证明《复变函数》第四章习题全解钟玉泉版

天钟变  时间:2021-03-04  阅读:()

第四章解析函数的幂级数表示法

一

1.解: (1)其部分和数列

S4n(

由交错级数收敛性判别及极限运算法则知nimS4n存在,设为nlimS4nl ,又有a4n1

由此得知nlimSnl ,因此级数收敛,但非绝对收敛.

(2),可知原级数绝对收敛.

(3)由于

2.解: (1)R

(2)R

3.证明: (1)如果则级数的收敛半径为

R

(2)由(1)可证其收敛半径为R.

(3)由(1)可证其收敛半径为R.

4.证明:因为,因此n0 n0 n0 n0

级数在zR上绝对收敛且一致收敛.

5.解: (1)因为u1时,时,有

az

(2)因为e平面解析,所以e)

逐项积分得

)

(3)因为

如果,于是上式收敛范围为z,合于逐项积分条件,所以

)

(4) sin)

(5)因为f(z)(1z)2,f(n)(0)(n1)!

从而f(z))

ln(1z)z. . .

2 3 4 5 3 4 5

所以e)

 ()

7.解: (1) sin zsin[(z1)1]sin(z1)cos 1cos(z1)sin 1

=|

)

)

(4)由于3 z的支点为0,,沿负实轴(,0)割开平面,则指定分支就在z11

1

内单值解析, 3 z3 1 [1(z1)]3 ,再利用二项式展开.

8

(2) 6 sin z

6z)

故为15级零点.

9.证明:因为z0为f(z)的m阶零点f(z)a

又因为z0为g(z)的n阶零点,g(z)bb(z

如果mn,则f(z)g(z)(zz0)n[bnbn1(zz0)]

故z0为f(z)g(z)的n阶零点.

如果nm,同理可得z0为f(z)g(z)的m阶零点.

如果mn,当ambm0时, z0为f(z)g(z)的m阶零点; 当ambm0时,零点z0的阶数大于n.f(z)g(z)a

故z0为f(z)g(z)的mn阶零点.

由此可见

如果nm,则z0为f(z)/g(z)的nm阶零点,

如果mn,则z0为f(z)/g(z)的mn阶零点,

如果mn,则z0为f(z)/g(z)的可去奇点.

10.证明:利用定理4. 17,因z0为解析函数f(z)的至少n级零点,则有f(z)(zz0)m g(z) mn

其中

同理(z)(zz0)n(z0) ,其中(z0),则本题得证.

11.解: (1)不存在

(2)不存在

(3)不存在

(4)存在

12.证明:因为f(z)在z0点解析,由泰勒定理f(z))

再由题设f(n)(z0)0,n1,2,,则f(z)f(z0),(zKD)

由唯一性定理得f(z)f(z0),(zD).

13.证明: (反证法)假设f(z0)是f(z )在D内的最小值,因f(z0)0,则

是内恒为常数,与题设矛盾,故f(z0)不可能是f(z )在D内的最小值.

14.证明: (反证法)设f(z)在D内处处不为零,则由最小,最大模原理,在D内f(z )既不能达到最小值,也不能达到最大值.

而题设f(z )在闭域D上连续,故f(z )在闭域D上有最大值M和最小值m,而由上所述,这些都只能在边界C上达到,但题设f(z )在C上为常数,故

Mf(z)m zC

再由最大,最小模原理,mf(z)Mm zD,即f(z)m zD

由上, f(z )在闭域D上恒为常数,由第二章习题(一) 6 (3)知, f(z)在D内必为常数,矛盾.

(二)

1.证明:由于级数fn(z)收敛于f(z),故0,N() ,当nN及一切zE,

有sn(z)f(z))推得sn(z)g(z)f(z)g(z)

故得证.

2.证明:该级数的部分和sn(z)z(z2z)(znzn1)zn

显然,对任何z(z1),有.

另一方面,对于任何固定的n,取z不可能任意小,这就证得级数在圆z1内非一致收敛.

3.证明: (1),两边取极限

(2) ee)

z(1z

(3)因为在0|z|1内任意一点z e

所以|ez1 ||z|||

另一方面 |ez1 ||z|

4.证明:由柯西不等式||时

|f(z)a0 |,

因此|f(z) ||f(z)a0a0 ||a0 ||f(z)a0 |

故f(z)在|z|上无零点.

