test7po.com

7po.com  时间:2021-03-21  阅读:()
JournalofPetroleumExplorationandProductionTechnology(2019)9:2659–2665https://doi.
org/10.
1007/s13202-019-0652-7ORIGINALPAPER-PRODUCTIONENGINEERINGInfluenceoflaurylbetaineonaqueoussolutionstability,foamabilityandfoamstabilityAsadHassanSyed1·AhmadKamalIdris1·DzetiFarhahMohshim1·NurudeenYekeen2·MuhammadAliBuriro3Received:2November2018/Accepted:30March2019/Publishedonline:3April2019TheAuthor(s)2019AbstractIngasflooding,oneofthemajorproblemsinimplementingfoamasagasmobilitycontrolmethodisthestabilityoffoam.
Foamboosterwhenblendedwithsurfactantcouldimprovethefoamstability.
However,theinfluenceoffoamboosterontheconventionalfoamstabilityandfoamabilityatelevatedtemperatureandpresenceofinorganicelectrolytesisnotyetexplicitduetolimitedstudiesinthisarea.
Theobjectiveofthepresentworkwastoevaluatetheinfluenceofafoamboosteronaqueoussolutionstability,foamabilityandfoamstabilitywhenblendedwithsurfactantatdifferentratiosatanelevatedtemperatureinthepresenceofbrinecomposedofmonovalentanddivalentions.
ThreedifferentsurfactantsAOSC14–16(alpha-olefinsulfonate),SDS(sodiumdodecylsulfate)andalocallymanufacturedsurfactant'SurfX'werechosenasbasesurfactants.
Anamphotericsurfactantlaurylbetainewaschosenasafoamboosterinthisstudy.
Theaqueoussolutionstabil-itywasvisuallyevaluated,whereasthebulkfoamexperimentswereconductedinacommercialfoamanalyzerapparatus.
Itwasfoundthatnotallsolutionswerestablewhenlaurylbetainewasblended.
Laurylbetainedidnotimprovethefoamgenerationtime.
Thefoamstabilitywasimproved;however,notallsolutionswereabletogeneratestablefoam.
'SurfX'wasabletogeneratemorestablefoamascomparedtoAOSandwhenblendedwithlaurylbetaineitalsorequiredlessamountoflaurylbetainetogeneratestablefoam.
KeywordsDivalentions·Foamability·Foamstability·Laurylbetaine·SurfactantIntroductionFoamisadispersionofgasinaliquidphasesuchthattheliquidisincontinuousphasehavingsomeofthegastrappedinsidethethinliquidfilmsknownaslamellae(Hiraski1989).
Thesurfactantmoleculesarepresentatthegasliquidinterface,andtherebystabilizethefoamfilms(Katgert2008;Yekeenetal.
2017a).
Ingasflooding,thechallengeassoci-atedwithinjectedgasispoorvolumetricsweepefficiency,becauseoflowviscosityanddensityofgascomparedtooil(Memonetal.
2016).
Foamhashigherapparentviscosityandcancontrolthemobilityofthegasbysubstantiallyhin-derthegasflowinporousmedia,whichforcesgastosweepporesthatitwouldnothavereachedwithoutfoam(Fara-jzadehetal.
2012).
Inshortfoamdivertgastowardzoneshavinglowerpermeability,itlimitsviscousfingeringandalsoreducesoverridingofgasinhighpermeabilityzonesofreservoir(Yekeenetal.
2018;Chevallieretal.
2019).
Therearetwomainmethodsbywhichfoamcanbegener-atedinporousmedia,surfactantalternatinggas(SAG)and*AsadHassanSyedengr.
syedasadhassan@gmail.
comAhmadKamalIdrisahmadkamal.
idris@utp.
edu.
myDzetiFarhahMohshimdzetifarhah.
mohshim@utp.
edu.
myNurudeenYekeenpeteryekeen@yahoo.
com1DepartmentofPetroleumEngineering,FacultyofGeoscienceandPetroleumEngineering,UniversityTeknologiPETRONAS,32610SeriIskandar,Perak,Malaysia2InstituteofHydrocarbonRecovery,UniversitiTeknologiPETRONAS,32610BandarSeriIskandar,Perak,Malaysia3PetroleumEngineeringDepartment,KomarUniversityofScienceandTechnology,Sulaymaniyah,Iraq2660JournalofPetroleumExplorationandProductionTechnology(2019)9:2659–2665co-injectionofsurfactantandgas(JensenandFriedmann1987;Farajzadehetal.
