photoelectronwww.20ren.com

www.20ren.com  时间:2021-03-17  阅读:()
2015WILEY-VCHVerlagGmbH&Co.
KGaA,Weinheim2148wileyonlinelibrary.
comCOMMUNICATIONSubstrate-InducedGrapheneChemistryfor2DSuperlatticeswithTunablePeriodicitiesLinZhou,LeiLiao,JinyingWang,JingwenYu,DenghuaLi,QinXie,ZhirongLiu,YanlianYang,XuefengGuo,andZhongfanLiu*Dr.
L.
Zhou,Dr.
L.
Liao,Dr.
J.
Wang,J.
Yu,Dr.
Q.
Xie,Prof.
Z.
Liu,Prof.
X.
Guo,Prof.
Z.
LiuCenterforNanochemistryBeijingScienceandEngineeringCentreforNanocarbonsBeijingNationalLaboratoryforMolecularSciencesCollegeofChemistryandMolecularEngineeringPekingUniversityBeijing100871,P.
R.
ChinaE-mail:ziu@pku.
edu.
cnDr.
D.
Li,Prof.
Y.
YangNationalCenterforNanoscienceandTechnologyBeijing100190,P.
R.
ChinaDOI:10.
1002/adma.
201505360pseudo-magneticeldsingrapheneandengineeritselectronicstructure.
Strain-inducedsuperlatticescanproducesignicantenergygapsingrapheneandshowapseudo-magneticquantumhalleffect.
[21]Recently,itwasalsoshownthatstraininggra-pheneleadstoasubstantialincreaseofitsreactionratewithdiazoniumsaltsandthenalmodicationdegree.
[22,23]Sub-strate-inducedcharge(holeorelectron)puddlesarefoundtoincreasethechemicalreactivityofgraphenetowarddiazoniumfunctionalization.
[18]Thesephenomenastronglysuggestthepossibilityofsubstrateengineeringforcontrollinggraphene'schemicalreactivityonitsbasalplaneforthepurposeoffabri-cating2Dsuperlattices.
Inthispaper,wereportasubstrateengineeringapproachtoperiodicallypatternthegraphenebasalplaneforthepur-poseoffabricating2Dgraphenesuperlattices(Figure1a).
Thismask-freepatterningtechniqueisinspiredbytheoldChineserubbingprinting,inwhichthepigmentisdepositedoverpro-trusionsbyrubbinghardrenderingmaterialsoverpaperwhilethedepressionsremainunpigmented.
Inourapproach,thereactivespeciesactasthepigmentandthechemicalreactionofgrapheneisguidedbytheunderlyingsubstratewithperi-odicprotrusions.
Thesepredesignedprotrusionsintroduceperiodiccompressivestrainintothegraphenebasalplanebythermalannealingtreatmentbecauseofgraphene'snegativethermalexpansioncoefcient.
[24,25]Moreover,theSiO2protru-sionscouldinducechargepuddlesingraphene,whichfurtherincreasethechemicalreactivityofattachedgraphene.
[18]Theexistenceoflocalstrainandchargepuddlescouldenhancethechemicalreactivityofgraphene,leadingtoalocalizedperiodicfunctionalizationonthegraphenesheet.
Asaresult,graphenesuperlatticecanbeachievedwiththepredesignedsubstrate.
Wehavesuccessfullyfabricatedvariousgraphenesuperlatticeswithdifferentperiodicitiesinsuchaway.
Thissubstrateengineeringtechniqueallowsforawell-controlledperiodicmodicationofgraphene,enablingtheconstructionofvariousgraphene-basedelectronicandoptoelectronicdevices,chemo/biosensorsandthestudiesofrichphysicsof2Dsuperlattices.
Aschematicofthefabricationprocessof2Dgraphenesuper-latticebasedonthelocalsubstrateengineeringofgraphenechemistryisillustratedinFigure1b.
First,theperiodicallypat-ternedsubstrate(PPS)wasfabricatedbyself-assemblingmono-dispersedcolloidalSiO2nanospheresmonolayerontoSiO2/Sisubstrate.
