REVIEWOpenAccessInterfaceengineeringforhighperformancegrapheneelectronicdevicesDaeYoolJung,SangYoonYang,HaminPark,WooCheolShin,JoongGunOh,ByungJinCho*andSung-YoolChoi*AbstractAdecadeafterthediscoveryofgrapheneflakes,exfoliatedfromgraphite,wehavenowsecuredlargescaleandhighqualitygraphenefilmgrowthtechnologyviaachemicalvapordeposition(CVD)method.
WiththeestablishmentofmassproductionofgrapheneusingCVD,practicalapplicationsofgraphenetoelectronicdeviceshavegainedanenormousamountofattention.
However,severalissuesarisefromtheinterfacesofgraphenesystems,suchasdamage/unintentionaldopingofgraphenebythetransferprocess,thesubstrateeffectsongraphene,andpoordielectricformationongrapheneduetoitsinertfeatures,whichresultindegradationofbothelectricalperformanceandreliabilityinactualdevices.
Thepresentpaperprovidesacomprehensivereviewoftherecentapproachestoresolvetheseissuesbyinterfaceengineeringofgrapheneforhighperformanceelectronicdevices.
Wedealwitheachinterfacethatisencounteredduringthefabricationstepsofgraphenedevices,fromthegraphene/metalgrowthsubstratetographene/high-kdielectrics,includingtheintermediategraphene/targetsubstrate.
Keywords:Graphene;Interfaceengineering;Transfer;Delamination;Mobility;Doping;Hysteresis;Substrateeffect;Dielectric;Transistor1IntroductionGraphenehasreceivedmassiveattentionasapromisingnewmaterialforapplicationtoelectronicandoptoelec-tronicdevicesbecauseofitssuperioranduniqueelec-trical,optical,andmechanicalproperties[1-10].
Intheearlystageofgrapheneresearch,highqualitygrapheneobtainedbymechanicalexfoliation[1-8]ofgraphitefa-cilitatedfundamentalstudiesontheoutstandingproper-tiesofgraphene,triggeringexplosiveresearchontheapplicationofgraphenetovariousfields[11-15].
How-ever,theapplicationofgraphenetoreal-worlddevicesrequiresascalablesynthesistechniquetoovercomethelimitedquantityandsizeofmechanicallyexfoliatedgra-phene.
Graphenesynthesisbychemicalvapordepos-ition(CVD)[16-25]iscurrentlythemostwidelyadoptedtechniqueforthescalableproductionofsinglelayergraphene,uptoasizeof30inches[19].
Althoughlarge-scale,high-qualitygrapheneisnowavailable,therealizationofhighperformancegraphenedevicesisstillchallenging.
Specifically,devicesfabricatedfromCVD-growngraphenehavenotyetshownthelevelofper-formancethatwasanticipatedupontheemergenceofgraphene[26-29].
Whilethedegradationoftheper-formanceofgraphenedevicescanbeattributedtomanyfactors,thesignificantissueoftheinterfaceswheregra-pheneinteractswiththeneighboringmaterialswarrantsextensiveconsideration[30-35].
Duetotheone-atom-thick,two-dimensional(2D)characteristicofgraphene,itselectricalpropertiesaredirectlyaffectedbytheinter-actionofthegraphenesurfacewithadjacentmaterials.
Thepurposeofthisreviewistoshedlightontheim-portanceofinterfaceengineeringthroughtheentirefab-ricationprocessofgraphenedevicesfromseveralrecentreportsongraphenetransferandgrapheneelectronicdevices.
Inthisreview,westartfromnoveltransfertech-niquesviadirectdelaminationofgraphenefromametalgrowthsubstrate,whichiscloselyrelevanttotheinter-facecontrolinagraphene/growth(orgraphene/target)substrate.
Afterthetransferprocess,grapheneformsaninterfacewithatargetsubstrate,whichalsoinfluences*Correspondence:sungyool.
choi@kaist.
ac.
kr;elebjcho81@kaist.
ac.
krEqualcontributorsGrapheneResearchCenter,DepartmentofElectricalEngineering,KoreaAdvancedInstituteofScienceandTechnology(KAIST),Daejeon305-701,RepublicofKorea2015Jungetal.
;licenseeSpringer.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.
org/licenses/by/4.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.
Jungetal.
NanoConvergence(2015)2:11DOI10.
1186/s40580-015-0042-xFigure1(Seelegendonnextpage.
)Jungetal.
NanoConvergence(2015)2:11Page2of17thechargecarriertransportofgraphene.
Hence,wedis-cussthesubstrateeffectsandthechoiceofanoptimumsubstrateforhighperformancegraphenedevices.
Finally,whengrapheneistransferredintactontothetargetsub-strate,itisnecessarytoconsiderotherinterfacesthatarecreatedbytheintegrationofgraphenewithotherelectroniccomponentssuchasgatedielectrics.
Thesein-terfacesalsogiverisetochallengingissuesrelatedtothechemicalinertnessofthegraphenesurfaceandthewet-tability/interfacialadhesion.
Thelasttopiccoversnovelstrategiestointegrateuniform,ultrathingatedielectricsonthegraphenesurfacetoguaranteehighperformanceofgraphenedevices.
2Review2.
1Transfertechniques:interfacesatgraphene/metalgrowthsubstrateandgraphene/targetsubstrateSincelarge-areagraphenefilmsaremainlysynthesizedoncatalyticmetalsubstrates[16-23],wefirstshouldconsidertheinterfacebetweengrapheneandthecata-lyticmetalsubstrate.
ToapplyCVD-growngraphenetoelectronicdevices,graphenemustbeisolatedfromthisinterfaceanddeliveredtoatargetdielectricsubstrate.
Themostcommonmethodforgraphenetransferhasbeenpoly(methylmethacrylate)(PMMA)film-assistedtransfer[36-39],whichinvolveswetetchingofthemetalsubstrateandwater-mediateddeliveryofgraphenetothetargetsubstrate.
Drawbacksofthismethodincludepossibleoxidationofgrapheneduetothestrongoxida-tionpowerofmetaletchants[19]andcontaminationofgraphenebyetchingresiduessuchasionicimpuritiesfromtheetchant[40-42]andmetallicresiduesfromin-completeetching[41].
Inaddition,polymericresidues[31-33]afterPMMAremovalareanothersourceofcon-taminationofgraphene.
Theseresiduesdirectlyaffecttheelectricalpropertiesofgraphene,resultinginsignifi-cantdegradationoftheperformanceofgraphenedevices[31-33,43].
Forthesereasons,metal-etching-freetransferbydelaminationofgraphenefromthemetalsubstratehasbeenpursuedasanalternative,non-destructivemeansofrealizingcleantransferofgraphene.
2.
1.
1Electrochemicaldelamination/transferofgraphene:physicalweakeningofthegraphene/metalinterfaceOnestrategyfordirectdelaminationofgrapheneisphysicalweakeningoftheinterfacialinteractionsbetweengrapheneandthemetalgrowthsubstrate.
Figure1aschematicallyil-lustratestheelectrochemicaldelamination(ECD)ofgra-pheneinwhichhydrogen(H2)bubblesgeneratedbytheelectrolysisofwaterareutilizedasatoolforphysicalweak-eningofthegraphene/metalinterface[44].
Theelectro-chemicalcellemployedforthedelaminationconsistsofaPMMA/graphene/metalsubstrate(cathode,biasednega-tively)andglassycarbonornoblemetalwithlowreactivity(anode,biasedpositively),whichareplacedinanaqueouselectrolytesolution,suchasK2S2O8[44],NaOH[45,46],Na2SO4[47]orNaCl[48,49].
Underappliedbias,electroly-sisofwateratthecathodeinducesthegenerationandpenetrationofH2bubblesalongtheinterfacebetweenPMMA/grapheneandthemetalsubstrate,resultingingradualseparationofPMMA/graphenefromthemetalsubstrate.
Notethatpartialetchingofacopper(Cu)ornickelsubstratecanoccurbytheelectrolyteduringtheECDprocess,andthiscanbesuppressedbythechoiceofanappropriateelectrolytesuchasNa2SO4[47].
Thismethodishighlyusefulforsystemswheregrapheneissyn-thesizedonchemicallyinert,noblemetalssuchasplatinum[46],ruthenium[50]oriridium[51],becauseetchantsforcorrespondingmetalsarerarelyavailable.
Wangetal.
re-portedtheapplicationoftheECDprocessforthedirecttransferofgraphenetoaflexiblepolyimidesubstratebyde-positingthetargetpolyimidesubstratedirectlyontothegraphene/metalgrowthsubstrate,insteadofPMMA,wherenowater-mediatedgraphenedeliverytoaforeigntargetsubstrateisrequired(Figure1b)[47].
EliminationoftheconventionaluseofasacrificialPMMAenablestheproduc-tionofnearlyresidue-freegraphenewithalowdensitylinedefects(ripplesandwrinkles),yieldingflexible,transparentconductingfilmswithlowsheetresistance(~459Ω/sqforsinglelayergraphene,~49Ω/sqformultilayergraphene)(Figure1c).
IntheECDbasedtransfermethod,onecriticalissueismechanicaldamageofgraphenebyH2bubbles.
These(Seefigureonpreviouspage.
)Figure1Electrochemicaldelaminationofgraphene.
a,IllustrationofelectrochemicaldelaminationofgraphenefromPtfoilwithPMMAsacrificiallayer.
Reproducedwithpermission[46].
Copyright2012,NaturePublishingGroup.
b,IllustrationofdirectdelaminationofgrapheneontopolyimidesubstratewithoutPMMAsacrificiallayer.
Reproducedwithpermission[47].
Copyright2014,JohnWileyandSons.
c,AFMimagesoftransferredgrapheneonpolyimidewithoutsacrificiallayer(left)andwithPMMAsacrificiallayer(middle)viaelectrochemicaldelamination.
SheetresistanceofmonolayergrapheneonpolyimidetransferredbythedirectdelaminationmethodandthePMMA-assisteddelaminationmethod(right).
Reproducedwithpermission[47].
Copyright2014,JohnWileyandSons.
d,'Bubble'(top)and'bubble-free'(bottom)delaminatedandtransferredPMMA/graphenestackonoxidizedsiliconwafer.
Reproducedwithpermission[48].