2012).
Asanenhancedoilrecovery(EOR)method,amajorcon-cernwiththeapplicationoffoamisthestabilityoffoam(Yekeenetal.
2018).
Theselectionandconcentrationofproperfoamingagentsareoneofthemainparametersthatdeterminesthesuccessoffoamflooding(Rafatietal.
2012).
Comparedtoanindividualcomponent,studieshaveshownthatwhenfoamboosterisusedasanadditivetheymayimprovethefoamproperties(VanDerBent2014;Cui,2014;Osei-Bonsuetal.
2015;SakaiandKaneko2004).
Betainesareknownfortheirfoamenhancingproperties(SakaiandKaneko2004;Farajzadehetal.
2012).
Previousstudieshaveshownthatzwitterionicbetainesurfactantshavetheabilitytoimprovestabilityofthefoamfilmsintheabsenceandpresenceofoil(Bashevaetal.
2000;Cui2014).
Gaoetal.
2017intheirresearchshownthattheadditionofbetaineimprovesthefoamstability.
ItwasobservedthatmorestablefoamwasgeneratedwhenlaurylbetainewasaddedtotheNI(Neodol67-7POsulfateandIOS15–18)4:1blend(Lietal.
2012).
Laurylbetaineisanamphotericsurfactantthatisthermallystablerelativetococamidopropyl-betaine(Cui2014).
Itwasalsoobservedinsomeotherstudiesthatblendinglaurylbetainedoesimprovethefoamproperties(Connetal.
2014;SinghandMohanty2016).
TheblendtestedbySinghandMohanty(2016)con-sistedof(1:1)AOSandLBwithbrinehavingsalinity1.
2wt%withoutthepresenceofdivalentions,.
whereasConnetal.
(2014)studywaslimitedto1:1ofmainsurfactant(AOS)andlaurylbetaineasfoamboosterwithatotalcon-centrationof1wt%,inthepresenceofNaClbrine.
Thepresenceofdivalentionscancausethesurfactanttoprecipitateintheformationbecauseoftheintoleranceofmanysurfactantstothedivalentions.
Soitisimportanttotestsurfactantsolutionsforfoamstudiesinthepresenceofdivalentions.
However,whenmixedwithdifferentsur-factants,theinfluenceoflaurylbetaineonaqueoussolutionstability,foamabilityandfoamstabilityinthepresenceofdivalentionsathightemperaturehasnotbeenextensivelyinvestigatedinpreviousstudies.
Thisexperimentalevaluationstudiedtheinfluenceoflaurylbetaineonaqueoussolutionstability,foamabilityandfoamstabilitywhenblendedwithsurfactantatdif-ferentratiosinthepresenceofbrinecontainingdiva-lentionsat60°C.
InthisworkAOSC14–16,SDSandalocallymanufacturedsurfactant'SurfX'chosenasbasesurfactantwassystematicallyblendedwithlaurylbetaine(foambooster)atdifferentratiosinabrinecontainingNaClandCaCl2.
Exceptthefoamstabilitytestwhichwasconductedatonly60°C,allothertestswereconductedat25°Cand60°C.
Theaqueoussolutionstabilitywasvisu-allyevaluated,whereasthefoamabilityandfoamstabilityexperimentswereconductedinacommercialFoamscanapparatus.
Inbulkfoamtests,half-life(foamstability)andfoamabilitywereinvestigated.
Inthisstudy,acomparativeunderstandingoftheinfluenceoflaurylbetaine(whichwehereaftercalledLB)onaqueoussolutionstability,foama-bility,foamstabilitywhenblendedwithbasesurfactantwasstudiedtogenerateastablefoamsolutionthatcanbefurthertestedinporousmedia.
MaterialsandmethodsMaterialsAOSC14-16(Alpha-olefinsulfonate)wasobtainedfromSTEPANChemicalCo.
'SurfX'alocallydevelopedsur-factant,SDS(sodiumdodecylsulfate)fromSigmaCo.
andFentacareBS12/LaurylBetaine(additive),receivedfromSolvayChemicalsCo.
