InternationalJournalofAdvancedScientificResearchandManagement,Vol.
2Issue2,Feb2017.
www.
ijasrm.
comISSN2455-637826ProductionandCharacterizationofCompostManureandBiocharfromCocoaPodHusksMarthaEnekeMunongo1,GeorgeElamboNkeng1,JetroNkengafacNjukeng21NationalAdvancedSchoolofPublicWorksYaoundeP.
OBox510Yaounde,Cameroon2InstituteofAgriculturalResearchforDevelopment(IRAD)EkonaRegionalCentre,PMB25BueaSouth-WestRegion,CameroonAbstractCocoafarmslosslotsofnutrientsthroughpodharvestwhicharenotreplacedthroughfertilizerapplication.
Thusthesoilsaremuchdepletedinnutrientsleadingtolowyields.
Inorganicfertilizersareexpensiveandabovethereachofmostsmallscalefarmers.
Thereisthustheneedforcheapsourcesofsoilamendments.
Biocharwasproducedfromcocoapodhusksat3differentpyrolysistemperatures(300°Cfor2hours,350°Cfor3hoursand400°Cfor2hours).
Compostmanurewasalsoproducedusingcocoapodhusk,poultrylitterandPureria.
ThesamplesproducedwerecharacterizedforpH,andtotalelements.
Thebiocharandcompostmanureproducedfromcocoapodhuskswerefoundtopossessalkalineproperties.
Mostelementsincreasedinquantitywithpyrolysistemperature.
Compostmanurepresentedthehighestnutrientvaluescomparedtothedifferentbiocharshowever,bothcompostandbiocharpresentedpropertiesthatmadethemsuitableassoilamendments.
Keywords:Biochar,Compost,Cocoapodhusk,pH1.
IntroductionCocoabasedsmallscaleagricultureisanimportantincomesourceformanyfamiliesinthehumidzoneofWestandCentralAfrica,inwhichforesttreesprovideshadeandotherenvironmentalservicesaswellasmarketableproducts(Dugumaetal.
,2001).
Cocoayieldsareusuallylow(Baahetal.
,2011)duetolowsoilfertilityanddisease(Adejumo,2005).
Thisresultsinfoodinsecurity,hungerandextremepovertyamongsmallholderfarmerswhodependonagriculturetomakealivingandfeedtheirfamilies.
Nutrientsarebeing'mined'throughpodharvestwithoutreplacementintheformoffertilizerapplication.
Chemicalfertilizersarescarce,costlyandbeyondthereachofsmallscalefarmers.
Incocoafruitsonlyabout10%ofcocoapodiscurrentlyvaluableasthisisthepercentageoccupiedbythebean(AmosandThompson,2015).
Eachtonofdrybeansproducedresultsintheproductionof10tonsofcocoapodhusk(Khanahmadietal.
,2014).
Whenthesecocoapodhusksareleftinfarms,theyactasasourceofinoculumforthePhytophthorawhichisthecausalagentfortheblackpoddisease(Barazarteetal.
,2008;Donkohetal.
,1991;Figueiraetal.
,1993;Kalvatchevetal.
,1998).
Blackpoddiseasecanreducecocoayieldsupto90%ifleftuntreated.
Inastudycarriedoutontheeffectofheatonfungi(Michailidesetal.
,1988),itwasfoundthatfungiaresensitivetoextremetemperaturesasheatcanbelethaltotheirsurvival.
Cropwastessuchasspentgrainandcocoahuskcombinedwithpoultry,cowandgoatmanureswereeffectiveinincreasingnitrogenandpotassiumconcentrations,growthandfruityieldoftomatosignificantly(Ojeniyi,2007).
IthasbeenadvisedthatthecocoapodhuskbeburnttoserveasfarmsanitationandreducetheincidenceofPhytophtorawhichisthecausalagentofblackpoddiseaseofcocoa.
BurningofcocoahuskalsoreducesitsC/Nratioandthereforeenhancesitsearlymineralization.
CocoapodashisrichinKandCa(Ayeni,2008).
Cocoapodhuskscanbeusedasacompostormulchiflefttorotinthefieldsoncocoafarmswheretheyrecyclenutrientsbackintothesoilasmanureandalsoserveasabreedinggroundformidges.