5.证明 因为

=

对任意自然数m,k若mk 则

=

因此根据逐项可积公式即得

6.证明取rR,则对一切正整数kn时

|f(

于是由r的任意性知对一切kn均有f(k)(0)=0

故f(z)n cnzn,即f(z)是一个至多n次的多项式或常数.k0

7.证明: (1)设z0是f(z)的m阶零点,于是在z0的某邻域K内f(z)

取,(0) ,于是在区域N(z0,)内f(z)

一致收敛,逐项积分可得



令F(z)

故z0是F(z)的m1阶零点.

(2)设(z),作函数

F(z)(z),则

F(z)

由(1)知z0是F(z)的m1阶零点,故

(z)阶零点.

8.证明:设f1(z)u(x,y)iv(x,y)f2(z)u(x,0)iv(x,0)

依唯一性定理,在L上有f(z)f1(z) ,而L每一点都是L的极限点,而且

LG,f1(z),f2(z)都在G内解析,由唯一性定理有f1(z)f2(z) .

9.证明: (反证法)设存在这样的周线C,I(C)D,且有一复数A,使得f(z)A,在C内部I(C)有无穷多个根,即f(z)A0在C内部I(C)有无穷多个零点,必存在零点列znz0D,从而由唯一性定理,f(z)A(zD) ,与题设矛盾.

10.证明:由最大模原理M(r)mzarxf(z) ,显然M(r)是单调上升函数,若存在r1r2,使得M(r1)M(r2),即在zr2内存在点z1r1e) ,即在内点达到最大模,由最大模原理知f(z)恒为常数.

HostYun 新增可选洛杉矶/日本机房 全场9折月付19.8元起

关于HostYun主机商在之前也有几次分享,这个前身是我们可能熟悉的小众的HostShare商家,主要就是提供廉价主机,那时候官方还声称选择这个品牌的机器不要用于正式生产项目,如今这个品牌重新转变成Hostyun。目前提供的VPS主机包括KVM和XEN架构,数据中心可选日本、韩国、香港和美国的多个地区机房,电信双程CN2 GIA线路,香港和日本机房,均为国内直连线路,访问质量不错。今天和大家分享下...

Fiberia.io:$2.9/月KVM-4GB/50GB/2TB/荷兰机房

Fiberia.io是个新站,跟ViridWeb.com同一家公司的,主要提供基于KVM架构的VPS主机,数据中心在荷兰Dronten。商家的主机价格不算贵,比如4GB内存套餐每月2.9美元起,采用SSD硬盘,1Gbps网络端口,提供IPv4+IPv6,支持PayPal付款,有7天退款承诺,感兴趣的可以试一试,年付有优惠但建议月付为宜。下面列出几款主机配置信息。CPU:1core内存:4GB硬盘:...

DMIT:香港国际线路vps,1.5GB内存/20GB SSD空间/4TB流量/1Gbps/KVM,$9.81/月

DMIT怎么样?DMIT是一家美国主机商,主要提供KVM VPS、独立服务器等,主要提供香港CN2、洛杉矶CN2 GIA等KVM VPS,稳定性、网络都很不错。支持中文客服,可Paypal、支付宝付款。2020年推出的香港国际线路的KVM VPS,大带宽,适合中转落地使用。现在有永久9折优惠码:July-4-Lite-10OFF,季付及以上还有折扣,非 中国路由优化;AS4134,AS4837 均...

天钟变为你推荐
沙滩捡12块石头价值近百万捡块石头价值一亿 到底是什么石头能价值一亿今日油条油条晚上炸好定型明天可再复炸吗?地图应用手机地图软件那么多,都不知道用哪个好了?www.20ren.com有什么好看的电影吗?来几个…杰景新特我准备在网上买杰普特711RBES长笛,10700元,这价格合理吗?还有,这是纯银的吗,是国内组装的吗?月神谭求几个个性网名:lcoc.top服装英语中double topstitches什么意思www.toutoulu.com老板强大的外包装还是被快递弄断了本冈一郎只想问本冈一郎的效果真的和说的一样吗?大概多长时间可以管用呢?用过的进!彪言彪语( )言( )语的词语
免费域名 大庆服务器租用 lunarpages 国外idc themeforest 韩国电信 12u机柜尺寸 网通ip 韩国网名大全 cpanel空间 数字域名 电信虚拟主机 昆明蜗牛家 hdd 网游服务器 512mb 海外空间 lamp是什么意思 lamp的音标 广东主机托管 更多