2015WILEY-VCHVerlagGmbH&Co.
KGaA,Weinheim2148wileyonlinelibrary.
comCOMMUNICATIONSubstrate-InducedGrapheneChemistryfor2DSuperlatticeswithTunablePeriodicitiesLinZhou,LeiLiao,JinyingWang,JingwenYu,DenghuaLi,QinXie,ZhirongLiu,YanlianYang,XuefengGuo,andZhongfanLiu*Dr.
L.
Zhou,Dr.
L.
Liao,Dr.
J.
Wang,J.
Yu,Dr.
Q.
Xie,Prof.
Z.
Liu,Prof.
X.
Guo,Prof.
Z.
LiuCenterforNanochemistryBeijingScienceandEngineeringCentreforNanocarbonsBeijingNationalLaboratoryforMolecularSciencesCollegeofChemistryandMolecularEngineeringPekingUniversityBeijing100871,P.
R.
ChinaE-mail:ziu@pku.
edu.
cnDr.
D.
Li,Prof.
Y.
YangNationalCenterforNanoscienceandTechnologyBeijing100190,P.
R.
ChinaDOI:10.
1002/adma.
201505360pseudo-magneticeldsingrapheneandengineeritselectronicstructure.
Strain-inducedsuperlatticescanproducesignicantenergygapsingrapheneandshowapseudo-magneticquantumhalleffect.
[21]Recently,itwasalsoshownthatstraininggra-pheneleadstoasubstantialincreaseofitsreactionratewithdiazoniumsaltsandthenalmodicationdegree.
[22,23]Sub-strate-inducedcharge(holeorelectron)puddlesarefoundtoincreasethechemicalreactivityofgraphenetowarddiazoniumfunctionalization.
[18]Thesephenomenastronglysuggestthepossibilityofsubstrateengineeringforcontrollinggraphene'schemicalreactivityonitsbasalplaneforthepurposeoffabri-cating2Dsuperlattices.
Inthispaper,wereportasubstrateengineeringapproachtoperiodicallypatternthegraphenebasalplaneforthepur-poseoffabricating2Dgraphenesuperlattices(Figure1a).
Thismask-freepatterningtechniqueisinspiredbytheoldChineserubbingprinting,inwhichthepigmentisdepositedoverpro-trusionsbyrubbinghardrenderingmaterialsoverpaperwhilethedepressionsremainunpigmented.
Inourapproach,thereactivespeciesactasthepigmentandthechemicalreactionofgrapheneisguidedbytheunderlyingsubstratewithperi-odicprotrusions.
Thesepredesignedprotrusionsintroduceperiodiccompressivestrainintothegraphenebasalplanebythermalannealingtreatmentbecauseofgraphene'snegativethermalexpansioncoefcient.
[24,25]Moreover,theSiO2protru-sionscouldinducechargepuddlesingraphene,whichfurtherincreasethechemicalreactivityofattachedgraphene.
[18]Theexistenceoflocalstrainandchargepuddlescouldenhancethechemicalreactivityofgraphene,leadingtoalocalizedperiodicfunctionalizationonthegraphenesheet.
Asaresult,graphenesuperlatticecanbeachievedwiththepredesignedsubstrate.
Wehavesuccessfullyfabricatedvariousgraphenesuperlatticeswithdifferentperiodicitiesinsuchaway.
Thissubstrateengineeringtechniqueallowsforawell-controlledperiodicmodicationofgraphene,enablingtheconstructionofvariousgraphene-basedelectronicandoptoelectronicdevices,chemo/biosensorsandthestudiesofrichphysicsof2Dsuperlattices.
Aschematicofthefabricationprocessof2Dgraphenesuper-latticebasedonthelocalsubstrateengineeringofgraphenechemistryisillustratedinFigure1b.
First,theperiodicallypat-ternedsubstrate(PPS)wasfabricatedbyself-assemblingmono-dispersedcolloidalSiO2nanospheresmonolayerontoSiO2/Sisubstrate.
Second,chemicalvapordeposition(CVD)-growngraphenewastransferredontosuchpatternedsubstrates.
Poly(methylmethacrylate)(PMMA)thinlmwasusedasthetransfermedium,andthenremovedbyhotacetone.
Tointroduceperiodiccompressivestrainintothegraphenelm,Theadventofgraphene,a2Dcrystallinemonolayermadeofsp2-bondedcarbonatomsarrangedinahoneycomblattice,hasledtoanexplosionofinterestinscienticandindustrialcommunitiesbecauseofitsfascinatingelectrical,thermal,andmechanicalproperties.
[1,2]Auniquefeatureofgrapheneisthatallthecarbonatomsinitsbasalplanearechemicallyacces-sible,providingapowerfulpathwaytotailorthephysicalandchemicalpropertiesofpristinegraphenebyusingchemicalapproaches.
Althoughgrapheneisgenerallychemicallyinertbecauseofitsgiantdelocalizedπsystem,covalentfunctionali-zationhasbeendemonstratedtobepossibleforthepurposesofachievingbandgapengineering,doping-levelmodulation,chemo-andbiosensing,newcompositesynthesisandlarge-scalesolution-processedproduction.
