centrifugedwww.diediao.com

www.diediao.com  时间:2021-03-20  阅读:()
EDITORIALChronicrenalfailure,vascularcalcificationandtheRNK/RANKL/OPGsystemOlmosJM,HernándezJLORIGINALSEffectofRANK/RANKL/OPGpathwayonbonedemineralizationandvascularcalcificationinchronickidneydiseaseMartínezAriasL,SolacheBerrocalG,PanizoGarcíaS,CarrilloLópezN,AvelloLlanoN,QuirósCasoC,NavesDíazM,CannataAndíaJBTheassociationofMMP11G>2GpolymorphismwithaorticvalvecalcificationSolache‐BerrocalG,BarralA,MartínM,Román‐GarcíaP,LlosaJC,Naves‐DíazM,Cannata‐AndíaJB,RodríguezIFunctionalstudyofpromotergenepolymorphismsofsclerostinPérez‐CampoFM,SaudoC,KrebesovaR,Delgado‐CalleJ,RianchoJAPrevalenceoflowlevelsofvitaminDinpatientswithbreastcancerwholiveinNorthernlatitudes21-22González‐FisherRF,Pérez‐JaimeS,BuzK,Sotelo‐FélixE,lvarezOrdoricaO,GonzálezRiestraHJ,RolonPadillaACLINICALNOTEHemochromatosisandosteoporosis,inreferenceto4casesMontaoJaramilloD,DíazCurielMREVIEWOxidativestressasapossibletherapeutictargetforosteoporosisassociatedwithagingPortal‐NúezS,delaFuenteM,DíezA,EsbritP101105115121127134138SUMMARYVol.
8-N4-October-December2016OurcoverProstatecancer.
MetastasisinavertebralbodyAutor:CourtesyofProfessorAlanBoyde.
London.
UnitedKingdomRevistadeOsteoporosisyMetabolismoMineralhasrecentlybeenaceptedforcoverageintheEmergingSourcesCitationIndex,wichistheneweditionoftheWebofSciencethatwaslaunchedinnovember2015.
ThismeansthatanyarticlespublishedinthejournalwillbeindexedintheWebofScienceatthetimeofpublication.
Indexedin:Scielo,WebofSciences,IBECS,SIICDataBases,embase,Redalyc,EmergingSourcesCitationIndex,OpenJ-Gate,DOAJ,FreeMedicalJournal,GoogleAcademic,Medes,ElectronicJournalsLibraryAZB,e-revistas,WorldCat,Latindex,EBSCOhost,MedicLatina,Dialnet,SafetyLit,Mosby's,Encare,AcademicKeys.
Submitoriginals:romm@ibanezyplaza.
comSociedadEspaoladeInvestigaciónseaydelMetabolismoMineral(SEIOMM)PresidentJosepBlanchRubióVicepresidentMJesúsMorolvarezSecretariatEnriqueCasadoBurgosTreasureJoséRamónCaeiroReyMembersGuillermoMartínezDíaz-GuerraMercedesGinerGarcíaElectPresidentManuelNavesDíazVelázquez,94(1planta)28006Madrid(Spain)Telf:+34-625680737Fax:+34-917817020e-mail:seiomm@seiomm.
orghttp://www.
seiomm.
orgEditingAvda.
ReinaVictoria,47(6D)28003Madrid(Spain)Telf.
+34-915538297e-mail:correo@ibanezyplaza.
comhttp://www.
ibanezyplaza.
comGraphicdesignConchaGarcíaGarcíaEnglishtranslationDavidSheaISSN:2173-2345CopyrightSEIOMMAllrightsreserved.
ThecontentsoftheJournalmaynotbereproducedortransmittedbyanyprocesswithoutthewrittenauthorisationoftheholderoftherightstoexploitthesaidcontents.
DirectorManuelSosaHenríquezEditorMJesúsGómezdeTejadaRomeroPilarAguadoAcínMaríaJoséAmérigoGarcíaMiguelAriasPacienciaEmiliaAznarVillacampaChesúsBeltránAuderaPereBenitoRuizSantiagoBenitoUrbinaMiguelBernardPinedaJosepBlanchiRubióJoséAntonioBlázquezCabreraJoséRamónCaeiroReyJavierCalvoCataláMJesúsCanceloHidalgoJorgeCannataAndíaAntonioCanoSánchezCristinaCarbonellAbellaJordiCarbonellAbellóPedroCarpinteroBenítezEnriqueCasadoBurgosSantosCastaedaSanzJesúsDelgadoCalleBernardinoDíazLópezCasimiraDomínguezCabreraFernandoEscobarJiménezJoséFilgueiraRubioJordiFiterAresteJuanJoséGarcíaBorrásJuanAlbertoGarcíaVadilloEduardoGironaQuesadaCarlosGómezAlonsoMilagrosGonzálezBéjarJesúsGonzálezMacíasEmilioGonzálezReimersJenaroGraaGilSilvanadiGregorioDanielGrinbergVaismanNuriaGuaabensGayRobertoGüerriFernándezFedericoHawkinsCarranzaDiegoHernándezHernándezJoséLuisHernándezHernándezGabrielHerrero-BeaumontCuencaEstebanJódarGimenoPauLluchMezquidaMLuisaMariosoBarbaGuillermoMartínezDíaz-GuerraMaríaElenaMartínezRodríguezLeonardoMellivobskySaldierManuelMesaRamosAnaMonegalBrancosJosefaMontoyaGarcíaMaríaJesúsMorolvarezManuelMuozTorresLauraNavarroCasadoManuelNavesGarcíaJoséLuisNeyroBilbaoXavierNoguésSolánJoanMiquelNollaSoléJoséAntonioOlmosMartínezNorbertoOrtegoCentenoSantiagoPalaciosGil-AntuanoEstebanPérezAlonsoRamónPérezCanoJoséLuisPérezCastrillónPilarPerisBernalConcepcióndelaPiedraGordoJoséManuelQuesadaGómezEnriqueRayalvarezRebecaReyesGarcíaJoséAntonioRianchoMoralLuisdeRíoBarqueroLuisRodríguezArboleyaAranchaRodríguezdeGortázarAlonso-VillalobosMinervaRodríguezGarcíaAntoniaRodríguezHernándezManuelRodríguezPérezInmaculadaRosVillamajóRafaelSánchezBorregoOscarTorregrosaSuauAntonioTorrijosEslavaCarmenValdésyLlorcaCarmenValeroDíazdeLamadridAnaWeruagaReyMETHODOLOGYANDDESIGNOFDATAPedroSaavedraSantanaJoséMaríaLimianaCaalCommitteeofexpertsEditorialCommitteeTeresitaBellido.
PhDDepartmentofMedicine,DivisionofEndocrinology.
IndianaUniversitySchoolofMedicine.
Indianapolis,Indiana.
EstadosUnidosErnestoCanalis.
MD,PhDDirector,CenterforSkeletalResearch.
ProfessorofOrthopedicSurgeryandMedicineNewEnglandMusculoskeletalInstituteUniversityofConnecticutHealthCenter.
Farmington,CT.
EstadosUnidosDr.
OswaldoDanielMessinaFacultaddeMedicina.
UniversidaddeBuenosAires.
HospitalCosmeArgerich.
BuenosAires.
ArgentinaPatriciaClarkPeralta.
MD,PhDFacultaddeMedicina,UNAM.
UnidadClínicaEpidemiológica.
HospitalInfantilFedericoGómez.
MéxicoDF.
MéxicoDr.
CarlosMautalenProfesorConsultorTitulardelaFacultaddeMedicina.
UniversidaddeBuenosAires.
Directorde"Mautalen,SaludeInvestigación".
BuenosAires.
Argentina.
LilianIPlotkin.
PhDAnatomyandCellBiology.
IndianaUniversitySchoolofMedicine.
Indianapolis,Indiana.
EstadosUnidosDr.
ManuelDíazCurielUniversidadAutónomadeMadrid.
UnidaddeMetabolismoseo.
HospitalFundaciónJiménezDíaz.
InstitutodeInvestigaciónFJD.
FundaciónHispanadeOsteoporosisyMetabolismoMineral(FHO-EMO).
Madrid.
EspaaDr.
AdolfoDíezPérezUniversidaddeBarcelona.
ServiciodeMedicinaInterna.
InstitutoMunicipaldeInvestigaciónMédica.
(IMIM).
HospitaldelMar.
Barcelona.
EspaaDr.
JosepBlanchRubióServiciodeReumatología.
HospitaldelMar,Barcelona.
InstitutoMunicipaldeInvestigacionesMédicasdeBarcelona.
ParquedeInvestigaciónBiomédicadeBarcelona.
EspaaDr.
ManuelSosaHenríquez(Director)UniversidaddeLasPalmasdeGranCanaria.
GrupodeInvestigaciónenOsteoporosisyMetabolismoMineral.
HospitalUniversitarioInsular.
ServiciodeMedicinaInterna.
UnidadMetabólicasea.
LasPalmasdeGranCanaria.
EspaaDra.
MaríaJesúsGómezdeTejadaRomero(Editor)UniversidaddeSevilla.
DepartamentodeMedicina.
Sevilla.
Espaa100COMMITTEESS/RevOsteoporosMetabMiner.
2016;8(4):100ReviewersVolume8(2016)TheBoardandtheDirectorateSEIOMMMagazinethanksyouforyourinvaluableassistance.
MJoséAmérigoGarcíaJosepBlanchiRubióJoséRamónCaeiroReyJavierCalvoCataláAntonioCanoSánchezCristinaCarbonellAbellaEnriqueCasadoBurgosBernardinoDíazLópezAdolfoDíezPérezJesúsDelgadoCalleCasimiraDomínguezCabreraJoséFilgueiraRubioJordiFiterAresteCarlosGómezAlonsoMJesúsGómezdeTejadaRomeroJesúsGonzálezMacíasEmilioGonzálezReimersDanielGrinbergVaismanNuriaGuaabensGayDiegoHernándezHernándezJoséLuisHernándezHernándezGabrielHerrero-BeaumontCuencaJorgeMaloufSierraMElenaMartínezRodríguezMJoséMontoyaGarcíaLauraNavarroCasadoXavierNoguésiSolánSantiagoPalaciosGil-AntuanoJoséLuisPérezCastrillónConchadelaPiedraGordoLilianPlotkinJoséManuelQuesadaGómezLuisdelRíoBarqueroMinervaRodríguezGarcíaManuelSosaHenríquezCarmenValdésyLlorcaCarmenValeroDíazdelaMadrid101EDITORIAL/RevOsteoporosMetabMiner.
2016;8(4):101-104OlmosJM*,HernándezJLDepartamentodeMedicinaInterna-HospitalUniversitarioMarquésdeValdecilla-IDIVAL-UniversidaddeCantabria-Santander(Spain)Chronicrenalfailure,vascularcalcificationandtheRNK/RANKL/OPGsystemardiovascularcomplicationsareamongthemostimportantclinicalchallengesinpatientswithchronickidneyfailure(CKF).
Thesearefrequentprocessesthatpresenthighmorbidityandmorta-lity.
Asanexample,around50%ofpatientswithterminalCRFdiefromthisdisease1.
Renalpatientspresenttwotypesofvascularcalcifi-cations:calcificationofthetunicamedia,alsocalledMnckebergsclerosis,inwhichthemineralisdepositedwithinthelayerofsmoothmuscle.
Thesecondtypeiscalcificationoftheintima,inwhichthecalciumdepositoccursaftertheaccumulationofcholesterolunderthedamagedendothelialmonolayer2.
Calcificationofthetunicamedia,wherevascularsmoothmusclecells(VSMC)andelasticfibersarefound,isnotrelatedtocholesterollevelsortheexistenceofatheromatousplaquesandcausesthehardeninganddecreaseinthearte-ries'distensibility.
AtheroscleroticcalcificationoftheintimamayalsooccurinpatientswithCRF.
Inthesecases,intimalcalcificationisassociatedwiththesubintimaldepositoflipidsandlipoproteins,whichmaystimulatethedevelopmentofimmuneresponses,bothinnateandadaptive,inducingendothelialcellsandtheVSMCtoexpressinflam-matorymolecules,whichstimulatetumor-infiltra-tingmonocyte/macrophage.
Asaresult,increasedinflammation,oxidizedlipidsandfibrousmatrixsecretioninatheroscleroticlesionsfurtheracceleratevascularcalcification,whicheventuallyleadstoatheroscleroticplaquerupture1-3.
InpatientswithCKF,bothatheroscleroticintimalcalcificationandtunicamediacalcification,independentofatherosclerosis,areassociatedwithanincreaseincardiovascularmortalitycomparedtopatientswithCKFwhodonotpresentit4.
Initiallythiswasconsideredasecondarydisordertothepassivedepositofcalciumandphosphorusinthevascularwall.
However,morerecentlyvas-cularcalcificationhasbeenfoundtobeaperfectlyregulatedprocessbywhichVSMCundergomole-cularandphenotypicchanges.
Withthesealtera-tionstheyacquiresomeofthefunctionsthatcha-racterizeosteo-chondrocitarystraincells1,2,andleadtothereleasebyvesicularVSMCstructurescontaininghydroxyapatite5.
Inthisprocessof"osteo-chondrocytetransdifferentiation"differentfactorsinvolvedinthedifferentiationofbonecells,suchasRunx2,bonemorphogenicproteins(BMPs),RANK/RANKL/OPGsystemorWntpath-waywouldintervene.
Furthermore,inpatientswithCKFandinanimalmodelsofthisdisease,increasedvascularcalcificationisaccompaniedbyareductioninbonemass,suggestingthatthesig-nalsinvolvedinboneandvascularwallminerali-zationmaybehavedifferentlydependingonthetissuemicroenvironmentinwhichtheyact6,7.
CKFischaracterizedbychangesinbonemetabo-lismthat,inadditiontobeingdetrimentaltotheskeleton-renalosteodystrophy-favorcalcificationofsofttissuesandvessels.
Hypercalcemiaandhyperphosphatemia,hyperparathyroidism,increa-sedfibroblastgrowthfactor23(FGF23),increasedoxidativestressanddecreasedinhibitorsofcalci-ficationsuchasfetuin-Aandpyrophosphatescouldallplayaroleinthevascularcalcificationprocess1,2,6,7.
Hyperphosphatemia,aswellashypercalcemia,aretwoofthemainfactorsassociatedwiththedeve-lopmentofvascularcalcificationinCRF8.
Thedietwithhighphosphoruscontentincreasesvascularcalcificationandreducesbonemassinratswithchronicrenalfailure.
Ontheotherhand,treat-mentswithhighcalciumand/orphosphatecontentinducethecalcificationofVSMCinexperimentalanimals.
Althoughthemechanismsinvolvedinthisprocesshavenotyetbeenaccuratelyfound,hyperphosphatemiahasbeenshowntoinducevascularcalcification,favoringosteogenicexpres-sionsuchasRunx2orBMP29,10.
Someauthorshaveshownthat,unlikenormalvessels,thearteriesofCKDpatientsexpressRunx21,2,9,10.
Ontheotherhand,theuremicserumincreasestheexpressionofRunx2andthecalcificationoftheVSMC.
Inaddition,hyperphosphatemiaactivatestheWntpathway,favoringβ-catenintranslocationinthesmoothmusclecellnucleus,therebystimulatingtheexpressionofdirecttargetgenessuchascyclinD1,axin2andVCAN/versican10.
Finally,hyper-phosphatemiaalsoincreasesthelevelsofFGF23,which,togetherwithitsco-receptorklotho,mayplayapathogenicroleinarterialcalcificationandinthealterationofskeletalmineralization11.
TheroleofPTHisalsocomplex.
Inhemodialysispatients,increasedPTHisassociatedwithvascu-larcalcificationand,inratswithrenalfailure,bothaorticcalcificationandlossofbonemassareasso-*e-mail:miromj@humv.
esCDOI:http://dx.
doi.
org/10.
4321/S1889-836X2016000400001102EDITORIAL/RevOsteoporosMetabMiner.
2016;8(4):101-104ciatedwithincreasedphosphorusandPTH12.
However,inotherstudiesithasbeenpointedoutthatPTHisnotabletodirectlyinducevascularcalcification,butwouldhaveasynergisticeffectwithphosphate,whichwouldberelatedtoincre-asedosteoclasticactivityandboneremodelingthatthishormonedetermines.
Thisincreaseinboneremodelingfavorscalciumandphosphoruslossfromthebone,thusstimulatingvascularcal-cification.
Itisoneofthedeterminantsofthemostfrequentformsofrenalosteodystrophy,osteo-pathywithhighremodelingorsecondaryhyper-parathyroidism.
Atothertimes,aswithadynamicbone,thelowboneremodelingdeterminesanalterationinboneformationandmineralization,withtheconsequentreduceduseofexcesscal-ciumandphosphorus,whichalsofavorsvascularcalcification13,14.
TheincreaseinoxidativestressobservedinpatientswithCRFwouldalsobecloselyassocia-tedwiththedevelopmentofvascularcalcification.
Aswithhyperphosphatemia,thiseffectwouldbemediatedthroughtheexpressionofRunx2intheVSMC15.
Inaddition,arecentstudycarriedoutinpostmenopausalwomenfoundthatincreasedoxi-dativestresswasassociatedwithanincreasedriskofhipfracture,suggestingthattherewouldbeaninverserelationshipbetweenoxidativestressandmineralmetabolism1,5.
Alongwithincreasedlevelsofcalciumandphos-phorus,thedecreaseinsomeoftheinhibitorsofcalcification,suchasfetuin-Aandpyrophosphate,whichcanbeobserved,cancontributetotheincre-aseofvascularcalcificationinthesepatients1,2,6.
InthisissueoftheJournalofOsteoporosisandMineralMetabolism,MartínezAriasetal.
16analy-zedtheeffectsoftheRANK/RANKL/OPGsystemonbonedemineralizationandvascularcalcifica-tioninCRF.
Theseauthorsuseinvivoandinvitromodelsofvascularcalcificationtoverifythatratswithchronicrenalfailureandadiethighinphos-phoruspresentdecreasedbonemineraldensity,togetherwithaorticcalcificationsthatareaccom-paniedbyanincreaseinRANKLgeneexpressionandadecreaseinOPG.
Inthetibiaoftheseani-malsbothRANKLandOPGexpressionincreased,althoughtheincreaseinOPGoccurredatearlierstages.
IntheVCAM,theadditionofuremicserumandcalcifyingmediuminducedanincreaseincal-ciumcontentandRANKLandOPGexpression,whiletheadditionofOPGandthesilencingofRANKinhibitedthisphenomenon.
