flaskwww.580hu.com

www.580hu.com  时间:2021-03-21  阅读:()
1Longopen-path,TDLbasedsystemformonitoringmethanebackgroundconcentrationfordeploymentatJungfraujochHighAltitudeResearchStation-SwitzerlandValentinSimeonov,HubertvandenBergh,andMarcParlangeEPFL-ENAC-EFLUMStation2,CH1015Lausanne,Switzerland,Tel.
+41(0)216936185,Fax.
+41(0)216936390email(valentin.
simeonov@epfl.
ch)Anew,longopen-pathinstrumentformonitoringofthebackgroundmethaneconcentrationpath-averagedover1000mwillbepresented.
Theinstrumentallowsmonitoringofwatervaporconcentrationaswell.
Theinstrumentisbuiltonthemonostaticscheme(transceiver–distantretroreflector).
AVCSELtunablediodelaser(TDL)withacentralwavelengthof1654nmisusedasalightsource.
Thereceiverisbuiltarounda20cmNewtoniantelescope.
Toavoiddistortionsintheshapeofamethaneline,causedbyatmosphericturbulences,themethanelineisscannedwithin1μs.
FastInGaAsphotodiodesanda200MHz,14bitADCareusedtoachievethisscanningrate.
Theexpectedconcentrationresolutionfortheabovementionedpath-lengthsisoftheorderof1ppbwithaccuracybetterthan5%.
TheinstrumentisdevelopedattheSwissFederalInstituteofTechnology–Lausanne(EPFL)SwitzerlandandwillbeusedwithintheGAW+CHprogramforlong-termmonitoringofbackgroundmethaneconcentrationintheSwissAlps.
AftercompletingtheongoinginitialtestsattheEPFL,theinstrumentwillbeinstalledin2012attheHighAltitudeResearchStationJungfraujoch(HARSJ).
TheHARSJislocatedat3580mASLandisoneofthe24globalGAWstationsandcarriesoncontinuousobservationsofanumberoftracegasses,includingmethane.
Oneofthegoalsoftheprojectistocomparepath-averagedtoongoingpointmeasurementsofmethaneinordertoidentifypossibleinfluenceofthestation.
FuturedeploymentsofacopyoftheinstrumentcouldincludetheColombianpartofAmazoniaandSiberianwetlands.
1.
IntroductionAnumberofgasesareinvolvedintheanthropogenicenhancementofthegreenhouseeffect.
Themostimportantofthesegreenhousegases(GHGs)arecarbondioxide(CO2);methane(CH4);nitrousoxide(N2O);halocarbons(HC);andtroposphericozone(O3).
Methanehasaspecialplaceamongthesegasessinceitsglobalwarmingpotentialis25timesoreven72timeslargerthanthepotentialofCO2in100yr.
and20yr.
timehorizonsrespectively[1].
Besidethedirectradiativeforcing(RF),estimatedto+0.
48Wm-2methanehasimportantindirecteffectbecauseofitschemicalreactivityresultinginatotalRFof+0.
7Wm-2.
TheindirectradiativeeffectsofmethaneresultmostlyfromreactionwithatmosphericOH.
Thisreaction:reducestheOHconcentration,leadingviaapositivefeedbacktoanenhancementofmethaneandsomeHClifetimes;producesadditionalCO2;enhancesstratosphericwatervapor;andincreasestroposphericozoneconcentrationthroughthemethaneproductionchain.
BecauseofconcentrationslowerthanthoseofCO2,atpresentmethanehasthesecond-largestradiativeforcing(RF)effectafterCO2.
Methaneisemittedbynaturalandanthropogenicsourceswithanthropogenicsourcesaccountingfor60%ofthetotalCH4budgetatpresent.
Themainnaturalsourcesarewetlands,termites,oceans,geologicalsources,methanehydrates,andwildfire.
Themostimportantanthropogenicsourcesareenergyproduction,(includingmining,fossilfuelproduction,distributionanduse),riceagriculture,ruminantanimals,landfills,wastetreatmentandbiomassburning.
ThemainmethanesinksaretheoxidationbytroposphericOH,oxidationinsoilsandlosstostratosphere.
Methaneconcentrationshaveincreasedalmost2.
5timessince1750reaching1774ppbin2005.
Systematicmeasurementsoverthelast25yearsshowa30%increaseinmethaneconcentrationsduringthatperiod.