Copyright2014,JohnWileyandSons.
e,Histogramsofpercentageofexposedsubstratearea(toppanel)andsheetresistance(bottompanel)forfilmsdelaminatedusingthe'bubble-free'(green)and'bubble'(red)methods.
Insetofbottompanel:Sheetresistanceofsamplesobtainedvia'bubble-free'and'bubble'delamination.
Reproducedwithpermission[48].
Copyright2014,JohnWileyandSons.
f,Transfercharacteristics(Id-Vg)offabricatedgrapheneFET(toppanel)andFETmobility(bottompanel)ofwhichgraphenearetransferredvia'conventionalwettransfer'(yellow)processand'electrochemicaldelamination'(blue)process.
Jungetal.
NanoConvergence(2015)2:11Page3of17Figure2(Seelegendonnextpage.
)Jungetal.
NanoConvergence(2015)2:11Page4of17bubblescandirectlydamagegrapheneduringthedelam-inationprocessbyconsiderableturbulenceorcanresultincracks(orvoids),ripples,andwrinklesduetothetrappedH2betweenthegrapheneandthetargetsub-strate(upperpanelinFigure1d)[45,48].
Suchtransfer-induceddamageordefectsseverelydegradetheelec-tricalpropertiesofgraphenedevicesintermsofmobilityandsheetresistance.
Toeliminateorreducethemech-anicaldamagecausedbyH2bubbles,Cherianetal.
de-velopeda'bubble-free'delamination/transfermethodbyexploitingtheelectrochemicalreduction(dissolution)ofadventitiouscuprousoxide(Cu2O)sandwichedbetweengrapheneandaCusubstrateasatoolforweakeningofthatinterface[48].
ReductionofinterfacialCu2Ooc-curredatanoptimumpotentiallowerthanthatrequiredforthegenerationofH2bubbles.
ThismethodresultedinuniformadherenceofPMMA/graphenetothetargetsubstrate(lowerpanelofFigure1d)andtheresultingtransferredgraphenefilmexhibitedanegligibleamountofvoids(upperpanelofFigure1e)andhighuniformityofelectricalproperties(lowerpanelofFigure1e).
Dam-agesingraphenebythegenerationofH2bubblescanbealsoalleviatedwithasimpleplastic-frame-assistedmethod[45].
InapreviousstudyweperformedECD-graphenetransferusingasimilarmethodtotheplastic-frame-assistedapproachtocomparethequalityofthetransferredgraphenebytheECDmethodwiththatbytheconventionalPMMA-assistedwetmethodintermsofthecharacteristicsofafield-effecttransis-tor(FET).
Experimentaldetailsaredescribedin[52].
WefoundthattheelectricalcharacteristicsofECD-grapheneFETsreflectedtheeffectivesuppressionofp-doping(reducedDiracpoint)andenhancedFETmobilitywithsymmetricalelectron–holeconduction(Figure1f).
2.
1.
2Drytransferofgraphene:differenceofadhesionenergybetweengraphene/metalandgraphene/targetsubstrateinterfacesGraphenetransferbasedondirectdelaminationcanalsobeachievedbyexploitingthedifferenceinadhesionenergiesbetweengraphene/metalandgraphene/targetsubstrateinterfaces[53,54].
Thebasicconceptofthisapproachisil-lustratedinFigure2a:Anadhesiveinterfaceisformedbe-tweenagraphene/metalsubstrateandatargetsubstrate,andthenthetwosubstratesareseparatedundertensileloadingbydoublecantileverbeamfracturetesting[53].
TheRamanspectrainFigure2bindicatethatapplica-tionofanappropriateadhesivelayerenablesmechan-icaldelaminationofgraphenefromtheCusubstrate.
AsshowninFigure2c,Shinetal.
measuredtheadhesionenergyofgraphenetovariousadhesivelayers(ortargetsubstrates)andfoundthatagraphene/poly(vinylphe-nol)(PVP)systemexhibitedthehighestadhesionenergy(2.
31±0.
11Jm2),higherthanthatofagraphene/Cusystem(0.
72±0.
07Jm2)[53].
ThisindicatesthatPVPcanactasanappropriateadhesivethatinducessuccess-fuldelaminationandtransferofgraphenefromCutoatargetsubstrate[54].
Becauseawetprocessisexcluded,thistransfermethodiscalled'drytransfer'.
Asmen-tionedinSection2.
1,advantagesofthedelamination/transfermethodincludetherestorationofchargeneu-tralityandsymmetricalelectron–holeconductionofgraphene,whichareusuallydegradedbyametaletchingprocessintheconventionalwettransferapproach.
Figures2dand2eshowp-dopingsuppressionanden-hancedelectroncurrentmodulationofdry-transferredgrapheneFETs,incomparisontographeneFETspre-paredusingeitherconventionalwettransferorECDtransfer(Figure1f)[54].
Theseenhancementsobtainedwithdrytransferareattributedtotheabsenceofoppor-tunityforgraphenetobecontaminatedbyionicimpur-ities(fromeithertheelectrolyteormetaletchant)andmetallicresidues(fromincompleteetchingofthemetalsubstrate).
Jungetal.
recentlyexploitedamechano-electro-thermal(MET)processtoinducedelaminationanddrytransferofgraphenefromaCusubstratedirectlytovarioussub-stratessuchasglass,PET,andPDMS(Figure2f)[55].
Thekeyaspectofthismethodistoformstrongandultra-conformalcontactbetweengraphene/Cuandatargetsubstratebyapplyinghightemperature,physicalpressure,andhighvoltagesimultaneouslytotheCu(Seefigureonpreviouspage.
)Figure2Drytransferusingdifferenceofadhesionenergybetweengraphene/metalandgraphene/targetsubstrate.
a,Illustrationofgraphenetransferusingthemechanicaldelaminationprocessandhigh-magnificationSEMimageofboundaryofdelamination.
Reproducedwithpermission[53].
Copyright2012,AmericanChemicalSociety.
b,Ramanspectraofthegraphene-delaminatedbarecopper(thelowerspectrum)andofthegraphene-coveredcopper(theupperspectrum).
Reproducedwithpermission[53].
Copyright2012,AmericanChemicalSociety.
c,Directlymeasuredadhesionenergyofgraphenetoneighboringmaterials(SiO2,PVP,andPMMA).
Reproducedwithpermission[54].
Copyright2013,AIPPublishingLLC.
d,Transfercharacteristics(IDS-VGS)ofthegrapheneFETsfabricatedusingconventionalwettransfer(black)methodanddrytransferwithPVPadhesivelayer(red).
Reproducedwithpermission[54].
Copyright2013,AIPPublishingLLC.
e,ChargedensityofthegrapheneFETsfabricatedusingconventionalwettransfer(black)methodanddrytransferwithPVPadhesivelayer(red).
Reproducedwithpermission[54].
Copyright2013,AIPPublishingLLC.
f,Schematicdescriptionofthemechano-electro-thermal(MET)delaminationprocessofgraphene.
Reproducedwithpermission[55].
Copyright2014,JohnWileyandSons.
g,StrongmechanicalstabilityofMETgrapheneviademonstrationofLEDelectricalcircuitbasedongraphene/PETfilmusingrepeateddetachingof3Mtape.
Reproducedwithpermission[55].
Copyright2014,JohnWileyandSons.
Jungetal.
NanoConvergence(2015)2:11Page5of17foil/graphene/targetsubstratestack.
GrapheneistransferredtothetargetsubstratesimplybypeelingtheCufoiloffaftertheMETprocess.
Nopolymericcarriersoradhesivesareusedinthisapproach.
Mostimportantly,graphenetransferredbytheMETprocessexhibitedout-standinginterfacialadhesionwiththetargetsubstrateasaresultoftheultra-conformalcontactformation:themech-anicaladhesionstabilityofgrapheneismaintainedevenafterseveralcyclesoftapedetachingtests,asshowninFigure2g.
2.
1.
3Directdelamination/transferofgraphenewithhighdegreeoffreedomRecently,Yangetal.
reportedthatthecombinationofpre-treatmentofgraphene/Cusubstratewiththewell-knowntransferprintingtechniqueallowscleandelaminationandtransferofgraphene,whichcanalsoendowthegraphenetransferprocesswithahighdegreeoffreedom(Figure3a)[56].
Delaminationofgrapheneisinducedbytheadsorp-tionofawatersolublepolymer(poly(vinylalcohol)inthiscase)onthegraphenegrowthsubstrate,followedbytheFigure3Directdelaminationandtransferofgrapheneusingtransferprintingmethod.
a,SchematicillustrationofdirectdelaminationandtransferofgraphenewithPVAcarrierlayer.
Reproducedwithpermission[56].
Copyright2014,JohnWileyandSons.
b,Three-layeredgraphenefabricatedbylayer-by-layerstackinginadeterministicmanneronoxidizedsiliconwafer.
Reproducedwithpermission[56].
Copyright2014,JohnWileyandSons.
c,False-colorscanningelectronmicroscopeimageoftransferredgrapheneongoldelectrodes.
Reproducedwithpermission[56].
Copyright2014,JohnWileyandSons.
d,Transfercharacteristicsofbottom-contactgrapheneFETwithtransferredgrapheneontopofgoldsource/drainelectrodes.
Reproducedwithpermission[56].
Copyright2014,JohnWileyandSons.
Jungetal.
NanoConvergence(2015)2:11Page6of17Table1SummaryofgraphenetransfermethodsGraphene/metalseparationGraphenedeliverytotargetsubstrateGrapheneisolation(itssupportinglayer)DegreeoffreedomRenewabilityofmetalsubstrateOriginofgraphenedefectscReferencesConventionalpolymer-assisted,wettransferMetaletchingWater-mediatedscoopingO(PMMA)HighXMetaletchingprocess[36-39]Electrochemicaldelamination/transferElectrochemicaldelaminationbyH2bubblesWater-mediatedscoopingO(PMMA)HighOH2bubbles[44-49,52]Adhesive-assisteddrytransferMechanicaldelaminationbyadhesiveDirecttransferaX(NA)bVerylowOIncompletedelamination[53,54]DrytransferwithMETprocessMechanicaldelaminationbyMETprocessDirecttransferaX(NA)bLowOIncompletedelamination[55]TransferprintingviadirectdelaminationMechanicaldelaminationbypre-treatmentStamp-mediatedprintingO(PVA)HighOIncompletedelamination[56]aDelaminationandtransferofgrapheneoccursimultaneously.
bSupportinglayerisnotapplicable.
cDefectsincludedamageorcontaminationoftransferredgraphene.