Therefore,theseauthors'resultsconfirmtheRANK/RANKL/OPGaxisinvolvementinthevas-cularcalcificationprocessandprobablyalsointhelossofbonemassthataccompaniesCRF.
Thisopensthedoortonewresearchlinesinthisarea.
Astheauthors16comment,thereisagreatdealofscientificevidencelinkingtheRANK/RANKL/OPGsystemtovascularcalcifications1,2,7,16-20.
ThefirstderivativeoftheOPG-nullmousestudyconduc-tedafewyearsagobyBucayetal.
17,whodemonstratedthatOPG-deficientmiceexhibitedvascularcalcifications,aswellasanintensedecre-aseinbonemineraldensity(BMD)andoneHighincidenceoffractures.
Itwaslaterfoundthattre-atmentwithrecombinantOPGsignificantlyredu-cedvascularcalcificationinmicedeficientinLDLreceptors18.
Ontheotherhand,thestudiescarriedoutinpatientswithCKDindicatethatthelevelsofRANKLandOPGincreaseasdothoseofPTHandphosphate,andithasbeenpointedoutthattheincreaseofRunx2increasestheexpressionofRANKLinVCAM.
Inanimalmodels,increasedRANKLinducesalossofbonemassandvascularcalcification,whiletheadditionofOPGhastheoppositeeffect.
ThepathwaybywhichRAKLwouldpromotecalcificationwouldbethroughbindingtoitsRANKreceptor,withtheconsequentactivationoftheNF-kBalternativepathwayandthebonemorphogenicproteins2and4(BMP2andBMP4),favoringtheosteogenictransitionoftheVSMC1,2,19,20.
Ontheotherhand,RANKLcouldalsoactindirectlybystimulatingthereleaseofpro-cytokinesbymacrophages.
Finally,andasmightbeexpected,theWntpath-wayalsoappearstobeinvolvedinthisprocess.
Wehavealreadycommentedthathyperphospha-temiawouldactivatethispathwayintheVCAM10.
Ontheotherhand,theexpressionofsclerostinincreasesinarterieswithvascularcalcification.
LevelsofsclerostinandotherWntpathwayinhibi-tors,suchasDickkopf-1(DKK1)orsolublefrizz-ledreceptor(SFR),increaseasrenalfunctiondete-rioratesandcorrelateinverselywithhistologicalparametersofboneremodelingandwiththenum-berandfunctionofosteoblasts21,22.
IthasrecentlybeenpointedoutthattheincreaseofFGF23,whichaccompaniesrenalfunctiondeterioration,couldalsoacttoinhibitthissystem11.
Therefore,sclerostinandotherinhibitorsoftheWntsystem,releasedintothemediumfromthevessels,couldacttoimpairthebonestructureandretardthemineralizationprocess.
Thesealterations,alongwiththoseoftheRANK/RANKL/OPGsystem,hyperphosphatemiaandotherfactorsdiscussedhere,couldhelpmedicalresearcherstounders-tandthecomplexrelationshipbetweenvascularcalcificationandbonelossandincreasedfracturesinpatientsWithCRF(Figure1).
Bibliography1.
ByonCH,ChenY.
MolecularMechanismsofVascularCalcificationinChronicKidneyDisease:TheLinkbet-weenBoneandtheVasculature.
CurrOsteoporosRep.
2015;13:206-15.
2.
LuKC,WuCC,YenJF,LiuWC.
Vascularcalcificationandrenalbonedisorders.
ScientificWorldJournal.
2014;2014:637065.
3.
HarperE,FordeH,DavenportC,RochfortKD,SmithD,CumminsPM.
Vascularcalcificationintype-2diabe-tesandcardiovasculardisease:IntegrativerolesforOPG,RANKLandTRAIL.
VasculPharmacol.
2016;82:30-40.
4.
LondonGM,GuerinAP,MarchaisSJ,MetivierF,PannierB,AddaH.
Arterialmediacalcificationinend-stagerenaldisease:impactonall-causeandcardiovas-cularmortality.
NephrolDialTransplant.
2003;18(9):1731-40.
EDITORIAL/RevOsteoporosMetabMiner.
2016;8(4):101-1041035.
ReynoldsJL,JoannidesAJ,↑JN,McNairR,SchurgersLJ,ProudfootD,etal.
Humanvascularsmoothmusclecellsundergovesicle-mediatedcalcificationinrespon-setochangesinextracellularcalciumandphosphateconcentrations:apotentialmechanismforacceleratedvascularcalcificationinESRD.
JAmSocNephrol.
2004;15:2857-67.
6.
ZhengCM,ZhengJQ,WuCC,LuCL,ShyuJF,Yung-HoH,etal.
Bonelossinchronickidneydisease:Quantityorquality.
Bone.
2016;87:57-70.
7.
Cannata-AndiaJB,Roman-GarciaP,HruskaK.
Theconnectionsbetweenvascularcalcificationandbonehealth.
NephrolDialTransplant.
2011;26:3429-36.
8.
MathewS,TustisonKS,SugataniT,ChaudharyLR,RifasL,HruskaKA.
ThemechanismofphosphorusasacardiovascularriskfactorinCKD.
JAmSocNephrol.
2008;19:1092-105.
9.
MikhaylovaL,MalmquistJ,MurminskayaM.
RegulationofinvitrovascularcalcificationbyBMP4,VEGFandWnt3a.
CalcifTissueInt.
2007;81:372-81.
10.
Martínez-MorenoJM,Muoz-CastaedaJR,HerenciaC,OcaAM,EstepaJC,CanalejoR,etal.
Invascularsmo-othmusclecellsparicalcitolpreventsphosphate-indu-cedWnt/β-cateninactivation.
AmJPhysiolRenalPhysiol.
2012;303:F1136-44.
11.
Carrillo-LópezN,PanizoS,Alonso-MontesC,Román-GarcíaP,RodríguezI,Martínez-SalgadoC,etal.
DirectinhibitionofosteoblasticWntpathwaybyfibroblastgrowthfactor23contributestobonelossinchronickidneydisease.
KidneyInt.
2016;90:77-89.
12.
HuangJC,SakataT,PflegerLL,BencsikM,HalloranBP,BikleDD,etal.
PTHdifferentiallyregulatesexpressionofRANKLandOPG.
JBoneMinerRes.
2004;19:235-244.
13.
CoenG,BallantiC,MantellaDManniM,LippiB,PierantozziA,etal.
Boneturnover,osteopeniaandvascularcalcificationsinhemodialysispatients.
Ahis-tomorphometricandmultisliceCTstudy.
AmJNephrol.
2009;29:145-52.
14.
GraciolliFG,NevesKR,dosReisLM,GraciolliRG,NoronhaIL,MoysésRM,etal.
PhosphorusoverloadandPTHinduceaorticexpressionofRunx2inexperi-mentaluraemia.
NephrolDialTransplant.
2009;24:1416-21.
15.
ByonCH,JavedA,DaiQ,KappesJC,ClemensTL,Darley-UsmarVM,etal.
Oxidativestressinducesvas-cularcalcificationthroughmodulationoftheosteoge-nictranscriptionfactorRunx2byAKTsignaling.
JBiolChem.
2008;283:15319-27.
16.
Martínez-AriasL,SolacheBerrocalG,PanizoGarcíaS,CarrilloLópezN,AvelloLlanoN,QuirósCasoC,etal.
EfectodelsistemaRANK/RANKL/OPGsobreladesmi-neralizaciónóseaylacalcificaciónvascularenlaenfermedadrenalcrónica.
RevOsteoporosMetabMiner.
2016;8(4):105-114.
17.
BucayN,SarosiI,DunstanCR,MoronyS,TarpleyJ,CapparelliC,etal.
Osteoprotegerin-deficientmicedevelopearlyonsetosteoporosisandarterialcalcifica-tion.
GenesDev.
1998;12:1260-8.
18.
OritaY,YamamotoH,KohnoN,SugiharaM,HondaH,KawamataS,etal.
Roleofosteoprotegerininarterialcalcification:developmentofnewanimalmodel.
ArteriosclerThrombVascBiol.
2007;27:2058-64.
19.
PanizoS,CardusA,EncinasM,ParisiE,ValchevaP,López-OngilS,etal.
RANKLincreasesvascularsmoothmusclecellcalcificationthroughaRANK-BMP4-dependentpathway.
CircRes.
2009;104:1041-8.
20.
OsakoMK,NakagamiH,ShimamuraM,KoriyamaH,NakagamiF,ShimizuH,etal.
Cross-talkofreceptoractivatorofnuclearfactor-kappaBligandsignalingwithrenin-angiotensinsysteminvascularcalcification.
ArteriosclerTrhrombVascBiol.
2013;33:1287-96.
21.
CejkaD,HerberthJ,BranscumAJ,FardoDW,Monier-FaugereMC,DiarraD,etal.
SclerostinandDickkopf-1inrenalosteodystrophy.
ClinJAmSocNephrol.
2011;6:877-82.
22.
FerreiraJC,FerrariGO,NevesKR,CavallariRT,DominguezWV,DosReisLM,etal.
Effectsofdietaryphosphateonadynamicbonediseaseinratswithchronickidneydisease--roleofsclerostin.
PLoSOne.
2013;8(11):e79721.
OxidativestressPi/Ca;PRH/FGF23↑↑↑FetuinA/Pyrophosphates↑BONEFORMATIONVASCULARCALCIFICATIONBONERESORTIONRunx2↑RANKL↑↑PTH↑FGF23↑+Ca+PiMoVSMCsOCCSclerostinTransdifferentiationOsteo-chondrogenicWnt↑Figure1.
RegulationofvascularcalcificationinchronicrenaldiseasePi:phosphorus;Ca:calcium;Mo:monocyte-macrophage;VSMCs:vascularsmoothmusclecells;OCC:osteo-chondrocytecells.
ORIGINALS/RevOsteoporosMetabMiner.
2016;8(4):105-114105MartínezAriasL1,SolacheBerrocalG1,PanizoGarcíaS1,CarrilloLópezN1,AvelloLlanoN2,QuirósCasoC2,NavesDíazM1,CannataAndíaJB11ServiciodeMetabolismoseoyMineral-InstitutoReinaSofíadeInvestigaciónNefrológica-ReddeInvestigaciónRenal(REDinREN)delInstitutodeSaludCarlosIII-UniversidaddeOviedo-Oviedo(Espaa)2LaboratoriodeMedicina-HospitalUniversitarioCentraldeAsturias-Oviedo(Espaa)EffectofRANK/RANKL/OPGpathwayonbonedemineralizationandvascularcalcificationinchronickidneydiseaseCorrespondence:ManuelNavesDíaz-ServiciodeMetabolismoseoyMineral-HospitalUniversitarioCentraldeAsturias-EdificioFINBA,PlantaprimeraF1.
1(Aula14)-AvenidadeRoma,s/n-33011Oviedo(Spain)e-mail:manuel@hca.
esDateofreceipt:07/10/2016Dateofacceptance:18/10/2016WorkawardedascholarshipResearchAMGEN-SEIOMM2010.
SummaryIntroduction:Incasesofchronickidneydisease(CKD),boneandmineralmetabolismchangesoccurwhichfavorsofttissuecalcification.
AlterationsintheRANK/RANKL/OPGsystemcouldalsofavorvascu-larcalcification,amajorcauseofmorbidityandmortalityinCKD.
Objective:Inaninvivoexperimentalmodelofchronicrenalfailureprogression,weassesstheeffectofCKDonvascularcalcificationandbonelosscorrelatingthesechangesintheRANK/RANKL/OPGpath-way.
Aninvitrosystemwasusedtoconfirmfindings.
MaterialandMethods:Twomodelsofvascularcalcificationwereused:aninvivoratmodelwithchronicrenalfailurefedonadietwithdifferentphosphoruscontent,andaninvitromodelinvascularsmoothmusclecells(VSMC)subjectedtodifferentcalcifyingstimuli.
Results:At20weeks,50%ofanimalswithadiethighinphosphoruspresentedaorticcalcificationaccom-paniedbyincreasedaorticexpressionofRANKL.
Incontrast,OPGdecreasedprobablyasaconsequen-ceofaninflammatorycomponent.
At20weeks,expressionofRANKLandOPGinthetibiaincreased,whiletheincreaseinOPGoccurredatearlierstages.
InVSMC,theadditionofuremicserumandcalcificationmediumincreasedcalciumcontentandexpres-sionofRANKLandOPG.
TheadditionofOPGandsilencingofRANKinhibitedthisincrease.
Conclusions:OurresultsconfirmRANK/RANKL/OPGsysteminvolvementinthevascularcalcificationprocess.
Keywords:RANK,RANKL,OPG,chronickidneydisease,vascularcalcification.
DOI:http://dx.
doi.
org/10.
4321/S1889-836X2016000400002ORIGINALS/RevOsteoporosMetabMiner.
2016;8(4):105-114106IntroductionVascularcalcificationisaprocessinwhichvascu-larsmoothmusclecells(VSMC)andotherpopula-tionsofbloodvesselcellsundergoatransforma-tionandbegintoresembleosteoblasts1.
Thispro-cessisregulatedinamannersimilartobonemineralization,withseveralboneproteinsbeingimplicated2-4.
Osteoblastsarecellsresponsiblefortheformationofbonethatalsoregulatetheacti-vityofosteoclastsandthereforeplayanimportantroleinthehomeostasisofcalcium(Ca)andphos-phorus(P)5.
OsteoblastssecretetheNF-κBactiva-torreceptorligand(RANKL)thatbindstoitsreceptor(RANK)inosteoclastprecursorspromo-tingformation,activationandsurvival6-7.
Inaddi-tion,osteoblastssecreteosteoprotegerin(OPG),whichactsasasolublereceptorlureofRANKLandinhibitsthebindingofthisligandtoitstrans-membranereceptorRANK.
ThereisconsiderablescientificevidencelinkingtheRANK/RANKL/OPGsystemtovascularcalcifications,whichmaybeanimportantautocrine/paracrinesysteminvolvedintheprocess.
ThepathwaybywhichRANKLpro-motescalcificationthroughbindingtoitsRANKreceptorwiththeconsequentactivationoftheNF-κBalternativepathwayandbonemorphogeneticprotein4(BMP4)8hasbeenimplicatedintheoste-ogenictransitionofVSMCs9,10.
Chronickidneydisease(CKD)ischaracterizedbychangesinboneandmineralmetabolismthatfavorthecalcificationofsofttissuesandvessels.
AlterationsinthegeneexpressionoftheRANK/RANKL/OPGsystemcouldbefavoringvas-cularcalcification,oneofthemaincausesofmor-talityinCKD.
Itisinterestingtoinvestigatethedif-ferencesintheregulationoftheRANK/RANKL/OPGsysteminboneandvesselinordertodesignstrategiesaimedatprotectingthebonewithouthavingnegativeeffectsonvascularcalcification.
Therefore,thisstudyaims:a)toevaluateinaratmodeltheeffectofCKDanddietswithdiffe-rentPcontentonvascularcalcificationquantifiedbyCacontentanalysisandbonemineraldensity(BMD),quantifiedbybonedensitometry;B)tocorrelatethesechangeswithalterationsintheRANK/RANKL/OPGsystemgeneexpressioninarteriesandbonesoftheseanimals;Andc)touseaninvitrosystemtoconfirmthefindingsfoundinvivo.
MaterialsandmethodsInvivostudies:VascularcalcificationmodelTheprotocolwasapprovedbytheUniversityofOviedo'sEthicalCommitteeofAnimalExperimentation.
ThestudywasperformedwithmaleWistarrats(n=55)at4monthsofage(350-400g).
Surgicalintervention,followinginhalationofisofluraneanesthesia,involvedinducingchronicrenalfailure(CRF)(7/8)inasinglesurgicalprocedure.
Completenephrectomyoftherightkidneyandthensubtotalnephrectomyoftheleftkidneywerecarriedoutbylateralincision.
Thisprocedurepre-servesapproximatelyonefourthoftherenalmass.
TheratswithCRFweredividedintotwogroups:one,CRFC,fedastandardrodentdietwithnor-malPcontent(0.
6%P,0.
6%Ca,and20%proteincontent,Panlab,Barcelona,Spain),andtheother,CRFP,fedadietwithhighPcontent(0.
9%P,0.
6%Ca,and20%proteincontent,Panlab).
Thestudylasted20weeks(CRF20CandCRC20P),timerequiredtoinducevascularcalcifications.
WealsoincludedaShamgroup(n=10)thatwasfolloweduptoweek20.
Intermediateevaluationswerealsoperformedthroughoutthestudy,withsacrificesat8and12weeks(CRF8C,CRI12C,CRI8PandCRI12P).
Twenty-fourhoursbeforeslaughter,theratswerehousedinmetaboliccagesandreceiveddietandwateradlibitum.
TheyweresacrificedusingCO2anesthesia,andserumsamplesweretakenforanalysis.
Fromeachrattheabdominalaortawasremoveddowntothebifurcationoftheiliaccrestsanddividedintothreeportions:thefirstfragmentwasusedfortheextractionofRNA,thesecondfragmenttodeterminetheCacontent,andthethirdfragmentwasstoredinparaffinforfutu-restudies.
Atthetimeofsacrificethetwotibiawereremoved.
Theleftwaspreservedinalcoholtomeasurebonemineraldensity(BMD).
Theremai-ningtibiawasfrozenat-80°Cuntilprocessedforthestudyofgeneexpression.
BiochemicalmarkersSerumurea,creatinine,CaandPweremeasuredusingaHitachi717multi-channelautomaticanaly-zer(BoehringerMannheim,Berlin,Germany).
Parathyroidhormone(PTH)wasmeasuredbyELISA(Immutopics,SanJuanCapristano,USA)followingthemanufacturer'sprotocol.
BonedensitometryBMDwasmeasuredintibiaatthreelevels:proxi-maloctave,seven/eighthdistalandtotaltibia,withaHologicQDR-1000dual-energydigitalradiologicaldensitometer(Hologic,Bedford,USA)equippedwithaspecificprogramforsmallani-mals.
AnalysisofaorticcalcificationCalcificationoftherats'abdominalaortawasanalyzedbytwomethods:totalCacontentandvonKossastaining.
TodeterminetotalCacontent,afragmentoftheabdominalaorta(thecmproximaltotheiliacbifurcation)washomogenizedwithanUltraturrax(OmniHT)in0.
6NHCl.