Second,chemicalvapordeposition(CVD)-growngraphenewastransferredontosuchpatternedsubstrates.
Poly(methylmethacrylate)(PMMA)thinlmwasusedasthetransfermedium,andthenremovedbyhotacetone.
Tointroduceperiodiccompressivestrainintothegraphenelm,Theadventofgraphene,a2Dcrystallinemonolayermadeofsp2-bondedcarbonatomsarrangedinahoneycomblattice,hasledtoanexplosionofinterestinscienticandindustrialcommunitiesbecauseofitsfascinatingelectrical,thermal,andmechanicalproperties.
[1,2]Auniquefeatureofgrapheneisthatallthecarbonatomsinitsbasalplanearechemicallyacces-sible,providingapowerfulpathwaytotailorthephysicalandchemicalpropertiesofpristinegraphenebyusingchemicalapproaches.
Althoughgrapheneisgenerallychemicallyinertbecauseofitsgiantdelocalizedπsystem,covalentfunctionali-zationhasbeendemonstratedtobepossibleforthepurposesofachievingbandgapengineering,doping-levelmodulation,chemo-andbiosensing,newcompositesynthesisandlarge-scalesolution-processedproduction.
[3–10]Thecovalentchem-istryofgraphenealsoprovidesafreedomtocreatenew2Dmaterialsand/or2Dgraphenesuperlatticesbeyondgraphene,creatingaroutetostudytherichphysicsexpectedinattrac-tivequantumsystems.
[10–12]Todate,severalapproacheshavebeenreportedforfabricating2Dgraphenesuperlattices.
[13,14]However,mostoftheseexamplesarebasedonthemasktech-nique,whichlimitsthestructuralresolutiontoonlymicro-meterscales.
Aneffectivechemicalapproachtothenanometerscalegraphenesuperlatticeswithtunableperiodicitiesishighlydesirable,whichiscrucialforgeneratingabandgapinthezero-gappristinegrapheneforelectronicsandoptoelectronicsapplications.
[14]Becauseofitsatomicallythinfeature,grapheneisstronglyinuencedbysubstratewhichcaninduceexternalinuences,e.
g.
,strain[15,16]andchargepuddles.
[17,18]Straindistortsthegra-phene'slatticeandhencestronglyinuencesitsphysicalandchemicalproperties.
Bothexperimental[19,20]andtheoretical[21]studieshavedemonstratedthatstraincanbuildenormousAdv.
Mater.
2016,28,2148–2154www.
advmat.
dewww.
MaterialsViews.
com2149wileyonlinelibrary.
com2015WILEY-VCHVerlagGmbH&Co.
KGaA,WeinheimCOMMUNICATIONthus-obtainedsampleswereannealedat350°Cfor2hinforminggas(30sccmH2/100sccmAr)underatmosphericpressure.
Then,thegraphenesamplewasimmersedintoa4-nitrobenzenediazoniumtetrauoroboratesolutionat40°Cforcovalentmodication.
Thefollowingchemicalreactionisexpectedtotakeplace.
[26]Thediazoniumsaltreceiveselec-tronsfromgraphene,generatingactivenitrobenzenefreeradi-cals,whichattachtothegrapheneskeletonviacovalentbonds(Figure1c).
Finally,thenitrobenzene-terminatedgraphenesuperlatticewasdelaminatedfromthePPSsurfaceandtrans-ferredontoaattargetsubstrate.
Figure1dshowsthetypicalRamanspectraofgrapheneonthePPSbeforeandafterchemicalmodication,revealingtheformationofsp3defects.
Forpristinegraphene,noRamanDpeakisobserved,indicativeofitshighquality.
Afterthereac-tionwithdiazoniumsalt,aprominentdisorder-inducedDpeakappearsat1350cm1togetherwithadefect-inducedD′peakat1620cm1.
Inaddition,thedouble-resonance2Dpeakisstronglyweakened.
Theseobservationssuggestthepresenceofalargenumberofsp3defects,[27]whichoriginatefromcova-lentgraftingofnitrobenzenegroupsontothegrapheneplane.