Jungetal.
NanoConvergence(2015)2:11Page7of17formationofacarrierlayerusingthesamepolymer.
Be-causethedelaminatedgraphenecanexistinanisolatedstateonanelastomericsupportduringthistransferprocess(step3inFigure3a),thistransfermethodallowsthegraphenetoformeffectivejunctionswithitself(layer-by-layerstacking,Figure3b)orwithotherelectroniccom-ponents(grapheneonsource/drainelectrodes,Figures3cand3d),indicatingthehighdegreeoffreedomandtheresultingversatilityofthedevelopedmethod.
Table1pro-videsasummaryofgraphenetransfermethods.
2.
2Interfaceengineeringofgraphene/targetsubstrate2.
2.
1Modificationofgraphene/targetsubstrateinterfaceAfterthetransferprocess,graphenemakescontactwithatargetsubstrate.
Thermallygrownsilicondioxide(SiO2)hasbeenwidelyusedasatargetsubstratefromtheearlystageofgrapheneresearchduetoitscommercialavailability,relativelysmallsurfaceroughness,andtheclearvisibilityofsinglelayergrapheneonitataspecificthicknessofSiO2(c.
a.
90or300nm)[57,58].
However,whengrapheneisplacedonaSiO2substrate,theperform-anceofgrapheneFETsisconsiderablydegradedbythesubstrateeffects[59-66].
Thesubstrateeffects,withrespecttothemobilitylimitationofgraphene,includethescatteringofcarriersingraphenebychargedimpurities[64]andsurfacephonons[60]:theFETmobilityofgraphene/SiO2isseveralordersofmagnitudelowerthanthatofsuspendedgraphenedevices[60,61].
Inaddition,theadsorbedwatermoleculesbysilanol(SiOH)groupsatthegraphene/SiO2interfaceresultinunintentionalp-dopingofgraphene[67-69]andhysteresisofgrapheneFETs[66,70,71].
Figure4Passivationoftargetsubstratefortransferredgraphene.
a,FieldeffectmeasurementatT=293KforgrapheneonHMDS(black)andforgrapheneonbareSiO2(red).
Reproducedwithpermission[73].
Copyright2010,AmericanChemicalSociety.
b,HistogramofmobilityandtheDiracpointofdifferentgrapheneFETsonbareSiO2/SiandonOTMS-modifiedSiO2/Sisubstratesatroomtemperatureunderambientconditions.
Reproducedwithpermission[77].
Copyright2011,JohnWileyandSons.
c,Transfercharacteristics(Ids-Vg)foratypicalparylenegatedFETinair,bakedat400Kinvacuum,andinair30minafterbaking(toppanel).
Drain-sourcecurrentversusback-gatevoltageforsiliconoxidedevicesinair,bakedat400Kinvacuum,andinair30minafterbaking(bottompanel).
Reproducedwithpermission[78].
Copyright2009,AIPPublishingLLC.
d,Thechangeincarrierdensityingrapheneondifferentsurface(fluoropolymerandSiO2)withelapseoftimeinanairambient.
Reproducedwithpermission[79].
Copyright2011,AIPPublishingLLC.
Jungetal.
NanoConvergence(2015)2:11Page8of17Figure5(Seelegendonnextpage.
)Jungetal.
NanoConvergence(2015)2:11Page9of17PassivationoftheSiO2surfacewithahydrophobicbufferlayerhasbeensuggestedasaneffectiveroutetoimprovetheinterfacepropertiesofSiO2.
Twotypesofbufferlayershavebeenstudiedforthispurpose:self-assembledmonolayers(SAMs)[72-77]andthinpolymerlayers[78,79].
Lafkiotietal.
reportedthattheintrinsicchargeneutralityofgraphenewasrecoveredandthehysteresisofgrapheneFETswasdramaticallyreducedbymodifyingthegraphene/SiO2interfacewithhexamethyl-disilazane(HMDS)(Figure4a)[73].
Wangetal.
alsoob-servedsimilarphenomenawithalkyl-terminatedSAM.
Inbothcases,themobilityofgrapheneincreasedseveral-fold,ascomparedtodevicesonbareSiO2.
Representativeresultsforalkyl-SAMareshowninFigure4b[77].
ThehydrophobictreatmentseliminateSiOHgroupsandtheadsorbedwatermoleculesatthegraphene/SiO2interface,resultinginsuppressionofp-dopingingraphene.
Inaddition,thescatteringinducedbychargedimpuritiesandsurfacepolarphononscanbescreenedduetothein-creaseofthegraphene-substratedistanceviainterfacemodificationwithHMDSororganosilaneSAMs.
Leeatal.
demonstratedthatchargedimpuritiesweremoreeffect-ivelyscreenedbySAMwithlongeralkylchainlengthsbyshowingthatoctadecyl-SAM(C18)resultedinsmallerDiracvoltageandhighermobilityofgraphenethanoctyl-SAM(C8)[72].
AccordingtoareportbySabrietal.
,depositionofathinpolymericlayer(a168nmfilmofParylene-C)onSiO2providedthesameeffectasSAMtreatmentintermsofre-ducedhysteresisandenhancedmobility(Figure4c)[78].
Recently,Shinetal.
foundthatelectricalreliabilityofgra-pheneFETsinanairambientcanbeachievedbyintrodu-cinganultrathinfluoropolymertothegraphene/SiO2interface[79].
Witha7-nm-thickCYTOPfluoropolymer,thecarrierdensityofgraphenewaschangednegligiblyevenafterexposureofthedevicetoanairambient(RH~45%)for3weeks(Figure4d).
Ahighlyhydrophobicbuffersuchasthefluorinatedbufferalsocontributestorecoveryofintrinsicchargeneutrality,suppresseshysteresis,andenhancesmobility,asmentionedabove.
Itisworthnotingthattheuniquewettingtransparencyofgraphene[80]pre-ventswatermoleculesfrombeingadsorbedonthegra-phenesurfaceintegratedonthefluoropolymer,resultinginexcellentambientstabilityofgrapheneFETs.
Modificationofthegraphene/targetsubstrateinterfacebySAMcanbealsousedtotunethecarriertypeordensity,namelydopingcontrol,withoutcompromisingtheintrinsicelectricalpropertiesofgraphene[81-84]:SAMsterminatedwithvariousfunctionalgroupsinducen-orp-typedopingofgraphenebychargetransferfromaspecificfunctionalgrouporthebuilt-inpotentialgen-eratedfromthedipolemomentoftheSAM.
Here,wedonotcoverthisindetail,butreaderswhoareinter-estedinthistopicmayrefertoarecentin-depthreview[85].
Inconnectiontothisreviewitshouldbemen-tionedthatthereporteddopinglevelshaveshownawiderangeofvariationintermsoftheDiracpointevenwhenthesameSAM(forexample,aminopropyltriethox-ysilane;APTES)wasused[84,86-89].
Thismightbeat-tributabletotheintegrityoftheSAMformedonSiO2,whichsometimesdependssensitivelyonthechemistryinvolvedinSAMformationsuchasthetreatmentmethods(phaseofSAMduringthetreatment)andcon-ditions(watercontentintheambientatmosphereorsolvent)[90].
Hence,morestudiesarerequiredtoex-ploitSAMdopingmethodsinpracticalapplicationsbe-yondacademicresearchbasedonSiO2.
Forinstance,giventhatAPTESSAMtreatmentcanprovideamoreeffectiveandstablen-dopingsource[87,88]overotherdopingmethods,itisworthwhiletoinvestigatehowtoachieveareliabledopinglevelandwhetherthisdopingmethodisalsocompatiblewithplasticsubstratesfortheapplicationofAPTESSAMtographeneflexible/transparentelectrodes.
Oneofthesourcesofthedeg-radationofthedopingstrengthisthedesorptionofdopantsinchemicaldopingmethodswhenthedopedgraphenesampleisexposedtotheairambient[91]whiletheformationofcovalentbondingbetweentheSAMandthetargetsubstratecanguaranteeenviron-mentaldopingstability.
2.
2.
2SubstrateswithhighsurfacephononenergyWhilethepassivationofSiO2withSAMsorfunctionalpolymersisusefultoconsiderablyreducethesubstrateeffectsontheelectricalcharacteristicsofgrapheneFETs,thecarriertransportingrapheneisstilllimitedbyther-mallyexcitedsurfacephononsofSAMsorpolymers,es-peciallyatroomtemperature.
Hence,thecombinationof(Seefigureonpreviouspage.
)Figure5h-BNandAlNassupportingsubstratesforgraphene.
a,Atomicstructureofgrapheneandhexagonalboronnitride.
b,Chargedensitymapofgraphene/BNandgraphene/SiO2.
Reproducedwithpermission[97].
Copyright2011,AmericanChemicalSociety.
c,Histogramoftheheightdistribution(surfaceroughness)measuredbyAFMforSiO2(blacktriangles),h-BN(redcircles)andgraphene-on-BN(bluesquares).
Reproducedwithpermission[92].
Copyright2010,NaturePublishingGroup.
d,TemperaturedependencesoftheresistivityatVg-VDirac=10VforCVD-growngraphene/h-BN,mechanicallytransferredgraphene/h-BN,andgrapheneonSiO2.
Reproducedwithpermission[98].
Copyright2013,JohnWileyandSons.
e,ResistanceversusappliedgatevoltageforCVD-growngraphene/h-BN,mechanicallytransferredgraphene/h-BN,andgrapheneonSiO2.
Reproducedwithpermission[98].
Copyright2013,JohnWileyandSons.
f,NormalizedchangeincarriermobilitywithtemperatureforgrapheneFETsonAlNandSiO2substrates.
Reproducedwithpermission[99].
Copyright2014,AIPPublishingLLC.
Jungetal.
NanoConvergence(2015)2:11Page10of17graphenewithsubstrateshavinghighsurfacephononen-ergyisthemostattractivewaytoachievehighperform-ancegraphenedevicesoperatedatroomtemperature.
Oneoutstandingmaterialforthispurposeishexagonalboronnitride(h-BN)[92-98].
h-BNisaninsulatingiso-morphofgraphite(Figure5a),alayereddielectricmaterialwithawidebandgapof~5.