Thebrinewaspreparedwithdeion-izedwaterandwiththeconcentrationof3.
0wt%ofNaClfromMerckCo.
,0.
20wt%CaCl2fromR&MChemicals.
Thetotalbrinesalinitywas3.
2wt%.
PureN2gaswasusedinthisstudyasthesparginggas.
Theinjectionratewas50ml/minforallthesolutions.
Allthesolutioncontainedtotalconcentrationof0.
5wt%activesurfactant.
Thecon-centrationusedinthisstudywaswellabovethecriticalmicelleconcentration.
TheCMCvalueofAOSat3.
0wt%NaClbrinewas0.
003wt%(Laskaris2015).
ThedetailsofthesurfactantsolutionstestedinthisstudyaregiveninTable1.
LabelA100,S100andX100denotestoAOS,SDSand'SurfX',respectively,withouttheLBblend,whereasA91,S91,X91shows9:1,A73,S73,X73shows7:3andA64,X64,S64shows6:4blendsofAOS,SDSand'SurfX'withLB,respectively.
Table1SurfactantsolutionsandLBblendusedintheexperimentsSampleno.
LabelBasesurfFoamboosterRatio(Surf/LB)1A100AOS––2A91AOSLB9:13A73AOSLB7:34A64AOSLB6:45X100SurfX––6X91SurfXLB9:17X73SurfXLB7:38X64SurfXLB6:49S100SDS––10S91SDSLB9:111S73SDSLB7:312S64SDSLB6:42661JournalofPetroleumExplorationandProductionTechnology(2019)9:2659–2665ExperimentalprocedureThisresearchisdividedintotwomainphases.
Inthefirstphase,theaqueousstabilitytestingofthesurfactantsolutionwasconducted.
Inaqueousstabilitytesting,thereweretwotypesoftest.
Firstoneistheprecipitationtesting(inthistestthesolutionswerecheckedforanytypeofprecipitation)andsecondisthethermalstabilitytesting(inthistest,phasesep-arationwaschecked).
Firsttheindividualsurfactantsweretested.
Inthesecondpart,thefoambooster(LB)wasaddedatdifferentratiosasmentionedinTable1.
Thesurfactantsolutionswerestoredatdifferenttemperatures(25°Cand60°C)for2weeks,whichwerethanvisuallyinspected.
Asurfactantsolutionisconsideredstable,ifthesolutionishomogeneous,containsinglephaseandclear.
Ifthesur-factantsolutionthatisusedforinjectionisnotinsinglephaseandclearwillhavesignificantphasetrapping,forma-tionplugging,andlossofsurfactantsolutiontoadsorptionintheformationwilloccur.
AsshowninFig.
1ifthesolutionwasclearorslightlyblurry,itwasconsideredaqueouslysta-ble.
Ifasolutionwascloudyorifasolutionhasprecipitates,thenitwasconsideredunstableandwasnotusedforfurthertesting.
Inthesecondphase,thebulkfoamexperimentswerecar-riedoutusingFoamscanapparatus(Teclisinstruments).
Figure2showstheschematicdiagramofthefoamanalyzerapparatususedinthisresearch.
Bulkfoamtestwascon-ductedatambientand60°C.
First,a50mlofthesolutionsamplewasinjectedintotheglasstubeafterthatthepureN2(nitrogen)gasat50ml/minwasinjectedassparginggastocreatethefoam.
Thefoamabilityofthesolutionswastestedbygeneratingupto100mloffoam,andthen,thetimeforthefoamtoreachthe100mlfoamvolumewasrecorded.
Thebulkfoamstabilitywasmeasuredby(half-life)thetimeneededforthefoamtodecayintohalfofitsoriginalvolumeafterthespargingofthegaswasstopped.
ResultsanddiscussionAqueousandthermalsolutionstabilitytestingAqualifiedsurfactantformulationforfoamEORshouldbesolubleandstablefrominjectiontoreservoirconditions(Cui2014).
ItisimportanttotestaqueousandthermalsolutionFig.
1Resultsofsurfactantaqueoussolutionstability,aaclearstablesolution,baslightlyblurrysolution,cacloudy/precipitatedsolutionFig.