Cocoapodhuskcanbeconvertedtobiocharwhichisthecarbonaceoussolidresidueobtaineduponheatingbiomassunderoxygen-deficientconditions.
Ithasapotentialasanutrientrecycler,soilconditioner,incomegenerator,wastemanagementsystem,andagentforlong-term,safeandeconomicalcarbonInternationalJournalofAdvancedScientificResearchandManagement,Vol.
2Issue2,Feb2017.
www.
ijasrm.
comISSN2455-637827sequestration(Brewer,2012).
Biocharhasbeenusedassoilamendmenttoimprovesoilstructuresandfertilityqualities(Glaseretal.
,2002;Atkinsonetal.
,2010).
Convertingcocoapodhuskintocompostmanureandbiocharwilldisinfectthehuskduringproductionathightemperatures(Nde,2015)thusreducingtheinoculumlevelsofthepathogeninthefieldsaswellasprovideasourceofnutrientfortheplants.
Theobjectiveofthisworkwastoproducecompostmanureandbiocharfromcocoapodhuskandcharacterizetheseproductsforpotentialapplication.
2.
MaterialsandmethodsMaterials:Cocoapodhusk,poultrymanureandgrasseswereusedforthepreparationofthecompostmanureandbiocharwasmadefromonlycocoapodhusk.
Akilnmadeofametallicdrumwasusedforbiocharproduction.
2.
1PreparationofbiocharfromcocoapodhusksCocoapodhuskwerecollectedfromfarmers`fieldsanddried.
TheproductionofbiocharfromcocoapodhuskswascarriedoutattheInstituteofAgriculturalResearchforDevelopment(IRAD)EkonainCameroonusingamufflefurnace.
Thedriedcocoapodhuskswereplacedinthemufflefurnaceforburninginthepresenceoflimitedoxygen(theventofthemufflefurnacewasclosed).
Thefirstsetwaspyrolysedat300°Cfor2hours(300/2hrs),thesecondat350°Cfor3hours(350/3hrs)andthethird,at400°Cfor2hours(400/2hrs).
2.
2ProductionofcompostmanurefromcocoapodhuskPureriaphaseoidsandcocoapodhuskwereshreddedintotinypieces.
Usingabalance,theshreddedcocoapodhusk,choppedgrassandpoultrydroppingswereweighedintheratio2:2:1respectively.
Thevariousweighedcomponentsweremixedthoroughlyandmountedintoaheap.
Ahandfullofwoodashwassprinkledovertheheap.
Theheapwascoveredwithpolythenesheets.
Thetemperatureoftheheapwasmonitoredusingathermometerandtheheapwasturnedeverytwoweeksusingaspade.
Thecompostwasreadyaftertwelveweeksandthewell-decomposedcompostwasspreadonconcretefloorandallowedtodrypriortoanalysis.
2.
3CharacterizationofbiocharandcompostmanureproducedfromcocoapodhusksThepyrolysedcocoapodhusksandcompostmanurewerecharacterizedattheUniversityofFloridaintheAgriculturalandBiologicalEngineeringlaboratoryforpH,CationExchangeCapacity(CEC),surfacearea(onlyforbiochar)andelementalcomposition.
2.
3.
1pHThepHwasmeasuredusingapHmeter(AccumetBasicAB15/15+),ashaker,adeionizer,anelectronicbalance,testtubesandwater.
1gofeachsamplewasputindifferenttesttubesand200mlofdeionizedwaterwasaddedintotheplastictesttubescontainingthesamples.
Thetesttubeswerefirmlyclosedandplacedonashaker(NewBrunswickScientificshaker)for1hour.
Aftershaking,theywereallowedtosettlefor45minutesandthepHwasreadfromthesupernatant.
2.
3.
2ElementalanalysisTheinductivelycoupledplasmaopticalemissionspectroscopywasusedforthedeterminationoftheelementalcompositionofthesamples.
Forthedeterminationofthetotalamountsofeachmicro-andmacro-elementinthesamples,thesampleswerecompletelycharredat550°Cfor5hours.
Eachsamplewasmeasured,makingsurethatthemasswasintheintervalof0.
1gto0.
2g.
1mlofconcentratedhydrochloricacid(HCl)wasaddedandlefttodissolve.