97eVandadielectricconstantof~4[92].
Aplanar,hexagonallatticestructureoftheh-BNlayerisformedbystrongionicbondingbetweenboronandnitrogenatoms,whichprovidesachemicallyinert,dangling-bond-freeflatsurface[96].
AccordingtoDeckeretal.
,thesefeaturesoftheh-BNsurfaceinducelowerdensityofintroducedchargedimpuritiesingra-pheneandaconsiderablereductionofinhomogeneitiesofchargedensityingraphene/h-BN,ascomparedtoaSiO2substrate(Figure5b)[97].
Ripplesofgraphenearealsosuppressedonh-BNduetoitsatomicallyflatsur-face(Figure5c)and,evenmoreimportantly,thesurfacephononenergyofh-BNistwotimeslargerthanthatofSiO2[92].
Significantenhancementoftheelectricalchar-acteristicsofgraphenedevicescanhencebeexpectedbytheimprovedinterfaceofthegraphene/h-BNsystem.
ThehighestmobilityvaluereportedforCVD-graphene/h-BNis65500cm2/Vs,whichis~30timeshigherthanthatforCVD-graphene/SiO2[93].
Wangetal.
investigatedtheeffectsofgraphene/sub-strateinterfacesontheelectricalperformanceofgra-pheneFETswiththreedifferentgraphenesystems:CVD-graphenetransferredonSiO2,CVD-graphenetransferredonh-BNflakes,andgraphenedirectlygrownonaCVD-h-BNfilm[98].
Thetemperaturedependenceofthegrapheneresistivitywasnegligibleforgraphene/h-BN,indicatingthatnosurfacephononswereactivateduptoroomtemperatureinh-BNduetoitshighsurfacephononenergy(Figure5d).
Thegraphene/h-BNinterfacethusexhibitedsuperiormobility,anarrowerminimumconductivityplateau,andaDiracpointclosetozero,ascomparedtothegraphene/SiO2interface(Figure5e).
Su-perbperformanceofagraphenedevicewasobtainedwhenagraphene/h-BNinterfacewascreatedbysequentialCVDgrowthofgraphenedirectlyonCVD-grownh-BNonCuduetotheabsenceofresiduesandadsorbatesgeneratedfromthetransferprocess.
Whileh-BNisanidealsubstrateforhighperformancegraphenedevices,itisstillchallengingtosynthesizehighquality,largeareah-BNfilms.
Therefore,fromaprac-ticalpointofviewforgrapheneelectronics,itisneces-sarytodevelopalternative,cost-effectivesubstrateswithhighsurfacephononenergyandwithwhichitiseasytoobtainalargesizedfilmwithgoodreproducibilityanduniformity.
ArecentreportfromOhetal.
demonstratedthataluminumnitride(AlN)substratecanserveasanexcellentalternativetoh-BNwithseveraloftheadvan-tagesmentionedabove[99].
AnultrathinAlNfilmwithasmoothsurface(Rq~0.
5nm)wassimplyobtainedoveralargearea(4inchwafer)byaplasmaenhancedatomiclayerdeposition(PE-ALD)method.
TopgatedgrapheneFETsonanAlNsubstrateshowedhighermobilitythandevicesonSiO2,indicatingthesuppressionofsurfacepho-nonscattering.
ThehighsurfacephononenergyofAlN(Table2)resultedinweakertemperaturedependenceofmobility(Figure5f).
TheRFcut-offfrequencywastherebysignificantlyimprovedingrapheneFETsonAlN(115GHz),comparedtothoseonSiO2(55GHz).
Similaren-hancementofthecut-offfrequency(155GHz)wasalsoreportedbyWuetal.
foragrapheneFETondiamond-likecarbon(DLC)[100],whichshowshighsurfacephononenergy(Table2).
2.
3Interfaceengineeringofgraphene/gatedielectricIntegrationofgraphenewithpassivecomponentssuchasgatedielectricsisanotherimportantsteptoachievehighperformancegraphenedevices.
Oxidematerialswithahighdielectricconstant(k)havebeenusedasgatedielectricstofabricatetop-gatedgrapheneFETsbecausehigh-kdielectricsenablelowvoltageoperationofdevicesbytheirhighcapacitanceandalsoprovidescalingcap-ability[101-104].
Inconventionalelectronics,high-kdi-electricshavebeendepositedbyatomiclayerdeposition(ALD),becausethistechniquecanproduceultrathin,conformaloxidedielectricswithpreciselycontrolledthickness[105-109].
However,thebasalplaneofgra-phenehasfewdanglingbonds[110-113],whicharene-cessarytoinducethesurfacereactionofprecursorsintheALDprocess[114-116].
ThisuniquefeatureofthegraphenesurfaceresultsinirregularandpoorfilmformationofALD-dielectricsonpristinegraphene[111,113,117].
ALD-dielectricswitharoughsurfaceandmanypin-holescausehighleakagecurrent,lowbreak-downvoltage,andextrinsicscatteringofchargecarriersTable2MaterialpropertiesofvarioussubstratesusedingraphenedevicesSiO2AlNBNDLCSiC(6H)Bandgap(eV)8.
96.
285.
971.
43.
05Dielectricconstant3.
99.
145.
062.
5-69.
7CrystalstructureAmorphousWurtziteHexagonalAmorphousHexagonalSurfacephononenergy(meV)5983.
6101<165116Reproducedwithpermission[99].
Copyright2014,AIPPublishingLLC.
Jungetal.
NanoConvergence(2015)2:11Page11of17Figure6(Seelegendonnextpage.
)Jungetal.
NanoConvergence(2015)2:11Page12of17atthegraphene/high-kdielectricinterfaceingrapheneFETs.
Toobtainhighquality,uniformhigh-kdielec-tricsongraphene,theintroductionofseedsonthegraphenesurfacehasbeenproposedasaneffectivemeansoffabricatinggraphenedevicesusingtheALDtechnique.
2.
3.
1IntroductionofseedingmaterialsongrapheneVariousmaterialshavebeenusedasseedingmaterialsfortheformationofuniform,highqualityhigh-kdi-electricsongraphenebyALD[113,118-126].
Kimetal.
proposedtheuseofathinaluminumlayer(thickness1~2nm)todeposituniformAl2O3filmsongraphene[119].
AnativealuminumoxideisformedwhenthethinAllayerisexposedtoair,andthisoxideprovidesnucleationsitesforthesurfacereactionsduringALDofAl2O3.
Organicmoleculesorpolymershavebeenexploitedasseedinglayersfortheintegrationofdielec-tricsandgraphene[113,122-125].
Oneexampleistheuseofapoly(vinylphenol)(PVP)film[125].
Shinetal.
preparedanultrathin,cross-linkedPVPseedinglayer(thickness~5nm)onagraphenesurfacebyaspin-coatingmethod(Figure6a).
DuetoabundantfunctionalgroupsinPVPsuchashydroxylandhydrocarbon,theAl2O3filmdepositedonthePVPseedinglayerbyALDwassmooth(Rrms~0.
5nm)withoutpin-holes.
Theelectricalperformanceoftop-gatedgrapheneFETswasconsiderablyimprovedwithPVP-seededAl2O3,comparedtodeviceswithAl2O3depositedonbaregraphene.
Specifically,thedraincurrentandtranscon-ductancewereenhanced,resultinginamorethanfive-foldincreaseofmobility(Figure6b).
Inparticular,agrapheneFETwithPVP-seededAl2O3showedasup-pressedDiracpointshiftunderagatebiasstresscondition(Figure6c).
ArecentstudybyKimetal.
sug-gestedthatquantumdot(CdSe)arraysformedongra-phenealsocanserveasaseedinglayerfortheeffectiveALDofhigh-khafniumoxideongraphene[126].
2.
3.
2FunctionalizationofgrapheneTogenerateseedingsitesongraphene,functionalgroupscanbedirectlyintroducedtothegraphenesurfacebyoxidizingcarbonatomsofgraphene[112,127-129].
Leeetal.
reportedongraphenefunctionalizationusingozone(O3)duringALDofAl2O3[112,127].
Anultrathin(~1nm),smooth(Rrms~0.
1nm)seedlayerwasformedongraphenebyO3treatmentinthepresenceofatri-methylaluminumprecursor.
GentleO3treatmentcondi-tions(at25°Cfor20s)inducednegligibledefectsongraphenewhileitssurfacewaspartiallyfunctionalizedwithepoxidegroups.
A15-nm-thickAl2O3layerwasuniformlyformedbyO3basedALD,resultinginhighperformance,top-gatedgrapheneFETswithcarriermo-bilityof5000cm2/Vs,lowVdirachysteresis,andlowleakagecurrent.
Inthesamecontext,Nayfehetal.
dem-onstratedthataremoteO2plasma-assistedALDtech-niqueproduceda9-nm-thickAl2O3layerwithbetterconformalcoverageandlowerroughness,comparedtoAl2O3filmsdepositedbythermalALD[128].
Theyre-portedanincreaseofthedefectlevelingrapheneonthebasisofRamanmeasurements,indicatingthatgraphenewasfunctionalizedduringtheO2plasma-assistedALDprocess.
BothdraincurrentandmobilitywereenhancedingrapheneFETswith9-nm-thickAl2O3byplasma-assistedALD,comparedtothoseobtainedwitha9-nm-thick,e-beam-evaporatedSiO2interfaciallayerplusa15-nm-thickAl2O3layerbythermalALD(Figure6d).
InordertoavoiduncontrolleddamageofgrapheneinO2plasmaorO3-assistedALD,Shinetal.
proposedanovelapproachforreliablehigh-kdielectricformationongraphenewithALDbyintroducinganadditionalfunctionalizedgraphenesinglelayerasanultrathinseedlayeronthegraphenechannel(Figure6e)[129].
Pristinegraphenewastransferredtoatargetsubstrateandthenfunctionalized(O2plasmatreated)graphenewasstackedonthepristinegraphenepriortoconductingtheALDprocess.
Al2O3wasdepositedviaconventionalthermalALDonafunctionalizedgraphenelayerwherethesurface(Seefigureonpreviouspage.
)Figure6SeedingALDofhigh-kdielectricongraphene.
a,Schematicdiagramshowingtop-gategrapheneFETstructurewithPVP-seededAl2O3gatedielectric.