Thisincreaseisnotmonotonic,withgreaterthan1%peryeargrowthratesinthelate1970andearly1980,slowingdowntozeroornegativevaluesduring1999-2005withsubstantialinterannualvariationsintheperiod1988-2005.
Recentdatashowrenewedgrowthofatmosphericmethane[2]duringlastyears.
ThereasonsforthedecreaseandvariabilityintheCH4growthrateandtheimplicationsforfuturechangesarenotunderstoodalthoughanumberofhypothesesweresuggested[1].
Inresponsetoanincreaseinglobalaveragetemperature,largequantitiesofmethanecanbereleasedinrelativelyshorttimescalesfromgeologicalstorage,suchasmethanehydratesandpermafrostandthroughbiogenicprocesses.
Theglobaltemperatureincreasecancausesignificantincreaseinmethaneconcentrationssince70%oftheatmosphericmethaneoriginatesfrombiogenicsources,whicharehighlysensitivetoclimatevariables.
Recentstudieshaveshownthatthepermafrostcontainsapprox.
500-900Gtcarbon,upto30%ofwhichcanbeconvertedinmethanebymicroorganismsduringthawing[3,4,5].
Inresponsetoclimatewarming,permafrosthasalreadybeguntothaw,withextremeprojectionsthatbytheendofthecenturyitwillhavethawedalmostcompletely.
Climatechangesalsoaffectthestabilityofmethanehydratesbeneaththeoceanwhere~4Ttarestored[6].
ThelatestobservationsoftheSiberianArcticshelfsuggestthat900Gtmethanearestoredthereinmethanehydratedepositsandasafreegasbelowthehydratedeposits.
Thereishighprobabilitythat50Gtmethaneofthisstoragecanbereleasedabruptlyatanytimedueto2thechangesinseawatertemperatures,relatedtothemeltingofArcticice,orasaresultofgeologicalevents[7,8,9].
DatafromSeptember2005showhigh(12000%)CH4supersaturationofsurfacewater,andhigh(upto8ppm)CH4concentrationintheatmosphericlayerabovetheseasurfaceovertheEastSiberianShelf[7].
Currentlyseveralnetworksandgovernmentalorganizationssystematicallymeasuremethaneconcentrationinsurfaceair[1].
NOAA/GMDisthemostgeographicallyextensivenetworkoperating40surfaceairflask-samplingsitesandacquiringdataalmostweeklysince1983[10].
GAGE/AGAGEnetworkoperates5+3sitesequippedwithautomaticsystemswithsamplingratesupto36samples/24hsincelate1980[11].
Allnetworksuseexclusivelythegaschromatograph(GC)techniquewithaflameionizationdetector(FID)formeasuringCH4concentration.
Withapropercalibration,thistechniquecansupplymeasurementswithrelativelygoodsensitivityandprecisionof0.
2-1%.
Sincethemeasurementprocessdependsonanumberofexternalparameters,toachievesufficientcorrelationamongmeasurementstakenwithdifferentinstrumentsandbetweenconsecutiverunstakenwiththesameinstrument,theGCrequirescalibrationwithaprecisestandardgasmixturebeforeeverysamplemeasurement.
Driftsandshiftsinthestandardscale[12]mayrequirereassessmentofthewholedataseries.
Inaddition,GCinstrumentshaverelativelyhighinitialpriceandoperationalcostsbecauseoftheneedofexpensiveconsumables(highandvery-highpuritygases),theneedofspecialenvironment(housing),andregularmaintenancebyqualifiedpersonnel.
Sincethesamplingisdoneatafixedpoint,themeasurementscanbeeasilyalteredbysampletakingandcanbeaffectedbylocalsources,sinks,orlocaltransport,particularlyinpoorlymixedatmospheresasinthecaseofwetlandswhereconcentrationcanvarybyordersofmagnitudefordistancesofseveralmeters.
Therefore,pointmeasurementslackthespatialrepresentativenessneededformodelingpurposes.
BecauseofallthesefactorsGCarenotsuitablefortheenlargementoftheexistingCH4networksasenvisagedintheGAW2008-2015strategicplanespeciallyinArcticandtropicalregions.
Infrared(IR)spectralanalysistechniquessuchasFourierTransformInfrared(FTIR)orTunableLaserAbsorptionSpectroscopy(TLAS)arewidelyusedforaccuratequantitativemeasurementsoftracegasconcentrations[13].