FurtherX-rayphotoelectronspectroscopy(XPS)studyalsocon-rmsthereactionbetweengrapheneanddiazoniumsaltbyrevealinganN1speakonthemodiedgraphene.
Asseenfromthehigh-resolutionN1sspectrainFigure1e,twoprominentpeaksemergeat405.
8and399.
7eVafterreaction.
ThepeakatAdv.
Mater.
2016,28,2148–2154www.
advmat.
dewww.
MaterialsViews.
comFigure1.
Graphenesuperlatticefromsite-selectivechemicalreaction.
a)Schematicofperiodicchemicalfunctionalizationofgrapheneviasubstrateengineering.
b)Experimentalprocedureforfabricatinggraphenesuperlattices.
c)Covalentattachmentofnitrobenzenegroupsongraphenebasalplanebyreactionwithdiazoniumsalt.
d)Ramanspectraofgraphenebefore(blue)andafter(red)chemicalmodication.
e)High-resolutionXPSN1sspectraofgraphenebefore(black)andafter(red)diazoniumreaction,inwhichthegraphenesamplewastransferredontoaat300nmSiO2/Sisubstrate.
2150wileyonlinelibrary.
com2015WILEY-VCHVerlagGmbH&Co.
KGaA,WeinheimCOMMUNICATION405.
8eVisattributedtothenitrogroups,conrmingthepres-enceofnitrophenylgroupsonthefunctionalizedgraphene.
ThelowerbindingenergyN1speakat399.
7eVisassociatedwithareducednitrogenspecies,possiblygeneratedbytransfor-mationsfromnitrotoaminegroupscausedbyelectronsusedforneutralizationintheXPSchamber.
[26]TheseRamanandXPSresultsstronglysuggestthatnitrobenzenegroupshavebeensuccessfullygraftedontothegraphenelattice.
Figure2ashowsthescanningelectronmicroscopy(SEM)imageofpristinegrapheneonthecloselypackedmonolayerof150nmSiO2spheresafterthermalannealing.
CompressivestrainandchargepuddlesareexpectedtobeintroducedintotheregionsofgrapheneinclosecontactwithSiO2spheres.
Figure2bexhibitsthetypicalopticalmicroscopeimageofchemicallyfunctionalizedgrapheneafterdelaminationfromthePPSsurfaceandtransferringontoaatSiO2/Sisubstrate.
Asisclearlyseen,thegra-phenelmkeepsitsintegrityanddoesnotexhibitobviousopticalcontrastbetweendif-ferentareas.
However,theSEMimageofthesamegraphenelmdisplayedinFigure2ciscompletelydifferent,whichischaracter-isticofaperiodicblackdiskstructurewithaperiodicitymatchingwiththeoriginalclose-packingnanospheresmonolayer.
Asacon-trolexperiment,thesamethermalannealingtreatmentofgraphenewasdoneonthenano-spheresassemblywithoutchemicalreaction.
Nodiscerniblepatternsareobservedongra-phenesheetinthiscase(Figure2c,topinset),whichexcludedthepossiblecontributionofPPS-inducedphysicaleffectafterthermalannealingonthepatternformation.
Inaddi-tion,whenthesamechemicalreactionofgraphenewasdoneonaatSiO2/Sisub-strate,onlyuniformmodicationoccurredonthewholegraphenesurface(Figure2c,bottominset).
Theabovephenomenasuggestthatthenanosphere-contactedareashaveenhancedthechemicalreactivityofgraphenewithdiazoniumsalt,leadingtothesite-selec-tivereactionofgraphenesheet.
Furtheratomicforcemicroscopy(AFM)studiesconrmedtheperiodicpatternstruc-tureongraphenesheet(Figure2d).
TheAFMtopographicimageexhibitstwodistinctareaswithdifferentheightsarrangedinaclose-packingstructuresimilartotheoriginalPPSpattern.
Figure2e,fgivesthestatisticaldistributionsofbrightdiskheightsandtheirperiodicitiesintheAFMimage,respectively.