Reproducedwithpermission[125].
Copyright2012,AIPPublishingLLC.
b,Transfercharacteristics(Id-Vg)oftop-gategrapheneFETbefore(blacksquare)andafter(redcircle)thegraphenechannelisdepositedwithPVP.
Inset:transconductanceofthegrapheneFETswithdifferentgatedielectricsasafunctionofgatevoltage.
Reproducedwithpermission[125].
Copyright2012,AIPPublishingLLC.
c,Thetime-dependentVDiracshiftofgrapheneFETbefore(blacksquare)andafter(redcircle)thegraphenechannelisdepositedwithPVP.
Reproducedwithpermission[125].
Copyright2012,AIPPublishingLLC.
d,Outputcharacteristics(Id-Vd)oftransistorsbasedonCVDmonolayergraphenewith9nmAl2O3(redline)and24nmheterogeneousintegrateddielectrics(dashedblueline)viadifferentdepositingmethods.
Reproducedwithpermission[128].
Copyright2011,IEEE.
e,Schematicdiagrampresentingthefunctionalizedgraphene-seededAl2O3stackongraphene.
Reproducedwithpermission[129].
Copyright2013,AmericanChemicalSociety.
f,SurfacemorphologyoftheAl2O3filmsdepositedongraphene(top)andfunctionalizedgraphene(bottom).
Scansize:1*1μm2.
Reproducedwithpermission[129].
Copyright2013,AmericanChemicalSociety.
g,Leakagecurrentdensities(at+3MV/cm2)versusEOTfordielectricswithfunctionalizedgrapheneseedlayer(redtriangle)andAlseedlayer(blacksquare)ongraphene.
Reproducedwithpermission[129].
Copyright2013,AmericanChemicalSociety.
Jungetal.
NanoConvergence(2015)2:11Page13of17hasabundant,oxidizedcarbonmoieties.
Al2O3depositedonthefunctionalizedgraphene/pristinegraphenestackexhibitedexcellentuniformitywithlowdefectdensity(Figure6f;Rrms~0.
3nm).
Inaddition,capacitorswithfunctionalizedgrapheneseededAl2O3showedlowerleak-agecurrentdensityforthesameeffectiveoxidethickness(EOT),comparedtothosewithAl-seededAl2O3:thisisaconsiderableadvantageofthisapproachintermsoffur-therscalingofgateoxidethickness(Figure6g).
3ConclusionsThisreviewhighlightedtheimportanceofinterfaceen-gineeringforhighperformancegraphenedevicesbyconsideringeachinterfaceencounteredduringthefabri-cationofgraphenedevices,fromthegraphene/metalgrowthsubstratetographene/high-kgatedielectrics.
Foreffectivedelaminationandtransferofgraphene,adhe-sionattheinterfaceofthegraphene/metalgrowthsub-strateorgraphene/targetsubstrateshouldbeengineeredbyappropriateweakeningorstrengtheningmethodsforthoseinterfaces.
Intermsofgraphenedelaminationusingpolymeradhesivesoracarrierlayer,questionsremainsaboutwhichfunctionalgroupsinthepolymerplayacrit-icalroletoinducedelaminationofgraphene.
Thisshouldbeinvestigatedsystematicallybyapplyingpolymershavingvariousfunctionalgroupstographenedelaminationsys-tems,inconjunctionwithaninvestigationofdopingeffectsthatmightbeinducedfromthefunctionalgroupsofpolymers.
Aftergrapheneistransferredontoatargetsubstrate,interfacialissuesarisefromtheatom-thicknessofgra-pheneandthesurface-grapheneinteractions.
Sincethesurfacestatesofsubstratessignificantlyaffecttheoverallelectricalpropertiesofgraphenedevices,substrateswithachemicallyinert,dangling-bond-freeflatsurfaceaswellashighsurfacephononenergyarehighlydemanded.
Al-thoughh-BNisanidealsubstrateintermsofrealizinghighperformancegrapheneelectronics,obtainingreli-able,large-areasynthesismethodsforh-BNbeyondmechanicalexfoliationisstillachallengingissue.
Ontheotherhand,alternativesubstratematerials,suchasAlN,areattractive,ashighlightedinthisreview.
Todepositahigh-kdielectricusingALD,itisneces-sarytointroduceseedmaterialsontographeneduetothechemicallyinertsurfaceofgrapheneortogenerateseedingcentersongrapheneitself.
Theseapproachescauseheterogeneousdielectricstacks(orinterfaces)andgiverisetodifficultyincontrollingthefilmthickness,therebyconstrainingthescalingofgatedielectricthick-ness.
Anovelapproachforthedepositionofgatedielec-tricsthereforeshouldbeexploredtoachieveasinglecomponentgatedielectricthatformsahomogeneousinterfacewithouttheapplicationofadditiveseedlayers.
Oneexamplewouldbethedepositionofultrathin(lessthan10nm)polymerdielectricsbytheinitiatedCVDmethod,whichisunderinvestigationbyourgroup.
TheuseofultrathinpolymerdielectricsingrapheneFETswouldalsobedesirableforthedevelopmentofflexibleelectronicdevices.
Intensivestudiesinrecentdecadeshaveprovidedagreatdealofinsightintotheimportantroleofinterfaceengineeringingraphenesystems,andhaveopenedupopportunitiesfortherealizationofhighperformancegraphenedevices.
Weexpectthatknowledgeaccumu-latedfromgraphenewillbeextendedtoemerging2Dmaterialsfortheenhancementandoptimizationofdeviceperformance.
CompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterests.
Authors'contributionsDYJandSYYequallycontributedtothisworkinthemanuscriptpreparation.
Allauthorsreadandapprovedthefinalmanuscript.
AcknowledgementsThisworkwassupportedbytheITR&Dprogram(10044412),theGlobalFrontierResearchCenterforAdvancedSoftElectronics(2011–0031640),theBasicScienceResearchProgram(2010–0029132)andNano-MaterialTechnologyDevelopmentProgram(2012M3A7B4049807).
Received:11December2014Accepted:5January2015References1.
KSNovoselov,AKGeim,SVMorozov,DJiang,YZhang,SVDubonos,IVGrigorieva,AAFirsov,Electricfieldeffectinatomicallythincarbonfilms.
Science306,666–669(2004)2.
KSNovoselov,AKGeim,SVMorozov,DJiang,MIKatsnelsonIV,SVDGrigorieva,AAFirsov,Two-dimensionalgasofmasslessDiracfermionsingraphene.
Nature438,197–200(2005)3.
KIBolotin,KJSikes,ZJiang,MKlima,GFudenberg,JHone,PKim,HLStormer,Ultrahighelectronmobilityinsuspendedgraphene.
Solid.
State.
Commun.
146,351–355(2008)4.
KSNovoselov,DJiang,FSchedin,TJBooth,VVKhotkevich,SVMorozov,AKGeim,Two-dimensionalatomiccrystals.
Proc.
Natl.
Acad.
Sci.
U.
S.
A.
102,10451–10453(2005)5.
SVMorozov,KSNovoselov,MIKatsnelson,FSchedin,DCElias,JAJaszczak,AKGeim,Giantintrinsiccarriermobilitiesingrapheneanditsbilayer.
Phys.
Rev.
Lett.
100,016602(2008)6.
YZhang,JWTan,HLStormer,PKim,ExperimentalobservationofthequantumhalleffectandBerry'sphaseingraphene.
Nature438,201–204(2005)7.
RRNair,PBlake,ANGrigorenko,KSNovoselov,TJBooth,TStauber,NMRPeres,AKGeim,Finestructureconstantdefinesvisualtransparencyofgraphene.
Science320,1308(2008)8.
CLee,XWei,JWKysar,JHone,Measurementoftheelasticpropertiesandintrinsicstrengthofmonolayergraphene.
Science321,385–388(2008)9.
AKGeim,KSNovoselov,Theriseofgraphene.
Nat.
Mater.
6,183–191(2007)10.
AKGeim,Graphene:statusandprospects.
Science324,1530–1534(2009)11.
SKHong,KYKim,TYKim,JHKim,SWPark,JHKim,BJCho,Electromagneticinterferenceshieldingeffectivenessofmonolayergraphene.
Nanotechnol.
23,455704(2012)12.
JTKim,JKim,HChoi,CGChoi,S-YChoi,Graphene-basedphotonicdevicesforsofthybridoptoelectronicsystems.
Nanotechnol.
23,344005(2012)13.
SHLee,MChoi,TTKim,SLee,MLiu,XYin,HKChoi,SSLee,CGChoi,S-YChoi,XZhang,BMin,Switchingterahertzwaveswithgate-controlledactivegraphenemetamaterials.
Nat.
Mater.
11,936–941(2012)14.
HChoi,JSChoi,JSKim,JHChoe,KHChung,JWShin,JTKim,DHYoun,KCKim,JILee,S-YChoi,PKim,CGChoi,YJYu,Flexibleandtransparentgasmoleculesensorintegratedwithsensingandheatinggraphenelayers.
Small10,3685–3691(2014)Jungetal.
NanoConvergence(2015)2:11Page14of1715.
JHKim,JSeo,DGKwon,JAHong,JHwang,HKChoi,JMoon,JILee,DYJung,S-YChoi,YPark,Carrierinjectionefficienciesandenergylevelalignmentsofmultilayergrapheneanodesfororganiclight-emittingdiodeswithdifferentholeinjectionlayers.
Carbon79,623–630(2014)16.
XLi,WCai,JAn,SKim,JNah,DYang,RPiner,AVelamakanni,IJung,ETutuc,SKBanerjee,LColombo,RSRuoff,Large-areasynthesisofhigh-qualityanduniformgraphenefilmsoncopperfoils.
Science324,1312–1314(2009)17.
XLi,CWMagnuson,AVenugopal,JAn,JWSuk,BHan,MBoryslak,WCai,AVelamakanni,YZhu,LFu,EMVogel,EVoelkl,LColombo,RSRuoff,Graphenefilmswithlargedomainsizebyatwo-stepchemicalvapordepositionprocess.
NanoLett.
10,4328–4334(2010)18.
HWang,GWang,PBao,SYang,WZhu,XXie,WJZhang,Controllablesynthesisofsubmillimetersingle-crystalmonolayergraphenedomainsoncopperfoilsbysuppressingnucleation.