TheconcentrationisderivedfromIRabsorptionmeasuredoveranopticalpath.
Thesensitivityandtheprecisionofthesemeasurementsdependstronglyonthepath-length.
Toachievesufficientsensitivityandprecisionfortraceconcentrationmeasurements,thepathlengthisextendedeitherbyusingmultiple-pathcellsormeasuringoverlong-pathinopenair(referredtohereinas"open-path"orOP).
Themultiple-passtechniqueallowscompactinstrumentaldesignandrelativelyeasycalibrationbutbeingapointmeasurementtechniquesuffersfromthesamedrawbacksastheGCtechniquementionedabove.
IntheOPtechniquetheconcentrationmeasurementsareaveragedoveranextendedpath,andthereforearemuchlessaffectedbylocalunrepresentativefluctuationsingasconcentrationthanmeasurementstakenwithpointsensors.
Thepassiveopen-pathFTIRmethodusestheSunasalightsourceandhasbeenusedtoproducecontinuous,longtimeseriesofhighquality,totalcolumnGHGsdata[14].
TheFTIRmethod,however,islimitedtoonlydaytimeandclearweatherconditions.
TheactiveOP-FTIRcanbeoperatedaroundtheclockbuttheachievableabsorptionpathsareusuallyshort(<1000m)becauseoftheuseofnon-coherentlightsources,whichleadstolowsensitivity.
BothOP-FTIRmethodsrequiresignificantresourcesandexpertknowledgetoensureproperdeployment,operation,andfinaldataproduction.
Furthermore,FTIRinstrumentsaredelicateandhavemovingparts,whichmakesthemdifficulttodeployinfieldconditions.
Theadvancesinsemiconductorlaserscienceandtechnologyhasmadeavailabletunable,sourcesforreal-timeTLASmonitoringofalargenumberofmolecularspeciesintheIR.
TunableDiodelaser(TDL)andQuantumCascadeLaser(QCL)basedpointmeasurementsofanumberoftracegasesincludingCO2,CH4,O3N2Oandotherhavebeensuccessfullydemonstratedinrecentyears[15,16,17,18,19,20]andcommercialinstruments[21,22,23]havebecomeavailablerecently.
Themajorityoftheseexperimentsandmostcommercialinstrumentsarehowever,designedforpointobservations.
SomesuccessfulOPexperimentshavebeencarriedoutinthelate1970,butbecauseofthelackofsuitablelasersources,thesetypemeasurementsdidnotfindwideapplications.
Recentlywiththeappearanceofnewlasersources,OPmeasurementsofmethanehavebeenreportedandcommercialinstruments[24]areavailable.
Theseinstrumentshoweveraredesignedmostlyfordetectinggasleaksormeasuringhigherthanbackgroundconcentrations.
Inthispaperwedescribeanew,TDLbasedOPinstrumentformonitoringofthebackgroundmethaneconcentration.
TheinstrumentisdevelopedattheSwissFederalInstituteofTechnology–Lausanne(EPFL)SwitzerlandandwillbeusedwithintheGAW+CHprogramforlong-termmonitoringofbackgroundmethaneconcentrationintheSwissAlps.
AftercompletingtheongoinginitialtestsattheEPFL,theinstrumentwillbeinstalledin2012attheHighAltitudeResearchStationJungfraujoch(HARSJ).
TheHARSJislocatedat3580mASLandisoneofthe24globalGAWstationsandcarriesoncontinuousobservationsofanumberoftracegasses,includingmethane.
Oneofthegoalsoftheprojectistocomparepath-averagedtoongoingpointmeasurementsofmethaneinordertoidentifypossibleinfluenceofthestation.
FuturedeploymentsofacopyoftheinstrumentcouldincludetheColombianpartofAmazoniaandSiberianwetlands.
2.
TheoryofoperationTheOPTDLtechniqueemploystheabsorptionspectroscopyprincipletoobtainspeciesconcentration.
TheconcentrationCisderivedfromthemeasuredoverthesamplelengthLlighttransmittance)(νTasLTC)()(lnνσν=3where)(νσiswavelength)(νdependantabsorptioncrosssection,specificforthedetectedsubstance.
Thetransmittanceismeasuredbysweepingrepeatedlythelaserwavelengthacrossanabsorptionlineofthespeciesbeingdetected.
Thetransmittancemeasuredoutsideoftheabsorptionlineisusedtocorrectforlightlossesotherthanspeciesabsorption.