Aftershakingat4°Cfor24hoursthesampleswerecentrifuged.
TheCacontentwasdeterminedinthesupernatantbytheo-cresolphthaleincomplexonemethod(Sigma-Aldrich,St.
Louis,USA),andthepelletwasresus-pendedinlysisbuffer(125mMTrisand2%SDS,PH6.
8)forproteinextractionandquantificationbythemethodofLowry(Bio-Rad,Hercules,USA).
TheCacontentwasnormalizedbyexpressingasgCapermgprotein.
ORIGINALS/RevOsteoporosMetabMiner.
2016;8(4):105-114107TocarryoutvonKossastaining,anotherfrag-mentoftheabdominalaortawasincludedinmethylmethacrylate(Sigma-Aldrich).
Five5mmthicksectionswereobtainedusingaPolycutSMicrotome(Reicher-Jung,Heildelberg,Germany)andstainedfollowingthevonKossamethod.
GeneexpressionstudyRNAextractionwascarriedoutbytheguanidi-nium-phenol-chloroformthiocyanatemethod.
DNAcopy(cDNA)wassynthesizedusingthehighcapacitykit(AppliedBiosystems,FosterCity,USA).
TheRANK,RANKLandOPGgeneexpres-sionwasanalyzedbyreal-timePCR(qPCR)onAppliedBiosystemsABIPrism7000equipment.
Assayon-demandassaysdesignedbyAppliedBiosystemsemployingspecificoligosandfluores-centTaqmanprobeswereusedforeachofthePCRs.
GAPDHwasusedtoquantifyandnormali-zetheexpressionoftheconstitutivegene.
Invitrostudies:Primarycultureofvascularsmoothmusclecells(VSCM)VSCMfromprimarycultureofaortaexplantsfromhealthyWistarratsat2monthsofagewasused,sacrificing12ratsandusingCO2anesthesia.
AbdominalaortaswereremovedandintroducedintocoldPBSwith100units/mLpenicillinand100mg/mLstreptomycin(BiochromAG,Berlin,Germany).
AfterwashingabundantlywithcoldPBS,theaortaswerecutlongitudinally;Theendo-theliallayerwascarefullyremovedandsubse-quentlycutintofragments(explants)of2to3mm2.
Theexplantswereplatedinsix-wellcultureplates(Sigma-Aldrich)pretreatedwithfibronectin(10mg/cm2;Sigma-Aldrich).
Oncetheexplantswereplaced,1mLofDMEM(Dulbecco'sModifiedEagleMedium,BiochromAG)supplementedwith20%fetalbovineserum(FBS)(BiochromAG)wasadded.
Themediumwasrenewedevery2days.
Whenthecellsreachedsubconfluency,thetissuefragmentswereremovedandthecellswereenzy-maticallyseparated(0.
25%trypsinand1mMEDTA).
Cellswereseededatadensityof105cellsperculturedish(Sigma-Aldrich)withDMEMsupple-mentedwithFBS(10%).
CellsobtainedbythismethodwereidentifiedasVSCMbythefollowingcriteria:(1)cellsgrowinthecharacteristicvalleyandcholinepattern;And(2)immunostainingwaspositiveforalpha-actin(mAbfromSigma-Aldrich).
Cellsbetweenpassages2and8wereused,usingthreewellsperconditionandtheexperi-mentswereperformedintriplicate.
InductionofcalcificationinVSCMInordertoanalyzetheuremia-inducedcalcifica-tionandtoknowtheimplicationoftheRANK/RANKL/OPGsystem,twodifferentcondi-tionswereused.
Forthefirstcondition,theVSCMculturesweretreatedwithDMEMsupplementedwith15%ure-micratserum(asetof8-weekCRFratseracon-taining10.
8mg/dLCa,6.
7mg/DLP,and898pg/mLPTH).
AsacontrolconditionDMEMwasusedwith15%serumfromhealthyrats(apoolofseracontaining10.
4mg/dLCa,3.
6mg/dLPand25pg/mLPTH).
Inasecondcondition,toconfirmtheeffectofP,theVSCMswereculturedwithcalcifyingmedium:DMEMF12+0.
1%bovineserumalbumin(BSA)with2mMCaand3mMP).
DMEMcontrolF12+0.
1%BSAwasusedascondition.
Inbothcases,Cadepositionwasdetermined4and8daysafteradditionofthestimuli.
TheeffectofOPG(100pM),silencingoftheRANKreceptor(increasingconcentrationsbetwe-en100pMand100nM)wastestedinVSCMinwhichcalcificationwasinducedwithDMEMF12+0.
1%BSAwith2mMCaand3MMofP.
GeneexpressionstudyWeproceededinthesamemannerasdetailedinthesectiononinvivostudies.
Lentiviralproductionandinfection/RANKsilencingbyshRNATheRANKgenewassilencedintheVSCMbysmallforksofRNA(shRNA),whichwereclonedintoalentivirus-basedvector(FSVsi).
InitwereintroducedshRNAswhosetargetwasTTAGCT-GAGGATGCTGAGGATandscramblesequences.
Allofthemwereco-transfectedwiththevirionpackagingelements(VDV-G)ina293Tcellcultu-reusingpolyethyleneimine.
Infectiousparticleswereproducedbyculturingthecells3-4daysinmediumforVSCM.
Themediumwasthencentri-fugedat1,000gfor5minandthesupernatantwasaddedtoaVSCMculture,beingreplacedbytheconventionalmediumafterovernightincubation.
Finally,theVSCMswerecollectedafter4daysandthesilencingofRANKwithqPCRandWesternBlotwaschecked.
WesternBlotAftertransfer,themembraneswereincubatedfor12hourswithanti-RANKantibodies(1:1,000,CellsSignalingTechnology,Danvers,USA),andanti-tubulin(01:10,000,Sigma-Aldrich).
BindingofthesecondaryantibodywasdetectedwiththeWesternBlotdetectionkitECLAdvance(AmershamBioscience,Buckinghamshire,UK)andtheVersaDoc4000(Bio-Rad)imagingsystemsystem.
StatisticalanalysisForthestatisticalanalysisoftheresults,theSPSS17.
0programwasused.
Inthecaseofvariableswithnormaldistribution,thecomparisonofthetreatmentgroupswasperformedusingANOVAwiththeBonferronitest.
Inthecaseofvariableswithnon-normaldistribution,theKruskal-Wallistestwasused.
Results1.
BiochemistryInthegroupsthatreceivedthedietwithahighPORIGINALS/RevOsteoporosMetabMiner.
2016;8(4):105-114108content(CRF8P,CRF12P,CRF20P),aslightdete-riorationofrenalfunctionwasobservedwithres-pecttotheircontrols(CRF8C,CRF12C,CRF20C).
Aggravatedat20weeks(Table1).
InthehighPdietgroup,serumCasignificantlydecreasedonlyatweek20(CRP20P),whileserumPincreasedinallgroupswithahighPdiet,particularlyat20weeksoftreatment.
ParalleltoP,PTHincreasedastreatmenttimeincreased,beingstatisticallysignifi-cantfromweek12andparticularlyatweek20,whereseveresecondaryhyperparathyroidismwasobserved(Table1).
2.
DensitometricstudyAlthoughtherewasaslightdecreaseintheBMDofthegroupsofanimalswithhighdietinPregar-dingtheircontrolsinallthestudiedsectors,thiswasonlysignificantat20weeks(Table2).
Losseswerepredominantatthedistallevel,wherethereisahighercontentofcorticalbone,onlossesattheproximallevel(Table2).
3.
InvivoeffectofuremiaandPoverloadonvascularcalcification,boneactivityandRANK/RANKL-OPGsystemAlthoughtheCacontentoftheaortasofanimalsfedanormalP-contentdietwasslightlyaffectedbyuremia,administrationofadietwithhighPcontentincreasedCasignificantlyinatime-dependentmannerwithrespecttotheShamgroup.
AnimalsreceivingthehighPdietincrea-sedtheaorticcontentofCawithrespecttotheirrespectivecontrolsfromweek12,withthiseffectbeingmagnifiedatweek20.
Despitethegenera-lizedincreaseinaorticCacontent,vonKossarevealedvisiblecalcificationsintheaortainonly50%oftheanimalswithdietwithhighcontentinP(Figure1).
ParalleltotheincreaseinCacontenttherewasanelevationofRANKLexpressionintheaorta(Figure2A).
RANKexpressiondidnotshowanydifferencesalongthecourseofCRI(Figure2B),whereasOPGdecreasedinalluremicgroups,par-ticularlythosereceivingahighPdiet(Figure2C).
Inthetibia,anincreaseinRANKLandOPGexpressionwasobservedatweek20ofthehighPdietgroup(Figures3A,3C).
OPGexpressionalsoincreasedinallgroupsreceivinghighPdiet,notingtheincreaseobservedatweek20.
Incon-trast,RANKexpressionremainedsimilarinallgroups.
4.
InvitroeffectofuremiaandPoverloadonvascularcalcificationandtheRANK-RANKL-OPGsystemUremicseruminducedasignificantincreaseinCacontentat4and8days(Figure4A).
TherewasasignificantincreaseintheexpressionofRANKL(at4and8days)andOPG(at8daysoftreatment)(Figures4B,4Cand4D).
Calcifyingmedium-treatedVMCV(DMEMF12,2mMCa,3mMP)showedasignificantincreaseintime-dependentCacontent(Figure5A).
InparallelincreasedRANKLandOPGexpression(Figures5B,5Cand5D).
5.
InvitroeffectoftheadditionofOPGoncal-cificationinducedbyuremicserumToconfirmtheideathatincreasedRANKLexpres-sionisresponsiblefortheCacontentincreaseinVSCMtreatedwithuremicserum,100pMOPGaddedtotheculturemedium,whichledtoasig-nificantdecreaseofOPG(Figure6).
6.
InvitroeffectofRANKsilencingoncalcifi-cationinducedbyuremicserumSimilarly,silencingoftheRANKreceptorbytheshRNAtechniquesignificantlyreducedtheCacon-tentoftheVSCMtreatedwithuremicserum(Figure7).
DiscussionCKD,adiseasecharacterizedbyaprogressivelossofrenalfunction,leadstotheappearanceofmul-Table1.
GeneralbiochemistryinthedifferenttreatmentgroupsSHAM(n=10)CRF8C(n=9)CRF8P(n=9)CRF12C(n=7)CRF12P(n=10)CRF20C(n=10)CRF20P(n=10)Urea(mg/dL)34±9108±27137±45119±29143±51100±70200±70Creatinine(mg/dL)0.
4±0.
11.
0±0.
31.
4±0,51.
3±0.
41.
3±0.
61.
5±1.
32.
2±0.
8*Calcium(mg/dL)11.
4±0.
611.
8±0.
911.
4±0.
812.
4±0.
611.
4±2.
012.
5±0.
611.
1±0.
4*Phosphorus(mg/dL)4.
8±1.
05.
7±1.
110.
0±3.
7*6.
0±1.
99.
4±3.
4*5.
6±0.
812.
1±2.
8*PTH(pg/mL)22(4-74)28(19-55)139(59-933)62(27-121)236(128-1,113)*80(54-115)1.
901(1,117-2,517)*CRF8C,CRF12C,CRF20C:groupsofratsfeddietswithnormalphosphoruscontentsacrificedat8,12and20weeks,respectively;CRF8P,CRF12P,CRF20P:groupsofratsfedahighphosphorusdietsacrificedat8,12and20weeks,respectively;*P2GpolymorphismwithaorticvalvecalcificationCorrespondence:MIsabelRodríguezGarcía-ServiciodeMetabolismoseoyMineral-HospitalUniversitarioCentraldeAsturias-EdificioFINBA-Avda.
deRoma,s/n-33011Oviedo(Spain)e-mail:irodriguez@hca.
esDateofreceipt:29/01/2016Dateofacceptance:06/06/2016WorkawardedascholarshipBasicResearchFEIOMM2013.
SummaryIntroduction:Themostcommoncauseofaorticstenosisisactivecalciumaccumulationinthevalvecusps,whichimpliesseriousclinicalconsequences.
Variousextracellularmatrixmetalloproteases(MMPs)havebeenimplicatedinthedevelopmentofthisdisease.
Therefore,thepossibleassociationbetweenafunctionalMMP1polymorphismandtheamountofcalciumdepositedontheaorticvalveisstudied.
Patientsandmethods:45patientsundergoingvalvereplacementwereincludedinthestudy.
Thecalciumcontentinvalvecuspsremovedduringsurgerywasdeterminedbycomputedmicro-tomography.
DNAwasextractedfromperipheralbloodsamplesforgenotypingthe-16071G>2GpolymorphismofMMP1byPCRandsubsequentdigestion.
Results:Significantdifferenceswereobservedinthecalciumcontentinaorticvalvesinindividualswithdifferent-16071G>2Ggenotypes(p=0.
042).
Thus,2Gallelecarriers(homozygousorheterozygous)pre-senthighercalciumlevelsmeasuredasBMD(p=0.
004)aswellasBV/TV(p=0.
002).
TheassociationwithBV/TVwasindependentofsex,age,degreeofrenalfunctionandanatomyofthevalve(p=0.
02).
BMDtendency(p=0.
07)wasalsoobserved.
Conclusion:Theassociationbetween1G>2GMMP1polymorphismandcalciumcontentoftheaorticvalvesuggeststhatthe1Gallelewouldhaveaprotectiveeffectagainstcalciumdeposits.
Theseresultssupporttheimportanceoffurtherstudytoconfirmwhetherthispolymorphismcouldbeusedasapos-siblepredictorofaorticstenosisdevelopment.
Keywords:aorticvalvedisease,matrixmetalloproteinasepolymorphisms,microCT,calciumcontent.
DOI:http://dx.
doi.
org/10.
4321/S1889-836X2016000400003ORIGINALS/RevOsteoporosMetabMiner.
2016;8(4):115-120116IntroductionAorticstenosisdegenerationisthemostcommonvalvediseaseintheindustrializedcountries1.
Initiallyconsideredapassiveprocess,itisnowdescribedasanactivecalciumbuildupinthevalvecusps,accompaniedbychangesinthemor-phologyandfunctionofvalvularcells,characteri-zedbynotableosteoblastdifferentiationthatincreasesvalvestiffness.
Thisleadstoareductionintheorificeopeningofthevalveandanincrea-seinbloodpressuregradient,withseriousclinicalconsequences2.
Thereisabundantevidencethatimplicatesextracellularmatrixmetalloproteinases(MMPs)inthisprocess3.
MMPsarealargefamilyofzinc-dependentenzymesthatexerttheirfunctioninbothpathologicandphysiologicalconditions4.
Traditionallytheyhavebeengroupedaccordingtotheirabilitytodegradevariouscomponentsoftheextracellularmatrix,butalsoexertfunctionsinotherlocations.
Infact,recentlyresearchershavesuggestedthattheyalsoactonnon-matrixpro-teinsandhighlighttheirroleininflammatorypro-cesses5,6.
Ithasalsobeenfoundthatthereisincre-asedexpressionofMMP-1,-2and-3incalcifiedaorticvalvesthaninnormalaorticvalves,andtheexclusivepresenceofMMP-9indiseasedvalves7.
TheassociationofMMPswithvalvediseasehasalsobeenstudiedfromthegeneticpointofview.
Thus,theMMP11G>2Gpolymorphismgeneat-1607isreportedlyassociatedwiththepresen-ceofbicuspidaorticvalveanamoly8.
Thissamepolymorphismhasalsobeenassociatedwithlevelsofbonemineraldensityinpostmenopausalwomen9.
Basedonthedatapresentedandinordertoidentifyapossibleearlymarkerofdiseasecal-cificaorticvalve,theassociationof1G>2Gpoly-morphismwithparametersindicativeofminerali-zationinaorticvalvesfromvalvereplacementwasstudied.
PatientsandmethodsPopulationgroupAorticvalvesfrom45patientsdiagnosedwithaor-ticvalvedisease(stenosis91%,failure9%)under-goingaorticvalvereplacementbetweenApril2012andMay2014intheDepartmentofCardiacSurgeryoftheCentralUniversityHospitalofAsturiaswerestudied.
Table1showssomefeatu-resofgreaterclinicalinterestareshown,includingcardiovascularriskfactors.
Acurrentsmokerwasconsideredactiveifthatpersonhadsmokeduringthepreviousyear.
Anex-smokerwasanindividualwhogaveupsmo-kingmorethanayearpriorandnon-smokingtoapersonwhohasnevertakenupthehabit.
Dyslipidemiawasdefinedaccordingtocomplian-cewithanyofthefollowingcriteria:historyofdiagnosedhyperlipidemiaand/ortreatedwithmedication,dietand/orexercise,figuresoftotalcholesterolabove200mg/dl,LDLcholesterolgre-aterthanorequalto130mg/dl,HDLcholesterollessthan40mg/dlorlipid-loweringtherapy.
Hypertensionwasdefinedasmeetingoneofthefollowingcriteria:historyofdiagnosedortreatedwithmedication,dietand/orexercisehyperten-sion;systolicbloodpressurelessthan140mmHgordiastoliclessthan90mmHg,atleasttwodeter-minations;orantihypertensivetreatmentnotadmi-nisteredastherapytoanythingotherthanhyper-tensiondisorder.
Theexistenceofdiabetesmelli-tuswasbasedonthepresenceofanyofthefollo-wing:accreditedmedicalhistoryofdiabetesmelli-tus,bloodglucosegreaterthanorequalto200mg/dlfastinginanysituationandsymptomsofdiabetesmellitus,theleasttwodeterminationsofbloodglucosegreaterthanorequaltofasting126mg/dl(fastedunderstoodasaperiodwithoutinta-keforatleast8hours)oruseoforalhypoglyce-miccurrenttreatmentsand/orinsulin.
Theestima-tionofglomerularfiltrationwascarriedoutusingtheMDRD-4variableequation.
Theclassificationofthevalveanatomywasmadebasedonintrao-perativefindings,inadditiontotheECGdescrip-tionpriortosurgery.
Tissuesremovedduringsurgeryweretreatedfor24hwith4%formaldehydeandafterseveralwashingswithwater,preservedin70%ethanolat4°CinthePrincipalityofAsturiasBiobank.
PeripheralbloodsampletubewithEDTA,whichwasprocessedinthebiobankforextractionofgenomicDNAwasstoredat-20°Cuntiluse.
PatientssignedaninformedconsentformforuseoftheirbiologicalsamplesandthestudywasapprovedbytheEthicsCommitteeofthePrincipalityofAsturiasforClinicalResearch.