J.
Am.
Chem.
Soc.
134,3627–3630(2012)19.
SBae,HKim,YLee,XXu,JSPark,YZheng,JBalakrishnan,TLei,HRKim,YISong,YJKim,KSKim,BOzyilmaz,JHAhn,BHHong,SIijima,Roll-to-rollproductionof30-inchgraphenefilmsfortransparentelectrodes.
Nat.
Nanotechnol.
5,574–578(2010)20.
SChen,HJi,HChou,QLi,HLi,JWSuk,RPiner,LLiao,WCai,RSRuoff,Millimeter-sizesingle-crystalgraphenebysuppressingevaporativelossofCuduringlowpressurechemicalvapordeposition.
Adv.
Mater.
25,2062–2065(2013)21.
JLee,JBaek,GHRyu,MJLee,SOh,SKHong,BHKim,SHLee,BJCho,ZLee,SJeon,High-angletiltboundarygraphenedomainrecrystallizedfrommobilehot-wire-assistedchemicalvapordepositionsystem.
NanoLett.
14,4352–4359(2014)22.
JHMun,BJCho,Synthesisofmonolayergraphenehavinganegligibleamountofwrinklesbystressrelaxation.
NanoLett.
13,2496–2499(2013)23.
LBrown,EBLochocki,JAvila,CJKim,YOgawa,RWHavener,DKKim,EJMonkman,DEShai,HIWei,MPLevendorf,MAsensio,KMShen,JPark,Polycrystallinegraphenewithsinglecrystallineelectronicstructure.
NanoLett.
14,5706–5711(2014)24.
JChen,YWen,YGuo,BWu,LHuang,YXue,DGeng,DWang,GYu,YLiu,Oxygen-aidedsynthesisofpolycrystallinegrapheneonsilicondioxidesubstrates.
J.
Am.
Chem.
Soc.
133,17548–17551(2011)25.
JHLee,EKLee,WJJoo,YJang,BSKim,JYLim,SHChoi,SJAhn,JRAhn,MHPark,CWYang,BLChoi,SWHwang,DWhang,Wafer-scalegrowthofsingle-crystalmonolayergrapheneonreusablehydrogen-terminatedgermanium.
Science344,286–289(2014)26.
QYu,LAJauregui,WWu,RColby,JTian,ZSu,HCao,ZLiu,DPandey,DWei,TFChung,PPeng,NPGuisinger,EAStach,JBao,SSPei,YPChen,Controlandcharacterizationofindividualgrainsandgrainboundariesingraphenegrownbychemicalvapordeposition.
Nat.
Mater.
10,443–449(2011)27.
YZhang,LZhang,PKim,MGe,ZLi,CZhou,Vaportrappinggrowthofsingle-crystallinegrapheneflowers:synthesis,morphology,andelectronicproperties.
NanoLett.
12,2810–2816(2012)28.
HZhou,WJYu,LLiu,RCheng,YChen,XHuang,YLiu,YWang,YHuang,XDuan,Chemicalvapordepositiongrowthoflargesinglecrystalsofmonolayerandbilayergraphene.
Nat.
Commun.
4,2096(2013)29.
AWTsen,LBrown,MPLevendorf,FGhahari,PYHuang,RWHavener,CSRuiz-Vargas,DAMuller,PKim,JPark,Tailoringelectricaltransportacrossgrainboundariesinpolycrystallinegraphene.
Science336,1143–1146(2012)30.
CWChen,FRen,GCChi,SCHung,YPHuang,Effectsofsemiconductorprocessingchemicalsonconductivityofgraphene.
J.
Vac.
Sci.
Technol.
B30,040602(2012)31.
JChan,AVenugopal,APirkle,SMcDonnell,DHinojos,CWMagnuson,RSRuoff,LColombo,RMWallace,EMVogel,Reducingextrinsicperformance-limitingfactorsingraphenegrownbychemicalvapordeposition.
ACSNano6,3224–3229(2012)32.
APirkle,JChan,AVenugopal,DHinojos,CWMagnuson,SMcDonnell,LColombo,EMVogel,RSRuoff,RMWallace,TheeffectofchemicalresiduesonthephysicalandelectricalpropertiesofchemicalvapordepositedgraphenetransferredtoSiO2.
Appl.
Phys.
Lett.
99,122108(2011)33.
ZCheng,QZhou,CWang,QLi,CWang,YFang,Towardintrinsicgraphenesurfaces:asystematicstudyonthermalannealingandwet-chemicaltreatmentofSiO2-supportedgraphenedevices.
NanoLett.
11,761–771(2011)34.
CCasiraghi,SPisana,KSNovoselov,AKGeim,ACFerrari,Ramanfingerprintofchargedimpuritiesingraphene.
Appl.
Phys.
Lett.
91,233108(2007)35.
SRyu,LLiu,SBerclaud,YJYu,HLiu,PKim,GWFlynn,LEBrus,AtmosphericoxygenbindingholedopingindeformedgrapheneonaSiO2substrate.
NanoLett.
10,4944–4951(2010)36.
XLi,YZhu,WCai,MBorysiak,BHan,DChen,RDPiner,LColombo,RSRuoff,Transferoflarge-areagraphenefilmsforhigh-performancetransparentconductiveelectrodes.
NanoLett.
9,4359–4363(2009)37.
JSong,F-YKam,R-QPng,W-LSeah,J-MZhou,G-KLim,PKHHo,L-LChua,Ageneralmethodfortransferringgrapheneontosoftsurfaces.
Nat.
Nanotechnol.
8,356–362(2013)38.
JKang,SHwang,JHKim,MHKim,JRyu,SJSeo,BHHong,MKKim,J-BChoi,Efficienttransferoflarge-areagraphenefilmsontorigidsubstratesbyhotpressing.
ACSNano6,5360–5365(2012)39.
JWSuk,AKitt,CWMagnuson,YHao,SAhmed,JAn,AKSwan,BBGoldberg,RSRuoff,TransferofCVD-grownmonolayergrapheneontoarbitrarysubstrates.
ACSNano5,6916–6924(2011)40.
X-DChen,Z-BLiu,C-YZheng,FXing,X-QYan,YChen,J-GTian,Highqualityandefficienttransferoflarge-areagraphenefilmsontodifferentsubstrates.
Carbon56,271–278(2013)41.
XLiang,BASperling,ICalizo,GCheng,CAHacker,QZhang,YObeng,KYan,HPeng,QLi,XZhu,HYuan,ARHightWalker,ZLiu,L-MPeng,CARichter,Towardcleanandcracklestransferofgraphene.
ACSNano5,9144–9153(2011)42.
HKChoi,JYKim,HYJeong,CGChoi,S-YChoi,Characterizationofchemicalvapordeposition-growngraphenefilmswithvariousetchants.
CarbonLett.
13,44–47(2012)43.
JWSuk,WHLee,JLee,HChou,RDPiner,YHao,DAkinwande,RSRuoff,Enhancementoftheelectricalpropertiesofgraphenegrownbychemicalvapordepositionviacontrollingtheeffectsforpolymerresidue.
NanoLett.
13,1462–1467(2013)44.
YWang,YZheng,XXu,EDubuisson,QBao,JLu,KPLoh,ElectrochemicaldelaminationofCVD-growngraphenefilm:Towardtherecyclableuseofcoppercatalyst.
ACSNano5,9927–9933(2011)45.
CJLdelaRosa,JSun,NLindvall,MTCole,YNam,MLoffler,EOlsson,KBKTeo,AYurgens,FrameassistedH2OelectrolysisinducedH2bubblingtransferoflargeareagraphenegrownbychemicalvapordepositiononCu.
Appl.
Phys.
Lett.
102,022101(2013)46.
LGao,WRen,HXu,LJin,ZWang,TMa,L-PMa,ZZhang,QFu,L-MPeng,XBao,H-MCheng,Repeatedgrowthandbubblingtransferofgraphenewithmillimeter-sizesingle-crystalgrainsusingplatinum.
Nat.
Commun.
3,699(2012)47.
XWang,LTao,YHao,ZLiu,HChou,IKholmanov,SChen,CTan,NJayant,QYu,DAkinwande,RSRuoff,Directdelaminationofgrapheneforhigh-performanceplasticelectronics.
Small10,694–698(2014)48.
CTCherian,FGiustiniano,IMartin-Fernandez,HAndersen,JBalakrishnan,BOzyilmaz,Bubble-freeelectrochemicaldelaminationofCVDgraphenefilms,Small.
(2014).
doi:10.
1002/smll.
201402024.
49.
TCiuk,IPasternak,AKrajewska,JSobieski,PCaban,JSzmidt,WStrupinski,Propertiesofchemicalvapordepositiongraphenetransferredbyhigh-speedelectrochemicaldelamination.
J.
Phys.
Chem.
C117,20833–20837(2013)50.
PWSutter,JIFlege,EASutter,Epitaxialgrapheneonruthenium.
Nat.
Mater.
7,406–411(2008)51.
JCoraux,ATN'Diaye,MEngler,CBusse,DWall,NBuckanie,FJMZHeringdorf,RvanGastel,BPoelsema,TMichely,GrowthofgrapheneonIr(111).
NewJ.
Phys.
11,023006(2009)52.
DYJung,AStudyonGrapheneSynthesisbyCVDMethodandGrapheneTransferMethodviaElectrochemicalDelamination.
Master'sthesis(KoreaAdvancedInstituteofScienceandTechnology,Daejeon,RepublicofKorea,2014),p.
5353.
TYoon,WCShin,TYKim,JHMun,T-SKim,BJCho,Directmeasurementofadhesionenergyofmonolayergrapheneas-grownoncopperanditsapplicationtorenewabletransferprocess.
NanoLett.
12,1448–1452(2012)54.
WCShin,TYoon,JHMun,TYKim,S-YChoi,T-SKim,BJCho,Dopingsuppressionandmobilityenhancementofgraphenetransistorsfabricatedusinganadhesionpromotingdrytransferprocess.
Appl.
Phys.
Lett.
103,243504(2013)55.
WJung,DKim,MLee,SKim,J-HKim,C-SHan,Ultraconformalcontacttransferofmonolayergrapheneonmetaltovarioussubstrates.
Adv.
Mater.
26,6394–6400(2014)56.