Theheightsdifferencesbetweentwodis-tinctareasfallintoarangeof1.
6–2.
6nmwithameanvalueof2.
1nm.
Thisvalueislargerthanthatestimatedfromonesinglenitrobenzenegroup,whichisattributedtotheformationofnitrobenzeneoligomerandthelatticedistortionofgraphenefromsp2tosp3hybridization.
[28]Ontheotherhand,theperiodicityofthenearestneighbordisksfallsintoarangeof145–170nmwithameanvalueof155nm.
ThisdistanceiswellconsistentwiththediameterofSiO2spheres(≈150nm)inthecloselypackedmonolayer.
Electrostaticforcemicroscopy(EFM)isadirectmeasurementofthelocalrelativeworkfunctionwithananometerscalespatialresolution.
EFMwasalsoutilizedtocharacterizethepatternedstructureongrapheneafterchemicalmodication.
Figure3a,bpresentstheAFMandcorrespondingEFMimagesofchemicallypatternedgraphene.
Obviously,thebrightareasintheAFMimagehavesignicantlydifferentworkfunctionswiththesurroundings.
Thelocalelectrostaticpoten-tialsareestimatedtobe0.
143and0.
128Vforthebrightareasandthesurroundings,respectively.
Thisdifferenceinworkfunctionsofthetwokindsofregionsclearlyindicatesthedifferenceoftheirchemicalnatures.
Adv.
Mater.
2016,28,2148–2154www.
advmat.
dewww.
MaterialsViews.
comFigure2.
GraphenesuperlatticeformationonSiO2nanospheresassembly.
a)SEMimageofagraphenesheetontheclose-packingmonolayerof150nm-SiO2spheresafterthermalannealing.
Scalebar:1m.
b)Opticalmicroscopeimageofgraphenesheetafterchemicalreac-tiononnanospheresassembly,whichwastakenaftertransferredontoaatSiO2/Sisubstrate.
Scalebar:50m.
c)SEMimageofgraphenesheetin(b).
Thetopandbottominsetspresented,respectively,theSEMimagesofgraphenesheetannealedonnanospheresassemblywithoutchemicalreactionandofthatreactedonaatSiO2/Sisubstrate.
AlltheimagesweretakenaftertransferredontoaatSiO2/Sisubstrate.
Scalebar:1m.
d)AFMimageofthefunctionalizedgraphenesheetshownin(c).
Scalebar:1m.
e,f)Histogramsofdiskheightandperiodicitydistributionsofgrapheneafterchemicalreaction.
2151wileyonlinelibrary.
com2015WILEY-VCHVerlagGmbH&Co.
KGaA,WeinheimCOMMUNICATIONFromtheaboveexperimentalobservations,weconcludethatasite-selectivechemicalreactionhastakenplaceongraphenesheet,originatingfromthesubstrate-inducedenhancementofchemicalreactivity.
Inotherwords,thechemicalreactivityofgraphenecanbelocallymodulatedbythestructuraldesignofunderlyingsubstrate.
Thisoffersastraightforwardwaytofabricategraphenesuperlatticesbyusingclose-packingnano-spheresassembly.
WecansimplychangethediametersofSiO2nanospheresintheassemblytomodulatetheperiodicityofgra-phenesuperlattice.
Adv.
Mater.
2016,28,2148–2154www.
advmat.
dewww.
MaterialsViews.
comFigure3.
Originofgraphenesuperlattices.
a,b)AFMandcorrespondingEFMimagesofgrapheneon150nmSiO2nanospheresassemblyafterthermalannealingandchemicalmodication,respectively.
ThedatawereobtainedaftertransferredontoatSiO2/Sisubstrates.
Scalebar:500nm.
c)Ramanspectraofgrapheneonnanospheresassemblybefore(top)andafter(bottom)thermalannealingtreatment,normalizedtothe2Dpeakheightd)ScatterplotsofFWHMvaluesofRaman2Dbandversus2Dpeakpositionbeforeandafterannealing(121spectra).
e)Calculatedenergy(Esc)andbondingdistance(RCC)changesasafunctionofstrainingraphene.