GenotypingTheMMP11G>2Gpolymorphismatposition-1607(rs1799750)wasgenotypedbypolymerasechainreactionandsubsequentdigestionwithrestrictionenzyme(PCR-RFLP),followingapreviouslyrepor-tedprocedure10.
QuantificationofcalciumcontentintheaorticcuspValvulartissuesamplespreservedinethanolwereanalyzedbycomputerizedmicrotomography(microCT)inaSkyScan1174(Bruker,Kontich,Belgium)availableattheUniversityofOviedoVivariumresearchcenter.
Imageswereobtainedusing50kVand800Aparameters.
1,300imagesofeachofthesampleswithapitchof0.
3°rotationandanaverageframe2fora180°scanwereobtai-ned.
Scanningeachlasted10to20minutes(dependingonvalvesize)usinganexposuretimeof6,200ms.
flatfieldcorrectionatthebeginningofeachscan.
TheimagesobtainedwerereconstructedwiththeNRecon(Bruker)software(Figure1).
Correctionvaluesofattenuationcoefficient,lightraysharpness,smoothnessandringartifactswerethesameinallsamples.
3Dmorphometricanaly-siswascarriedoutusingCTAn(Bruker)software.
Thevolumeofinterestwasmanuallydelimitedineachofthesamples.
Thethresholdusedforallof0.
74to3.
39wasg/cm3ofbonemineraldensity(BMD).
ORIGINALS/RevOsteoporosMetabMiner.
2016;8(4):115-120117BMDparametersandbonevolume/totalvolume(BV/TV)wereconsideredasmeasuresoftheamountofcalciumdeposited.
StatisticalanalysisAllstatisticalanalyzeswerecarriedoutusingSPSSver-sion15.
0software.
ItwasfirstconfirmedthatgenotypeandallelefrequenciesofpolymorphismwereinHardy-WeinbergEquilibriumModelbyχ2test.
ANOVAtestwasusedtocomparethemeanvaluesoftheparame-tersstudiedinthedifferentgenotypesandthenBonferronitesttodiscrimi-natewhichgenotypepairsshowedstatisticalsignifican-ce.
Then,basedontheseresults,thegenotypesweregroupedintotwocategorieswhoseaveragevaluesforBMDandBV/TVwerecomparedbyT.
Finallytest,anadjustedlinearregressionanalysiswasperformedforvariablesofsex,age,glomerularfil-trationratemeasuredusingtheMDRD-4andpre-senceofbicuspidaorticvalveanamoly.
Ap-value2G,polymorphismatposition-1607withafrequencyof0.
49fortheminoralle-le(1Ginourpopulation),similartothatofotherEuropeanpopulations(dbSNP).
TheaveragevaluesofBMDandBV/TVinpopulationgroupsdefinedbydifferentMMP1polymorphismgenotypesatposition-1607anddifferencesfoundinbothvariableswerecalcula-ted,althoughtheywerestatisticallysignificantonlyinthecaseofBV/TV(Table2).
Posthocanalysisfoundthathomozygousindi-vidualspresentedsignificantdifferencesforthe2Gallelecomparedwithhomozygousfor1G(p=0.
042),withcalciumcontentvaluessimilartothoseofhomozygousfor2Galleleheterozygousindividuals.
Thus,applyingamodelofrecessiveforthealleleeffect1G,itwasfoundthatallelecarriers2Ghadsignificantlyhighervaluesofcal-ciumcontentintheaorticvalve(3timesinBMDand2timestheBV/TV)thannoncarriers(BMDvaluesof62.
52±10.
99mg/cm3in2Gallelecarriers±8.
54versus20.
08mg/cm3inthe1Gallelehomozygotes,andvaluesBV/TV5.
44±0.
62%in2Gallelecarriersversus2.
52±0.
59%inhomozygo-tesforthe1Gallele)(Figure2).
ThesesignificantdifferencesremainedforlevelsofBV/TVafteradjustmentforsex,age,presenceofbicuspidaor-ticvalveandglomerularfiltrationrate(p=0.
021),maintainingthetrend,butwithoutbeingsignifi-cant,forBMDlevels(p=0.
073).
DiscussionThisstudyisthefirsttodescribeanassociationbetweenapolymorphismofMMP1geneandtheamountofcalciumintheaorticvalves.
Thelitera-turecontainsvariousassociationsofvariantsofthisgenewithothercardiovascularconditions11-13.
Amongthesevariants,oneofthemoststudiedisthe1G>2Gpolymorphisminthepromoterregionofthegene,fortheinsertionalleleconfersgreatertranscriptionalactivity14whichcanhaveeffectsonthecellandthereforeinthebody.
Thus,asignifi-cantlyincreasedriskofatherosclerosisinthecaro-tidarteryinindividualscarryingthe2Gallele15andagreaterpresenceofthisalleleinpatientswhohadsufferedischemicstrokewasobserved16.
However,untilnowassociationsofthispolymor-phismandcalcificaorticvalvediseasehadnotbeendescribed,althoughtheMMPshavebeenknowntoplayanimportantroleintheirphysio-pathology17,18.
Twoimportantaspectsinthedevelopmentofdiseasearecalcifiedaorticvalveinflammationandextracellularmatrixremodeling5.
Botharemodula-tedbyvalveinterstitialcells(VIC),whichpassfromareststateinwhichtheyretaintissuehome-ostasis,toanactivatedstatewhichtakemyofibro-blasts19.
ActivatedVICrespondtoinflammationbysecreting,amongotherfactors,MMPs,whichwillcontributetotheaccumulationofdisorganizedfibroustissue,tokeepthevalvesinastateofchro-nicinflammationandinduceosteoblasticdifferen-tiationofVIC.
Thelattereventwouldpromoteandacceleratecalciumdeposition,whichwouldresultinreducedfunctionofthevalve20.
Theinteractionbetweencellsandtheextrace-llularmatrixthatcontainsthemisessentialforthephysiologyandfunctionalityofthevalvetissueandaffectstheVICphenotype3.
Theextracellularmatrixoftheheartvalvesismadeupto90%collagenand,infact,excessivedepositionofprotein,accompa-Table1.
ClinicalandanthropometriccharacteristicsofthestudypopulationCharacteristicsValuesAgea(years)69±11Mens63%Smoking17.
4%Dyslipidemia43.
5%Hypertension67.
4%Diabetes21.
7%MDRD-4b(ml/min)82±28Bicuspidaorticvalve20%aaverage±standarddeviation.
bglomerularfiltrationrateinml/min/1.
73m2(mean±standarddeviation).
ORIGINALS/RevOsteoporosMetabMiner.
2016;8(4):115-120118niedbyanalteredalignmentoffibersincreasestis-suestiffness21.
Severalstudieshaveshownthecru-cialroleofcollagenincalcificationofaorticvalves22-24.
Specifically,invitrocultureofporcineaorticvalvecuspsofcollagenasetreatedwithincreasedcollagenandsimultaneouslyadecreaseintheamountofothercomponentsoftheextracellularmatrixsuchashyaluronicacidhasbeenobserved23.
Also,anincreasewasdetectedinbothproliferationandapoptosisofVIC,whichexpressedmarkersassociatedwithamyofibroblastphenotype(alpha-smoothmuscleactin)andosteoblast(alkalinephosphatase,osteocalcinandbonesialoprotein)resultinginincreasedtissuemineralization23.
MMP-1,alsoknownasfibroblastcollagenase,degradesinterstitialcollagentypesI,IIandIII.
Consequently,itsincreasedactivitywouldpromo-tethedestructionofcollagen,osteoblastdifferen-tiationandcalcification.
Theresultsobtainedinthisstudysupportthisreasoning,associatingthehighestamountsofcalciuminvalveswiththoseindividualscarryingthealleleresultinginincrea-sedtranscriptionofthegeneand,consequently,agreateramountofMMP-1protein.
Viewedanotherway,thelackoftheprotectiveeffectbroughtaboutinpatientslesstranscript(providedbythelessactiveallele)facilitatingthedevelopmentofcalcificationintheaorticvalve.
Alimitationofourstudyisthesmallnumberofpatientsincludedandthefactthatitisacross-sec-tionalstudy.
However,anassociationwith1G>2Gpolymorphismhasbeenaffirmed,suggestingthepro-tectiveeffectofthe1Gallelewillnecessitatestudyinglar-gersamplesandotherpopu-lationgroupsinordertoascertainwhetherthisfin-dingcouldbeusedinthefutureasapredictorofcalci-ficationandaorticstenosis.
Competinginterests:Theauthorsdeclarethattheyhavenoconflictofinterest.
Funding:ThisworkwassupportedinpartbytheprojectoftheInstituteofHealthCarlosIIIPI10/00173-FEDER.
Bibliography1.
IungB,VahanianA.
Epidemiologyofvalvularheartdiseaseintheadult.
NatRevCardiol.
2011;8:162-72.
2.
TowlerDA.
Molecularandcellularaspectsofcalcificaorticvalvedisease.
CircRes.
2013;113:198-208.
3.
WangH,LeinwandLA,AnsethKS.
Cardiacvalvecellsandtheirmicroenvironment--insightsfrominvitrostu-dies.
NatRevCardiol.
2014;11:715-27.
4.
ApteSS,ParksWC.
Metalloproteinases:Aparadeoffunctionsinmatrixbiologyandanoutlookforthefuture.
MatrixBiol.
2015;44-46:1-6.
5.
ParksWC,WilsonCL,Lopez-BoadoYS.
Matrixmeta-lloproteinasesasmodulatorsofinflammationandinnateimmunity.
NatRevImmunol.
2004;4:617-29.
6.
KadenJJ,DempfleCE,GrobholzR,FischerCS,VockeDC,KiliR,etal.
Inflammatoryregulationofextrace-llularmatrixremodelingincalcificaorticvalvesteno-sis.
CardiovascPathol.
2005;14:80-7.
7.
EdepME,ShiraniJ,WolfP,BrownDL.
Matrixmetallo-proteinaseexpressioninnonrheumaticaorticstenosis.
CardiovascPathol.
2000;9:281-6.
8.
MartinM,PichelIA,FlorezMunozJP,Naves-DíazM,PalacínM,Cannata-AndíaJB,etal.
Lowtranscriptionalactivityhaplotypeofmatrixmetalloproteinase1islessfrequentinbicuspidaorticvalvepatients.
Gene.
2013;524:304-8.
9.
YamadaY,AndoF,NiinoN,ShimokataH.
Associationofapolymorphismofthematrixmetalloproteinase-1genewithbonemineraldensity.
MatrixBiol.
2002;21:389-92.
10.
Roman-GarciaP,CotoE,RegueroJR,Cannata-AndíaJB,LozanoI,AvanzasP,etal.
Matrixmetalloproteina-se1promoterpolymorphismsandriskofmyocardialinfarction:acase-controlstudyinaSpanishpopula-tion.
CoronArteryDis.
2009;20:383-6.
11.
HanY,WuZ,ZhangX,YanC,XiS,YangY,etal.
Impactofmatrixmetalloproteinase-1genevariationsonriskofacutecoronarysyndrome.
CoronArteryDis.
2008;19:227-30.
12.
YeS.
Influenceofmatrixmetalloproteinasegenotypeoncardiovasculardiseasesusceptibilityandoutcome.
CardiovascRes.
2006;69:636-45.
Figure1.
Imagesobtainedafteranalysisbycomputerizedmicro-tomography(microCT)oftheaorticvalvecusps.
4Examplesofvalvecuspsareshownwithvaryingdegreesofcalcification119ORIGINALS/RevOsteoporosMetabMiner.
2016;8(4):115-120Table2.
ValuesofBMDandBV/TVforeachgenotypepolymorphismofMMP1atthe-1607positionFigure2.
ValuesofBMDandBV/TVforMMP1-1607genotypesasamodelofrecessiveinheritanceforthe1Gallele.
Average±standarderrorisshown.
*p=0.
004;#p=0.
002Genotype-1607MMP1BMD(mg/cm3)BV/TV(%)2G2G(N=13)66.
72±65.
315.
87±3.
761G2G(N=20)59.
79±63.
225.
16±3.
511G1G(N=12)20.
08±29.
592.
52±2.
03Total(N=45)51.
20±58.
964.
66±3.
46p-valor0.
0950.
033Thedataarerepresentedasmean±standarddeviation.
P-valueobtainedbyANOVA.
*BMDBMD(mg/cm3)807060504030201002G2G+1G2G1G1GGenotype-1607MMP1#BV/TVBV/TV(%)765432102G2G+1G2G1G1GGenotype-1607MMP113.
PearceE,TregouetDA,SamnegardA,MorganAR,CoxC,HamstenA,etal.
Haplotypeeffectofthematrixmeta-lloproteinase-1geneonriskofmyocardialinfarction.
CircRes.
2005;97:1070-6.
14.
RutterJL,MitchellTI,ButticeG,MeyersJ,GusellaJF,OzeliusLJ,etal.
Asinglenucleotidepolymorphisminthematrixmetalloproteinase-1promotercreatesanEtsbindingsiteandaugmentstranscription.
CancerRes.
1998;58:5321-5.
15.
DjuricT,StojkovicL,ZivkovicM,KonarI,StankoviA,DjordjeviA,etal.
Matrixmetalloproteinase-1promotergenotypesandhaplotypesareassociatedwithcarotidplaquepresence.
ClinBiochem.
2012;45:1353-6.
16.
ChehaibiK,HriraMY,NouiraS,MaatoukF,BenHamdaK,SlimaneMN.
Matrixmetalloproteinase-1andmatrixmetalloproteinase-12genepolymorphismsandtheriskofischemicstrokeinaTunisianpopulation.
JNeurolSci.
2014;342:107-13.
17.
FondardO,DetaintD,IungB,ChoqueuxC,Adle-BiassetteH,JarrayaM,etal.
Extracellularmatrixremo-dellinginhumanaorticvalvedisease:theroleofmatrixmetalloproteinasesandtheirtissueinhibitors.
120ORIGINALS/RevOsteoporosMetabMiner.
2016;8(4):115-120EurHeartJ.
2005;26:1333-41.
18.
SoiniY,SattaJ,MaattaM,Autio-HarmainenH.
ExpressionofMMP2,MMP9,MT1-MMP,TIMP1,andTIMP2mRNAinvalvularlesionsoftheheart.
JPathol.
2001;194:225-31.
19.
ChenJH,YipCY,SoneED,SimmonsCA.
Identificationandcharacterizationofaorticvalvemesenchymalpro-genitorcellswithrobustosteogeniccalcificationpotential.
AmJPathol.
2009;174:1109-19.
20.
LiC,XuS,GotliebAI.
Theprogressionofcalcificaor-ticvalvediseasethroughinjury,celldysfunction,anddisruptivebiologicandphysicalforcefeedbackloops.
CardiovascPathol.
2013;22:1-8.
21.
RajamannanNM,EvansFJ,AikawaE,Grande-AllenKJ,DemerLL,HeistadDD,etal.
Calcificaorticvalvedise-ase:notsimplyadegenerativeprocess:AreviewandagendaforresearchfromtheNationalHeartandLungandBloodInstituteAorticStenosisWorkingGroup.
Executivesummary:Calcificaorticvalvedisease-2011update.
Circulation.
2011;124:1783-91.
22.
RodriguezKJ,MastersKS.
Regulationofvalvularinterstitialcellcalcificationbycomponentsoftheextracellularmatrix.
JBiomedMaterResA.
2009;90:1043-53.
23.
RodriguezKJ,PiechuraLM,PorrasAM,MastersKS.
Manipulationofvalvecompositiontoelucidatetheroleofcollageninaorticvalvecalcification.
BMCCardiovascDisord.
2014;14:29.
24.
EriksenHA,SattaJ,RisteliJ,VeijolaM,VreP,SoiniY.
TypeIandtypeIIIcollagensynthesisandcompositioninthevalvematrixinaorticvalvestenosis.
Atherosclerosis.
2006;189:91-8.
ORIGINALS/RevOsteoporosMetabMiner.
2016;8(4):121-126121Pérez-CampoFM2,SaudoC1,KrebesovaR1,Delgado-CalleJ3,RianchoJA11DepartamentodeMedicinaInterna-HospitalU.
M.
Valdecilla-UniversidaddeCantabria-IDIVAL-Santander(Espaa)2DepartamentodeBiologíaMolecular-UniversidaddeCantabria-Santander(Espaa)3DepartamentodeAnatomíayBiologíaCelular-FacultaddeMedicinadelaUniversidaddeIndiana-CentroMédicodeAdministracióndeVeteranosRoudebush-Indianápolis-Indiana(EE.
UU.
)FunctionalstudyofpromotergenepolymorphismsofsclerostinCorrespondence:JoséA.
Riancho-DepartamentodeMedicinaInterna-HospitalU.
M.
Valdecilla-Avda.
Valdecilla,sn-39008Santander(Spain)e-mail:rianchoj@unican.
esDaeofreceipt:16/07/2016Dateofacceptance:25/09/2016WorkrewardedwiththescholarshipofMolecularBoneBiologyFEIOMM2013.
SummarySclerostin,encodedbytheSOSTgene,inhibitstheWntpathwayand,consequently,tendstodecreasebonemass.
SomepolymorphismsoftheSOSTpromoterhavebeenassociatedwithbonemineraldensity(BMD),butthemolecularmechanismsinvolvedareunknown.
Theaimofthisstudywastostudythefunctionalroleofonepolymorphisminvitro.
WeclonedtheproximalpromoterregionofSOSTgene,containingdifferentallelesatthers851054SNP,inluciferasereportervectorsandtransfectedthemintothecelllinesHEK-293T,SAOS-2andHOS-TE85.
Wedidnotfindsignificantdifferencesinthetranscrip-tionalactivityofvectorswitheithertheAortheGalleleoftheSNP.
Theco-transfectionofvectorsexpres-singRUNX2andOSXmarkedlyincreasedthetranscriptionalactivityoftheSOSTpromoterconstructs(Aallele,2.
5±0.
9fold,p30min/dayBreastcancer915Prevalenceincases0.
63Controls1537Prevalenceincontrols0.
71Chi-squared=0.
24p=0.
625Oddsratio1.
48CI95%0.
53-4.
11Populationattributablerisk0.
12Attributableriskinexposed0.
81DeficientvitaminDintakeDeficientSufficientBreastcancer186Prevalenceincases0.
75Controls2230Prevalenceincontrols0.
42Chi-squared=5.
79p=0.