2SchematicdiagramofFoamscanapparatus(Jonesetal.
2016)2662JournalofPetroleumExplorationandProductionTechnology(2019)9:2659–2665stabilitybecauseifasolutionisnotstable(singlephase)andprecipitatesinsideformationthenitwillblocktheporesanddamagetheformation.
ResultsoftheaqueoussolutionstabilitytestscanbeseeninTable2.
Allthebasesurfactantsolutionsinthepresenceofbrineweretestedattempera-tures25°Cand60°C.
Testedbasesurfactantsolutionswerefoundclear,andnophaseseparationandprecipitationwereobserved.
ThebasesurfactantwasthenfurtherusedtoblendwiththeLBforfurthertesting.
Inthesecondphase,thefoambooster(LB)wasblendedwiththebasesurfactantatratios9:1,7:3and6:4asmentionedinTable1.
AfterblendingtheLBandbasesurfactants,aqueousandthermalstabilityweretested.
ThesolutionsA91,A73,X91,X73werefoundstable,andnophaseseparationorprecipitationwasobservedatbothtemperatures25°Cand60°C.
TheA73showedalittleblurrysolutionat25°Ctemperature;however,whenitwastestedat60°C,itwasfoundclear.
ThesolutionA64,X64,S73andS64werecloudyandhasprecipitationat25°C.
Whenthesesolutionswerefurthertestedat60°C.
Precipita-tionsandcloudysolutionswerestillobserved;however,thesolutionS73at60°Cwashazy,buttheprecipitationwasstillpresentinthesolution.
ItwasobservedinthisstudythatastheratioofLBincreasedinthesurfactantsolutions,ithadanegativeinfluenceonthestabilityofthesurfactantsolution.
NotallthesurfactantsolutionswerefoundstableastheratioofLBincreasedinthesurfactantsolution.
Complexinteractionamongthedivalentionsandsurfactantmoleculescouldhavethepossibilityofreductioninmicelleformationthatwouldleadtopresenceoflargenumberoffreemono-merswhichinturnbindwithdivalentions.
Thisbindingofdivalentionscouldbethepossiblereasonforprecipitation.
TheA64,X64,S100,S91,S73andS64surfactantsolu-tionswasnotfurtherusedfortestinginthisstudy.
BulkfoamtestFoamabilityTheeaseoffoamgenerationisknownasfoamability.
Itisadynamicpropertyoffoamgeneratingpowerofaliquidandthefactorsthathelptoattainimmediatestabilizationofthefoam(Wilson1996;SakaiandKaneko2004).
TheinfluenceofLBonfoamabilityisshowninFig.
3aat25°CandFig.
3bat60°CwhenblendedwithAOSand'SurfX'surfactant,respectively.
AsshowninFig.
3a,b,thefoamabilitytimeoftheindividualsurfactantsolutionsascomparedtothemixedsurfactantsolutionswasbetter.
AsshowninFig.
3a,whenAOSwasblendedwithLBat9:1,thefoamabilitytimeat25°Cwasincreasedby39.
08%.
At7:3,thetimewasincreasedby27.
58%.
When'SurfX'wasblendedwithLBat9:1,thetimewas27.
47%morethanindividual'SurfX'.
At7:3,thefoamabilitytimewasincreasedby30.
76%ascomparedtothetimeforbase'SurfX'surfactant.
Figure3brepresentsthefoamabilityofsurfactantsolu-tionsat60°C.
WhenAOSwasblendedwithLBat9:1,thefoamabilitytimewasincreasedby26.
47%.
At7:3,thetimewasincreasedby20.
58%.
When'SurfX'wasblendedwithLBat9:1,thetimewasonly5.
79%more.
At7:3,theTable2Aqueoussolutionstabilityresultsofthesurfactantsolutionstestedat25°Cand60°CSampleno.
Label25°C60°CRemarksRemarks1A100ClearClear2A91ClearClear3A73Blurry/hazyClear4A64Cloudy/precipitationCloudy/precipitation5X100ClearClear6X91ClearClear7X73ClearClear8X64Cloudy/precipitationCloudy/precipitation9S100ClearClear10S91ClearClear11S73Cloudy/precipitationBlurry/precipitation12S64Cloudy/precipitationCloudy/precipitationFig.