Tothese,19mlofdeionizedwaterwasaddedandthenfilteredtoremovealltheparticlespresent.
Eachsamplewasthenionizedwithinductivelycoupledplasmaandthenamassspectrometerwasusedtoseparateandquantifythoseions.
Forthedeterminationofcarbon(C)andnitrogen(N),aTruSpecCHN(ManufacturerLeco)wasused.
Thesamplewaspre-dried,crushedandplacedintoatincapsule.
ThecapsulewasthenclosedandputintotheTruSpecCHNformeasurement.
3.
Resultsanddiscussion3.
1pHThepHvaluesforbiocharandcompostmanurerevealedanalkalinepropertywithpHrangingfrom9.
54to9.
80and8.
65respectively.
Thiswasobservedtobeacommonpropertyforthermallyproducedbiochars(LehmannandJoseph,2009).
ThesehighpHvaluesarealsoinaccordancewithfindingsmadeinastudy(Mukherjeeetal.
,2014)whichexplainedthatnewlymadebiocharsathighInternationalJournalofAdvancedScientificResearchandManagement,Vol.
2Issue2,Feb2017.
www.
ijasrm.
comISSN2455-637828temperatureshavehighpHvalues.
Increasingthepyrolysistemperaturefrom300°Cto400°Cfor2hoursresultedinanincreaseinthepHvalueofbiocharasseeninTable1.
Thiswasinaccordancewithanotherfinding(Wangetal.
,2015)whereitwasexplainedthatthispHriseisduetothefactthatpyrolysistemperaturescanresultintheincreaseofthepercentageofalkalinecationssuchasCa2+,Mg2+,andK+.
AnotherexplanationtothisriseinpHcouldbethefactthat,athightemperaturestheashcontentofbiocharisincreased.
TheashcontentofbiocharhasbeenfoundtobedirectlyproportionaltoitspHduetothefactthatathigherpyrolysistemperaturesthecarboxylgroupsarereducedand/ortheacidicgroupsbecomedeprotonatedtotheconjugatebasesresultinginamorealkalinepHofthebiochar(Ronsse,2013).
TheincreaseinthepHofbiocharwithtemperaturewasalsoattributedtothedissociationofAlkalineandAlkaliEarthMetallic(AAEM)speciesandtheformationanddepositionofalkalinecarbonatesoncharsurfaces(McKendry,2002).
ThisriseinpHwithpyrolysistemperaturewasalsoexplainedasbeingtheresultofthecontinuousrearrangementoffunctionalcompoundsreleasedunderlowertemperaturesthatscissorthecarbonylgroupthusdeactivatingorganicacidsandincreasingthepHvaluesofthebiochar(Twidell,1998).
ThepHvaluehoweverdroppedathigherpyrolysisresidencetime(350°Cfor3hours),contrarytootherfindingsmade(Ronsseetal.
,2011)inwhichthepHofbiocharwasfoundtoincreasewithincreasingpyrolysistemperatureandresidencetime.
Table1:pHofsamplesSamplecodepH300/2hr9.
62350/3hr9.
54400/2hr9.
80Compostmanure8.
65ThepHofthecompostmanurewaswithinthealkalinerange(table1).
ThehighpHvaluesforthestudiedsamplesshowedthattheycouldbeveryusefulforlimingofacidicsoils.
UsingbiocharandcompostmanureproducedfromcocoapodhuskstolimethesoilscouldresultinincreasedmicrobialactivitiesinthesoilresultinginincreasedfertilizationduetothedecompositionofSoilOrganicMatter(SOM)bythesemicrobes(McElligott,2011).
BiocharswithhighpHareusefulinimmobilizingmetals,especiallyinacidsoilswheretheyhavebeenfoundtobegenerallymoresoluble(Novaketal.
,2009)thususefulinsoilremediation.
ThehighCECofbiocharproducedfromcocoapodhusksmakesitusefulintheremediationofheavymetalsthroughtheexchangeoftheseheavymetalswiththecationsassociatedtothebiochar(Luetal.
,2012;Uchimiyaetal.
,2011c).
Biocharremoveheavymetalsfromsoilsthroughtheformationofcomplexeswiththemetalionsontheirsurfaces(Beesleyetal.