Toachievesufficientsensitivity(oftheorderofppbv),theopen-pathmonitoringuseslongopticalpathsthroughtheatmosphere.
Thisgivesapath-averagedvalueofthespeciesconcentration.
ThemainfeaturesoftheOPTDLmethod,whichmakeitavaluabletechniqueforatmosphericmeasurements,canbesummarizedas:-Asahigh-resolutionspectroscopictechniqueitisvirtuallyimmunetointerferencesbyotherspecies,aproblemthatplaguesmostcompetingmethods.
-Asadifferentialspectroscopictechniquethemethodallowsstraightforwardcalibrationandcancelationofbackgroundabsorption-Concentrationmeasurementsareaveragedoveranextendedpath,andthereforearemuchlessaffectedbylocalunrepresentativefluctuationsingasconcentrationthanmeasurementstakenwithpointsensors.
-Itofferscontinuousmeasurementsattime-constantsoftensofsecondsorsowithppborsub-ppblowdetectionlimit.
Thetime-constantofthetechniquecanbetradedoffagainstsensitivityandthiscanallowfluxmeasurementsofrelativelyabundantspeciesbytheeddy-fluxcorrelationtechnique.
-Measurementscanbemadeinregionsofdifficultaccess,especiallyabovegroundlevel.
-Thereisnomaterialcontactbetweengasandsensorandthusthereisnodegradationofthegasbeingmeasuredor"poisoning"ofthesensor.
-Severalspeciescanbemeasuredsimultaneouslywithasinglelaser-Itisageneraltechnique.
Thesameinstrumentcaneasilybeconvertedfromonespeciestoanotherbychangingthelaserorthelasertemperature.
Furthermore,thenumberofsimultaneouslymeasuredspeciescanbeextendedbymultiplexingtheoutputsofseverallasers.
3.
InstrumentdesignanddeploymentTheinstrumentconsistsofatransmitter-receiveranddistantretroreflectoroperatedinmonostaticconfigurationasshowninFig.
1.
Thetransmitter-receiverisdesignedasacompactblockbuiltaroundthereceivingtelescope.
ThetransmitterusesaVerticalCavitySurfaceEmittingLaser(VCSEL)withacentralwavelength1.
654μm,current-tunedover3nm.
Therelativelywidetuningrangeofthelaserallowssimultaneousmeasurementsofwatervaporusingawatervaporabsorptionbandcenteredatapprox.
6047.
8cm-1.
Thelaserradiationiscollimatedbyanoff-axisparabolicmirroranddirectedtotheretroreflectoralongthetelescopeopticalaxis.
ForalignmentpurposesagreentracinglaserbeamistransmittedcoaxiallytotheIRlaserbeam.
ThetelescopeisNewtoniantypewith20cmdiameterofthemainmirror.
PeltiercooledInGaAsphotodiodeandalow-noisetransimpedanceamplifierareusedinthereceiver.
Toavoiddistortionsinthelineshape,causedbyatmosphericturbulences,themethanelineisscannedwithin1μs.
Theacquisitioniscarriedoutbyafast14bit,200MHzADCcardinstalledinaPC.
Thelaser,thecollimatingoptics,andthereceiverdetectorarefixedonthetelescope.
Aretroreflectorwith15cmclearaperturewasassembledfromflatmirrorsusingthetechnologyforbuildingandalignmentdevelopedatEPFL.
TheinstrumentiscontrolledviaLabViewbasedsoftware.
Toensurebetterthan1ppbaccuracythedatatreatmentsoftwarewilltakeintoaccounttheactualatmosphericpressureandtemperaturemeasuredatthetwoendsoftheopticalpathandlaserpowervariations.
Fig.
1.
Opticalschemaoftheinstrument.
Theenclosuresofthetransceiverandtheretroreflectorarenotshownhereforsimplicity.
4.
Fig.
2LeftAphotographoftheopen-pathinstrumentformonitoringbackgroundmethaneconcentration.
Rightpane;lInstrumenttransceiver.
Leftpanel.
ThemeasuringsiteatEPFLshowingthepositionoftheretroreflector.
Theinsetshowsaclosepictureoftheretroreflector.
Theinstrumenthasalreadybeenbuiltandextensivetestsmeasurementsover1000mopticalpathhasbeencarriedout.
ApictureoftheinstrumentisshownontheleftpanelofFig.
2.