3Timeneededtogener-ate100mlfoamfordifferentsurfactantsolutionswithandwithoutfoambooster(LB)ata25°Candb60°C(a)020406080100120140A100A91A73X100X91X73Time(Seconds)FoamabilityatT=25°C(b)020406080100120140A100A91A73X100X91X73Time(Seconds)FoamabilityatT=60°C2663JournalofPetroleumExplorationandProductionTechnology(2019)9:2659–2665foamabilitytimewas27.
53%moreascomparedtothetimefor'SurfX'withouttheblendofLB.
Temperaturehadapositiveeffectonthefoamabilityofallthesurfactantsolutionstestedinthisstudy.
Thefoamabil-itytimeofsurfactantsolutionsatelevatedtemperaturewasmuchbetterascomparedtothefoamabilitytimeatlowertemperature.
Theimprovementinfoamabilityat60°Ccom-paredto25°Ccouldbeattributedtotheincreaseintheinternalkineticenergyofthegasduetoincreaseintem-peratureandthedecreaseinliquidviscosityofthesurfactantsolution.
Atbothtemperatures25°Cand60°C,thesur-factantsolutionsA100andX100withouttheblendofLBhadbetterfoamabilitytime.
Thefoamabilityperformanceofthesurfactantsolutionstestedinthisstudyat25°Carerankedintheorderof:A100>X100>A73>X91>X73>A91,whereasat60°Ctemperaturetheorderisasfol-lows:A100>X100>X91>A73>A91>X73.
Inthiswork,LBwasnotabletohaveapositiveimpactonthefoamabilityofsurfactantsolutionsused.
LBhasmorenegativeimpactonfoamabilitywhenblendedwithAOSascomparedtothe'SurfX'surfactant.
(SakaiandKaneko2004;VanDerBent2014)intheirstudyalsofoundthesimilartrendthattheadditionofamphotericsurfactantdidnotimprovethefoamability.
Figure4showsA100foamgeneratedinsideaglasstube.
FoamstabilityFoamstabilitycanbedefinedasthetimeafoamfilmexistswithoutrupturing(SakaiandKaneko2004).
Itisgenerallyindicatedbyfoamhalf-life(timeneededforfoamtodecayhalfofitsoriginalfoam)(Yekeenetal.
2017b)Fig.
5showsthehalf-lifeofthebulkfoamexperiments,bothwithandwithouttheblendofLBat60°C,withlongerhalf-lifeindi-catingamorestablefoam.
AOSandLBblendof9:1gener-ated149.
68%morestablefoamascomparedtoindividualAOSsurfactantsolutions.
WhenAOSwasblendedwithLBatratioof7:3,itincreasedhalf-lifeby254.
91%.
When'SurfX'wasblendedwithLBat9:1,itshowedanimprovementinstabilitybyjust8.
92%;however,whentheblendratiowasincreasedandthe'SurfX'andLBwasblendedat7:3,therewasadecreaseinstabilityofabout39.
89%.
Incomparisonofindividualsurfactantsolution,X100hashigherfoamstabilityascomparedtoA100surfactantsolutiongeneratedfoam.
Thehalf-lifeofthesurfactantsolu-tionswasimprovedwhenLBwasblendedwiththeAOSand'SurfX'surfactants.
TheinfluenceonthestabilitywasmoreprofoundwithAOSsurfactantascomparedtothe'SurfX'surfactant.
AmongallthesurfactantblendedwiththeLB,'SurfX'neededlessamountofLBascomparedtotheAOS.
IncreasingtheratioofLBwith'SurfX'wasnotabletogreatlyimprovefoamstabilityatalltheratiostested.
TheA73surfactantsolutiongeneratedthemoststablefoamamongFig.
4A100foaminsideglasstubeFig.
5Foamdecayprofileofdifferentsurfactantsolutionswithandwithoutthefoambooster(LB)at60°C2664JournalofPetroleumExplorationandProductionTechnology(2019)9:2659–2665allthesurfactantsolutiontested.
BasedonFig.
5,thefoamstabilityaccordingtohalf-lifeisrankedasthefollowingA73>X91>X100>A91>X73>A100.