2152wileyonlinelibrary.
com2015WILEY-VCHVerlagGmbH&Co.
KGaA,WeinheimCOMMUNICATIONThermalannealingtreatmentwasfoundtobecriticalfornetuningchemicalreactivityofgraphenebasalplaneontheclose-packingSiO2nanospheresassembly.
Toinvesti-gatetheeffectofthermalannealingprocess,Ramanspec-troscopywasperformedtotracktheannealingprocess.
AsshowninRamanspectraofgrapheneonPPSbeforeandafterannealing,theDpeaknear1300–1350cm1isverysmallanddoesnotshowanyobviouschangeafterannealing(FigureS1,SupportingInformation).
Thisobservationindi-catesthatnoremarkabledefectsareinducedduringthisannealingprocess.
TheGbandsplitsintotwopeaks:oneissimilartotheGpeakbeforeannealingandtheothershowsalargeupshiftalongwithabroadening(FigureS2,SupportingInformation).
Figure3cpresentsrepresentativeRaman2Dbandchangesofgrapheneonnanospheresassemblybeforeandafterthermalannealing.
Beforeannealing,the2Dpeakiscenteredat≈2689cm1,indicatingthatthepristinegrapheneisnearlyintrinsicgraphene.
[29]Afterannealingandcoolingtoroomtemperature,the2Dbandsplitsintotwopeaks:oneissimilartothe2DpeakbeforeannealingandtheothershowsalargeupshiftofΔw2D=26cm1alongwithabroadening.
Figure3dexhibitsthestatisticsresultsoffullwidthathalfmaximum(FWHM)ofthe2Dpeakofgraphenebeforeandafterannealingagainstitsspectralposition.
TheremarkablechangesofGand2Dbandsarestrongevidenceoftheexist-enceofcompressivestrainonthegrapheneplaneinducedbythermalannealing.
[25,30]Twosplitting2Dpeaksarecorre-spondingtothesuspendingareaswithoutmechanicalstrainandtheSiO2-contactedareaswithcompressivestrain,respec-tively.
ThecompressivestrainarisesfromthedifferenceinthermalexpansioncoefcientsbetweengrapheneandtheunderlyingSiO2spheres.
[25]Asthetemperatureincreases,graphenecontractswhiletheunderlyingSiO2spheresexpand.
Ontheotherhand,grapheneexpandswhiletheunderlyingsubstrateshrinksinthecoolingprocess.
Relativeslippingoccursbetweenthegraphenesheetandthesubstrateoveracriticaltemperature,determinedbyvanderWaalsforcesbetweenthem.
LocalcompressivestrainremainsinthegrapheneplaneattheSiO2nanosphere-contactingareas,asevidencedbytheaboveRaman2Dbandchanges.
[30]Inaddi-tion,theSiO2-contactedgraphenehasmuchlargerFWHMof2Dbandthansuspendedone.
ThelargerFWHMof2Dbandmightbecontributedtothepresenceofelectron-holepuddlesonSiO2-contactedgraphenebecauseelectron-holepuddlesongraphenewhosesizeissmallerthanRamanlaserspotsizewouldleadtoabroader2Dband.
[18]WetheoreticallycalculatedthestraineffectonthechemicalreactivityofgraphenebasedonthefollowingformulasEEEEEEEEEEE()()=+σσσ()bCMGGCFscbb0CMGCMG0GG0whereEbisthebindingenergy,EGistheenergyofgraphene,ECMGistheenergyofchemicallymodiedgraphene,ECFistheenergyofthefunctionalgroup,andEscisthedifferenceofthereactionenergybetweengraphenewithandwithoutstrain.
Thesuperscriptsσand0denotethevaluewithandwithoutisotropicstrainongraphene,respectively.
Figure3eshowsthechangeofEscvalueasafunctionofstrainongraphene.