TherightpanelofthesamefigureshowsthedeployedattheEPFLcampusindicatingthepositionoftheretroreflector.
Acomparisonbetweenasimulated(usingHITRANdatabase)andexperimentallymeasuredatmosphericabsorptiontakenduringthetestsisshowninFig.
3.
Well-expressedmethaneandwatervaporspectralfeaturesareclearlyseeninthefigure.
ThesignallevelandsignaltonoiseratioallowustoestimatethatthemeasurementofambientCH4concentrationswithaccuracyandprecisionbetterthan1ppbisfeasiblewiththecurrentconfigurationforacquisitiontimesoftheorderoftensofseconds.
Thelowerdetectionlimitforwatervaporisexpectedtobeoftheorderoftensofppb.
Laser(VCSEL)ColimationopticsTracinggreenlaserTelescopeDetectorFTAmGcpaTFig.
3.
Atmospsimulation;1.
7ThesignalisaAftercAltitudeReseamostofthetimGAWstationschromatographpossiblepositisurroundingsoaltitudeof380TheMnchsjoFig.
4.
Pstphericabsorpti79ppmCH4,4averagedover2completingthearchStationJunmeinthefreesandcarrieshandanFTIRionsoftheretofMnchsjohh00mASLandhhüttehutisloPossibleopticPTTtationionspectrumi4%H2O,10002000laserpulsongoinginitingfraujoch(HAtroposphereaoncontinuousRsystem.
Thetroreflectorarehüttehutataphassuitableinocatedat3627alpathsfromH1.
1kmHARSJinthevicinitymopticalpathses(0.
5s),timealtestsattheARSJ).
Duetoallowingbackgsobservationstransceiverwieenvisaged;approx2.
3kmnfrastructurealmASLandisHARSJ2yof6047cm-h.
LowerpaneeforscanningEPFL,theinoitshigh-altitudgroundtracegofanumberillbeinstalledaPTTstationNEfromHAllowingeasyinaccessibleparMhu2.
3km1CH4line.
Upl,MeasuredovtheCH4line1nstrumentwilldelocation(35gasmonitoringroftracegasdintheSphinxatapprox.
1.
ARSJ(Fig.
5).
nstallationandrtoftheyear.
MnchsjohhüutUpperpanel,Hver1000mpaμs.
beinstalledi580mASL)th.
HARSJisoses,includingxobservatoryo1kmwestfroThePTTstatdmaintenanceütteHITRAN[25]athlengthspecn2012attheheHARSJissitoneofthe24gmethanebyofHARSJanomHARSJanionislocatedoftheretroreflbasedctrum.
Hightuatedglobalagasndtwondtheatanlector.
6Thenextphaseoftheprojectisdueforexperimentalmeasurements,comparisonwiththeoperationalatJungfraujochpointandremotemeasurementsandanalysisoftheresults.
Todefinetheweatherdependencemeasurementswillbecarriedoutindifferentweatherconditions.
Becauseoftheshortacquisitiontimeoftheopen-pathmidIRsystem,measurementswillbepossibleinscatteredcloudsinshorttimeintervals.
ThecomparisonwiththeregularpointgaschromatographandTDLmulti-passcellmeasurementsandwiththeFTIRspace-averagedmeasurementswillbecarriedout.
ThegoaloftheintercomparisonisnotonlytoverifytheTDL-open-pathdatabutalsotoidentifypossibleinfluenceoftheemissionsfromtheJungfraujochstationandtouristsitesonthepointGHGsmeasurements.
TheJungfraujochisaverybusytouristsitewithahighlysophisticatedinfrastructureandupto8'000visitorsperday;thereforetherealwaysexiststhepossibilitythatemissionsfromtheJungfraujochtouristfacilitiescanaffectthepointmeasurementsofCH4andwatervaportoamuchlargerextentthanthelongopenpathmeasurements.
SincetheTDLinstrumentwillsupplydataaveragedoverone(two)kilometersthiscouldpossiblyallowtheidentificationoftheJungfraujochstation'sinfluenceontheGHGsmeasurementsbystudyingthedifferencesbetweenthepointandspatiallyaverageddata,andvisitorstatisticsandmeteorologicalconditions.
4.
ConclusionAnew,longopen-pathinstrumentformonitoringofatmosphericwatervaporandbackgroundmethaneconcentrationpath-averagedover1000mwasdevelopedattheSwissFederalInstituteofTechnology–Lausanne(EPFL)Switzerland.
