseearthquakeaccelerationsandtheplasticmemberdistributionofthereticulatedshellarealsoinvestigated.
(1)Thesubstructurewillreducethedynamiccollapseaccelerationsofthemainreticulatedshellstructure,andwhenthedynamiccollapseofthereticulatedshellstructureisanalyzed,themainstructureandthesubstructureshouldbeconsideredasanintegralwhole.
(2)Thedynamiccollapseaccelerationreducedwiththedecreaseofthestiffnessofthesubstructure.
Thisindicatesthatthestiffnessofthesubstructureshouldhaveacertainstiffnesstoensurethatthemainreticulatedshellhasenoughearthquakeresistancecapability(3)Theplasticitymembersofthemainreticulatedshellwiththeweakersubstructureappearmuchmoreearlyandtheplasticityratioofmembersalsoincreasemuchfasterthanthatofthereticulatedshellwithstrongersubstructureandwithoutsubstructure.
Therefore,thedynamiccollapseaccelerationofthereticulatedshellwithweakersubstructureismuchlessthanthatofthereticulatedshellwithstrongersubstructureandwithoutsubstructure.
REFERENCES[1]S.
Z.
Shen.
etal.
StabilityofReticulatedShells.
SciencePress,Beijing,China,1995.
[2]M.
Fujimoto,andK.
Imai,etal.
BucklingExperimentofSingle-layerTwo-wayGridCylinderShellRoofunderCentrallyConcentratedLoading.
SpaceStructures5,ThomasTelford,London,2002.
[3]W.
Chen,G.
Fu,andY.
He.
GeometricallyNonlinearStabilityPerformanceforPatialDoubleLayerReticulatedSteelShellStructures.
SpaceStructures5,ThomasTelford,London,2002.
[4]M.
Zeinoddini,G.
A.
R.
Parke,andP.
Disney.
"TheStabilityStudyofanInnovativeSteelDome,"Int.
J.
SpaceStruct.
vol.
19,no.
2,pp.
109-125,2004.
[5]S.
Jianheng.
StabilityofBracedDomesUnderDynamicLoads.
SpaceStructures4,ThomasTelford,London,1993.
[6]S.
Kato,T.
Ueki,andY.
Mukaiyama,"StudyofDynamicCollapseofSingle-layerReticularDomesSubjectedtoEarthquakeMotionsandEstimationofStaticallyEquivalentSeismicForce",Int.
J.
SpaceStruct.
vol.
12,no.
3/4,pp.
191-204,1997.
[7]I.
Ario,andT.
Kaita,DynamicStabilityofDomeStructureswithHomoclinicOrbit.
SpaceStructures5,ThomasTelford,London,2002.
[8]F.
Fan,S.
Z.
Shen,andG.
A.
R.
Parke,"StudyoftheDynamicStrengthofReticulatedDomesunderSevereEarthquakeLoading",Int.
J.
SpaceStruct.
vol.
20,no.
4,2005.
[9]A.
Sadeghi.
HorizontalEarthquakeLoadingandLinear/NonlinearSeismicBehaviorofDoubleLayerBarrelVaults.
InternationalJournalofSpaceStructures,Vol.
19,No.
1,pp.
235-244,2004.
[10]T.
Thkeuchi,andT.
Orawa,etal.
ResponseEvaluationofMediumSpanLatticeDomeswithSubstructuresUsingResponseSpectrumAnalysis.
ProceedingsoftheIASS,2004.
[11]S.
Jianheng,L.
Hongmei,andA.
RahimiNoshnagh.
EarthquakeEffectsonSingle-layerLatticeDomeswithSupportingFrames.
ProceedingofIABSE-IASS2011,London,2011.
[12]L.
Liming,ANSYSHandbookforFiniteElementAnalysis.
TuinghuaPublishingHouse,Bejing,2005.
[13]F.
P.
Ulrich,"TheImperialValleyEarthquakeof1940",Bull.
Seismolog.
Soc.
Am.
vol.
31,no.
2,pp.
13-31,1941.
[14]B.
Budiansky,andR.
S.
Roth,Axisymmetricdynamicbucklingofclampedshallowsphericalshells.
CollectedPapersonInstabilityofShellStructures,NASATND1510,pp.
597-606,1962.

RAKsmart含站群服务器/10G带宽不限流量首月半价

RAKsmart 商家估摸着前段时间服务器囤货较多,这两个月的促销活动好像有点针对独立服务器。前面才整理到七月份的服务器活动在有一些配置上比上个月折扣力度是大很多,而且今天看到再来部分的服务器首月半价,一般这样的促销有可能是商家库存充裕。比如近期有一些服务商挖矿服务器销售不好,也都会采用这些策略,就好比电脑硬件最近也有下降。不管如何,我们选择服务器或者VPS主机要本着符合自己需求,如果业务不需要,...

百纵科技,美国独立服务器 E52670*1 32G 50M 200G防御 899元/月

百纵科技:美国高防服务器,洛杉矶C3机房 独家接入zenlayer清洗 带金盾硬防,CPU全系列E52670、E52680v3 DDR4内存 三星固态盘阵列!带宽接入了cn2/bgp线路,速度快,无需备案,非常适合国内外用户群体的外贸、搭建网站等用途。C3机房,双程CN2线路,默认200G高防,3+1(高防IP),不限流量,季付送带宽美国洛杉矶C3机房套餐处理器内存硬盘IP数带宽线路防御价格/月套...

SoftShellWeb:台湾(台北)VPS年付49美元起,荷兰VPS年付24美元起

SoftShellWeb是一家2019年成立的国外主机商,商家在英格兰注册,提供的产品包括虚拟主机和VPS,其中VPS基于KVM架构,采用SSD硬盘,提供IPv4+IPv6,可选美国(圣何塞)、荷兰(阿姆斯特丹)和台湾(台北)等机房。商家近期推出台湾和荷兰年付特价VPS主机,其中台湾VPS最低年付49美元,荷兰VPS年付24美元起。台湾VPSCPU:1core内存:2GB硬盘:20GB SSD流量...

k8k8.com为你推荐
对对塔今儿老师给推荐了一个叫对对塔的学习网站,看起来挺不错的,有用过的人吗?管不管用?哪些功能比较好啊?sonicchat深圳哪里有卖汽车模型?郭泊雄郭佰雄最后一次出现是什么时候?www.vtigu.com初三了,为什么考试的数学题都那么难,我最多也就135,最后一道选择,填空啊根本没法做,最后几道大题倒javbibitreebibi是什么牌子的javlibrary.comsony home network library官方下载地址百度关键字百度推广中关键词匹配方式分为哪几种?弗雷德疯谁知百里挑一的冯晔炀的家乡在哪?他喜欢什么食物?喜欢去哪里旅游?苗惟妮大好时光演员表珊珊窝尚公寓浦东川沙祥亿公寓怎么样,房租感觉蛮便宜
域名投资 免费vps 双线vps 免费二级域名申请 堪萨斯服务器 香港机房 uk2 idc评测网 iis安装教程 typecho 免费静态空间 服务器架设 骨干网络 国外免费asp空间 免费cdn 电信托管 常州联通宽带 免费稳定空间 789电视剧网 上海联通 更多