Apparently,Escdecreasesforbothtensileandcompressivestrains,indicatingthatgrapheneunderstrainismoreener-geticallyfavorableforchemicalreactionsasexpected.
Atastrainlessthan0.
02,thereisnodistinctdifferencebetweentensileandcompressivestrainsongraphene'sreactivity.
Atalargerstrain,however,thecompressivestrainismoreeffec-tiveforenhancingthereactivity(Esc=1.
65eVforσ=0.
05;Esc=0.
21eVforσ=0.
05).
Inaddition,asthecompressivestrainincreases,thedistancebetweengrapheneandfunc-tionalgroupgraduallydecreases.
Thistheoreticalresultwellsupportsourexperimentalobservation,i.
e.
,thelocalcom-pressivestraininducedbySiO2nanospherescanenhancethechemicalreactivityofgraphenewithdiazoniumsalt.
Thus,thecompressivestraincombinedwithchargepuddlesenhancedanddifferentiatedSiO2-contactedgraphene'sreactivityfromthesurroundings,enablingthemask-freechemicalpatterningofgraphene.
Variousgraphenesuperlatticescanbefabricatedbydesigningthesupportingsubstratesofgraphenesheetbasedonthislocalsubstrate-inducedchemicalreactionapproach.
TheperiodicityofgraphenesuperlatticecanbesimplymodulatedbyvaryingthediametersofSiO2nanospheres.
Graphenesuperlatticeswithaperiodicityof400(Figure4e),150(Figure4f),and114nm(Figure4g)havebeenfabricatedinsuchaway.
ByusingaSiO2nanoholearraysubstrateshowninFigure4d,agraphenesuperlatticewithreversedpatternstructurehasbeensuccess-fullyfabricated(Figure4h).
Itshouldbeemphasizedthatthecontrolofreactiontimeiscriticaltotheformationofsuperlat-tice.
Takinga150nmSiO2nanospheresassemblyasthesup-portingsubstrate,wegraduallyincreasedthereactiontimeofgraphenewithdiazoniumsaltfrom0.
5to4h.
Atthebeginning,nodiscerniblepatternstructurewasobserved(Figure4i).
Thegraphenesuperlatticeappearedafter1hreaction(Figure4j).
However,anover-reactionalsodestroyedthesuperlatticestruc-tureasseeninFigure4k.
Thereasonisthatthereactionhasoccurredonthewholegraphenesurfaceinanelongatedreac-tiontime.
Moreover,thereisalsoabigfreedomforgraftingdifferentfunctionalgroupsontographenesheetusingthepre-sentedapproach.
GiveninFigure4lisanexampleofgraphenesuperlatticemadebyphotomethylationreaction,inwhichgra-phenewasperiodicallymodiedbymethylgroupsinsteadofnitrobenzene.
Insummary,wepresentauniversalsubstrateengi-neeringapproachtofabricategraphenesuperlatticesbasedonthesubstrate-enhancedchemicalreactivityofgraphene.
Variousgraphenesuperlatticesdowntonanometerscalehavebeenmadebyusingtheclose-packingmonolayerofSiO2nanosphereswithdifferentperiodicities.
Ithasbeenprovedthatsuchastrategycanbeappliedtofabricatearbi-trarygraphenesuperlatticessimplybynanostructuringthesupportingsubstratesofgraphenesheets.
Thereisalsoafreedomforthechoiceofchemicalreactions,asdemon-stratedbydiazoniumsaltreactionandphotomethylationreactioninthiswork.
Thisallowsustomakeaperiodicmodificationofgraphenesheetwithdesiredfunctionalities.
Thismask-freetechniqueprovidesaneffectiveandversa-tilerouteforfabricatinggraphenesuperlatticewhichcanbeutilizedingraphene-basedelectronicandoptoelectronicdevices,chemo/biosensorsandforstudyingtherichphysicsof2Dsuperlattices.
Adv.
Mater.
2016,28,2148–2154www.
advmat.
dewww.
MaterialsViews.
com2153wileyonlinelibrary.
com2015WILEY-VCHVerlagGmbH&Co.