[3–10]Thecovalentchem-istryofgraphenealsoprovidesafreedomtocreatenew2Dmaterialsand/or2Dgraphenesuperlatticesbeyondgraphene,creatingaroutetostudytherichphysicsexpectedinattrac-tivequantumsystems.
[10–12]Todate,severalapproacheshavebeenreportedforfabricating2Dgraphenesuperlattices.
[13,14]However,mostoftheseexamplesarebasedonthemasktech-nique,whichlimitsthestructuralresolutiontoonlymicro-meterscales.
Aneffectivechemicalapproachtothenanometerscalegraphenesuperlatticeswithtunableperiodicitiesishighlydesirable,whichiscrucialforgeneratingabandgapinthezero-gappristinegrapheneforelectronicsandoptoelectronicsapplications.
[14]Becauseofitsatomicallythinfeature,grapheneisstronglyinuencedbysubstratewhichcaninduceexternalinuences,e.
g.
,strain[15,16]andchargepuddles.
[17,18]Straindistortsthegra-phene'slatticeandhencestronglyinuencesitsphysicalandchemicalproperties.
Bothexperimental[19,20]andtheoretical[21]studieshavedemonstratedthatstraincanbuildenormousAdv.
Mater.
2016,28,2148–2154www.
advmat.
dewww.
MaterialsViews.
com2149wileyonlinelibrary.
com2015WILEY-VCHVerlagGmbH&Co.
KGaA,WeinheimCOMMUNICATIONthus-obtainedsampleswereannealedat350°Cfor2hinforminggas(30sccmH2/100sccmAr)underatmosphericpressure.
Then,thegraphenesamplewasimmersedintoa4-nitrobenzenediazoniumtetrauoroboratesolutionat40°Cforcovalentmodication.
Thefollowingchemicalreactionisexpectedtotakeplace.
[26]Thediazoniumsaltreceiveselec-tronsfromgraphene,generatingactivenitrobenzenefreeradi-cals,whichattachtothegrapheneskeletonviacovalentbonds(Figure1c).
Finally,thenitrobenzene-terminatedgraphenesuperlatticewasdelaminatedfromthePPSsurfaceandtrans-ferredontoaattargetsubstrate.
Figure1dshowsthetypicalRamanspectraofgrapheneonthePPSbeforeandafterchemicalmodication,revealingtheformationofsp3defects.
Forpristinegraphene,noRamanDpeakisobserved,indicativeofitshighquality.
Afterthereac-tionwithdiazoniumsalt,aprominentdisorder-inducedDpeakappearsat1350cm1togetherwithadefect-inducedD′peakat1620cm1.
Inaddition,thedouble-resonance2Dpeakisstronglyweakened.
Theseobservationssuggestthepresenceofalargenumberofsp3defects,[27]whichoriginatefromcova-lentgraftingofnitrobenzenegroupsontothegrapheneplane.
FurtherX-rayphotoelectronspectroscopy(XPS)studyalsocon-rmsthereactionbetweengrapheneanddiazoniumsaltbyrevealinganN1speakonthemodiedgraphene.
Asseenfromthehigh-resolutionN1sspectrainFigure1e,twoprominentpeaksemergeat405.
8and399.
7eVafterreaction.
ThepeakatAdv.
Mater.
2016,28,2148–2154www.
advmat.
dewww.
MaterialsViews.
comFigure1.
Graphenesuperlatticefromsite-selectivechemicalreaction.
a)Schematicofperiodicchemicalfunctionalizationofgrapheneviasubstrateengineering.
b)Experimentalprocedureforfabricatinggraphenesuperlattices.
c)Covalentattachmentofnitrobenzenegroupsongraphenebasalplanebyreactionwithdiazoniumsalt.
d)Ramanspectraofgraphenebefore(blue)andafter(red)chemicalmodication.
e)High-resolutionXPSN1sspectraofgraphenebefore(black)andafter(red)diazoniumreaction,inwhichthegraphenesamplewastransferredontoaat300nmSiO2/Sisubstrate.
2150wileyonlinelibrary.
com2015WILEY-VCHVerlagGmbH&Co.
KGaA,WeinheimCOMMUNICATION405.
8eVisattributedtothenitrogroups,conrmingthepres-enceofnitrophenylgroupsonthefunctionalizedgraphene.
ThelowerbindingenergyN1speakat399.
7eVisassociatedwithareducednitrogenspecies,possiblygeneratedbytransfor-mationsfromnitrotoaminegroupscausedbyelectronsusedforneutralizationintheXPSchamber.
[26]TheseRamanandXPSresultsstronglysuggestthatnitrobenzenegroupshavebeensuccessfullygraftedontothegraphenelattice.
Figure2ashowsthescanningelectronmicroscopy(SEM)imageofpristinegrapheneonthecloselypackedmonolayerof150nmSiO2spheresafterthermalannealing.
CompressivestrainandchargepuddlesareexpectedtobeintroducedintotheregionsofgrapheneinclosecontactwithSiO2spheres.