Theinstrumentisbuiltonthemonostaticscheme(transceiver–distantretroreflector).
UsinganIRVerticalCavitySurfaceEmittingLaserinthetransmitter.
Thereceiverisbuiltarounda20cmNewtoniantelescope.
Toavoiddistortionsintheshapeofamethaneline,causedbyatmosphericturbulences,themethanelineisscannedwithin1μs.
FastInGaAsphotodiodesanda200MHz,14bitADCareusedtoachievethisscanningrate.
TheinstrumentwillbeusedwithintheGAW+CHprogramforlong-termmonitoringofbackgroundmethaneconcentrationintheSwissAlps.
AftercompletingtheongoinginitialtestsattheEPFL,theinstrumentwillbedeployedin2012attheHighAltitudeResearchStationJungfraujoch(3580mASL).
FuturedeploymentsofacopyoftheinstrumentcouldincludetheColombianpartofAmazoniaandSiberianwetlands.
References:1.
IPCCFourthassessmentreport,WorkingGroupIReport"ThePhysicalScienceBasis",2007,Ch2andCh7,availablefromhttp://www.
ipcc.
ch/ipccreports/ar4-wg1.
htm2.
S.
Zymovetal.
"PermafrostandtheGlobalCarbonBudget",ScienceV312,pp.
1612-1613,20063.
M.
Rigbyatal,Renewedgrowthofatmosphericmethane,Geophys.
Res.
Lett.
,35,L22805,doi:10.
1029/2008GL036037,20084.
K.
M.
Walter,MethanebubblingfromSiberianthawlakesasapositivefeedbacktoclimatewarming,NatureVol443|7September2006|doi:10.
1038/nature05040,pp.
71-75,20065.
M.
Mastepanovatal,Largetundramethaneburstduringonsetoffreezing,NatureLett.
Vol456|4December20086.
Buffett,B.
,andD.
Archer,2004:Globalinventoryofmethaneclathrate:sensitivitytochangesinthedeepocean.
EarthPlanet.
Sci.
Lett.
,227,185–199.
7.
N.
Shakhovaatal.
AnomaliesofmethaneintheatmosphereovertheEastSiberianshelf:IsthereanysignofmethaneleakagefromshallowshelfhydratesGeophysicalResearchAbstractsVol.
10,EGU2008-A-01526,20088.
N.
Shakhovaatal.
MethanereleaseandcoastalenvironmentintheEastSiberianArcticshelf,JournalofMarineSystemsv.
66,pp.
227–243,20079.
A.
Mascarelli,"Asleepinggiant",NaturereportsclimatechangeV.
3April,200910.
E.
J.
Dlugokenckyatal,"Thegrowthrateanddistributionofatmosphericmethane",JGRV,.
99,NO.
D8,pp17,021-17,043A,199411.
D.
M.
Cunnoldatal,InsitumeasurementsofatmosphericmethaneatGAGE/AGAGEsitesduring1985–2000andresultingsourceinferences",JGRV.
107,NO.
D14,pp.
ACH20-1-ACH20-18,200212.
E.
J.
Dlugokencky,ConversionofNOAAatmosphericdryairCH4molefractionstoagravimetricallypreparedstandardscale,JGR,V.
.
110,D18306,doi:10.
1029/2005JD006035,200513.
Airmonitoringbyspectroscopictechniquesed.
MSigrist,JohnWiley&sons.
Inc.
NeyYork,199414.
L.
Delbouille,andG.
Roland,High-resolutionsolarandatmosphericspectroscopyfromtheJungfraujochhigh-altitudestation,Opt.
Eng,34,pp.
2736-2739,199515.
F.
Titel,etal,Mid-InfraredLaserApplicationsinSpectroscopy,inSolid-StateMid-InfraredLaserSources,I.
T.
SorokinaandK.
L.
Vodopyanov,2003,Springer,Verlag:BerlinHeidelberg.
p.
445-51016.
P.
Werle,Near-andmid-infraredlaser-opticalsensorsforgasanalysis,OptandLasersEng.
,37,101-114,200217.
M.
Taslakov,V.
Simeonov,andH.
vandenBergh,"Open-pathozonedetectionbyQuantumCascadeLaser",AppliedPhysicsB,82,501-506,(2006)718.
RJimenez,M.
Taslakov,V.
Simeonov,B.
Calpini,F.
Jeanneret,D.