KGaA,WeinheimCOMMUNICATIONAdv.
Mater.
2016,28,2148–2154www.
advmat.
dewww.
MaterialsViews.
comExperimentalSectionPreparationofPPS:Aminopropylmethyl-diethoxysilanewasaddedtoastocksolutioncontaining1wt%monodispersecolloidalSiO2nanospheres(UnisizeTechnology,China).
Afterheatingthesolutionto100°Cfor8–12h,theresultingsolutionwaswashedthreetimeswithethanolandthenultrasonicatedinmethanol.
Then,thechemicallymodiedSiO2sphereswereself-assembledontoSiO2/SisubstratesbyusingLangmuir–Blodgetttechnique.
TheSiO2nanoholearraysubstratewasfabricatedthroughthefollowingprocedures:commercialpolyethylenespheresweredepositedontoSiO2/Sisubstratetoformaclose-packingmonolayer;thenthesphereswereshrunkdownbyplasmaetchingtreatment;a10nmSiO2layerwasthermallydepositedontothesubstrateandthesphereswereremovedafterultrasonictreatmentintoluene.
BeforetransferringgrapheneontoPPS,theas-preparedPPSwastreatedwithoxygenplasmafor30min(15W)toremoveorganiccomponentsonthespheresurface.
Site-SelectiveModicationofGraphene:TheCVDgrowngrapheneonCufoilswastransferredontoPPSbyusinga"drytransfer"method[31]toavoidwatertrappingbetweengrapheneandsubstrate.
AftertransferringthegraphenelmontoPPS,thesamplewasannealedat350°Cfor2hinforminggas(30sccmH2/100sccmAr)underambientpressure.
Then,thegraphenesampleswereimmersedintoamixedaqueoussolutionof20mM4-nitrobenzenediazoniumtetrauoroborate(≈10mL)and1wt%sodiumdodecylsulfateaqueoussolution(2mL),wheretheywerereactedfor1.
5hat40°C.
Forthephotomethylationprocess,thegraphenesampleswereimmersedindi-tert-butylperoxide(99%)andirradiatedunderUVlightwiththewavelengthrangefrom320to500nm.
Aftersite-selectivechemicalmodication,thesampleswererinsedwithdeionizedwater,immersedindeionizedwaterfor2h,anddriedwithnitrogengas.
TonondestructivelydelaminatethefunctionalizedgraphenelmfromPPS,thesampleswereimmersedina10%HFaqueoussolutionatroomtemperatureusingPMMAlmasthetransfermedium.
AfterdetachingthegraphenefromPPS,weleftthePMMA-supportedgrapheneoatinginHFsolutionfor20minbeforetransferringittoatSiO2/SisubstratesforcompletelyremovingtheresidualSiO2.
ThePMMAlmwasnallyremovedbyhotacetone.
Characterizations:RamanspectrawerecollectedwithaHoribaJobinYvonLabRAMHR800systemwitha514.
5nmexcitationlaser.
Thelaserspotsizewas≈1m.
XPSmeasurementswereperformedonaKratosAxisUltraspectrometerwithAlKαmonochromatedradiationatlowpressuresof5*109–1*108Torr.
TheXPScollectionareawas≈300*700m2.
Tocorrectforcharging,thehighestpeakinC1sspectrumwasshiftedto284.
5eV.
AFMandEFMwereconductedonaBrukerDimensionIconatomicforcemicroscopeintappingmode.
ForEFMmeasurements,thetopographicinformationwasobtainedintherstpass,andthenthetipwasliftedbyagivenconstantheightof20nmabovethesamplesurfaceandbiasedaDCvoltageVtipinthesecondpass.
Conductingtips(SCM-PIT,Bruker)witharesonancefrequencyofca.
70kHzandspringconstantofca.
2.
8Nm1wereused.
TheoreticalCalculations:Toperformgeometryoptimizationandenergycalculationsforgrapheneandchemicallymodiedgrapheneunderdifferentstrains,densityfunctionaltheoryimplementedintheViennaabinitiosimulationpackage[32]wasused.