Figure2bexhibitsthetypicalopticalmicroscopeimageofchemicallyfunctionalizedgrapheneafterdelaminationfromthePPSsurfaceandtransferringontoaatSiO2/Sisubstrate.
Asisclearlyseen,thegra-phenelmkeepsitsintegrityanddoesnotexhibitobviousopticalcontrastbetweendif-ferentareas.
However,theSEMimageofthesamegraphenelmdisplayedinFigure2ciscompletelydifferent,whichischaracter-isticofaperiodicblackdiskstructurewithaperiodicitymatchingwiththeoriginalclose-packingnanospheresmonolayer.
Asacon-trolexperiment,thesamethermalannealingtreatmentofgraphenewasdoneonthenano-spheresassemblywithoutchemicalreaction.
Nodiscerniblepatternsareobservedongra-phenesheetinthiscase(Figure2c,topinset),whichexcludedthepossiblecontributionofPPS-inducedphysicaleffectafterthermalannealingonthepatternformation.
Inaddi-tion,whenthesamechemicalreactionofgraphenewasdoneonaatSiO2/Sisub-strate,onlyuniformmodicationoccurredonthewholegraphenesurface(Figure2c,bottominset).
Theabovephenomenasuggestthatthenanosphere-contactedareashaveenhancedthechemicalreactivityofgraphenewithdiazoniumsalt,leadingtothesite-selec-tivereactionofgraphenesheet.
Furtheratomicforcemicroscopy(AFM)studiesconrmedtheperiodicpatternstruc-tureongraphenesheet(Figure2d).
TheAFMtopographicimageexhibitstwodistinctareaswithdifferentheightsarrangedinaclose-packingstructuresimilartotheoriginalPPSpattern.
Figure2e,fgivesthestatisticaldistributionsofbrightdiskheightsandtheirperiodicitiesintheAFMimage,respectively.
Theheightsdifferencesbetweentwodis-tinctareasfallintoarangeof1.
6–2.
6nmwithameanvalueof2.
1nm.
Thisvalueislargerthanthatestimatedfromonesinglenitrobenzenegroup,whichisattributedtotheformationofnitrobenzeneoligomerandthelatticedistortionofgraphenefromsp2tosp3hybridization.
[28]Ontheotherhand,theperiodicityofthenearestneighbordisksfallsintoarangeof145–170nmwithameanvalueof155nm.
ThisdistanceiswellconsistentwiththediameterofSiO2spheres(≈150nm)inthecloselypackedmonolayer.
Electrostaticforcemicroscopy(EFM)isadirectmeasurementofthelocalrelativeworkfunctionwithananometerscalespatialresolution.
EFMwasalsoutilizedtocharacterizethepatternedstructureongrapheneafterchemicalmodication.
Figure3a,bpresentstheAFMandcorrespondingEFMimagesofchemicallypatternedgraphene.
Obviously,thebrightareasintheAFMimagehavesignicantlydifferentworkfunctionswiththesurroundings.
Thelocalelectrostaticpoten-tialsareestimatedtobe0.
143and0.
128Vforthebrightareasandthesurroundings,respectively.
Thisdifferenceinworkfunctionsofthetwokindsofregionsclearlyindicatesthedifferenceoftheirchemicalnatures.
Adv.
Mater.
2016,28,2148–2154www.
advmat.
dewww.
MaterialsViews.
comFigure2.
GraphenesuperlatticeformationonSiO2nanospheresassembly.
a)SEMimageofagraphenesheetontheclose-packingmonolayerof150nm-SiO2spheresafterthermalannealing.
Scalebar:1m.
b)Opticalmicroscopeimageofgraphenesheetafterchemicalreac-tiononnanospheresassembly,whichwastakenaftertransferredontoaatSiO2/Sisubstrate.
Scalebar:50m.
c)SEMimageofgraphenesheetin(b).
Thetopandbottominsetspresented,respectively,theSEMimagesofgraphenesheetannealedonnanospheresassemblywithoutchemicalreactionandofthatreactedonaatSiO2/Sisubstrate.
AlltheimagesweretakenaftertransferredontoaatSiO2/Sisubstrate.
Scalebar:1m.
d)AFMimageofthefunctionalizedgraphenesheetshownin(c).
Scalebar:1m.
e,f)Histogramsofdiskheightandperiodicitydistributionsofgrapheneafterchemicalreaction.
2151wileyonlinelibrary.
com2015WILEY-VCHVerlagGmbH&Co.
KGaA,WeinheimCOMMUNICATIONFromtheaboveexperimentalobservations,weconcludethatasite-selectivechemicalreactionhastakenplaceongraphenesheet,originatingfromthesubstrate-inducedenhancementofchemicalreactivity.
Inotherwords,thechemicalreactivityofgraphenecanbelocallymodulatedbythestructuraldesignofunderlyingsubstrate.
Thisoffersastraightforwardwaytofabricategraphenesuperlatticesbyusingclose-packingnano-spheresassembly.