016Oddsratio4.
09CI95%1.
04-11.
9Populationattributablerisk2.
81Attributableriskinexposed3.
33Overweight/obesityBMI>25BMI18-24.
9Breastcancer186Prevalenceincases0.
75Controls2131Prevalenceincontrols0.
59Chi-squared=6.
55p=0.
01Oddsratio4.
42CI95%1.
51-13.
1Populationattributablerisk3.
09Attributableriskinexposed4.
12VerylowlevelsofvitaminD≤20ng/mL>20ng/mLBreastcancer186Prevalenceincases0.
75Controls1339Prevalenceincontrols0.
25Chi-squared=14.
99p=<0.
001Oddsratio9.
0CI95%2.
95-27.
5Populationattributablerisk6.
64Attributableriskinexposed0.
88BMI:bodymassindex;95%CI:confidenceintervalof95%.
132ORIGINALS/RevOsteoporosMetabMiner.
2016;8(4):127-133bonehealthandprotectionagainstotherchronicdiseasesassociatedwithadequatevitaminDlevelsareequallyimportant.
WemustencouragepatientstopracticehealthylifestylehabitsthathelpincreaselevelsofvitaminD,suchasmaintai-ninghealthyweight,avoidsmoking,increasephysicalactivity,andappreciatetheimportanceofvitaminDsupplementsinadultswhodonotobservethesechangesinlifestyle.
Competinginterests:Theauthorsdeclarenoconflictsofinterest.
Acknowledgments:Theauthorsofthismanus-criptthankBoehringerIngelheimMexicoforitssupportforstatisticalanalysisandfinalediting.
Bibliography1.
StearnsV,VisvanathanK.
OptimizingvitaminDcon-centrationforbreastcancerriskreduction.
Medicine.
2013;92(3):132-4.
2.
JemalA,BrayF,CenterMM,FerlayJ,WardE,FormanD.
Globalcancerstatistics.
CACancerJClin.
2011;61:69-90.
3.
GLOBOCAN2012.
Estimatedcancerincidence,mortality,andprevalenceworldwidein2012.
AvailablefromURLhttp://globocan.
iarc.
fr/Pages/fact_sheets_cancer.
aspx.
4.
Cárdenas-SánchezJ,Bargalló-RochaE,Erazo-ValleA,Maafs-MolinaE,Poitevin-ChacónA.
ConsensoMexicanosobrediagnósticoytratamientodelcáncermamario.
Quintarevisión.
Colima2013.
Disponibleenhttp://www.
consensocancermamario.
com/documen-tos/FOLLETO_CONSENSO_DE_CANCER_DE_MAMA_5aRev2013.
PDF(Fechadeconsulta,junio2015).
5.
LichtensteinP,HolmNV,VerkasaloPK,IliadouA,KaprioJ,KoskenvuoM,etal.
Environmentalandheri-tablefactorsinthecausationofcancer–analysesofcohortsoftwinsfromSweden,Denmark,andFinland.
NEnglJMed.
2000;343:78-85.
6.
CrewKD.
VitaminD.
Arewereadytosupplementforbre-astcancerpreventionandtreatmentISRNOncol.
2013;2013:483687http://dx.
doi.
org/10.
1155/2013/483687.
7.
SperatiF,ViciP,Maugeri-SaccaM,StangesS,SantessoN,MarianiL,etal.
VitaminDsupplementationandbreastcancerprevention:Asystematicreviewandmeta-analysisofrandomizedclinicaltrials.
PLoSOne.
2013;8(7):e69269.
8.
FreedmanDM,DosemeciM,McGlynnK.
Sunlightandmortalityfrombreast,ovarian,colon,prostate,andnon-melanomaskincancer:acompositedeathcertifi-catebasedcase-controlstudy.
OccupEnvironMed.
2002;59:257-62.
9.
RollisonDE,ColeAL,TungK-H,SlatteryML,BaumgartnerKB,ByersT,etal.
VitaminDintake,vita-minDreceptorpolymorphysms,andbreastcancerriskamongwomenlivinginthesouthwesternU.
S.
BreastCancerResTreat.
2012;132:683-91.
10.
InglesSA,GarciaDG,WangW,NietersA,HendersonBE,KolonelLA,etal.
VitaminDreceptorgenotypeandbreastcancerinLatinas(UnitedStates).
CancerCausesControl.
2000;11:25-30.
11.
Bretherton-WattD,Given-WilsonR,MansiJL,ThomasV,CarterN,ColstonKW.
VitaminDreceptorgenepoly-morphismsareassociatedwithbreastcancerriskinaUKCaucasianpopulation.
BrJCancer.
2001;85(2):171-5.
12.
JohnEM,SchwartzGG,DreonDM,KooJ.
VitaminDandbreastcancerrisk:TheNHANESIepidemiologicfollow-upstudy,1971-1975to1992.
NationalHealthandNutritionExaminationSurvey.
CancerEpidemiolBiomarkersPrev.
1999;8(5):399-406.
13.
YousefFM,JacobsET,KangPT,HakimIA,GoingS,YousefJA,etal.
VitaminDstatusandbreastcancerinSaudiArabianwomen:casecontrolstudy.
AmJClinNutr.
2013;98:105-10.
14.
EnergíaSolarTérmicaProyectoRES&RUEDissemination.
Elpotencialdelaradiaciónsolar.
[Internet].
Availablefrom:http://www.
ptolomeo.
unam.
mx:8080/xmlui/bitstream/han-dle/132.
248.
52.
100/277/A5.
pdfsequence=5.
15.
InstitutoNacionaldeEstadísticayGeografía.
Méxicoencifras.
[Internet].
Availablefrom:http://www3.
inegi.
org.
mx/sistemas/mexicocifras/default.
aspxe=01.
16.
GailMH,BrintonLA,ByarDP,CorleDK,GreenSB,SchairerC,etal.
Projectingindividualizedprobabilitiesofdevelopingbreastcancerforwhitefemaleswhoarebeingexaminedannually.
JNatlCancerInst.
1989;81(24):1879-86.
17.
HollisBW.
Circulating25HydroxyvitaminDlevelsindi-cativeofvitaminDsufficiency:Implicationsforesta-blishinganeweffectivedietaryintakerecommenda-tion.
JNutr.
2005;135;317-22.
18.
Dawson-HughesB,HarrisSS,KrallEA,DallalGE.
EffectofcalciumandVitaminDsupplementationonbonedensityinmenandwomen65yearsofageorolder.
NEnglJMed.
1997;337:670-6.
19.
LahiriDK,NurnbergerJI.
Arapidnon-enzymaticmethodforthepreparationofHMWDNAfrombloodforRFLPstudies.
NucleicAcidsRes.
1991;19(19):5444.
20.
GarlandF,GarlandC,GorhamE,YoungJ.
GeographicFigure1.
LevelsofvitaminDincasesandcontrolsVitaminDlevels6050403020100PatientsControlCancer1020304050600133ORIGINALS/RevOsteoporosMetabMiner.
2016;8(4):127-133variationinbreastcancermortalityintheUS;ahypo-thesisinvolvingexposuretosolarradiation.
PrevMed.
1990;19:614-22.
21.
IngrahamBA,BragdonB,NoheA.
MolecularbasisofthepotentialofvitaminDtopreventcancer.
CurrMedResOpin.
2008;24(1):139-49.
22.
RosenCJ.
Clinicalpractice.
VitaminDInsuficiency.
NEnglJMed.
2011;363(3):248-54.
23.
FedirkoV,Torres-MejiaG,Ortega-OlveraG,BlessyC,Angeles-LlerenasA,Lazcano-PonceE,etal.
Serum25-hydroxyvitaminDandriskofbreastcancer:resultofalargepopulation-basedcase-controlstudyinMexicanwomen.
CancerCausesControl.
2012;23:1149-62.
24.
WelshJE,WietzkeJA,ZinserGM,BymeB,SmithK,NarvaezCJ.
VitaminD-3recptorasatargetforbreastcancerprevention.
JNutr.
2003;133:2425S-33S.
25.
LaundinAC,SoderkvistP,ErikssonB,Bergman-JungestromM,WingrenS,SouthEastSweedenBreastCancerGroup.
Associationofbreastcancerprogres-sionwithvitaminDreceptorgenepolymorphism.
CancerRe.
1999;59(10):2332-4.
26.
InstituteofMedicine,DietaryReferenceIntakesForCalciumandVitaminD,NationalAcademicPress,Washington,DC,USA,2011.
27.
MansonJE,MayneST,ClintonSK.
VitaminDandpre-ventionofcancer-readyforprimetimeNEnglJMed.
2011;364(15):1385-6.
28.
BauerSR,HankinsonSE,Bertone-JohnsonER,DingEL.
PlasmavitaminDlevels,menopause,andriskofbre-astcancer:dose-responsemeta-analysisofprospectivestudies.
Medicine.
2013;92(3):123-31.
29.
ChenP,HuP,XieW,QinY,WangF,WangH.
Meta-analysisofvitaminD,calciumandthepreventionofbre-astcancer.
BreastCancerResTreat.
2010;121(2):469-77.
134CLINICALNOTE/RevOsteoporosMetabMiner.
2016;8(4):134-137MontaoJaramilloD,DíazCurielMUnidaddeEnfermedadesMetabólicasseas-ServiciodeMedicinaInterna-FundaciónJiménezDíaz/QuirónSaludMadrid-Madrid(Espaa)Hemochromatosisandosteoporosis,inreferenceto4casesCorrespondence:ManuelDíazCuriel-FundaciónJiménezDíaz-Avda.
ReyesCatólicos,2-28040Madrid(Spain)e-mail:mdcuriel@fjd.
esDateofreceipt:05/09/2016Dateofacceptance:12/12/2016SummaryAlthoughmostpeople'sosteoporoticconditionstreatedinclinicalpracticemaybecategorizedinthepostme-nopausalosteoporosisgrouporrelatedtoaging,therearesomeosteoporosiscaseslinkedtothedevelopmentofsomeotherdiseaseoridentifiablefactor.
Mostofthesecausesareassociatedwiththetakingofsteroids,hypogonadism,malignantprocessessuchasmultiplemyeloma,gastricsurgery,alcoholismandtreatmentwithanticonvulsantdrugs.
Hereditaryhemochromatosisisanotherdisorderrelatedtotheonsetofosteoporosis.
Inthispaper,wepresent4casesofpatientswithosteoporosiswhoalsosufferhereditaryhemochromatosis.
Thelatter'scharacteris-ticsaredescribedandalsoitspossiblerelationshipwithbonedisease.
Keywords:hemochromatosis,osteoporosis,iron.
DOI:http://dx.
doi.
org/10.
4321/S1889-836X2016000400006135CLINICALNOTE/RevOsteoporosMetabMiner.
2016;8(4):134-137IntroductionOsteoporosis(OP)isadiseasecharacterizedbydecreasedboneresistancewithbonemassqualityandquantityalterationthatleadstodiseasefractu-resorfragility.
Theforearm,thevertebralbodiesandthehiparethemostcommonlocations.
Riskfactorsincludeage,earlymenopause(andanycaseoflowestrogenproduction),fracturesduetopreviouspersonalfragility(thisbeingthemostimportantriskfactor)2orinfirst-degreerela-tives,inadequateintakeofdairyproducts,chronicgluco-corticoidintake(prednisoneatdoses≥5mg/dfor3months),lowbodymassindex(BMI)(<19mg/m2),highandchronicalcoholandcaffei-ne,andsmoking,aswellasallthosediseasesthatmaycauseasecondaryOP(hypogonadism,hyperthyroidism,diabetesmellitus,renalfailureandliverdiseases,amongothers).
Hereditaryhemochromatosis(HH),althoughuncommon,isoneoftheliverdiseasesdescribedthatcanleadtotheonsetofOP.
Themostfre-quentformofpresentationisrelatedtotheHFEgene(HH-HFE).
HerewedescribetheexistenceofOPin4peoplesufferingfromHH-HFE.
ClinicalCasesAtourhospital'smetabolicbonediseasecenter,4womenwerediagnosedwithOPandassufferingfromHH.
WedonotknowtheactualincidenceofOPinpatientswithHHinourcenterasboneden-sityDXAhasnotyetbeencarriedoutonallofthesepatients.
1stpatient:ShewasdiagnosedwithHH-HFEandpituitaryhypogonadismat25yearsandwithOPat51years.
Giventhehistoryofhypogonadism,hor-monereplacementtherapywasstartedforamenor-rheaandsubsequentlymodifiedtoraloxifenewithsupplementsofcalciumandvitaminD,withperio-dicfollow-up.
Inthelastreview,DXApresentedaT-scoreof-2.
1inthefemoralneck(stableduringtre-atment)and-3.
2inthelumbarspine(withslightdeteriorationsinceonset,sincewestartedfrom-2,8).
Shedidnotpresentfracturesduringthistime.
WhenstudyingtheriskfactorsofOP,itwasobservedthatthepatientpresentsadequatecalciumintake,exerci-sesregularly,isanon-smokerandhasanadequatethyroidfunction.
HH-HFEdidnotcauseorganicinvolvement,sinceithadbeenfollowedandcontro-lledsinceitsdiagnosis,and2phlebotomieswereperformedduringfollow-up,withnormalizationoftheanalyticalparametersofiron;shehasalwayspre-sentedalkalinephosphatasewithinnormallimits.
2ndpatient:ShewasdiagnosedwithOPandHH-HFE(normalheterozygote/H63D)atage64,althoughshehadahistoryofvertebralfracturesatage55andribsatage61and63years.
Shehasbeentreatedfor4yearsinourcenter,andthelastDXAdetectedaT-scoreinthefemoralneckof-2.
6(stableduringfollow-up)andinthelumbarspineof-2.
1(slightimprovementwithrespecttoinitia-tionoftreatment,-2.
7).
InitiallyshewastreatedwithcalciumandvitaminD.
Subsequently,iban-dronicacidwasaddedandthiswaslaterreplacedbydenosumabuntilthepresenttime,asthepatienthasnotpresentedanynewfractures.
AsforOPriskfactors,shepresentslowcalciumintakeinthediet,isasmokerof40cigarettes/dayandhadmenopau-seat45years.
HH-HFEdidnotproduceorganicinvolvementsinceitwasdiagnosedandatnotimediditrequirephlebotomies.
Inherfollowupshehasalwayspresentedalkalinephosphataseinthenormalrange.
Asasignificantpersonalhistory,at66yearsthepatientwasdiagnosedandsurgicallytreatedforcoloncarcinomaand,inaddition,isaheterozygouscarrieroftheprothrombinmutation.
3rdpatient:OPwasdiagnosedat69yearsofageandat74yearsofHH-HFE(heterozygoteforC282Y)duetoalterationsintheferricprofile,whichwerealreadyobservedatthetimeofPBdiagnosis.
ShewastreatedwithcalciumandvitaminDduringthe5yearfollow-up,andinthelastDXAshepre-sentedaT-scoreatthefemoralneckof-1.
1(wor-seningwithrespecttothetimeofdiagnosis:0.
3,butslightimprovementcomparedtothepreviousone:-1.
5)and-2.
3inthelumbarspine(slightimprovementcomparedtothestart:-2.
6).
Hedidnotsufferfracturesduringtheseyears.
AsforherriskfactorsforOP,shehas2childrenwithwhomshebreastfeedandpresentedmenopauseatage45,isanex-smoker,hasalowintakeoffoodsrichincalcium,doesnotpracticephysicalexerciserouti-nelyanddoesnothaveahistoryoffractures.
HH-HFEisadequatelycontrolledwithoutorganicalte-rationsandatnotimeneededphlebotomies;Duringhisfollow-uphealwayspresentedalkalinephosphataseinthenormalrange.
Asanimportantpathologicalantecedent,hewasdiagnosedofchro-nichepatitisCvirusinresponsetoantiviraltreat-ment,whichwasmaintained9yearslater.
4thpatient:DiagnosedHH-HFEandlaterlumbarOPat55years.
Ithasbeenfollowedinourcon-sultationfor8years,andinthelastDXApresen-tedaT-scoreatthefemoralneckof-1.
1(beingtheinitialof-1.
6)andinthespineof-2.
8(maintainedstablewithrespecttothestartoftreatment).
Atthebeginningandduringherevolutionshewastrea-tedwithcalcium,vitaminDandraloxifene,withouthavingpresentedfractures.
AsforherOPriskfactors,shehas1childanddidnotbreastfe-ed,hadmenopauseatage51,isnotasmoker,hasadequateintakeofcalciuminthedietandexerci-sesroutinely.
Shehasnoprevioushistoryoffrac-ture.
ShedidnotpresentorganicalterationsbyHH-HFEanditwasnotnecessarytopracticephle-botomiesduringherfollow-up.
Thealkalinephos-phatasewasalwayswithinthenormalrange.
Asanimportantpersonalantecedent,shewastreatedforchronichepatitisC,withadequateresponse.
DiscussionHepaticosteodystrophyreferstoosseousdiseases(mainlyOPandosteomalacia,althoughthelatterisveryrare)secondarytochronicliverdisea-ses1,2,6,12,suchasHH-HFE.
CLINICALNOTE/RevOsteoporosMetabMiner.
2016;8(4):134-137136HHisadiseasecharacterizedbyincreasedtis-suedepositsofironsecondarytodecreasedpro-ductionorresistancetohepcidin,ahormonethatinsituationsofexcessirondecreasestheintestinalabsorptionofironbytheenterocytesandtherele-aseofironbymacrophages1,10.
Thisraisesbloodironanditsreservesintheorganismwiththecon-sequentformationofpathologicaldepositsinvarioustissues(liver,heart,pancreas,joints,bones,pituitaryandskin,amongothers),genera-tingmultiplesymptomsdependingontheirloca-tion.
Mostpatientsareasymptomaticintheearlystagesofthediseaseastheydonotyethavethesedeposits.
ItshouldbenotedthatpatientswithHHpresentanincreasedincidenceofcirrhosisandhepatocellularcarcinoma1,3,11.
HHisapredominantdiseaseintheCaucasianpopulationand5typeshavebeendescribed.
ThemostcommonisinheritedgeneticalterationinanautosomalrecessiveformrelatedtotheHFEgene,themostseverepresentationbeinghomozygousC282Y,andtheleastrelevantH63D10.
ItshouldbenotedthatthefactthatapatientishomozygousfortheC282YmutationisnotadiagnosisofHHifthereisnoelevationoftheironstores1,sincetheHFEgenehasquiteavariablepenetranceanditisnotpossibletoascertainwhichpatientshomozy-gousforC282Ywilldevelopthedisease3.