,2011)4ElementalComposition4.
1Macro-elementsThebiocharproducedwasfoundtohavehighamountsofprimarymacro-elementswithaKcontentrangingfrom341.
54mg/Lto1497.
75mg/L,Mgcontentrangingfrom25.
38mg/Lto80.
07mg/LandCacontentrangingfrom28.
34mg/Lto82.
50mg/L.
TheconcentrationsofCa,Na,K,PandMgwerefoundtoincreasewithpyrolysistemperatureasseenintable3below.
Thiswasinaccordancewithpreviousfindings(Wenchuanetal.
,2014).
TheincreaseintheconcentrationsofCa,Na,KandMgwasexplainedasbeingaresultoftheaccumulationofalkalinesaltsduringpyrolysis(Dingetal.
,2014).
Increasingthepyrolysistemperaturefrom300°Cto350°Caswellasthepyrolysisresidencetimefrom2hoursto3hours,resultedinanincreaseintheconcentrationsofCa,Na,K,PandMg.
TheKandMgconcentrationswerefoundtobehigherat350°Cfor3hoursthanat400°Cfor2hours.
Fortheproducedcompostmanure,themacroelementswerefarhigherthanforbiochar(Table2).
Thisisattributedtothefactthatinadditiontothecocoapodhusk,poultrylitterandpureriagrasswereaddedfortheproductionofthecompostmanurethusmakingitmuchricher.
Thiswassimilartoanobservationmadeincomparingsunflowercompost(richerthan)sunflowerbiochar(Adejumoetal.
,2015).
Table2:Macro-elementsinbiocharandcompostmanureSamplecodeCa(mg/L)Mg(mg/L)K(mg/L)P(mg/L)300/2hrs28.
3425.
38341.
5426.
89350/3hrs82.
5080.
071453.
5170.
93400/2hrs74.
8079.
611497.
7580.
10Compost608.
54463.
152581.
911286.
52InternationalJournalofAdvancedScientificResearchandManagement,Vol.
2Issue2,Feb2017.
www.
ijasrm.
comISSN2455-6378294.
2Micro-elementsTheelementalanalysisrevealedthatatthesamepyrolysisresidencetime,allthemicro-elementsinthesamplesincreasedwithpyrolysistemperature.
TheincreaseintheFecontentobservedwasinaccordancewithpreviousfindings(Wenchuanetal.
,2014)andwasexplainedasbeingaresultofaccumulationofalkalinesaltsduringpyrolysis(Dingetal.
,2014).
ThehighestincreasewasobservedinCuwhichwentfrom1.
66mg/Lto5.
26mg/L.
asseeninTable3.
Inawhole,themicroelementsincompostwerebyfarhigherthanthoseinthebiochar.
Table3:Micro-elementsinbiocharSamplecodeAl(mg/L)Fe(mg/L)Mn(mg/L)Zn(mg/L)Cu(mg/L)B(mg/L)300/2hrs1.
291.
321.
040.
631.
661.
02350/3hrs2.
942.
522.
551.
080.
931.
58400/2hrs1.
341.
383.
090.
995.
261.
15Compost27.
3510.
34185.
807.
150.
711.
314.
3Carbon(C)andnitrogen(N)TheCNanalysisindicatedthatthebiocharsamplespreparedinthisworkarecarbonrichwiththecarbonrangingfrom39.
95%to57.
89%.
However,theNwasfoundtobeinlowconcentrations,rangingfrom0.
66%to1.
03%(table4)inconformitywithotherfindings(Uchimyaetal.
,2011).
PyrolysistemperatureduringbiocharproductionshowedlittleeffectsontheCandNvariationsastheirconcentrationsremainedalmostunchanged.
Contrarilytootherfindings(Sunetal.
,2014),whenthepyrolysistemperatureincreasedfrom300°Cto400°C,theCcontentofthebiocharwasfoundtodecreasefrom57.
89%to52.
27%.
ThedecreaseinCcontentwithincreasingpyrolysistemperaturescouldbeexplainedbyanacceleratedbiomassdecompositionandorganicvolatilization,ashighertemperaturebiocharscontainmorenon-volatileelementsthanthelowtemperatureones(Garciaetal.
,2014).