WecansimplychangethediametersofSiO2nanospheresintheassemblytomodulatetheperiodicityofgra-phenesuperlattice.
Adv.
Mater.
2016,28,2148–2154www.
advmat.
dewww.
MaterialsViews.
comFigure3.
Originofgraphenesuperlattices.
a,b)AFMandcorrespondingEFMimagesofgrapheneon150nmSiO2nanospheresassemblyafterthermalannealingandchemicalmodication,respectively.
ThedatawereobtainedaftertransferredontoatSiO2/Sisubstrates.
Scalebar:500nm.
c)Ramanspectraofgrapheneonnanospheresassemblybefore(top)andafter(bottom)thermalannealingtreatment,normalizedtothe2Dpeakheightd)ScatterplotsofFWHMvaluesofRaman2Dbandversus2Dpeakpositionbeforeandafterannealing(121spectra).
e)Calculatedenergy(Esc)andbondingdistance(RCC)changesasafunctionofstrainingraphene.
2152wileyonlinelibrary.
com2015WILEY-VCHVerlagGmbH&Co.
KGaA,WeinheimCOMMUNICATIONThermalannealingtreatmentwasfoundtobecriticalfornetuningchemicalreactivityofgraphenebasalplaneontheclose-packingSiO2nanospheresassembly.
Toinvesti-gatetheeffectofthermalannealingprocess,Ramanspec-troscopywasperformedtotracktheannealingprocess.
AsshowninRamanspectraofgrapheneonPPSbeforeandafterannealing,theDpeaknear1300–1350cm1isverysmallanddoesnotshowanyobviouschangeafterannealing(FigureS1,SupportingInformation).
Thisobservationindi-catesthatnoremarkabledefectsareinducedduringthisannealingprocess.
TheGbandsplitsintotwopeaks:oneissimilartotheGpeakbeforeannealingandtheothershowsalargeupshiftalongwithabroadening(FigureS2,SupportingInformation).
Figure3cpresentsrepresentativeRaman2Dbandchangesofgrapheneonnanospheresassemblybeforeandafterthermalannealing.
Beforeannealing,the2Dpeakiscenteredat≈2689cm1,indicatingthatthepristinegrapheneisnearlyintrinsicgraphene.
[29]Afterannealingandcoolingtoroomtemperature,the2Dbandsplitsintotwopeaks:oneissimilartothe2DpeakbeforeannealingandtheothershowsalargeupshiftofΔw2D=26cm1alongwithabroadening.
Figure3dexhibitsthestatisticsresultsoffullwidthathalfmaximum(FWHM)ofthe2Dpeakofgraphenebeforeandafterannealingagainstitsspectralposition.
TheremarkablechangesofGand2Dbandsarestrongevidenceoftheexist-enceofcompressivestrainonthegrapheneplaneinducedbythermalannealing.
[25,30]Twosplitting2Dpeaksarecorre-spondingtothesuspendingareaswithoutmechanicalstrainandtheSiO2-contactedareaswithcompressivestrain,respec-tively.
ThecompressivestrainarisesfromthedifferenceinthermalexpansioncoefcientsbetweengrapheneandtheunderlyingSiO2spheres.
[25]Asthetemperatureincreases,graphenecontractswhiletheunderlyingSiO2spheresexpand.
Ontheotherhand,grapheneexpandswhiletheunderlyingsubstrateshrinksinthecoolingprocess.
Relativeslippingoccursbetweenthegraphenesheetandthesubstrateoveracriticaltemperature,determinedbyvanderWaalsforcesbetweenthem.
LocalcompressivestrainremainsinthegrapheneplaneattheSiO2nanosphere-contactingareas,asevidencedbytheaboveRaman2Dbandchanges.
[30]Inaddi-tion,theSiO2-contactedgraphenehasmuchlargerFWHMof2Dbandthansuspendedone.
ThelargerFWHMof2Dbandmightbecontributedtothepresenceofelectron-holepuddlesonSiO2-contactedgraphenebecauseelectron-holepuddlesongraphenewhosesizeissmallerthanRamanlaserspotsizewouldleadtoabroader2Dband.
[18]WetheoreticallycalculatedthestraineffectonthechemicalreactivityofgraphenebasedonthefollowingformulasEEEEEEEEEEE()()=+σσσ()bCMGGCFscbb0CMGCMG0GG0whereEbisthebindingenergy,EGistheenergyofgraphene,ECMGistheenergyofchemicallymodiedgraphene,ECFistheenergyofthefunctionalgroup,andEscisthedifferenceofthereactionenergybetweengraphenewithandwithoutstrain.
Thesuperscriptsσand0denotethevaluewithandwithoutisotropicstrainongraphene,respectively.
Figure3eshowsthechangeofEscvalueasafunctionofstrainongraphene.
Apparently,Escdecreasesforbothtensileandcompressivestrains,indicatingthatgrapheneunderstrainismoreener-geticallyfavorableforchemicalreactionsasexpected.
Atastrainlessthan0.
02,thereisnodistinctdifferencebetweentensileandcompressivestrainsongraphene'sreactivity.