Theincreaseinfoamstabilitywiththeblendofanamphotericsurfactanthasalsobeenreportedbyotherresearchers(Osei-Bonsuetal.
2015;Memonetal.
2016).
Ascomparedtoindividualcom-ponentsystems,theblendofdifferenttypeofsurfactantssynergisticallyexhibitbetterfoamingproperties(Bianetal.
2012;Memonetal.
2016).
ThisresultoftheincreaseinthefoamstabilitybyLBcanbeduetotheMarangonieffect,whichiscausedbyelectrostaticattractionbetweenanionicsurfactantandthecationicnitrogen(Domingo1996;SakaiandKaneko2004).
Gaoetal.
(2017)showedintheirstudyusingthesimulationforfoamstabilitythatthepresenceofamphotericsurfactantrelaxestherepulsionbetweentheheadgroupsofanionicsur-factants.
ThismechanismimprovedthefoamstabilityandcouldalsoberesponsiblefortheimprovedfoamstabilityinthepresenceofLBasobservedinthisresearch.
Moreover,itisanticipatedthatadditionofLBtothesolutioncouldincreasetheliquidviscosity,consequentlydecreasingtheliquiddrainagefromthefoamplateauborderswhichcauseshighresistancetofilmthinning,thusinfluencesthestabilityoffoam(Osei-Bonsuetal.
2015).
ConclusionInthiswork,whenblendedwithdifferentsolutions,theinfluenceoflaurylbetaineontheaqueoussolutionstabil-ity,foamabilityandbulkfoamstabilityinthepresenceofdivalentionsandatanelevatedtemperaturewerestudied.
Parameterssuchastheaqueoussolutionstability(phaseseparationandprecipitation),foamabilityandfoamsta-bilityweresystematicallyinvestigated.
Itwasfoundthatblendinglaurylbetainewithsurfactantaffectsthesolutionstability;notallthesolutionwasfoundstableastheratioofLBincreasedinthesurfactantsolutioninthepresenceofdivalentions.
Therewasanegativeimpactonfoamabil-itywhenlaurylbetainewasblendedwiththesurfactant.
A100andX100surfactantsolutionshadthebestfoamabilitytimeatboththetestedtemperatures.
Thefoamstabilityofthesolutionswasimproved;however,notallsolutionswereabletogeneratestablefoam.
'SurfX'individuallywasabletogeneratemorestablefoamascomparedtoAOSandwhenblendedwithlaurylbetaine.
Italsorequiredlessamountoflaurylbetainetogeneratemorestablefoam.
TheA73surfactantsolutiongeneratedthemoststablefoamfollowedbyX91surfactantsolution.
Thepresenceoflaurylbetaine(10%)in'SurfX'increasedthefoamstabilitybyapproxi-mately9%,whereasthepresenceoflaurylbetaine(30%)inAOSsurfactantsolutionincreasedthefoamstabilitybyapproximately255%.
Thesurfactantsolutionusedinthisstudythatgeneratedstablefoamwillbefurthertestedinporousmedia.
AcknowledgementAuthorswouldliketothankStepanCo.
andSolvayChemicalsCo.
forprovidingchemicalsusedinthisresearch.
AuthorswouldalsoliketothankInstituteofHydrocarbonRecovery,CentreofResearchofEnhancedOilRecovery(COREOR),Univer-sitiTeknologiPETRONASandtotheMinistryofHigherEducation(MOHE),(0153AB-L59)forsupportingthisresearchthroughfunda-mentalresearchGrantscheme.
OpenAccessThisarticleisdistributedunderthetermsoftheCrea-tiveCommonsAttribution4.
0InternationalLicense(http://creativecommons.
org/licenses/by/4.
0/),whichpermitsunrestricteduse,distribu-tion,andreproductioninanymedium,providedyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreativeCommonslicense,andindicateifchangesweremade.
ReferencesBashevaES,GanchevD,DenkovNDetal(2000)Roleofbetaineasfoamboosterinthepresenceofsiliconeoildrops.
Langmuir16:1000–1013.
https://doi.
org/10.
1021/la990777+BianY,PennyGS,SheppardNCetal(2012)Surfactantformulationevaluationforcarbondioxidefoamfloodinginheterogeneoussandstonereservoir.