Thenitrogencontentincocoapodhuskcompostmanurewashighbutitscarboncontentwaslow(21.
23%).
Table4:CandNincocoapodhuskbiocharandmanureSamplecodeN%C%300/2hrs1.
0357.
89400/2hrs0.
9552.
27350/3hrs0.
6639.
95Compost2.
1021.
235.
ConclusionGenerally,thebiocharproducedfromcocoapodhuskswasfoundtohavecharacteristicswhichwereaffectedbypyrolysisconditions,namely,pyrolysistemperatureaswellastheresidencetime.
Thebiocharandcompostwerefoundtobealkalineinnaturethusmakingthemverysuitableasasoilamendmentespeciallyinacidictropicalsoils.
Theirhighmicroandmacronutrientlevelsmakethemsuitableforcropfertilization.
Aboveallitisaverycheapsourceofmanureandthetechniqueisnotdifficultforfarmerstounderstand.
AcknowledgmentsFundsforthisstudywereprovidedbyUSAIDthroughthePEERgrant.
WeareverygratefultoProf.
BinGaoandDr.
ShensengWangoftheUniversityofFloridafortheirtechnicalassistanceduringsampleanalysisforthisstudy.
References[1]Adejumo,OwolabiandOdesola,Agro-physiologiceffectsofcompostandbiocharproducedatdifferenttemperaturesongrowth,photosyntheticpigmentandmicronutrientsuptakeofmaizecrop.
AfricanJournalofAgriculturalResearch,Vol.
11(Issue8):PageNo661-PageNo673,(2016)[2]Agusalim,RiceHuskBiocharforRiceBasedCroppingSysteminAcidSoil.
TheCharacteristicsofricehuskbiocharanditsinfluenceonthepropertiesofacidsulfatesoilsandricegrowthinWestKalimantan,Indonesia,JournalofAgriculturalscience.
Vol.
2(Issue1):Page39–Page43,(2010)[3]AhmadandMasood,AffordablefiltrationtechnologyofsafedrinkingwaterforruralNewfoundlandandLabrador.
St.
John's,NL:InternationalJournalofAdvancedScientificResearchandManagement,Vol.
2Issue2,Feb2017.
www.
ijasrm.
comISSN2455-637830Masterthesis,MemorialUniversityofNewfoundland.
PageNo.
122-139.
(2013)[4]AmericanSocietyofAgronomy,CropScienceSocietyofAmerica,SoilScienceSocietyofAmerica,In:Publicationhandbookandstylemanual.
ASA,CSSA,SSSA.
Madison,WI(1998)[5]AmosT.
T.
andO.
A.
Thompson,ClimateChangeandtheCocoaProductionintheTropicalRainForestEcologicalZoneofOndoState,Nigeria.
JournalofEnvironmentalScience.
Vol.
5(Issue1):PageNo.
2224-PageNo3216,(2015)[6]ASTMC1069-09.
StandardTestMethodforSpecificSurfaceAreaofAluminaorQuartzbyNitrogenAdsorption,ASTMInternational,WestConshohocken,PageNo.
2,(2014)[7]Barazarte,Sangronis,&Unai,.
Lacáscaradecacao(TheobromacacaoL.
):Unaposiblefuentecomercialdepectinas.
ArchivosLatinoamericanosdeNutrición,Vol.
58(Issue1):PageNo.
64–PageNo.
70.
(2008)[8]Beesley,Moreno-Jiménez,Jose,Gomez-Eyles,Harris,RobinsonandSizmur.
Areviewofbiochars'potentialroleintheremediation,revegetationandrestorationofcontaminatedsoils.
EnvironmentalPollutionVol.
159(Issue12),PageNo.
3269-PageNo.
3282,(2011)[9]Brewer,BiocharcharacterizationandengineeringIowaStateUniversityGraduateThesesandDissertations.
PageNo.
12–PageNo.
97,(2012).
[10]Cao,Ma,Gao,andHarris,Dairy-manurederivedbiochareffectivelysorbsleadandatrazine,Environmentscienceandtechnology.
Vol.
50(Issue43):PageNo.
3285–PageNo.
3291,(2009)[11]Chan,Van,Meszaros,DownieandJoseph.
Agronomicvaluesofgreenwastebiocharasasoilamendment.