Atalargerstrain,however,thecompressivestrainismoreeffec-tiveforenhancingthereactivity(Esc=1.
65eVforσ=0.
05;Esc=0.
21eVforσ=0.
05).
Inaddition,asthecompressivestrainincreases,thedistancebetweengrapheneandfunc-tionalgroupgraduallydecreases.
Thistheoreticalresultwellsupportsourexperimentalobservation,i.
e.
,thelocalcom-pressivestraininducedbySiO2nanospherescanenhancethechemicalreactivityofgraphenewithdiazoniumsalt.
Thus,thecompressivestraincombinedwithchargepuddlesenhancedanddifferentiatedSiO2-contactedgraphene'sreactivityfromthesurroundings,enablingthemask-freechemicalpatterningofgraphene.
Variousgraphenesuperlatticescanbefabricatedbydesigningthesupportingsubstratesofgraphenesheetbasedonthislocalsubstrate-inducedchemicalreactionapproach.
TheperiodicityofgraphenesuperlatticecanbesimplymodulatedbyvaryingthediametersofSiO2nanospheres.
Graphenesuperlatticeswithaperiodicityof400(Figure4e),150(Figure4f),and114nm(Figure4g)havebeenfabricatedinsuchaway.
ByusingaSiO2nanoholearraysubstrateshowninFigure4d,agraphenesuperlatticewithreversedpatternstructurehasbeensuccess-fullyfabricated(Figure4h).
Itshouldbeemphasizedthatthecontrolofreactiontimeiscriticaltotheformationofsuperlat-tice.
Takinga150nmSiO2nanospheresassemblyasthesup-portingsubstrate,wegraduallyincreasedthereactiontimeofgraphenewithdiazoniumsaltfrom0.
5to4h.
Atthebeginning,nodiscerniblepatternstructurewasobserved(Figure4i).
Thegraphenesuperlatticeappearedafter1hreaction(Figure4j).
However,anover-reactionalsodestroyedthesuperlatticestruc-tureasseeninFigure4k.
Thereasonisthatthereactionhasoccurredonthewholegraphenesurfaceinanelongatedreac-tiontime.
Moreover,thereisalsoabigfreedomforgraftingdifferentfunctionalgroupsontographenesheetusingthepre-sentedapproach.
GiveninFigure4lisanexampleofgraphenesuperlatticemadebyphotomethylationreaction,inwhichgra-phenewasperiodicallymodiedbymethylgroupsinsteadofnitrobenzene.
Insummary,wepresentauniversalsubstrateengi-neeringapproachtofabricategraphenesuperlatticesbasedonthesubstrate-enhancedchemicalreactivityofgraphene.
Variousgraphenesuperlatticesdowntonanometerscalehavebeenmadebyusingtheclose-packingmonolayerofSiO2nanosphereswithdifferentperiodicities.
Ithasbeenprovedthatsuchastrategycanbeappliedtofabricatearbi-trarygraphenesuperlatticessimplybynanostructuringthesupportingsubstratesofgraphenesheets.
Thereisalsoafreedomforthechoiceofchemicalreactions,asdemon-stratedbydiazoniumsaltreactionandphotomethylationreactioninthiswork.
Thisallowsustomakeaperiodicmodificationofgraphenesheetwithdesiredfunctionalities.
Thismask-freetechniqueprovidesaneffectiveandversa-tilerouteforfabricatinggraphenesuperlatticewhichcanbeutilizedingraphene-basedelectronicandoptoelectronicdevices,chemo/biosensorsandforstudyingtherichphysicsof2Dsuperlattices.
Adv.
Mater.
2016,28,2148–2154www.
advmat.
dewww.
MaterialsViews.
com2153wileyonlinelibrary.
com2015WILEY-VCHVerlagGmbH&Co.
KGaA,WeinheimCOMMUNICATIONAdv.
Mater.
2016,28,2148–2154www.
advmat.
dewww.
MaterialsViews.
comExperimentalSectionPreparationofPPS:Aminopropylmethyl-diethoxysilanewasaddedtoastocksolutioncontaining1wt%monodispersecolloidalSiO2nanospheres(UnisizeTechnology,China).
Afterheatingthesolutionto100°Cfor8–12h,theresultingsolutionwaswashedthreetimeswithethanolandthenultrasonicatedinmethanol.
Then,thechemicallymodiedSiO2sphereswereself-assembledontoSiO2/SisubstratesbyusingLangmuir–Blodgetttechnique.
TheSiO2nanoholearraysubstratewasfabricatedthroughthefollowingprocedures:commercialpolyethylenespheresweredepositedontoSiO2/Sisubstratetoformaclose-packingmonolayer;thenthesphereswereshrunkdownbyplasmaetchingtreatment;a10nmSiO2layerwasthermallydepositedontothesubstrateandthesphereswereremovedafterultrasonictreatmentintoluene.
BeforetransferringgrapheneontoPPS,theas-preparedPPSwastreatedwithoxygenplasmafor30min(15W)toremoveorganiccomponentsonthespheresurface.