SPEImprovOilRecoverSymp.
https://doi.
org/10.
2118/154018-msChevallierE,DemazyN,CuencaA,ChabertM(2019)Correlationbetweenfoamflowstructureinporousmediaandsurfactantformulationproperties.
TranspPorousMedia.
https://doi.
org/10.
1007/s11242-018-01226-2ConnCA,MaK,HirasakiGJ,BiswalSL(2014)Visualizingoildis-placementwithfoaminamicrofluidicdevicewithpermeabilitycontrast.
LabChip14:3968–3977.
https://doi.
org/10.
1039/c4lc00620hCuiL(2014)Applicationoffoamformobilitycontrolinenhancedoilrecovery(EOR)process.
PhDdissertation,RiceUniversityDomingoX(1996)Betaines.
In:LomaxEG(ed)Amphotericsur-factants,2ndedn.
MarcelDekker,NewYork,p75FarajzadehR,AndrianovA,KrastevRetal(2012)Foam-oilinterac-tioninporousmedia:implicationsforfoamassistedenhancedoilrecovery.
AdvColloidInterfaceSci183–184:1–13.
https://doi.
org/10.
1016/j.
cis.
2012.
07.
002GaoF,LiuG,YuanS(2017)Theeffectofbetaineonthefoamstabil-ity:molecularsimulation.
ApplSurfSci407:156–161.
https://doi.
org/10.
1016/j.
apsusc.
2017.
02.
087HiraskiGJ(1989)Thesteam-foamprocess.
SocPetEng.
https://doi.
org/10.
2118/19505-paJensenJA,FriedmannF(1987)Physicalandchemicaleffectsofanoilphaseonthepropagationoffoaminporousmedia.
SPECalifor-niaRegionalMeeting.
SocietyofPetroleumEngineers,Ventura,California.
https://doi.
org/10.
2118/16375-MSJonesSA,vanderBentV,FarajzadehR,RossenWR,Vincent-BonnieuS(2016)SurfactantscreeningforfoamEOR:Correlationbetweenbulkandcore-floodexperiments.
ColloidsSurfPhysicochemEngAsp500:166–176.
https://doi.
org/10.
1016/j.
colsurfa.
2016.
03.
072KatgertG(2008)Flowoffoams.
DoctoralDissertation,UniversiteitLeidenLaskarisG(2015)Effectofsurfactantconcentration,watertreatmentchemicals,fattyacidsandalcoholsonfoambehaviorinporous2665JournalofPetroleumExplorationandProductionTechnology(2019)9:2659–2665mediaandinbulk.
Mastersdissertation,TUDelftUniversity,NetherlandLiRF,HirasakiG,MillerCA,MasalmehSK(2012)Wettabil-ityalterationandfoammobilitycontrolinalayered,2dhet-erogeneoussandpack.
SPEIntSympOilfChem.
https://doi.
org/10.
2118/141462-paMemonMK,ShukerMT,ElraiesKA(2016)Studyofblendedsur-factantstogeneratestablefoaminpresenceofcrudeoilforgasmobilitycontrol.
JPetExplorProdTechnol7:77–85.
https://doi.
org/10.
1007/s13202-016-0243-9Osei-BonsuK,ShokriN,GrassiaP(2015)Foamstabilityinthepres-enceandabsenceofhydrocarbons:frombubble-tobulk-scale.
ColloidsSurfAPhysicochemEngAsp481:514–526.
https://doi.
org/10.
1016/j.
colsurfa.
2015.
06.
023RafatiR,HamidiH,IdrisAK,MananMA(2012)Applicationofsus-tainablefoamingagentstocontrolthemobilityofcarbondioxideinenhancedoilrecovery.
EgyptJPet21:155–163.
https://doi.
org/10.
1016/j.
ejpe.
2012.
11.
010SakaiT,KanekoY(2004)Theeffectofsomefoamboostersonthefoamabilityandfoamstabilityofanionicsystems.
JSurfactantsDeterg7:291–295.
https://doi.
org/10.
1007/s11743-004-0314-xSinghR,MohantyKK(2016)Foamswithwettability-alteringcapabili-tiesforoil-wetcarbonates:asynergisticapproach.
SPEJ21:1126–1139.
https://doi.
org/10.