Amongtheconditionsrelatedtoironoverload,HH-HFEisthemostcommonandtheoneinwhichmostsignificantclinicalcomplicationsoccur,althoughwealsofindlesscommonsecon-darycauses,suchasthalassemiamajor,sideroblas-ticanemia,multipletransfusions,long-termhemo-dialysis,chronichepatitisBandC,alcoholicandnon-alcoholicliverdisease,amongothers.
Thetreatmentforironoverloadinvolvesperio-dicphlebotomiesuntilthenormalizationoftheanalyticalparameters,whichnotonlymanagetocontrolthelevelsofirondepositsinthebody,butalsoimproveandsometimessecondarycomplica-tionsofthisdiseasedisappear1.
Asforbonetissue,arthritisandOPhavebeenfoundtobethemainbonealterationsrelatedtoHH-HFE,witharthritisbeingthemostcommonlyassociated,reachingupto80%ofpatients.
Treatmentwithphlebotomiesdoesnotmanagetocompletelyreversethisonceitisalreadyestablis-hed1,9.
TheassociationbetweenOPandHHhasbeenknownsince1960andtheincidenceofOPisapproximately25-45%5-7,9.
InastudyconductedinBrazil,thepresenceofarthropathy,hepatoce-llularcarcinoma,osteoporosisanddiabeteswasmorecommoninHH-HFEpatientscomparedtopatientswithironoverloadfromothercauses3.
ThemechanismsbywhichOPoccursinchro-nicliverdiseasesarenotfullyknown,butinHH-HFEitisthoughtthatincreasedbloodiron,notcirrhosis,isthemaincauseofthisassociation,althoughincirrhoticpatients,involvingahigherincidenceofhypogonadism,itisknownthatthenumberofOPcasesincreasescomparedtopatientswithouthypogonadismorcirrhosis2,5,7,9.
AdvancedHHmayleadtocirrhosis(withorwithouthypogonadism)whichaddstothedelete-riouseffectofexcessirononthebone.
In1989,TerrenceDiamondetal.
consideredthatexcessserumironalteredthefunctionofoste-oblastsbydecreasingosteoidmatrixsynthesis7,whichhasbeencorroboratedbytwootherstu-dies,bothinvitro,oneofwhichconcludesthatelevationofserumirondecreasesboneminerali-zationWithincreasingferritinanditsferoxidaseactivity,sinceitaltersthefunctionofosteoblastsbymodifyingtheactivityofthegenesofCBF-α1(involvedinthematurationanddifferentiationofosteoblasts),osteocalcinandalkalinephosphataseindose-dependentform4.
TheotherstudyalsoconcludedthatironoverloadproducesOPbyinhibitingtheproliferation,differentiationandmineralizationofosteoblasts,aswellasdecreasedalkalinephosphataseactivity8.
ThishasalsobeenstudiedbyValentietal.
whoconsiderthatOPinHHisrelatedtohypogona-dism,severityofironoverloadandlowweight,differinginalkalinephosphatase,sincetheyfoundthathighlevelsarealsocorrelatedwithOP.
Thismaybeduetoitsrelationtohypogonadism(inwhichboneresorptionisincreased,sinceitstimu-latesosteoclastactivity)5,7,12.
AsuitableDXAdiagnosisshouldbeperformedforallpatientswithchronicliverdisease,inclu-dingHH(especiallyHH-HFE)2,5,12,althoughthetimeframedeterminationforperformanceofthisstudyinthefollow-upofpatientshasnotbeendetermined2,6.
ThemostcommonlocationofT-scoredecreaseinDXAinpatientswithHH-HFEisthelumbarspine,followedbythefemoralneck5,9.
RegardingthetreatmentofOP,followingthesameguidelinesisrecommendedasinpatientswithouthepaticdisease,adjustedaccordingtoindividualcharacteristics.
Avoidinghormonereplacementtherapyinsevereliverdiseaseisalsorecommended12.
ToreduceironoverloadinHH-HFEpatients,periodicphlebotomieshavebeenshowntoimprovetheferricprofileandthusimproveosteoblasticfunction,whichcansometi-mesbereflectedinadecreaseintheT-scorevalueoftheDXA5,7,12.
Asforthe4patientspresentedhere,HH-HFEwasdiagnosedbasedonanalyticalalterationsatanearlystage,andwithoutanytargetorgandama-geinanyofthecases.
TakingintoaccountthatthisdiagnosishasprecededorbeenperformedsimultaneouslywiththatoftheOP(exceptforthe3rdpatient,althoughtheanalyticalalterationswerealreadypresentatthetimeofOPdiagnosis),wemayconsideritariskfactorassociatedwitheachpatient'sotherclinicaldataandnotasthemaincauseofOP,sothatmonitoringandanalyticalcontrolhavebeenperformedtotreatitandavoidcomplicationsofHH-HFEaswouldbedoneinanypatientwithoutOP.
Inthefirstpatient,hypogonadismisalsoanasso-ciatedriskfactorforpresentingOP,althoughthispathologyhasalwaysbeencontrolledbythegyne-cologyservicesinceitsdiagnosis.
Thenextpatienthaslowcalciumintakeandisasmoker,whichalsoCLINICALNOTE/RevOsteoporosMetabMiner.
2016;8(4):134-137137contributestothepresenceofOPtogetherwithHH-HFE.
Beingasmoker,lowintakeofcalcium-richfoodsandlackofphysicalexerciseareotherriskfac-torsassociatedwithOPthatthethirdpatientpre-sents.
Shealsopresentedslightalterationsoftheferricprofilewithoutneedingphlebotomiestocorrectit.
Finally,thelastpatienthadnootherasso-ciatedfactorsexcepttreatedhepatitisC,althoughshedidnotdevelopcirrhosisorothercomplications.
Bibliography1.
CrownoverBK,CoveyCJ.
HereditaryHemochromatosis.
AmFamPhysician.
2013;8(3):183-90.
2.
CollierJ.
BoneDisordersinChronicLiverDisease.
Hepatology.
2007;46:1271-8.
3.
EvangelistaAS,NakhleMC,deAraújoTF,Abrantes-LemosCP,DegutiMM,CarrilhoFJ,etal.
HFEgenoty-pinginpatientswithelevatedserumironindicesandliverdiseases.
BiomedResInt.
2015;2015:164671.
4.
ZarjouA,JeneyV,ArosioP,PoliM,ZavaczkiE,BallaG,etal.
Ferritinferroxidaseactivity:apotentinhibitorofosteogenesis.
JBoneMinerRes.
2010;25(1):164-72.
5.
ValentiL,VarennaM,FracanzaniAL,RossiV,FargionS,SinigagliaL.
Associationbetweenironoverloadandosteoporosisinpatientswithhereditaryhemochroma-tosis.
OsteoporosInt.
2009;20:549-55.
6.
GuaabensN,ParésA.
Liverandbone.
ArchBiochemBiophys.
2010;503:84-94.
7.
DiamondT,StielD,PosenS.
Osteoporosisinhemoch-romatosis:ironexcess,gonadaldeficiency,orotherfactorsAnnlnternMed.
1989;110:430-6.
8.
YamasakiK,HagiwaraH.
Excessironinhibitsosteo-blastmetabolism.
ToxicolLett.
2009;191:211-5.
9.
SinigagliaL,FargionS,FracanzaniAL,BinelliL,BattafaranoN,VarennaM,etal.
Boneandjointinvol-vementingenetichemochromatosis:roleofcirrhosisandironoverload.
JRheumatol.
1997;24:1809-13.
10.
McLarenGD,GordeukVR.
Hereditaryhemochromato-sis:insightsfromtheHemochromatosisandIronOverloadScreening(HEIRS)Study.
HematologyAmSocHematolEducProgram.
2009:195-206.
11.
StephenA.
Harrison,BruceR.
Bacon.
Hereditaryhemochromatosis:updatefor2003.
JHepatol.
2003;38:S14-23.
12.
Handzlik-OrlikG,HoleckiM,WilczyńskiK,DuawaJ.
Osteoporosisinliverdisease:pathogenesisandmana-gement.
TherAdvEndocrinolMetab.
2016;7(3):128-35.
REVIEW/RevOsteoporosMetabMiner.
2016;8(4):138-146138Portal-NúezS1,4,delaFuenteM2,4,DíezA3,4,EsbritP1,41readeReumatologíayMetabolismoseo-InstitutodeInvestigaciónSanitaria-FundaciónJiménezDíaz-UAM-Madrid(Espaa)2DepartamentodeFisiologíaAnimalII-UniversidadComplutense-Madrid(Espaa)3HospitaldelMar-IMIM-UniversidadAutónomadeBarcelona-Barcelona(Espaa)4RedTemáticadeInvestigaciónCooperativaenEnvejecimientoyFragilidad(RETICEF)-InstitutodeSaludCarlosIII-Madrid(Espaa)OxidativestressasapossibletherapeutictargetforosteoporosisassociatedwithagingCorrespondence:SergioPortalNúez-readeReumatologíayMetabolismoseo-InstitutodeInvestigaciónSanitaria-FundaciónJiménezDíaz-Avda.
ReyesCatólicos,2-28040Madrid(Spain)e-mail:sportal@fjd.
esDateofreceipt:19/02/2016Dateofacceptance:13/06/2016SummarySenileorinvolutionalosteoporosisisamajorprobleminthedevelopedworld.
Recentstudiespointtoincreasedoxidativestressassociatedwithaging,whetherbiologicalorchronological,asanimportantfac-torinitsdevelopment.
Inthisreviewpaper,wefocusonbonetissuedisordersrelatedtoaging,thesour-ceofoxidativestressandnegativeinfluenceonbonetissue.
Finally,weconsiderthepotentialoxidativestresstherapiescurrentlybeingdevelopedforthisdisease.
Keywords:oxidativestress,osteoporosis,aging,fragility.
DOI:http://dx.
doi.
org/10.
4321/S1889-836X2016000400007REVIEW/RevOsteoporosMetabMiner.
2016;8(4):138-146139IntroductionTheagingpopulationindevelopednationshasledtoanincreaseintheprevalenceandinciden-ceofosteoporosis.
Anestimated200millionpeo-plesufferwiththisconditionworldwide1.
Definedasadecreaseinbonemassandqua-litythatincreasestheriskoffracture2,osteoporo-sisiscloselyrelatedtoaging.
Althoughthefactorsinvolvedhavenotbeenfullyidentified,thoseassociatedwithinvolutionalosteoporosisincludeestrogenaftermenopause3,glucocorticoiddeficittherapy4,diabetesmellitus(DM),primarilytype25;renalfailure6(whichcausessecondaryhyperpa-rathyroidism)and,morerecently,increasedoxida-tivestressassociatedwithmanyofthesecondi-tions7.
Inthisreviewpaper,weconsidertheroleofoxidativestressinbonemetabolismaswellaspossiblealternativedrugtherapytomitigateharm-fuleffectsincasesofosteoporosis.
BonedisordersassociatedwithagingBonetissueundergoesacontinuousremodelingprocess,withconsiderableregenerativecapacityandadaptationtophysiologicalchanges.
Thispro-cesstakesplaceinso-calledboneremodelingunits,consistingofdifferentcelltypes:osteoclasts,osteoblastsandosteocytes(fullydifferentiatedosteoblastsembeddedinthemineralizedmatrixandactualorchestratorofremodelingprocess)8.
Boneremodelingishighlyregulatedbygenetic,mechanical,hormonalandlocalfactorswhichdeterminetheoutcomeofbonebalance.
Peakbonemassisreachedduringpubertyinwomenandsomewhatlaterinmales.
Thelattergroupdevelopahigherbonemassandpresentlar-ger,widerbones,whilethefemalebonestructuretendtobesmallerindiameterandcorticalthick-ness.
Fromabout30yearsofage,anegativebonebalanceisobservedinbothsexes(withapredomi-nanceofboneresorption)whichleadstoagraduallossofbonemasssimilarinbothsexes,initiallyinthetrabecularboneandlaterinthecortical3.
Thisdeclineisacceleratedaftermenopauseinwomenduetolossofestrogens,agentswithprovenantio-xidantproperties,whichmaintainlowerbonemassthaninthecaseofmenduringaging.
Withage,metabolicdisordersthataffectthebonesoccur:neu-romuscularchangesrelatedtolackofmobility;increasedendogenousglucocorticoidproductionandrenalfailurewithdecreasedsynthesisofcalci-triol.
Moreover,withaging,bonecollagenfibersundergostructuralchangesandthebonelosestheabilitytorepairmicrofractures9.
Allthiscontributestotheincreasedincidenceoffractures.
Mostcurrentconceptsonthedevelopmentofsenileosteoporosishavebeenobtainedfromstu-diesinexperimentalmodels,mainlyinrodents.
However,wheninterpretingtheseresults,somebonepeculiaritiesinrodentscomparedtohumansmustbetakenintoaccount,suchascontinuousmodelingbonefromthegrowthplate,theabsenceofmenopause,aswellasalackofHaversiancorti-calbonesystem.
However,asinhumans,rodentshaveshownbonemasslossandadeteriorationofstructureandoflongboneregenerativecapacityassociatedwithaging10,11.
Thebonelossinagedratsisrelatedtoadecreaseinosteoblastmaturationandtheincreasednumberofosteoclastscomparedtoosteoblastsinthetrabecularbone12.
Also,ininbredmiceinwhichbonemassisregulatedprimarilybygeneticfactors,bonelossassociatedwithagemayassumeupto10%ofthetotalbonemass,whichisattributedtodecreasedboneremodeling13-16.
Asobservedinrodents,humansinitiallytendtolosetrabecularbonewithage,especiallyinwomen17,relatedinparttoadecreaseinphysicalactivityand,therefore,themechanicalstimuliinthetissue18.
From70years,decreasedcorticalthicknessismorepro-nouncedwithaconcomitantincreaseintheintra-corticalporosityofthefemur.
Themedullarareaincreasesbothinmenandwomen19.
Thesechangesareassociatedwithincreasedriskofosteoporoticfractures.
However,inbothmiceandhumans,themechanicalpropertiesofbonearerelativelyconser-vedthroughasustainedincreaseinsub-periostealmineral,whichincreasesinertiatime20.
MechanismsassociatedwithboneagingTheunderlyingmolecularmechanismsofinvolutio-nalosteoporosishavebeguntobeelucidatedinrecentyears.
Associatedwithage,therehasbeenadecreaseintheosteoprotegerin(OPG)ratio/ligandreceptoractivatorofnuclearfactor(NF).
Thisratioisanimportantmodulatoroftheremodeledbone21.
BothOPGandRANKLareproducedandsecretedintotheextracellularmediumbyosteoblasticcellsandosteocytes.
Infact,studiesinmicemodelsindi-catethatosteocytesproducemostRANKL,thusdirectlyinfluencingboneremodeling22,23.
OPGisasolubledecoyreceptorthatcapturesRANKLintheextracellularmedium(oronthesurfaceofosteo-blasts)andpreventsitfrombindingtoitsreceptor(RANK)incellsofosteoclasticlineage,therebypre-ventingthematurationandactivationofosteoclasts.
Thus,theOPG/RANKLrelationshipisanimportantanabolic/catabolicbalancefactorduringboneremodeling24.
Thus,thedecreasedOPG/RANKLrelationshipwithageisconsistentwithincreasedosteoclastprecursorsinthebonemarrowofoldmice25.
Osteocyteapoptosisplaysanimportantroleinbonelossassociatedwithageandtoimmobili-zationorlackofstimuli26-28andalsoassociatedwithanincreasedRANKLexpression21.
Moreover,inoldmiceoftheC57BL/6strain,anincreaseinthepro-ductionofendogenousglucocorticoidshasbeenobservedthroughtheactivationoftheenzyme11beta-hydroxysteroiddehydrogenasetype1.
Thisisrelatedtoreducedviabilityofbonecells(osteo-blastsandosteoclasts)andangiogenesis,akeypro-cessinboneformation29.
Severalfactorsmayaffecttherateoffracturerepairwithage30.
Withaging,thereisadecreaseinbonemarrowosteoprogenitor,whichoccursinparallelwithincreasedadipognesis31.
Bothosteo-blastsandadipocytesshareamesenchymalpre-cursorcelldifferentiableeitherlineagedependingonthemicroenvironmentwhichareexposedthesecells.
Furthermore,osteoblastsfromoldREVIEW/RevOsteoporosMetabMiner.
2016;8(4):138-146140miceRANKLproductionincreaseparalleltothedecreaseinexpressionofOPG.
Thisalterationresultsinincreasedosteoclastogenesisandosteo-clastactivity21,25.
Itisnoteworthythatthereareadecreasednumberofendothelialcellsandangio-genesis,whichmaycontributenegativelytotheprocessofbonerepairinolderpeople32.
RecentlyanincreaseinbonemassandreducedriskoffractureshavebeenobservedinelderlysubjectswhoundergoangiotensinIIreceptorantagonisttreatment33.
Thedrug'sapparentbene-ficialeffectontheboneisattributedtotheinhibi-toryactionofangiotensinIIonvariousosteoblastdifferentiationmarkers,suchasrunt-relatedtrans-criptionfactor2(Runx2),essentialforosteoblastdifferentiation,osteocalcin34andtheincreaseofRANKL,whichfavorsosteoclastdifferentiation35.
Thesedatasuggestthathighbloodpressurewhichisprevalentintheelderlycouldalsocontributetoinvolutionalosteoporosis.
Sclerostin,theosteocyte-derivedproductoftheSostgene,isapotentinhibitorofboneformationthroughthebindingtoreceptorsassociatedwithlowdensitylipoprotein5and6,inhibitingthecanonicalWnt.
Recentstudieshaveshownthatcirculatingsclerostinincreasesinpost-menopausalwomenandwithageinbothsexes,whichcouldhaveanegativeinfluenceonbonemass36,37.
Currently,theproductoftheklothogeneisknowntobeanimportantmodulatorofcellularaging38,atransmembraneproteinactingasfibroblastgrowthfactor(FGF)co-receptor23producedbytheosteocytesandinducerofphosphaturia.
Micedefi-cientintheKlothogenesufferacceleratedagingandosteopeniacharacterizedbyadecrease(20-40%)ofcorticalthicknessinthefemur,tibiaandvertebrae,andlowboneremodelingwithaverysharpdeclineincorticalboneformation.
Stromalcellsfromthebonemarrowofthesemicehaveareducedabilitymineralizednoduleformationandphosphatasealka-lineactivity39.