Site-SelectiveModicationofGraphene:TheCVDgrowngrapheneonCufoilswastransferredontoPPSbyusinga"drytransfer"method[31]toavoidwatertrappingbetweengrapheneandsubstrate.
AftertransferringthegraphenelmontoPPS,thesamplewasannealedat350°Cfor2hinforminggas(30sccmH2/100sccmAr)underambientpressure.
Then,thegraphenesampleswereimmersedintoamixedaqueoussolutionof20mM4-nitrobenzenediazoniumtetrauoroborate(≈10mL)and1wt%sodiumdodecylsulfateaqueoussolution(2mL),wheretheywerereactedfor1.
5hat40°C.
Forthephotomethylationprocess,thegraphenesampleswereimmersedindi-tert-butylperoxide(99%)andirradiatedunderUVlightwiththewavelengthrangefrom320to500nm.
Aftersite-selectivechemicalmodication,thesampleswererinsedwithdeionizedwater,immersedindeionizedwaterfor2h,anddriedwithnitrogengas.
TonondestructivelydelaminatethefunctionalizedgraphenelmfromPPS,thesampleswereimmersedina10%HFaqueoussolutionatroomtemperatureusingPMMAlmasthetransfermedium.
AfterdetachingthegraphenefromPPS,weleftthePMMA-supportedgrapheneoatinginHFsolutionfor20minbeforetransferringittoatSiO2/SisubstratesforcompletelyremovingtheresidualSiO2.
ThePMMAlmwasnallyremovedbyhotacetone.
Characterizations:RamanspectrawerecollectedwithaHoribaJobinYvonLabRAMHR800systemwitha514.
5nmexcitationlaser.
Thelaserspotsizewas≈1m.
XPSmeasurementswereperformedonaKratosAxisUltraspectrometerwithAlKαmonochromatedradiationatlowpressuresof5*109–1*108Torr.
TheXPScollectionareawas≈300*700m2.
Tocorrectforcharging,thehighestpeakinC1sspectrumwasshiftedto284.
5eV.
AFMandEFMwereconductedonaBrukerDimensionIconatomicforcemicroscopeintappingmode.
ForEFMmeasurements,thetopographicinformationwasobtainedintherstpass,andthenthetipwasliftedbyagivenconstantheightof20nmabovethesamplesurfaceandbiasedaDCvoltageVtipinthesecondpass.
Conductingtips(SCM-PIT,Bruker)witharesonancefrequencyofca.
70kHzandspringconstantofca.
2.
8Nm1wereused.
TheoreticalCalculations:Toperformgeometryoptimizationandenergycalculationsforgrapheneandchemicallymodiedgrapheneunderdifferentstrains,densityfunctionaltheoryimplementedintheViennaabinitiosimulationpackage[32]wasused.
Consideringspinpolarization,weadoptedthegeneralgradientapproximationwiththePerdew–Burke–Ernzerhofexchangecorrelationfunctional[33]andacut-offenergyof520eV.
Geometryoptimizationcontinueduntilalltheatomicforceswerelessthan0.
01eV/.
TheMonkhorst–Packgridmeshwas7*7*1forallsystemsintheself-consistentelditeration.
Adjacentsheetswereseparatedbyatleast20toavoidinteractionsbetweenthem.
SupportingInformationSupportingInformationisavailablefromtheWileyOnlineLibraryorfromtheauthor.
Figure4.
Versatilegraphenesuperlattices.
a–c)SEMimagesof400,150,and114nmSiO2nanospheresassemblyusedforsuperlatticeformation,respectively.
d)SiO2nanoholearraywithaperiodicityof200nmusedforsuperlatticeformation.
eh)Graphenesuperlatticesmadefrom(a–d)afterreactingwithdiazoniumsaltandtransferredontoatSiO2/Sisubstrates.
i–k)SEMimagesofgraphenesheeton150nmSiO2nanospheresassemblywithareactiontimeof0.
5,1,and4h,respectively.
l)SEMimageofgraphenesuperlatticeobtainedfrom150nmSiO2nanospheresassemblybyphotomethylationreaction.
Thescalebarsin(ac)and(eg)are500nm,andin(d),(h–l)are200nm,respectively.
2154wileyonlinelibrary.
com2015WILEY-VCHVerlagGmbH&Co.
KGaA,WeinheimCOMMUNICATIONAdv.
Mater.
2016,28,2148–2154www.
advmat.
dewww.
MaterialsViews.
comAcknowledgementsL.
Z.
andL.
L.
contributedequallytothiswork.
ThisstudywasfundedbytheMinistryofScienceandTechnologyofChina(GrantNos.
2013CB932603,2012CB933404,and2011CB933003),theNationalNaturalScienceFoundationofChina(GrantNos.
51432002and51121091),theMinistryofEducation(20120001130010),andtheInternationalPostdoctoralExchangeFellowshipProgram(GrantNo.
20130002).
Received:October30,2015Revised:November12,2015Publishedonline:December23,2015[1]K.
S.
Novoselov,A.
K.
Geim,S.
V.
Morozov,D.