SYYang,JGOh,DYJung,HChoi,CHYu,JShin,C-GChoi,BJCho,S-YChoi,Metal-etching-freedirectdelaminationandtransferofsingle-layergraphenewithahighdegreeoffreedom,Small.
(2014).
doi:10.
1002/smll.
20140119657.
PBlake,EWHill,AHCastroNeto,KSNovoselov,DJiang,RYang,TJBooth,AKGeim,Makinggraphenevisible.
Appl.
Phys.
Lett.
91,063124(2007)Jungetal.
NanoConvergence(2015)2:11Page15of1758.
DSLAbergel,ARussell,VIFal'ko,Visibilityofgrapheneflakesonadielectricsubstrate.
Appl.
Phys.
Lett.
91,063125(2007)59.
QHWang,ZJin,KKKim,AJHilmer,GLCPaulus,C-JShih,M-HHam,JDSanchez-Yamagishi,KWatanabe,TTaniguchi,JKong,PJarillo-Herrero,MSStrano,Understandingandcontrollingthesubstrateeffectongrapheneelectron-transferchemistryviareactivityimprintlithography.
Nat.
Chem.
4,724–732(2012)60.
J-HChen,CJang,SXiao,MIshigami,MSFuhrer,IntrinsicandextrinsicperformancelimitsofgraphenedevicesonSiO2.
Nat.
Nanotechnol.
3,206–209(2008)61.
KIBolotin,KJSikes,JHone,HLStormer,PKim,Temperature-dependenttransportinsuspendedgraphene.
Phys.
Rev.
Lett.
101,096802(2008)62.
JPRobinson,HSchomerus,LOroszlany,VIFal'ko,Adsorbate-limitedconductivityofgraphene.
Phys.
Rev.
Lett.
101,196803(2008)63.
DBFarmer,RGolizadeh-Mojarad,VPerebeinos,Y-MLin,GSTulevski,JCTsang,PAvouris,Chemicaldopingandelectron–holeconductionasymmetryingraphenedevices.
NanoLett.
9,392–399(2009)64.
J-HChen,CJang,SAdam,MSFuhrer,EDWilliams,MIshigami,Charged-impurityscatteringingraphene.
Nat.
Phys.
4,377–381(2008)65.
J-HChen,CJang,MIshigami,SXiao,WGCullen,EDWilliams,MSFuhrer,DiffusivechargetransportingrapheneonSiO2.
Solid.
State.
Commun.
149,1080–1086(2009)66.
TLohmann,KvonKlitzing,JHSmet,Four-terminalmagneto-transportingraphenep-njunctionscreatedbyspatiallyselectivedoping.
NanoLett.
9,1973–1979(2009)67.
OLeenaerts,BPartoens,FMPeeters,AdsorptionofH2O,NH3,CO,NO2,andNOongraphene:Afirst-principlesstudy.
Phys.
Rev.
B.
77,125416(2008)68.
TOWehling,MIKatsnelson,AILichtenstein,Adsorbatesongraphene:Impuritystatesandelectronscattering.
Chem.
Phys.
Lett.
476,125–134(2009)69.
D-WShin,HMLee,SMYu,K-SLim,JHJung,M-KKim,S-WKim,J-HHan,RSRuoff,J-BYoo,Afacileroutetorecoverintrinsicgrapheneoverlargescale.
ACSNano6,7781–7788(2012)70.
PJoshi,HERomero,ATNeal,VKToutam,SATadigadapa,InstrinsicdopingandgatehysteresisingraphenefieldeffectdevicesfabricatedonSiO2substrates.
J.
Phys.
Condens.
Matter22,334214(2010)71.
HWang,YWu,CCong,JShang,TYu,Hysteresisofelectronictransportingraphenetransistors.
ACSNano4,7221–7228(2010)72.
WHLee,JPark,YKim,KSKim,BHHong,KCho,Controlofgraphenefield-effecttransistorsbyinterfacialhydrophobicself-assembledmonolayers.
Adv.
Mater.
23,3460–3464(2011)73.
MLafkioti,BKrauss,TLohmann,UZschieschang,HKlauk,KKlitzing,JHSmet,Grapheneonahydrophobicsubstrate:dopingreductionandhysteresissuppressionunderambientconditions.
NanoLett.
10,1149–1153(2010)74.
SFChowdhury,SSonde,SRahimi,LTao,SBanerjee,DAkinwande,Improvementofgraphenefield-effecttransistorsbyhexamethyldisilazanesurfacetreatment.
Appl.
Phys.
Lett.
105,033117(2014)75.
ZLiu,AABol,WHaensch,Large-scalegraphenetransistorswithenhancedperformanceandreliabilitybasedoninterfaceengineeringbyphenylsilaneself-assembledmonolayers.
NanoLett.
11,523–528(2011)76.
HLv,HWu,KXiao,WZhu,HXu,ZZhang,HQian,Graphenemobilityenhancementbyorganosilaneinterfaceengineering.
Appl.
Phys.
Lett.
102,183107(2013)77.
XWang,J-BXu,CWang,JDu,WXie,HighperformancegraphenedevicesonSiO2/Sisubstratemodifiedbyhighlyorderedself-assembledmonolayers.
Adv.
Mater.
23,2464–2468(2011)78.
SSSabri,PLLevesque,CMAguirre,JGuillemette,RMartel,TSzkopek,Graphenefieldeffecttransistorswithparylenegatedielectric.
Appl.
Phys.
Lett.
95,242104(2009)79.
WCShin,SSeo,BJCho,Highlyair-stableelectricalperformanceofgraphenefieldeffecttransistorsbyinterfaceengineeringwithamorphousfluoropolymer.
Appl.
Phys.
Lett.
98,153505(2011)80.
JRafiee,XMi,HGullapalli,AVThomas,FYavari,YShi,PMAjayan,NAKoratkar,Wettingtransparencyofgraphene.
Nat.
Mater.
11,217–222(2012)81.
NCernetic,SWu,JADavies,BWKrueger,DOHutchins,XXu,HMa,AK-YJen,SystematicdopingcontrolofCVDgraphenetransistorswithfunctionalizedaromaticself-assembledmonolayers.
Adv.
Funct.
Mater.
24,3464–3470(2014)82.
KYokota,KTakai,TEnoki,Carriercontrolofgraphenedrivenbytheproximityeffectoffunctionalizedself-assembledmonolayers.
NanoLett.
11,3669–3675(2011)83.
RWang,SWang,DZhang,ZLi,YFang,XQiu,Controlofcarriertypeanddensityinexfoliatedgraphenebyinterfaceengineering.
ACSNano5,408–412(2011)84.
ZYan,ZSun,WLu,JYao,YZhu,JMTour,Controlledmodulationofelectronicpropertiesofgraphenebyself-assembledmonolayersonSiO2substrates.
ACSNano5,1535–1540(2011)85.
HChen,XGuo,Uniqueroleofself-assembledmonolayersincarbonnanomaterials-basedfield-effecttransistors.
Small9,1144–1159(2013)86.
SWang,SSuzuki,KFurukawa,CMOrofeo,MTakamura,HHibino,Selectivechargedopingofchemicalvapordeposition-growngraphenebyinterfacemodification.
Appl.
Phys.
Lett.
103,253116(2013)87.
YKim,JPark,JKang,JMYoo,KChoi,ESKim,J-BChoi,CHwang,KSNovoselov,BHHong,Ahighlyconductinggraphenefilmwithdual-sidemolecularn-doping.
Nanoscale6,9545–9549(2014)88.
JPark,WHLee,SHuh,SHSim,SBKim,KCho,BHHong,KSKim,Work-functionengineeringofgrapheneelectrodesbyself-assembledmonolayersforhigh-performanceorganicfield-effecttransistors.
J.
Phys.
Chem.
Lett.
2,841–845(2011)89.
RShi,HXu,BChen,ZZhang,L-MPeng,Scalablefabricationofgraphenedevicesthroughphotolithography.
Appl.
Phys.
Lett.
102,113102(2013)90.
JKim,PSeidler,LSWan,CFill,Formation,structure,andreactivityofamino-terminatedorganicfilmsonsiliconsubstrates.
J.
ColloidInterfaceSci.
329,114–119(2009)91.
JHBong,OSul,AYoon,S-YChoi,BJCho,Facilegraphenen-dopingbywetchemicaltreatmentforelectronicapplications.
Nanoscale6,8503–8508(2014)92.
CRDean,AFYoung,IMeric,CLee,LWang,SSorgenfrei,KWatanabe,TTaniguchi,PKim,KLShepard,JHone,Boronnitridesubstratesforhigh-qualitygrapheneelectronics.
Nat.
Nanotechnol.
5,722–726(2010)93.
NPetrone,CRDean,IMeric,AMvanderZande,PYHuang,LWang,DMuller,KLShepard,JHone,Chemicalvapordeposition-derivedgraphenewithelectricalperformanceofexfoliatedgraphene.
NanoLett.
12,2751–2756(2012)94.
EKim,NJain,YXu,BYu,LogicInverterImplementedwithCVD-assembledgrapheneFETonhexagonalboronnitride.
IEEETrans.
Nanotechnol.
11,619–623(2012)95.
MSBresnehan,MJHollander,MWetherington,MLaBella,KATrumbull,RCavalero,DWSnyder,JARobinson,Integrationofhexagonalboronnitridewithquasi-freestandingepitaxialgraphene:Towardwafer-scale,highperformancedevices.
ACSNano6,5234–5241(2012)96.
CDean,AFYoung,LWang,IMeric,G-HLee,KWatanabe,TTaniguchi,KShepard,PKim,JHone,Graphenebasedheterostructures.
Solid.
State.
Commun.
152,1275–1282(2012)97.
RDecker,YWang,VWBrar,WRegan,H-ZTsai,QWu,WGannett,AZettl,MFCrommie,LocalelectronicpropertiesofgrapheneonaBNsubstrateviascanningtunnelingmicroscopy.
NanoLett.
11,2291–2295(2011)98.
MWang,SKJang,W-JJang,MKim,S-YPark,S-WKim,S-JKahng,J-YChoi,RSRuoff,YJSong,SLee,Aplatformforlarge-scalegrapheneelectronics–CVDgrowthofsingle-layergrapheneonCVD-grownhexagonalboronnitride.
Adv.
Mater.