AustralianJournalofSoilResearch,Vol.
27(Issue45):PageNo.
629–PageNo.
634,(2007)[12]Choppala,Bolan,Megharaj,Chen,andNaidu,Theinfluenceofbiocharandblackcarbononreductionandbioavailabilityofchromateinsoils.
JournalofEnvironmentalQuality.
Vol.
41(Issue4):PageNo.
1175–PageNo.
1184,(2012)[13]DeutschesInstitutFurNormungE.
V(GermanNationalStandard).
CHNaccordingtoDIN51732:Testingofsolidmineralfuels-Determinationoftotalcarbon,hydrogenandnitrogen-Instrumentalmethods,PageNo.
11(2007)[14]Ding,Dong,Ime,Gao,Len,Pyrolytictemperaturesimpactleadsorptionmechanismsbybagassebiochars.
Chemosphere,Vol.
105,PageNo.
68–PageNo.
74,(2014)[15]Ding,Huang,Sun,JiangandChen,DecompositionofOrganicCarboninFineSoilParticlesIsLikelyMoreSensitivetoWarmingthaninCoarseParticles:AnIncubationStudywithTemperateGrasslandandForestSoilsinNorthernChina.
PLOSONEVol.
9(Issue4):PageNo.
95348,(2014)[16]Donkoh,Atuahene,WilsonandAdomako,Chemicalcompositionofcocoapodhuskanditseffectongrowthandfoodefficiencyinbroilerchicks.
AnimalFeedScienceandTechnology,Vol.
35,(Issues1–2):PageNo.
161-PageNo.
169,(1991)[17]Figueira,Janick,andBeMiller.
NewproductsfromTheobromacacao:Seedpulpandpodgum.
In:J.
JanickandJ.
E.
Simon(eds.
),Newcrops.
Wiley,NewYork.
PageNo.
475–PageNo.
478.
(1993)[18]Garcia-Perez,Lewis,Kruger,LiteratureReviewofPyrolysisReactors,MethodsforProducingBiocharandAdvancedBiofuelsinWashingtonState.
DepartmentofBiologicalSystemsEngineeringandtheCenterforSustainingAgricultureandNaturalResources,WashingtonStateUniversity,Pullman,WA,(2010)[19]Kalvatchev,GarzaroandCedezo,TheobromacacaoL.
:unnuevoenfoqueparanutriciónysalud.
Agroalimentaria,Vol.
6,PageNo.
23–PageNo.
25,(1998)[20]Khanahmadi,Soofia,Yusof,Faridah,Amid,Azura,Mahmod,Safa,Senan,MahatandKhairizal,OptimizedpreparationandcharacterizationofCLEA-lipasefromcocoapodhusk.
JournalofBiotechnology.
Vol.
202,PageNo.
153–PageNo.
161,(2015)[21]Lehmann,Silva,Steiner,Nehls,Zech,andGlaser.
NutrientavailabilityandleachinginanarchaeologicalAnthrosolandaFerralsoloftheCentralAmazonbasin:Fertilizer,manureandcharcoalamendments.
PlantSoil,(Issue249):PageNo.
343–PageNo.
357,(2003b)[22]LehmannandJoseph,Biocharforenvironmentalmanagement:anintroduction.
ScienceandTechnology,Earthscan,London.
PageNo.
1–PageNo.
12,(2009)[23]Lehmann,Rilling,Thies,Masiello,Hockaday,andCrowley,"Biochareffectsonsoilbiotan-Areview,"SoilBiologyandBiochemistry,Vol.
43(Issue9):PageNo.
1812–PageNo.
1836,(2011)[24]Lu,Wang,Qin,Wang,Han,andZhang,MultivariateandgeostatisticalanalysesofthespatialdistributionandoriginofheavymetalsintheagriculturalsoilsinShunyi,Beijing,China.
ScienceofTheTotalEnvironment,Vol.
425(Issue0):PageNo.
66–PageNo.
74,(2012)[25]McElligott.
Biocharamendmentstoforestsoils:effectsonsoilpropertiesandtreegrowth.
UniversityofIdaho,PageNo.
1–PageNo.
94,(2011)[26]McKendry.
Energyproductionfrombiomasspart1:overviewofbiomass.
BioresourceTechnology,Vol.