Jiang,Y.
Zhang,S.
V.
Dubonos,I.
V.
Grigorieva,A.
A.
Firsov,Science2004,306,666.
[2]A.
K.
Geim,K.
S.
Novoselov,Nat.
Mater.
2007,6,183.
[3]L.
Liao,H.
Peng,Z.
Liu,J.
Am.
Chem.
Soc.
2014,136,12194.
[4]G.
L.
C.
Paulus,Q.
H.
Wang,M.
S.
Strano,Acc.
Chem.
Res.
2012,46,160.
[5]X.
Huang,X.
Qi,F.
Boey,H.
Zhang,Chem.
Soc.
Rev.
2012,41,666.
[6]V.
Georgakilas,M.
Otyepka,A.
B.
Bourlinos,V.
Chandra,N.
Kim,K.
C.
Kemp,P.
Hobza,R.
Zboril,K.
S.
Kim,Chem.
Rev.
2012,112,6156.
[7]L.
Zhou,L.
Zhou,M.
Yang,D.
Wu,L.
Liao,K.
Yan,Q.
Xie,Z.
Liu,H.
Peng,Z.
Liu,Small2013,9,1388.
[8]L.
Zhang,L.
Zhou,M.
Yang,Z.
Liu,Q.
Xie,H.
Peng,Z.
Liu,Small2013,9,1134.
[9]L.
Zhou,L.
Zhou,X.
Wang,J.
Yu,M.
Yang,J.
Wang,H.
Peng,Z.
Liu,APLMater.
2014,2,092505.
[10]D.
C.
Elias,R.
R.
Nair,T.
M.
G.
Mohiuddin,S.
V.
Morozov,P.
Blake,M.
P.
Halsall,A.
C.
Ferrari,D.
W.
Boukhvalov,M.
I.
Katsnelson,A.
K.
Geim,K.
S.
Novoselov,Science2009,323,610.
[11]R.
Balog,B.
Jrgensen,L.
Nilsson,M.
Andersen,E.
Rienks,M.
Bianchi,M.
Fanetti,E.
Lgsgaard,A.
Baraldi,S.
Lizzit,Z.
Sljivancanin,F.
Besenbacher,B.
Hammer,T.
G.
Pedersen,P.
Hofmann,L.
Hornekr,Nat.
Mater.
2010,9,315.
[12]R.
R.
Nair,W.
C.
Ren,R.
Jalil,I.
Riaz,V.
G.
Kravets,L.
Britnell,P.
Blake,F.
Schedin,A.
S.
Mayorov,S.
J.
Yuan,M.
I.
Katsnelson,H.
M.
Cheng,W.
Strupinski,L.
G.
Bulusheva,A.
V.
Okotrub,I.
V.
Grigorieva,A.
N.
Grigorenko,K.
S.
Novoselov,A.
K.
Geim,Small2010,6,2877.
[13]Z.
Sun,C.
L.
Pint,D.
C.
Marcano,C.
Zhang,J.
Yao,G.
Ruan,Z.
Yan,Y.
Zhu,R.
H.
Hauge,J.
M.
Tour,Nat.
Commun.
2011,2,559.
[14]J.
Bai,X.
Zhong,S.
Jiang,Y.
Huang,X.
Duan,Nat.
Nanotechnol.
2010,5,190.
[15]Z.
Osvath,E.
Gergely-Fulop,N.
Nagy,A.
Deak,P.
Nemes-Incze,X.
Jin,C.
Hwang,L.
P.
Biro,Nanoscale2014,6,6030.
[16]M.
Yamamoto,O.
Pierre-Louis,J.
Huang,M.
S.
Fuhrer,T.
L.
Einstein,W.
G.
Cullen,Phys.
Rev.
X2012,2,041018.
[17]J.
Martin,N.
Akerman,G.
Ulbricht,T.
Lohmann,J.
H.
Smet,K.
vonKlitzing,A.
Yacoby,Nat.
Phys.
2008,4,144.
[18]Q.
H.
Wang,Z.
Jin,K.
K.
Kim,A.
J.
Hilmer,G.
L.
C.
Paulus,C.
-J.
Shih,M.
-H.
Ham,J.
D.
Sanchez-Yamagishi,K.
Watanabe,T.
Taniguchi,J.
Kong,P.
Jarillo-Herrero,M.
S.
Strano,Nat.
Chem.
2012,4,724.
[19]N.
Levy,S.
A.
Burke,K.
L.
Meaker,M.
Panlasigui,A.
Zettl,F.
Guinea,A.
H.
C.
Neto,M.
F.
Crommie,Science2010,329,544.
[20]N.
N.
Klimov,S.
Jung,S.
Zhu,T.
Li,C.
A.
Wright,S.
D.
Solares,D.
B.
Newell,N.
B.
Zhitenev,J.
A.
Stroscio,Science2012,336,1557.
[21]F.
Guinea,M.
I.
Katsnelson,A.
K.
Geim,Nat.
Phys.
2010,6,30.
[22]M.
A.
Bissett,S.
Konabe,S.
Okada,M.