2118/175027-PAVanDerBentVJ(2014)Comparativestudyoffoamstabilityinbulkandporousmedia.
Mastersthesis,DelftUniversityofTechnologyWilsonAJ(1996)Experimentaltechniquesforthecharacterizationoffoams.
In:Prud'hommeRK,KhanSA(eds)Foams:theory,measurements,andapplication.
MarchelDekker,Inc,NewYork,pp243–272YekeenN,IdrisAK,MananMA,SaminAM(2017a)Experimentalstudyoftheinfluenceofsilicananoparticlesonthebulkstabil-ityofSDS-foaminthepresenceofoil.
JDispersSciTechnol38:416–424.
https://doi.
org/10.
1080/01932691.
2016.
1172969YekeenN,MananMA,IdrisAK,SaminAM(2017b)InfluenceofsurfactantandelectrolyteconcentrationsonsurfactantAdsorptionandfoamingcharacteristics.
JPetSciEng149:612–622.
https://doi.
org/10.
1016/j.
petrol.
2016.
11.
018YekeenN,MananMA,IdrisAKetal(2018)Acomprehensivereviewofexperimentalstudiesofnanoparticles-stabilizedfoamforenhancedoilrecovery.
JPetSciEng164:43–74.
https://doi.
org/10.
1016/j.
petrol.
2018.
01.
035Publisher'sNoteSpringerNatureremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.

Vultr新用户省钱福利,最新可用优惠码/优惠券更新

如今我们无论线上还是线下选择商品的时候是不是习惯问问是不是有优惠活动,如果有的话会加速购买欲望。同样的,如果我们有准备选择Vultr商家云服务器的时候,也会问问是不是有Vultr优惠码或者优惠券这类。确实,目前Vultr商家有一些时候会有针对新注册用户赠送一定的优惠券活动。那就定期抽点时间在这篇文章中专门整理最新可用Vultr优惠码和商家促销活动。不过需要令我们老用户失望的,至少近五年我们看到Vu...

BGPTO独服折优惠- 日本独服65折 新加坡独服75折

BGPTO是一家成立于2017年的国人主机商,从商家背景上是国内的K总和有其他投资者共同创办的商家,主营是独立服务器业务。数据中心包括美国洛杉矶Cera、新加坡、日本大阪和香港数据中心的服务器。商家对所销售服务器产品拥有自主硬件和IP资源,支持Linux和Windows。这个月,有看到商家BGPTO日本和新加坡机房独服正进行优惠促销,折扣最低65折。第一、商家机房优惠券码这次商家的活动机房是新加坡...

欧路云:美国CUVIP线路10G防御,8折优惠,19元/月起

欧路云新上了美国洛杉矶cera机房的云服务器,具备弹性云特征(可自定义需要的资源配置:E5-2660 V3、内存、硬盘、流量、带宽),直连网络(联通CUVIP线路),KVM虚拟,自带一个IP,支持购买多个IP,10G的DDoS防御。付款方式:PayPal、支付宝、微信、数字货币(BTC USDT LTC ETH)测试IP:23.224.49.126云服务器 全场8折 优惠码:zhujiceping...

7po.com为你推荐
沙滩捡12块石头价值近百万朋友从内蒙古阿拉善那边的戈壁捡了很多石头,求大神们鉴定一下,据说那边产玛瑙。谢谢大神们,大大的悬赏地陷裂口地陷前期会有什么征兆吗?同ip域名不同的几个ip怎样和同一个域名对应上www.33xj.compro/engineer 在哪里下载,为什么找不到下载网站?www.ca800.com西门子plc仿真软件有什么功能www.15job.com广州天河区的南方人才市场www.gogo.com祺笑化瘀祛斑胶囊效果。网页源代码网页的HTML代码百度关键字百度推广多少关键词合适ww.43994399在线单机小游戏
外国虚拟主机 1g虚拟主机 黑龙江域名注册 godaddy域名解析 网站保姆 正版win8.1升级win10 合租空间 中国电信宽带测速网 metalink t云 多线空间 中国联通宽带测试 cdn服务 乐视会员免费领取 双十二促销 闪讯网 美国服务器 comodo 免费服务器 火山互联 更多