83(Issue1),PageNo.
55–PageNo.
63,(2002)[27]Michailides,Ogawa,andFerguson,InternationalJournalofAdvancedScientificResearchandManagement,Vol.
2Issue2,Feb2017.
www.
ijasrm.
comISSN2455-637831InvestigationsonthecorrelationoffigendosepsisonCalimyrnafigwithcaprifiginfestationsbyFusariummoniliforme.
AnnualFigResearchReports.
CarliforniaFigInstitute,Fresno.
Vol.
25,(1988)[28]Mukherjee,Zimmerman,Hamdan,andCooper:Physicochemicalchangesinpyrogenicorganicmatter(biochar)after15monthsoffieldaging,SolidEarth,Vol.
5,PageNo.
693–PageNo.
704,(2014)[29]NdeDivineBup.
Classcourseonsustainableandrenewableenergyresources.
(2015)[30]Nigussie,Kissi,MisganawandAmbaw,Effectofbiocharapplicationonsoilpropertiesandnutrientuptakeoflettucesgrowninchromiumpollutedsoils,American-EurasianJournalofAgriculturalandEnvironmentalScienceVol.
12(Issue3):PageNo.
369–PageNo.
376(2012)[31]Novak.
Characterizationofdesignerbiocharproducedatdifferenttemperaturesandtheireffectsonaloamysand.
AnnalsofEnvironmentalScienceVol3,PageNo.
195–PageNo.
206(2009)[32]Nyasse,Lima,Xing,Gaskin,Steiner,Das,Ahmedna,[33]Rehrah,Watts,BusscherandSchomberg.
EtudedeladiversitedePhytophthoramegakaryaetcaracterisationdelaresistanceducacaoyer(TheobromacacaoL.
)acetagentpathogene.
PhDthesis,InstitutNationalPolytechniqueofToulouseFrance.
PageNo.
173–PageNo.
177(1997)[34]Paz-Ferreiro,Lu1,Fu1,Méndez,andGasco.
Useofphytoremediationandbiochartoremediateheavymetalpollutedsoils.
SolidEarth,Vol.
5,PageNo.
65–PageNo.
75,(2014)[35]Ronsse,Hecke,Dickinson,Prins,Productionandcharacterizationofslowpyrolysisbiochar:influenceoffeedstocktypeandpyrolysisconditions.
GlobalChangeBiologyandBioenergy,Vol.
5,PageNo.
104–PageNo.
115,(2013)[36]Ronsse,Puttemans,Coxon,Goble,Wagemans,Wenderoth,Swinnen.
Motorlearningwithaugmentedfeedback:modality-dependentbehavioralandneuralconsequences.
CerebralCortex,Vol.
21(Issue6):PageNo.
1283–PageNo.
1294(2011)[37]Simon,Meggyes,andTünnermeier.
Groundwaterremediationusingactiveandpassiveprocesses.
Advancedgroundwaterremediation:Activeandpassivetechnologies.
FederalInstituteforMaterialsResearchandTesting(BAM),UnterdenEichen,PageNo.
283–PageNo.
302.
(2015)[38]Steinbeiss,Gleixner,Antonietti,Effectofbiocharamendmentonsoilcarbonbalanceandsoilmicrobialactivity.
SoilBiologyandBiochemistryVol.
41,Page1301–Page1310,(2009)[39]Teixido,Pignatello,Beltran,Granados,Peccia,Speciationoftheionizableantibioticsulfamethazineonblackcarbon(biochar).
EnvironmentalScienceTechnology.
Vol.
45(Issue23):PageNo.
10020–PageNo.
10027,(2011)[40]Tighe,Lockwood,andWilson,Adsorptionofantimony(V)byfloodplainsoils,amorphousiron(III)hydroxideandhumicacid.
JournalofEnvironmentalMonitoring,Vol.
7(Issue12):PageNo.
1177–PageNo.
1185,(2005)[41]Uchimiya,Wartelle,Klasson,Fortier,Lima,Influenceofpyrolysistemperatureonbiocharpropertyandfunctionasaheavymetalsorbentinsoil.
JournalofAgriculturalandFoodChemistry.
Vol.
59(Issue6):PageNo.
2501–PageNo.