Paradoxically,theseKlothodeficientmicehaveincreasedtrabecularboneinthevertebraeandthemetaphysisoflongbones;aneffectwhichtheauthorsattributetoaselectiveactivationoftheWntpathwayonthetrabecularcomponent.
KlothointeractswiththeWntpathwaythroughitssecretedproduct,whichbindstoligandsofthispathwaybyinhibitingitsaction,hencetheabsenceofKlothocouldleadtoactivationofthepathwayWnt39.
Furthermore,micewithouttelomerasehavebeenshowntoexhibitincreasedcellularsenescenceandadecreaseinbonemass3monthsfrombirth,asso-ciatedwithareductioninboneformationandoste-oblastogenesis40.
Apparently,thisreductionisbecau-semicewithouttelomerasehavepoorlydifferentia-tedosteoblastsandthepro-inflammatoryenviron-mentthatpromotesosteoclastactivity.
OxidativestressasapathogenicfactorininvolutionalosteoporosisAgingcanbeseenasaconsequenceoftheimba-lancebetweenoxidizingagentsproducednatu-rallyincellmetabolismandantioxidantdefenses,withapredominanceofthefirst.
Thisisknownasoxidativestress,whichinvolvestheoxidationofbiomoleculesandfunctionallossofcells41,42.
Increasedoxidativestress,carriedoutprimarilyinthemitochondria,isbasedontheoverproductionofreactiveoxygenspecies(ROS)suchassupero-xideanion(O2.
–),hydroxylradicals(OH)andhydrogenperoxide(H2O2).
Thisincreasecannotbeproperlybalancedbyantioxidantssystemssuchassuperoxidedismuta-se(SOD),catalase(CAT)enzymesglutathionecycle(glutathionereductaseandglutathionepero-xidase)andthioredoxin,amongothers.
ExcessROSwithchronological(and/orbiological)ageoxidizesDNA,proteinsandlipidsandinducesthephosphorylationofmitochondriap66shcprotein,leadingtocelldeath7,43-45(Figure1).
Recently,oxi-dativestresshasbeenfoundtohaveimportantfunctionsincellsignaling46,47.
Inthiscontext,ROScanbeconsideredsecondmessengersofinflam-matoryresponse.
Infact,oxidationandinflamma-tionaretwocloselyrelatedprocessesthatincrea-sewithage48.
Althoughsomeresearchershaveraisedques-tionsaboutwhetheroxidativestressisacauseorconsequenceofaging,inrecentyearsithasbeenimplicatedinthebonedeterioration49.
Usingvariousanimalmodels:prematureaging,osteopo-rosisduetoestrogendeficit(afterovariectomy)ordiabetes,increasedoxidativestressmarkerswasfoundtodecreaseboneformationmechanisms50-54.
Theeffectsofoxidativestresstoinducedeleteriouseffectsonbonetissuearenotyetwellknown.
IncreasedROSmaystabilizeforkheadboxO(FoxO)transcription,animportantfamilyoftrans-criptionregulatorsofmanygenes.
Itsfunctionsincludecontrolofglucosemetabolism,tumorigene-sisandcelldefenseagainstoxidativestress55.
FoxO1and3areexpressedinthebone56,wheretheyseemtoplayakeyroleinmaintainingboneforma-tion56.
IthasbeenshownthatgeneticdeletionofFoxOsinmiceincreasesoxidativestressinboneandinducesbonelosstrabecularandcortical,asso-ciatedwithincreasedosteoblast/osteocyticapopto-sisandadecreaseboneformation57.
TheactivationinvolvesFoxOphosphorylationengagementwiththebeta-catenin57causinggeneinductionofoxida-tivestressresponse,asGADD45andCAT58.
Infact,theprotectiveactionofoxidativestressofKlothoproteinappearsaforementionedmediatedactiva-tionFoxOs39.
Furthermore,activationoftheFoxOpreventsbeta-catenintoactastranscriptionfactorinstimulatingtheproliferationanddifferentiationofosteoblasts56.
IncreasedROSinbonecellscausesdamageandapoptosisgenomicDNAofosteoblastsandosteocytes.
Inaddition,lipidperoxidationdepen-dentlipoxygenaseactivatedbyoxidativestressplaysanimportantroleinbonelossassociatedwithaging.
ThisisevidencedbyanalyzingtheexpressionofthelipoxygenaseandALOX12andformationAlox154-hydroxynonenal,aproductoflipidperoxidation,increasedboneinoldermice59.
Ithasalsobeenshownthatproductsoflipidoxi-dationinhibitingactionosteogenicfactors60.
REVIEW/RevOsteoporosMetabMiner.
2016;8(4):138-146141Furthermore,theincreaseofROShasbeenlin-kedtoanincreaseofosteoclastogenesisandoste-oclastactivity61,62.
Ithasrecentlybeenshownthattheenzymenicotinamideadeninedinucleotidephosphateoxi-dase4(NOX4)playsakeyroleinosteoclastoge-nesis.
Micedeficientofthisenzyme,whichprodu-cesconstitutivelyROShaveahighbonemassandosteoclastmarkersdeficit;alsoinhumanbonesampleshighosteoclastactivityiscorrelatedwithincreasedactivityofNOX463.
Furthermore,itisnotedthatinsituationsofincreasedROSassocia-tedwithexperimentalDM,aremixedresults.
Whilesomeauthorshaveobservedanincreaseinosteoclastactivity64,ithasbeensuggestedthatcouldberelatedtothegreaterseverityofDM65,however,otherDMmodels,osteoclasticactivityisreduced66.
Infact,studiesusingmurineosteoclastspre-incubatedinthepresenceofhighglucoseappeartoconfirmtheirinhibitoryeffectonosteo-clasts67.
Thus,differencesinthedegreeofDM,strainandageoftheanimal,couldcontributetothevaryinglevelsofboneresorptionobservedindifferentmodels65,68.
PossibleoxidativestresstherapiesinsenileosteoporosisThedevelopmentofnewanabolictherapiesforoste-oporosisthatcombineincreasedbonemasswithitsabilitytoneutralizetheharmfuleffectsofoxidativestressisofgreatinterest.
Anintuitiveapproachtopreventbonelosswithagewouldbebasedontheantioxidantadministration.
However,itpointedoutthatclassicantioxidants,suchastheCATorN-acetylcysteine,exertundesirableeffectsonbonetis-sueasauthenticanti-osteoclastogenicactasagentsinterferingwithboneremodeling69.
Inaddition,suchagentsinhibitthecanonicalWnt/beta-cateninwhoseactivationisvitallyimportantformaintainingboneformation,partlybyinducingtheseizureofactiva-tingtheproteindisheveledbytheregulatoryproteinredoxbalance,nucleoredoxin70.
Recently,theboneanaboliceffecthasbeenasso-ciatedwithintermittentadministrationofparathyroidhormone(PTH)withitsstressoxidativeproperties,suchasthedecreaseintheamountofROS,inhibitionofphosphorylationofp66shcadaptorproteinandincreasingtheamountoftotalglutathione69.
TheadvantageofthistreatmentwithPTHversustheclas-Figure1.
GenerationandcelldamagecausedbyexcessROS.
ROSgenerationisaconsequenceofaerobicmeta-bolisminthemitochondrialrespiratorychain.
EnzymessuchasSOD,glutathionereductaseCATand/glutathioneperoxidasesystemareresponsibleformaintainingphysiologicallevelsofROS.
However,whenthisbalancedecompensatesexcessROSsynthesis,celldamagemayoccurleadingtoapoptosisofosteocytesandosteoblastsandincreasedosteoclastactivityIncreaseosteoclastactivityIncreaseboneresorptionApoptosisosteoblasts/osteocytesLipidperoxidationDamagetoDNA/proteinIncreaseofp-p66shcROSgenerationanddetoxificationMitochondriaDreeelectron+O2CatalaseGRaseGSHGSSGGPxSODH2O+O2H2O2H2OO2.
–OH.
–……REVIEW/RevOsteoporosMetabMiner.
2016;8(4):138-146142sicantioxidantsdeterminesitsstimulatoryactionofboneremodeling,withapredominanceofbonefor-mationinpartthroughitsinteractionwiththeWnt/beta-catenin(Figure2).
Inthiscontext,invitrotestinghasbeenshownthattheN-terminal(1-36)(homologouswithPTH)andC-terminal(107-109)ofthePTH-relatedprotein(PTHrP)fragmentsareabletocounteractoxidativestressinducedbyH2O2inosteoprogenitorcellsrelativetotheirosteogenicaction52,71.
Invitrostudiesandanimalmodelssuggestthatresveratrol,acompoundbifenilicgroupofpoly-phenolicantioxidantspresentintheskinofgrapesandotherfruits72,73,couldbeapotentialanti-osteo-poroticagent.
Thiscompoundincreasestheprolife-rationanddifferentiationofosteoblastinthepre-MC3T3-E1mouseinvitro73.
Furthermore,adminis-teringresveratroltomesenchymalcellsderivedfromhumanembryonicstemcellshasbeenshowntoinducetheexpressionofmatureRunx274diffe-rentiation75andosteoblasts.
ThismechanismofactionofresveratrolappearstobemediatedbySIRT1deacetylationactivationwhichincreasesFoxO3aexpressionandcomplexformationwithresveratrol,increasingRunx2expression(Figure3).
SIRT1couldalsoincreasetheactivityofRunx2directlybydeacetylationofthistranscriptionfactorinpre-osteoblastcells.
Inrecentresearchintoolderrats,administeringresveratrol(10mg/kgdailyfor10weeks)hasbeenshowntoimprovebonequa-lityandbonebiomechanicalpropertiesoftheoste-oporoticbone76.
Althoughthesepre-clinicalresultsarepromising,therearestillnoharddatatocon-firmtheefficacyofresveratrolinsenileosteoporo-sisinhumans.
However,ofnoteisarecentstudyconductedinobeseandosteopenicpatients,inwhichoraladministrationofresveratrol(1gdailyfor16weeks)significantlyincreasedbonemass,andtheamountofbonealkalinephosphatase,comparedtotheplacebogroup77.
Recentreportsindicatethatmicedefi-cientinSIRT6,anotherdeacetylaserelatedtotheresponsetooxidativestress,presentanosteoporoticphenotypeatanearlyage.
TheabsenceofSIRT6isassociatedwithoverex-pressionofRunx2,osterixandOPGaswellastheincreasedWntpathwayinhibitor,Dickkopf1,whichleadstoadeficitofosteoblastandosteoclastmaturation78.
ThesedatasuggestthatSIRT6couldbeatherapeutictargetininvolu-tionalosteoporosis.
Furthermore,glucocorticoidexcessalsoinducesoxidativestress.
Inthissituation,theoxidativestressobservedinplasmareticulumcanbereversedbytranslationinitiationfactor2αphosphorylation,whichdisruptsproteintranslation.
Adephosphorylationinhibitorcom-pound,salubrinal,hasrecentlybeenshowntopreventdeficitmineralizationofosteoblaststre-atedwithglucocorticoidsinvitroaswellasosteoblastandosteocyteapoptosisinanosteo-poroticmousemodelbyprednisoloneadminis-tration79.
ConclusionsTheprogressiveagingofthepopulationinthedeve-lopedworldleadstoincreasedmusculoskeletaldisor-ders,includingosteoporosis.
Osteoporosisandincre-asedfragilityoftheelderlypopulationareasocio-economicchallengeofthefirstmagnitude.
Differentfactorscontributetobonelossintheelderly,amongwhichstandsoutasacommonelementincreasedoxidativestress(Figure4).
Thus,reducingoxidativestresscouldbeausefultooltocombatinvolutionalosteoporosis.
However,thefactthatoxidativestresscompoundscouldinterferewiththeboneremode-lingorkeyanabolicpathwaysforboneformation,suchastheWntsignalingpathway,requirescertainconsiderationspriortotherapeuticuse.
WemustalsotakeintoaccountthephysiologicalroleofROS,whichactassecondarymessengersofmanymetabo-licpathways;thereforeitsuncontrolledinhibitioncouldleadtounwantedsideeffectsinbonecells.
Furtherresearchisneededtodeterminethetrueeffectofantioxidanttherapiesandappropriatedosingschedulestoavoiddeleteriousactiononboneremo-deling.
Takingintoaccounttheseconsiderations,the-rapiesaimedatneutralizingoxidativestresstopre-ventoralterthecourseofinvolutionalosteoporosiswouldrepresentanobviousmedicalbreakthrough.
Competinginterests:Theauthorsdeclarenoconflictsofinterest.
Financing:ThisworkhasbeenfundedbyaidfromtheSpanishFoundationforBoneResearchandMineralMetabolism(GrantFEIOMMTranslationalResearch2015),theInstituteCarlosIII(RD12/0043/0022,PI11/00449,RD06/0013/1002Figure2.
OsteogenicactionsofPTHthroughtheWnt/beta-cateninpathway.
PTHisabletodirectlyactivatetheWntpathwaybybindingofthetype1receptor(PTH1R)withcoreceptorWntproteins,therelatedreceptorlow-densitylipoprotein6(LRP6).
Furthermore,phosphorylationofAktactivationproducedbyPTH1RresultsinFoxOdegradation,whichfavorsbeta-cateninstabilizationPTHActiveWntIncreaseavailabilityβ-cateninOsteogenicactivationprogramFoxOdestructionAktβ-cateninPTH1RPTH1RLRP6REVIEW/RevOsteoporosMetabMiner.
2016;8(4):138-146143Health,RD12/0043/0018andRD12/0043/0008).
SP-NenjoyedbyaRETICEFcontract(RD06/0013/1002andRD12/0043/0008).
Bibliography1.
CooperC,CampionG,MeltonLJ.
Hipfracturesintheelderly:aworld-wideprojection.
OsteoporosInt.
1992;2:285-9.
2.
ReginsterJ-Y,BurletN.
Osteoporosis:astillincreasingprevalence.
Bone.
2006;38:S4-9.
3.
KhoslaS,RiggsBL.
Pathophysiologyofage-rela-tedbonelossandosteoporosis.
EndocrinolMetabClinNorthAm.
2005;34:1015-30,xi.
4.
VanStaaTP,LaanRF,BartonIP,CohenS,ReidDM,CooperC.
Bonedensitythresholdandotherpredictorsofvertebralfractureinpatientsreceivingoralglucocorticoidtherapy.
ArthritisRheum.
2003;48:3224-9.
5.
VestergaardP,RejnmarkL,MosekildeL.
Diabetesanditscomplicationsandtheirrela-tionshipwithriskoffracturesintype1and2diabetes.
CalcifTissueInt.
2009;84:45-55.
6.
MillerPD.
BonediseaseinCKD:afocusonoste-oporosisdiagnosisandmanagement.
AmJKidneyDis.
2014;64:290-304.
7.
ManolagasSC.
Fromestrogen-centrictoagingandoxidativestress:arevisedperspectiveofthepathogenesisofosteoporosis.
EndocrRev.
2010;31:266-300.
Figure4.
Roleofoxidativestressinbonedamageassociatedwithaging.
Alterationofmitochondrialhomeos-tasiswithagecausesgenerationofexcessiveamountsofROSthatexceedthecapacityofcellulardetoxifica-tionsystems.
Bone-formingcellsin,excessROSresults:anincreaseinreceptorexpressionactivatedgammaperoxisomeproliferator(PPAR-gamma3);FoxOcouplingwithPPARbeta-catenin,whichinhibitstheWntpath-way;andp66proteinphosphorylationinducingapoptosis.
ThisexcessROSfavorsincreasedosteoclastactivityandosteoclastogenesis.
Togetherthesefactsalteredboneremodeling.
TheoxidativestressactivityofagentssuchasPTH(andPTHrP),resveratrolandsalubrinalareassociatedwithosteogenicactionsAging/glucocorticoidsPTH/PTHrPresveratrolsalubrinalStressendoplasmicreticulumO2.
–ROS.
OHH2O2Peroxidationfattyacid+.
OHAlox12/15UnsaturatedlipidLipidperoxidePPAR-γAdipogenesisWntpathwayactivationApoptosisosteoblastsosteocytesActivityosteoclastComplexFoxO/β-cateninOsteoporosisFoxOβ-cateninRHROOHFigure3.
Osteogenicactionoftheresveratrolbyinterac-tionwithSirT1.
ResveratrolinducesincreasedosteogenicfactoractivitybyRunx2deacetylationtranscriptionmedia-tedSirT1deacetylase.
ItalsopromotestheformationofatranscriptioncomplexbetweenFoxO3aandSIRT1thatpromotesincreasedRunx2expressionHOOHOHResveratrolSirt1IncreasetrainingcomplexFoxO3a-Sirt1Runx2deacetylationincreasedactivitytranscriptionalOsteogenesisincreaseIncreaseRunx2expressionREVIEW/RevOsteoporosMetabMiner.
2016;8(4):138-1461448.
EriksenEF.
Cellularmechanismsofboneremodeling.
Rev.
Endocr.
MetabDisord.
2010;11:219-27.
9.
BaileyAJ,KnottL.
Molecularchangesinbonecollageninosteoporosisandosteoarthritisintheelderly.
ExpGerontol.
1999;34:337-51.
10.
WangL,BanuJ,McMahanCA,KaluDN.
Malerodentmodelofage-relatedbonelossinmen.
Bone.
2001;29:141-8.
11.
LiangCT,BarnesJ,SeedorJG,QuartuccioHA,BolanderM,JeffreyJJ,etal.
Impairedboneactivityinagedrats:alterationsatthecellularandmolecularlevels.
Bone.
1992;13:435-41.
12.
RohollPJ,BlauwE,ZurcherC,DormansJA,TheunsHM.
Evidenceforadiminishedmaturationofpreosteo-blastsintoosteoblastsduringaginginrats:anultras-tructuralanalysis.
JBoneMinerRes.
1994;9:355-66.
13.
KobayashiY,GotoS,TannoT,YamazakiM,MoriyaH.
Regionalvariationsintheprogressionofbonelossintwodifferentmouseosteopeniamodels.
CalcifTissueInt.
1998;62:426-36.
14.
FergusonVL,AyersRA,BatemanTA,SimskeSJ.
Bonedevelopmentandage-relatedbonelossinmaleC57BL/6Jmice.
Bone.
2003;33:387-98.
15.
TurnerCH,HsiehY-F,MüllerR,BouxseinML,BaylinkDJ,RosenCJ,etal.
GeneticRegulationofCorticalandTrabecularBoneStrengthandMicrostructureinInbredStrainsofMice.