Hofstetter,M.
Beck,J.
Faist,andH.
vandenBergh,Ozonedetectionbydifferentialabsorptionspectroscopyatambientpressurewitha9.
6mpulsedquantum-cascadelaser,Appl.
Phys.
B,78,pp.
249-256,(2003)19.
P.
Werle,Areviewofrecentadvancesinsemiconductorlaserbasedgasmonitors,SpectrochimicaActaPartA54,pp197–236,199820.
R.
Wainner,"Handheld,battery-powerednear-IRTDLsensorforstand-offdetectionofgasandvaporplumes",Appl.
Phys.
B75,249–254,200221.
http://www.
aerodyne.
com/Tunablediodelasertracegasdetectors,andQuantumcascadelasertracegasdetectors.
22.
http://www.
lgrinc.
com/index.
aspsubid=ps&ProductCategoryID=1523.
http://www.
picarro.
com/markets/greenhouse/24.
http://www.
boreal-laser.
comTheannounced(webpage)maximumpathis1000m.
Accordingtoacompanyengineertherealmaximumpathis400mwithapossibilitytoextendthepathlengthto1000musingamulti-retroreflectorarraythathastobedevelopedspecially.
Ourexperienceofusingmulti-reflectorarrayswithQCLandTDLsystemsshowsthatmulti-reflectorconfigurationwhenusedwithcoherentsourcesproducesdynamicinterferencefringeswhichcompromisethemeasurement.
Thefringesarecausedbytheinterferenceofthemodulatedbyatmosphericturbulencebeamsthatoriginatefromindividualretroreflectors.
Paperonthissubjectisonpreparation.

[6.18]IMIDC:香港/台湾服务器月付30美元起,日本/俄罗斯服务器月付49美元起

IMIDC发布了6.18大促销活动,针对香港、台湾、日本和莫斯科独立服务器提供特别优惠价格最低月付30美元起。IMIDC名为彩虹数据(Rainbow Cloud),是一家香港本土运营商,全线产品自营,自有IP网络资源等,提供的产品包括VPS主机、独立服务器、站群独立服务器等,数据中心区域包括香港、日本、台湾、美国和南非等地机房,CN2网络直连到中国大陆。香港服务器   $39/...

tmhhost(100元/季)自带windows系统,香港(三网)cn2 gia、日本cn2、韩国cn2、美国(三网)cn2 gia、美国cn2gia200G高防

tmhhost可谓是相当熟悉国内网络情况(资质方面:ISP\ICP\工商齐备),专业售卖海外高端优质线路的云服务器和独立服务器,包括了:香港的三网cn2 gia、日本 cn2、日本软银云服务器、韩国CN2、美国三网cn2 gia 云服务器、美国 cn2 gia +200G高防的。另外还有国内云服务器:镇江BGP 大连BGP数据盘和系统盘分开,自带windows系统,支持支付宝付款和微信,简直就是专...

一键去除宝塔面板各种计算题与延时等待

现在宝塔面板真的是越来越过分了,删除文件、删除数据库、删除站点等操作都需要做计算题!我今天升级到7.7版本,发现删除数据库竟然还加了几秒的延时等待,也无法跳过!宝塔的老板该不会是小学数学老师吧,那么喜欢让我们做计算题!因此我写了个js用于去除各种计算题以及延时等待,同时还去除了软件列表页面的bt企业版广告。只需要执行以下命令即可一键完成!复制以下命令在SSH界面执行:Layout_file="/w...

www.580hu.com为你推荐
百度爱好者如何加入知道记者团,有什么条件吗,加入以后都干些什么?工信部约谈电信怎么在工信部投诉中国电信permissiondeniedpermission denied 怎么解决bbs.99nets.com怎么把电脑的IP设置和路由器一个网段地陷裂口地陷前期会有什么征兆吗?www.kkk.com谁有免费的电影网站,越多越好?bbs2.99nets.com让(bbs www)*****.cn进入同一个站www.zhiboba.com登录哪个网站可以看nba当天的直播 是直播baqizi.cc汉字的故事100字www.diediao.com这是什么电影
长春域名注册 河北服务器租用 域名解析服务器 骨干网 电信测速器 liquidweb bbr yardvps vpsio namecheap 圣迭戈 缓存服务器 softbank官网 godaddy域名转出 小米数据库 阿里校园 web服务器安全 多线空间 银盘服务 独享主机 更多