2510,(2011)[42]Uchimiya,Chang,andKlassonScreeningbiocharsforheavymetalretentioninsoil:Roleofoxygenfunctionalgroups.
JournalofHazardousMaterial,2011c.
Vol.
190(Issues1-3),Page432–PageNo.
444,(2011c)[43]Vriesmann,Teófilo,anddeOliveiraPetkowicz,Extractionandcharacterizationofpectinfromcacaopodhusks(TheobromacacaoL.
)withcitricacid,LWT.
FoodScienceandTechnology,Vol.
49(Issue1):PageNo.
108–PageNo.
116,(2011)[44]Wang,Gao,Zimmerman,Yuncong,Lena,Willie,Physicochemicalandsorptivepropertiesofbiocharsderivedfromwoodyandherbaceousbiomass.
Chemosphere,Vol.
134,PageNo.
257–PageNo.
262,(2015)[45]Warnock,Lehmann,KuyperandRillig,Mycorrhizalresponsestobiocharinsoil-Conceptsandmechanisms.
PlantandSoil.
Vol.
300(Issues1-2):PageNo.
9–PageNo.
20(2007)[46]Warren,Alloway,Lepp,Singh,Bochereau,andPenny,Fieldtrialstoassesstheuptakeofarsenicbyvegetablesfromcontaminatedsoilsandsoilremediationwithironoxides.
ScienceoftheTotalEnvironment,Vol.
311(Issue1):PageNo.
19–PageNo.
33,(2003)[47]Xu,Lou,Luo,Cao,Duan,Chen,Effectofbamboobiocharonpentachlorophenolleachabilityandbioavailabilityinagriculturalsoil.
ScienceoftheTotalEnvironment.
Vol.
414,PageNo.
727–PageNo.
731,(2012)
美得云成立于2021年,是一家云产品管理服务商(cloud)专业提供云计算服务、DDOS防护、网络安全服务、国内海外数据中心托管租用等业务、20000+用户的选择,43800+小时稳定运行香港特价将军澳CTG+CN2云服务器、采用高端CPU 优质CN2路线 SDD硬盘。香港CTG+CN22核2G3M20G数据盘25元点击购买香港CTG+CN22核2G5M30G数据盘39元点击购买香港CTG+CN...
云基yunbase怎么样?云基成立于2020年,目前主要提供高防海内外独立服务器,欢迎各类追求稳定和高防优质线路的用户。业务可选:洛杉矶CN2-GIA+高防(默认500G高防)、洛杉矶CN2-GIA(默认带50Gbps防御)、香港CN2-GIA高防(双向CN2GIA专线,突发带宽支持,15G-20G DDoS防御,无视CC)。目前,美国洛杉矶CN2-GIA高防独立服务器,8核16G,最高500G ...
GigsGigsCloud新上了洛杉矶机房国际版线路VPS,基于KVM架构,采用SSD硬盘,年付最低26美元起。这是一家成立于2015年的马来西亚主机商,提供VPS主机和独立服务器租用,数据中心包括美国洛杉矶、中国香港、新加坡、马来西亚和日本等。商家VPS主机基于KVM架构,所选均为国内直连或者优化线路,比如洛杉矶机房有CN2 GIA、AS9929或者高防线路等。下面列出这款年付VPS主机配置信息...
www.se998.com为你推荐
固态硬盘是什么固态硬盘是什么?18comic.fun有什么好玩的网站地陷裂口地陷前期会有什么征兆吗?psbc.com95580是什么诈骗信息不点网址就安全吧!同ip域名同IP网站具体是什么意思,能换独立的吗haokandianyingwang有什么好看的电影网站www.119mm.comwww.993mm+com精品集!avtt4.comwww.5c5c.com怎么进入斗城网女追男有多易?喜欢你,可我不知道你喜不喜欢我!!平安夜希望有他陪我过partnersonlinecashfiesta 该怎么使用啊~~
cn域名 cc域名 如何注册中文域名 网站实时监控 牛人与腾讯客服对话 国外免费全能空间 bgp双线 合租空间 双线主机 域名接入 空间技术网 512mb 云服务是什么意思 博客域名 小夜博客 腾讯云平台 windowssever2008 asp.net虚拟主机 冰盾ddos防火墙 服务器操作系统下载 更多