JBoneMinerRes.
2000;15:1126-31.
16.
WeissA,ArbellI,Steinhagen-ThiessenE,SilbermannM.
Structuralchangesinagingbone:osteopeniaintheproximalfemursoffemalemice.
Bone.
1991;12:165-72.
17.
SchaadtO,BohrH.
Differenttrendsofage-relateddiminutionofbonemineralcontentinthelumbarspine,femoralneck,andfemoralshaftinwomen.
CalcifTissueInt.
1988;42:71-6.
18.
HamrickMW,DingK-H,PenningtonC,ChaoYJ,WuY-D,HowardB,etal.
Age-relatedlossofmusclemassandbonestrengthinmiceisassociatedwithadeclineinphysicalactivityandserumleptin.
Bone.
2006;39:845-53.
19.
FeikSA,ThomasCD,ClementJG.
Age-relatedchangesincorticalporosityofthemidshaftofthehumanfemur.
JAnat.
1997;191:407-16.
20.
SteinMS,ThomasCD,FeikSA,WarkJD,ClementJG.
Bonesizeandmechanicsatthefemoraldiaphysisacrossageandsex.
JBiomech.
1998;31:1101-10.
21.
CaoJ,VentonL,SakataT,HalloranBP.
ExpressionofRANKLandOPGCorrelatesWithAge-RelatedBoneLossinMaleC57BL/6Mice.
JBoneMinerRes.
2003;18:270-7.
22.
NakashimaT,HayashiM,FukunagaT,KurataK,Oh-HoraM,FengJQ,etal.
Evidenceforosteocyteregula-tionofbonehomeostasisthroughRANKLexpression.
NatMed.
2011;17:1231-4.
23.
XiongJ,OnalM,JilkaRL,WeinsteinRS,ManolagasSC,O'BrienCA.
Matrix-embeddedcellscontrolosteoclastformation.
NatMed.
2011;17:1235-41.
24.
KearnsAE,KhoslaS,KostenuikPJ.
ReceptoractivatorofnuclearfactorkappaBligandandosteoprotegerinregulationofboneremodelinginhealthanddisease.
EndocrRev.
2008;29:155-92.
25.
CaoJJ,WronskiTJ,IwaniecU,PhlegerL,KurimotoP,BoudignonB,etal.
AgingIncreasesStromal/OsteoblasticCell-InducedOsteoclastogenesisandAlterstheOsteoclastPrecursorPoolintheMouse.
JBoneMinerRes.
2005;20:1659-68.
26.
JilkaRL,O'BrienCA.
TheRoleofOsteocytesinAge-RelatedBoneLoss.
CurrOsteoporosRep.
2016;14:16-25.
27.
JilkaRL,NobleB,WeinsteinRS.
Osteocyteapoptosis.
Bone.
2013;54:264-71.
28.
BikleDD,SakataT,HalloranBP.
Theimpactofskele-talunloadingonboneformation.
GravitSpaceBiolBull.
2003;16:45-54.
29.
WeinsteinRS,WanC,LiuQ,WangY,AlmeidaM,O'BrienCA,etal.
Endogenousglucocorticoidsdecrea-seskeletalangiogenesis,vascularity,hydration,andstrengthinagedmice.
AgingCell.
2010;9:147-61.
30.
GruberR,KochH,DollBA,TegtmeierF,EinhornTA,HollingerJO.
Fracturehealingintheelderlypatient.
ExpGerontol.
2006;41:1080-93.
31.
GimbleJM,ZvonicS,FloydZE,KassemM,NuttallME.
Playingwithboneandfat.
JCellBiochem.
2006;98:251-66.
32.
EdelbergJM,ReedMJ.
Agingandangiogenesis.
Front.
Biosci.
2003;8:s1199-209.
33.
RejnmarkL,VestergaardP,MosekildeL.
Treatmentwithbeta-blockers,ACEinhibitors,andcalcium-chan-nelblockersisassociatedwithareducedfracturerisk:anationwidecase-controlstudy.
JHypertens.
2006;24:581-9.
34.
FranceschiRT.
Thedevelopmentalcontrolofosteo-blast-specificgeneexpression:roleofspecifictrans-criptionfactorsandtheextracellularmatrixenviron-ment.
CritRevOralBiolMed.
1999;10:40-57.
35.
ShimizuH,NakagamiH,OsakoMK,HanayamaR,KunugizaY,KizawaT,etal.
AngiotensinIIacceleratesosteoporosisbyactivatingosteoclasts.
FASEBJ.
2008;22:2465-75.
36.
ArdawiM-SM,Al-KadiHA,RouziAA,QariMH.
Determinantsofserumsclerostininhealthypre-andpostmenopausalwomen.
JBoneMinerRes.
2011;26:2812-22.
37.
MdderUI,HoeyKA,AminS,McCreadyLK,AchenbachSJ,RiggsBL,etal.
Relationofage,gender,andbonemasstocirculatingsclerostinlevelsinwomenandmen.
JBoneMinerRes.
2011;26:373-9.
38.
Kuro-oM,MatsumuraY,AizawaH,KawaguchiH,SugaT,UtsugiT,etal.
Mutationofthemouseklothogeneleadstoasyndromeresemblingageing.
Nature.
1997;390:45-51.
39.
Kuro-oM.
Klothoandaging.
Biochim.
Biophys.
Acta.
2009;1790:1049-58.
40.
SaeedH,AbdallahBM,DitzelN,Catala-LehnenP,QiuW,AmlingM,etal.
Telomerase-deficientmiceexhibitbonelossowingtodefectsinosteoblastsandincrea-sedosteoclastogenesisbyinflammatorymicroenviron-ment.
JBoneMinerRes.
2011;26:1494-505.
41.
HarmanD.
About"Originandevolutionofthefreeradicaltheoryofaging:abriefpersonalhistory,1954-2009".
Biogerontology.
2009;10:783.
42.
HarmanD.
Aging:atheorybasedonfreeradicalandradiationchemistry.
JGerontol.
1956;11:298-300.
43.
DelaFuenteM,MiquelJ.
Anupdateoftheoxidation-inflammationtheoryofaging:theinvolvementoftheimmunesysteminoxi-inflamm-aging.
CurrPharmDes.
2009;15:3003-26.
44.
AlmeidaM,AmbroginiE,HanL,ManolagasSC,JilkaRL.
Increasedlipidoxidationcausesoxidativestress,incre-asedperoxisomeproliferator-activatedreceptor-gammaexpression,anddiminishedpro-osteogenicWntsignalingintheskeleton.
J.
BiolChem.
2009;284:27438-48.
45.
AlmeidaM,HanL,Martin-MillanM,O'BrienCA,ManolagasSC.
OxidativestressantagonizesWntsigna-linginosteoblastprecursorsbydivertingbeta-cateninfromTcellfactor-toforkheadboxO-mediatedtrans-cription.
JBiolChem.
2007;282:27298-305.
46.
BindoliA,RigobelloMP.
Principlesinredoxsignaling:fromchemistrytofunctionalsignificance.
AntioxidRedoxSignal.
2013;18:1557-93.
47.
LushchakVI.
Freeradicals,reactiveoxygenspecies,oxidativestressanditsclassification.
ChemBiolInteract.
2014;224:164-75.
48.
VidaC,GonzálezEM,DelaFuenteM.
Increaseofoxi-dationandinflammationinnervousandimmunesystemswithagingandanxiety.
CurrPharmDes.
2014;20:4656-78.
49.
HamadaY,KitazawaS,KitazawaR,FujiiH,KasugaM,FukagawaM.
Histomorphometricanalysisofdiabeticosteopeniainstreptozotocin-induceddiabeticmice:apossibleroleofoxidativestress.
Bone.
2007;40:1408-14.
50.
AlmeidaM,HanL,Martin-MillanM,PlotkinLI,StewartSA,RobersonPK,etal.
Skeletalinvolutionbyage-associa-tedoxidativestressanditsaccelerationbylossofsexsteroids.
JBiolChem.
2007;282:27285-97.
51.
BrunetA.
[Agingandthecontroloftheinsulin-FOXOsignalingpathway].
MedecineSci.
M/S.
2012;28:316-20.
REVIEW/RevOsteoporosMetabMiner.
2016;8(4):138-14614552.
deCastroLF,LozanoD,Portal-NúezS,MaycasM,DelaFuenteM,CaeiroJR,etal.
Comparisonoftheskele-taleffectsinducedbydailyadministrationofPTHrP(1-36)andPTHrP(107-139)toovariectomizedmice.
JCellPhysiol.
2012;227:1752-60.
53.
Portal-NúezS,ManassraR,LozanoD,AcitoresA,MuleroF,Villanueva-PeacarrilloML,etal.
Characterizationofskeletalalterationsinamodelofprematurelyagingmice.
Age(Dordr).
2013;35:383-93.
54.
Portal-NúezS,CrucesJ,Gutiérrez-RojasI,LozanoD,ArduraJA,Villanueva-PeacarrilloML,etal.
Theverte-braeofprematurelyagingmiceasaskeletalmodelofinvolutionalosteoporosis.
HistolHistopathol.
2013;28:1473-81.
55.
GreerEL,BrunetA.
FOXOtranscriptionfactorsattheinterfacebetweenlongevityandtumorsuppression.
Oncogene.
2005;24:7410-25.
56.
AmbroginiE,AlmeidaM,Martin-MillanM,PaikJ-H,DepinhoRA,HanL,etal.
FoxO-mediateddefenseagainstoxidativestressinosteoblastsisindispensableforskeletalhomeostasisinmice.
CellMetab.
2010;11:136-46.
57.
EssersMAG,deVries-SmitsLMM,BarkerN,PoldermanPE,BurgeringBMT,KorswagenHC.
Functionalinteractionbetweenbeta-cateninandFOXOinoxidativestresssignaling.
Science.
2005;308:1181-4.
58.
KatohM,KatohM.
HumanFOXgenefamily(Review).
IntJOncol.
2004;25:1495-500.
59.
HuangMS,MoronyS,LuJ,ZhangZ,BezouglaiaO,TsengW,etal.
AtherogenicphospholipidsattenuateosteogenicsignalingbyBMP-2andparathyroidhor-moneinosteoblasts.
JBiolChem.
2007;282:21237-43.
60.
LeanJM,DaviesJT,FullerK,JaggerCJ,KirsteinB,PartingtonGA,etal.
Acrucialroleforthiolantioxi-dantsinestrogen-deficiencyboneloss.
JClinInvest.
2003;112:915-23.
61.
GarrettIR,BoyceBF,OreffoRO,BonewaldL,PoserJ,MundyGR.
Oxygen-derivedfreeradicalsstimulateosteoclasticboneresorptioninrodentboneinvitroandinvivo.
JClinInvest.
1990;85:632-9.
62.
LeeNK,ChoiYG,BaikJY,HanSY,JeongD-W,BaeYS,etal.
AcrucialroleforreactiveoxygenspeciesinRANKL-inducedosteoclastdifferentiation.
Blood.
2005;106:852-9.
63.
GoettschC,BabelovaA,TrummerO,ErbenRG,RaunerM,RammeltS,etal.
NADPHoxidase4limitsbonemassbypromotingosteoclastogenesis.
JClinInvest.
2013;123:4731-8.
64.
BotolinS,FaugereM-C,MallucheH,OrthM,MeyerR,McCabeLR.
Increasedboneadiposityandperoxisomalproliferator-activatedreceptor-gamma2expressionintypeIdiabeticmice.
Endocrinology.
2005;146:3622-31.
65.
MotylK,McCabeLR.
Streptozotocin,typeIdiabetesseverityandbone.
BiolProcedOnline.
2009;11:296-315.
66.
VerhaegheJ,ThomsenJS,vanBreeR,vanHerckE,BouillonR,MosekildeL.
Effectsofexerciseanddisu-seonboneremodeling,bonemass,andbiomechani-calcompetenceinspontaneouslydiabeticfemalerats.
Bone.
2000;27:249-56.
67.
WittrantY,GorinY,WoodruffK,HornD,AbboudHE,MohanS,etal.
Highd(+)glucoseconcentrationinhi-bitsRANKL-inducedosteoclastogenesis.
Bone.
2008;42:1122-30.
68.
Portal-NúezS,ArduraJA,LozanoD,BolívarOH,López-HerradónA,Gutiérrez-RojasI,etal.
Adverseeffectsofdiabetesmellitusontheskeletonofagingmice.
JGerontolABiolSciMed.
Sci.
2016;71:290-9.
69.
JilkaRL,AlmeidaM,AmbroginiE,HanL,RobersonPK,WeinsteinRS,etal.
Decreasedoxidativestressandgre-aterboneanabolismintheaged,whencomparedtotheyoung,murineskeletonwithparathyroidhormoneadministration.
AgingCell.
2010;9:851-67.
70.
FunatoY,MichiueT,AsashimaM,MikiH.
Thethiore-doxin-relatedredox-regulatingproteinnucleoredoxininhibitsWnt-beta-cateninsignallingthroughdisheve-lled.
NatCellBiol.
2006;8:501-8.
71.
LozanoD,Fernández-de-CastroL,Portal-NúezS,López-HerradónA,DapíaS,Gómez-BarrenaE,etal.
TheC-terminalfragmentofparathyroidhormone-rela-tedpeptidepromotesboneformationindiabeticmicewithlow-turnoverosteopaenia.
BrJPharmacol.
2011;162:1424-38.
72.
FarghaliH,KutinováCanováN,LekiN.
Resveratrolandrelatedcompoundsasantioxidantswithanallos-tericmechanismofactioninepigeneticdrugtargets.
PhysiolRes.
2013;62:1-13.
73.
MizutaniK,IkedaK,KawaiY,YamoriY.
Resveratrolstimulatestheproliferationanddifferentiationofoste-oblasticMC3T3-E1cells.
BiochemBiophysResCommun.
1998;253:859-63.
74.
TsengP-C,HouS-M,ChenR-J,PengH-W,HsiehC-F,KuoM-L,etalResveratrolpromotesosteogenesisofhumanmesenchymalstemcellsbyupregulatingRUNX2geneexpressionviatheSIRT1/FOXO3Aaxis.
JBoneMinerRes.
2011;26:2552-63.
75.
ShakibaeiM,ShayanP,BuschF,AldingerC,BuhrmannC,LuedersC,etal.
ResveratrolmediatedmodulationofSirt-1/Runx2promotesosteogenicdifferentiationofmesenchymalstemcells:potentialroleofRunx2dea-cetylation.
PLoSOne.
2012;7:e35712.
76.
TresguerresIF,TamimiF,EimarH,BarraletJ,TorresJ,BlancoL,etal.
Resveratrolasanti-agingtherapyforage-relatedboneloss.
RejuvenationRes.
2014;17:439-45.
77.
OrnstrupMJ,HarslfT,KjrTN,LangdahlBL,PedersenSB.
Resveratrolincreasesbonemineralden-sityandbonealkalinephosphataseinobesemen:arandomizedplacebo-controlledtrial.
JClinEndocrinolMetab.
2014;99:4720-9.
78.
SugataniT,AgapovaO,MallucheHH,HruskaKA.
SIRT6deficiencyculminatesinlow-turnoverosteope-nia.
Bone.
2015;81:168-77.
79.
SatoAY,TuX,McAndrewsKA,PlotkinLI,BellidoT.
Preventionofglucocorticoidinduced-apoptosisofosteoblastsandosteocytesbyprotectingagainstendo-plasmicreticulum(ER)stressinvitroandinvivoinfemalemice.
Bone.
2015;73:60-8.

提速啦(900元/月),杭州BGP E5-2665/89*2 32核 48G 100G防御

提速啦的来历提速啦是 网站 本着“良心 便宜 稳定”的初衷 为小白用户避免被坑提速啦的市场定位提速啦主要代理市场稳定速度的云服务器产品,避免新手购买云服务器的时候众多商家不知道如何选择,妮妮云就帮你选择好了产品,无需承担购买风险,不用担心出现被跑路 被诈骗的情况。提速啦的售后保证提速啦退款 通过于合作商的友好协商,云服务器提供3天内全额退款,超过3天不退款 物理机部分支持当天全额退款提速啦提现 充...

Sharktech:鲨鱼机房1Gbps无限流量美国服务器;丹佛$49/月起,洛杉矶$59/月起

sharktech怎么样?sharktech鲨鱼机房(Sharktech)我们也叫它SK机房,是一家成立于2003年的老牌国外主机商,提供的产品包括独立服务器租用、VPS主机等,自营机房在美国洛杉矶、丹佛、芝加哥和荷兰阿姆斯特丹等,主打高防产品,独立服务器免费提供60Gbps/48Mpps攻击防御。机房提供1-10Gbps带宽不限流量服务器,最低丹佛/荷兰机房每月49美元起,洛杉矶机房最低59美元...

Gcore(gcorelabs)俄罗斯海参崴VPS简单测试

有一段时间没有分享Gcore(gcorelabs)的信息了,这是一家成立于2011年的国外主机商,总部位于卢森堡,主要提供VPS主机和独立服务器租用等,数据中心包括俄罗斯、美国、日本、韩国、新加坡、荷兰、中国(香港)等多个国家和地区的十几个机房,商家针对不同系列的产品分为不同管理系统,比如VPS(Hosting)、Cloud等都是独立的用户中心体系,部落分享的主要是商家的Hosting(Virtu...

www.diediao.com为你推荐
摩根币摩根币到底是什么是不是骗局留学生认证留学生回国学历认证 需要带什么材料同ip网站查询怎样查询一个ip绑了多少域名bbs.99nets.com怎么打造完美SFwww.jjwxc.net有那个网站可以看书?罗伦佐娜罗拉芳娜 (西班牙小姐)谁可以简单的介绍以下百花百游“百花竟放贺阳春 万物从今尽转新 末数莫言穷运至 不知否极泰来临”是什么意思啊?www.haole012.comhttp://fj.qq.com/news/wm/wm012.htm 这个链接的视频的 第3分20秒开始的 背景音乐 是什么?javlibrary.comsony home network library官方下载地址dpscycle寻求LR 高输出宏
主机域名 vps交流 godaddy优惠码 lamp配置 警告本网站 福建天翼加速 免费dns解析 web服务器是什么 美国凤凰城 摩尔庄园注册 腾讯数据库 好看的空间 新疆服务器 wordpress空间 上海联通 zcloud windowsserver2008 次时代主机 免费邮件服务器软件 魔兽世界服务器维护 更多