25,2746–2752(2013)99.
JGOh,SKHong,C-KKim,JHBong,JShin,S-YChoi,BJCho,Highperformancegraphenefield-effecttransistorsonanaluminumnitridesubstratewithhighsurfacephononenergy.
Appl.
Phys.
Lett.
104,193112(2014)100.
YWu,YLin,AABol,KAJenkins,FXia,DBFarmer,YZhu,PAvouris,High-frequency,scaledgraphenetransistorsondiamond-likecarbon.
Nature472,74–78(2011)101.
FSchwierz,GraphenetransistorsNatNanotechnol5,487–496(2010)102.
LLiao,JBai,RCheng,YCLin,SJiang,YHuang,XDuan,Top-gatedgraphenenanoribbontransistorswithultrathinhigh-kdielectrics.
NanoLett.
10,1917–1921(2010)103.
AJavey,HKim,MBrink,QWang,AUral,JGuo,PMcintyre,PMceuen,MLundstrom,HDai,High-kdielectricsforadvancedcarbon-nanotubetransistorsandlogicgates.
Nat.
Mater.
1,241–246(2002)104.
JRobertson,HighdielectricconstantoxidesEur.
Phys.
J.
Appl.
Phys.
28,265–291(2004)105.
MLeskela,MRitala,Atomiclayerdeposition(ALD):fromprecursorstothinfilmstructures.
ThinSolidFilms409,138–146(2002)106.
MRitala,KKukli,ARahtu,PIRaisanen,MLeskela,TSajavaara,JKeinonen,Atomiclayerdepositionofoxidethinfilmswithmetalalkoxidesasoxygensources.
Science288,319–321(2000)107.
JGOh,YShin,WCShin,OSul,BJCho,DiracvoltagetunabilitybyHf1xLaxOgatedielectriccompositionmodulationforgraphenefieldeffectdevicesAppl.
Phys.
Lett.
99,193503(2011)Jungetal.
NanoConvergence(2015)2:11Page16of17108.
MRitala,MLeskela,JPDekker,CMutsaers,PJSoininen,JSkarp,PerfectlyconformalTiNandAl2O3filmsdepositedbyatomiclayerdeposition.
Chem.
Vap.
Deposition.
5,7–9(1999)109.
KKukli,JIhanus,MRitala,MLeskela,TailoringthedielectricpropertiesofHfO2-Ta2O5nanolaminates.
Appl.
Phys.
Lett.
68,3737–3739(1996)110.
FHYang,RTYang,Abinitiomolecularorbitalstudyofadsorptionofatomichydrogenongraphite:insightintohydrogenstorageincarbonnanotubes.
Carbon40,437–444(2002)111.
YXuan,YQWu,TShen,MQi,MACapano,JACooper,PDYe,Atomic-layer-depositednanostructuresforgraphene-basednanoelectronics.
Appl.
Phys.
Lett.
92,013101(2008)112.
BLee,SYPark,HCKim,KJCho,EMVogel,MJKim,RMWallace,JKim,ConformalAl2O3dielectriclayerdepositedbyatomiclayerdepositionforgraphenebasednanoelectronics.
Appl.
Phys.
Lett.
92,203102(2008)113.
XWang,SMTabakman,HDai,Atomiclayerdepositionofmetaloxidesonpristineandfunctionalizedgraphene.
J.
Am.
Chem.
Soc.
130,8152–8153(2008)114.
SMGeorge,AWOtt,JWKlaus,Surfacechemistryforatomiclayergrowth.
J.
Phys.
Chem.
100,13121–13131(1996)115.
RLPuurunen,Surfacechemistryofatomiclayerdeposition:acasestudyforthetrimethylaluminium/waterprocess.
J.
Appl.
Phys.
97,121301(2005)116.
SMGeorge,Atomiclayerdeposition:anoverview.
Chem.
Rev.
110,111–131(2010)117.
NYGarces,VDWheeler,DKGaskill,Graphenefunctionalizationandseedingfordielectricdepositionanddeviceintegration.
J.
Vac.
Sci.
Technol.
B30,030801(2012)118.
MJHollander,AAgrawal,MSBresnehan,MLaBella,KATrumbull,RCavalero,DWSnyder,SDatta,JARobinson,Heterogeneousintegrationofhexagonalboronnitrideonbilayerquasi-free-standingepitaxialgrapheneanditsimpactonelectricaltransportproperties.
Phys.
Stat.
Solidi.
A.
210,1062–1070(2013)119.
SKim,JNah,IJo,DShahrjerdi,LColombo,ZYao,ETutuc,SKBanerjee,Realizationofahighmobilitydual-gatedgraphenefield-effecttransistorwithAl2O3dielectric.
Appl.
Phys.
Lett.
94,062107(2009)120.
SMcDonnell,AAzcatl,GMordi,CFloresca,APirkle,LColombo,JKim,MKim,RMWallace,ScalingofHfO2dielectriconCVDgraphene.
Appl.
Surf.
Sci.
294,95–99(2014)121.
MJHollander,MLaBella,ZRHughes,MZhu,KATrumbull,RCavalero,DWSnyder,XWang,EHwang,SDatta,JARobinson,Enhancedtransportandtransistorperformancewithoxideseededhigh-kgatedielectricsonwafer-scaleepitaxialgraphene.
NanoLett.
11,3601–3607(2011)122.
DBFarmer,HYChiu,YMLin,KAJenkins,FXia,PAvouris,Utilizationofabuffereddielectrictoachievehighfield-effectcarriermobilityingraphenetransistors.
NanoLett.
9,4474–4478(2009)123.
JMPAlaboson,QHWang,JDEmery,ALLipson,MJBedzyk,JWElam,MJPellin,MCHersam,Seedingatomiclayerdepositionofhigh-kdielectricsonepitaxialgraphenewithorganicself-assembledmonolayers.
ACSNano5,5223–5232(2011)124.
VKSangwan,DJariwala,SAFilippone,HJKarmel,JEJohns,JMPAlaboson,TJMarks,LJLauhon,MCHersam,Quantitativelyenhancedreliabilityanduniformityofhigh-kdielectricsongrapheneenabledbyself-assembledseedinglayers.
NanoLett.
13,1162–1167(2013)125.
WCShin,TYKim,OSul,BJCho,Seedingatomiclayerdepositionofhigh-kdielectricongraphenewithultrathinpoly(4-vinylphenol)layerforenhanceddeviceperformanceandreliability.
Appl.
Phys.
Lett.
101,033507(2012)126.
YTKim,SKLee,KSKim,YHKim,JHAhn,YUKwon,Uniformgrowthofhigh-qualityoxidethinfilmsongrapheneusingaCdSequantumdotarrayseedinglayer.
ACSAppl.
Mater.
Interfaces6,13015–13022(2014)127.
BLee,GMordi,MJKim,YJChabal,EMVogel,RMWallace,KJCho,LColombo,JKim,Characteristicsofhigh-kAl2O3dielectricusingozone-basedatomiclayerdepositionfordual-gatedgraphenedevices.
Appl.
Phys.
Lett.
97,043107(2010)128.
OMNayfeh,TMarr,MDubey,Impactofplasma-assistedatomic-layer-depositedgatedielectricongraphenetransistors.
IEEE.
Electron.
Device.
Lett.
32,473–475(2010)129.
WCShin,JHBong,S-YChoi,BJCho,Functionalizedgrapheneasultrathinseedlayerfortheatomiclayerdepositionofconformalhigh-kdielectricsongraphene.
ACSAppl.
Mater.
Interfaces5,11515–11519(2013)Submityourmanuscripttoajournalandbenetfrom:7Convenientonlinesubmission7Rigorouspeerreview7Immediatepublicationonacceptance7Openaccess:articlesfreelyavailableonline7Highvisibilitywithintheeld7RetainingthecopyrighttoyourarticleSubmityournextmanuscriptat7springeropen.
comJungetal.
NanoConvergence(2015)2:11Page17of17
Virmach对资源限制比较严格,建议查看TOS,自己做好限制,优点是稳定。 vCPU 内存 空间 流量 带宽 IPv4 价格 购买 1 512MB 15GB SSD 500GB 1Gbps 1 $7/VirMach:$7/年/512MB内存/15GB SSD空间/500GB流量/1Gbps端口/KVM/洛杉矶/西雅图/芝加哥/纽约等 发布于 5个月前 (01-05) VirMach,美国老牌、稳...
a400互联是一家成立于2020年商家,主营美国机房的产品,包括BGP线路、CN2 GIA线路的云服务器、独立服务器、高防服务器,接入线路优质,延迟低,稳定性高,额外也还有香港云服务器业务。当前,全场服务器5折,香港VPS7折,洛杉矶VPS5折,限时促销!A400互联官网:https://a400.net/优惠活动全场独服永久5折优惠(续费同价):0722香港VPS七折优惠:0711洛杉矶VPS五...
spinservers是Majestic Hosting Solutions LLC旗下站点,主营国外服务器租用和Hybrid Dedicated等,数据中心在美国达拉斯和圣何塞机房。目前,商家针对圣何塞部分独立服务器进行促销优惠,使用优惠码后Dual Intel Xeon E5-2650L V3(24核48线程)+64GB内存服务器每月仅109美元起,提供10Gbps端口带宽,可以升级至1Gbp...
7788kk.com为你推荐
京沪高铁上市首秀京沪高铁怎么老是出问题?高铁的核心技术是中国自己的吗?对对塔今儿老师给推荐了一个叫对对塔的学习网站,看起来挺不错的,有用过的人吗?管不管用?哪些功能比较好啊?原代码源代码是什么意思啊www.jjwxc.net晋江文学网 的网址是什么?长尾关键词挖掘工具大家是怎么挖掘长尾关键词的?5xoy.comhttp www.05eee.com789se.comhttp://gv789.com/index.php这个网站可信吗?是真的还是假的!99nets.com制作网络虚拟证件的网站 那里有呀?partnersonline国外外贸平台有哪些?dadi.tvapple TV 功能介绍
nerd godaddy支付宝 12306抢票助手 免费ftp空间申请 gg广告 1g内存 qq云端 免费高速空间 免费申请网站 网通服务器托管 1美金 hkt 个人免费主页 域名dns 网页提速 lamp架构 cdn服务 广东服务器托管 百度新闻源申请 hosts文件 更多