Tsuji,H.
Ago,ACSNano2013,7,10335.
[23]Q.
Wu,Y.
Wu,Y.
Hao,J.
Geng,M.
Charlton,S.
Chen,Y.
Ren,H.
Ji,H.
Li,D.
W.
Boukhvalov,R.
D.
Piner,C.
W.
Bielawski,R.
S.
Ruoff,Chem.
Commun.
2013,49,677.
[24]W.
Bao,F.
Miao,Z.
Chen,H.
Zhang,W.
Jang,C.
Dames,C.
N.
Lau,Nat.
Nanotechnol.
2009,4,562.
[25]D.
Yoon,Y.
-W.
Son,H.
Cheong,NanoLett.
2011,11,3227.
[26]E.
Bekyarova,M.
E.
Itkis,P.
Ramesh,C.
Berger,M.
Sprinkle,W.
A.
deHeer,R.
C.
Haddon,J.
Am.
Chem.
Soc.
2009,131,1336.
[27]M.
S.
Dresselhaus,A.
Jorio,M.
Hofmann,G.
Dresselhaus,R.
Saito,NanoLett.
2010,10,751.
[28]L.
Gan,D.
Zhang,X.
Guo,Small2012,8,1326.
[29]A.
Das,S.
Pisana,B.
Chakraborty,S.
Piscanec,S.
K.
Saha,U.
V.
Waghmare,K.
S.
Novoselov,H.
R.
Krishnamurthy,A.
K.
Geim,A.
C.
Ferrari,A.
K.
Sood,Nat.
Nanotechnol.
2008,3,210.
[30]O.
Frank,G.
Tsoukleri,J.
Parthenios,K.
Papagelis,I.
Riaz,R.
Jalil,K.
S.
Novoselov,C.
Galiotis,ACSNano2010,4,3131.
[31]N.
Petrone,C.
R.
Dean,I.
Meric,A.
M.
vanderZande,P.
Y.
Huang,L.
Wang,D.
Muller,K.
L.
Shepard,J.
Hone,NanoLett.
2012,12,2751.
[32]G.
Kresse,J.
Furthmüller,Comp.
Mater.
Sci.
1996,6,15.
[33]J.
P.
Perdew,K.
Burke,M.
Ernzerhof,Phys.
Rev.
Lett.
1996,77,3865.
麻花云怎么样?麻花云公司成立于2007年,当前主打产品为安徽移动BGP线路,数据中心连入移动骨干网。提供5M,10M大带宽云主机,香港云服务器产品,数据中心为香港将军澳机房,香港宽频机房 cn2-GIA优质线路、采用HYPER-V,KVM虚拟技术架构一、麻花云官网点击直达麻花云官方网站合肥网联网络科技有限公司优惠码: 专属优惠码:F1B07B 享受85折优惠。最新活动 :双11 云上嗨购 香港云主...
如今我们很多朋友做网站都比较多的采用站群模式,但是用站群模式我们很多人都知道要拆分到不同IP段。比如我们会选择不同的服务商,不同的机房,至少和我们每个服务器的IP地址差异化。于是,我们很多朋友会选择美国多IP站群VPS商家的产品。美国站群VPS主机商和我们普通的云服务器、VPS还是有区别的,比如站群服务器的IP分布情况,配置技术难度,以及我们成本是比普通的高,商家选择要靠谱的。我们在选择美国多IP...
DiyVM是一家低调国人VPS主机商,成立于2009年,提供的产品包括VPS主机和独立服务器租用等,数据中心包括香港沙田、美国洛杉矶、日本大阪等,VPS主机基于XEN架构,均为国内直连线路,主机支持异地备份与自定义镜像,可提供内网IP。最近,商家对香港机房VPS提供5折优惠码,最低2GB内存起优惠后仅需50元/月。下面就以香港机房为例,分享几款VPS主机配置信息。CPU:2cores内存:2GB硬...
www.20ren.com为你推荐
微信回应封杀钉钉微信大封杀什么时候结束mathplayer比较word,TeX,MathML中的数学公式处理方式的异同点,尽量详细哦,分数不是问题,谢谢哈,会加分的。lunwenjiance我写的论文,检测相似度是21.63%,删掉参考文献后就只有6.3%,这是为什么?百度关键词分析关键词怎么分析?777k7.com怎么在这几个网站上下载图片啊www.777mu.com www.gangguan23.comwww.gegeshe.comSHE个人资料www.7788dy.comwww.tom365.com这个免费的电影网站有毒吗?www.baitu.com我看电影网www.5ken.com为什么百度就不上关键字呢lcoc.top服装英语中double topstitches什么意思www.k8k8.com谁能给我几个街污网站我去自己学
域名服务器是什么 七牛优惠码 企业主机 mobaxterm php免费空间 镇江联通宽带 谁的qq空间最好看 卡巴斯基试用版 域名和空间 免费高速空间 空间租赁 万网空间管理 便宜空间 备案空间 电信网络测速器 永久免费空间 稳定空间 广东主机托管 国外免费云空间 网络速度 更多