Consideringspinpolarization,weadoptedthegeneralgradientapproximationwiththePerdew–Burke–Ernzerhofexchangecorrelationfunctional[33]andacut-offenergyof520eV.
Geometryoptimizationcontinueduntilalltheatomicforceswerelessthan0.
01eV/.
TheMonkhorst–Packgridmeshwas7*7*1forallsystemsintheself-consistentelditeration.
Adjacentsheetswereseparatedbyatleast20toavoidinteractionsbetweenthem.
SupportingInformationSupportingInformationisavailablefromtheWileyOnlineLibraryorfromtheauthor.
Figure4.
Versatilegraphenesuperlattices.
a–c)SEMimagesof400,150,and114nmSiO2nanospheresassemblyusedforsuperlatticeformation,respectively.
d)SiO2nanoholearraywithaperiodicityof200nmusedforsuperlatticeformation.
eh)Graphenesuperlatticesmadefrom(a–d)afterreactingwithdiazoniumsaltandtransferredontoatSiO2/Sisubstrates.
i–k)SEMimagesofgraphenesheeton150nmSiO2nanospheresassemblywithareactiontimeof0.
5,1,and4h,respectively.
l)SEMimageofgraphenesuperlatticeobtainedfrom150nmSiO2nanospheresassemblybyphotomethylationreaction.
Thescalebarsin(ac)and(eg)are500nm,andin(d),(h–l)are200nm,respectively.
2154wileyonlinelibrary.
com2015WILEY-VCHVerlagGmbH&Co.
KGaA,WeinheimCOMMUNICATIONAdv.
Mater.
2016,28,2148–2154www.
advmat.
dewww.
MaterialsViews.
comAcknowledgementsL.
Z.
andL.
L.
contributedequallytothiswork.
ThisstudywasfundedbytheMinistryofScienceandTechnologyofChina(GrantNos.
2013CB932603,2012CB933404,and2011CB933003),theNationalNaturalScienceFoundationofChina(GrantNos.
51432002and51121091),theMinistryofEducation(20120001130010),andtheInternationalPostdoctoralExchangeFellowshipProgram(GrantNo.
20130002).
Received:October30,2015Revised:November12,2015Publishedonline:December23,2015[1]K.
S.
Novoselov,A.
K.
Geim,S.
V.
Morozov,D.
Jiang,Y.
Zhang,S.
V.
Dubonos,I.
V.
Grigorieva,A.
A.
Firsov,Science2004,306,666.
[2]A.
K.
Geim,K.
S.
Novoselov,Nat.
Mater.
2007,6,183.
[3]L.
Liao,H.
Peng,Z.
Liu,J.
Am.
Chem.
Soc.
2014,136,12194.
[4]G.
L.
C.
Paulus,Q.
H.
Wang,M.
S.
Strano,Acc.
Chem.
Res.
2012,46,160.
[5]X.
Huang,X.
Qi,F.
Boey,H.
Zhang,Chem.
Soc.
Rev.
2012,41,666.
[6]V.
Georgakilas,M.
Otyepka,A.
B.
Bourlinos,V.
Chandra,N.
Kim,K.
C.
Kemp,P.
Hobza,R.
Zboril,K.
S.
Kim,Chem.
Rev.
2012,112,6156.
[7]L.
Zhou,L.
Zhou,M.
Yang,D.
Wu,L.
Liao,K.
Yan,Q.
Xie,Z.
Liu,H.
Peng,Z.
Liu,Small2013,9,1388.
[8]L.
Zhang,L.
Zhou,M.
Yang,Z.
Liu,Q.
Xie,H.
Peng,Z.
Liu,Small2013,9,1134.
[9]L.
Zhou,L.
Zhou,X.
Wang,J.
Yu,M.
Yang,J.
Wang,H.
Peng,Z.
Liu,APLMater.
2014,2,092505.
[10]D.
C.
Elias,R.
R.
Nair,T.
M.
G.
Mohiuddin,S.
V.
Morozov,P.
Blake,M.
P.
Halsall,A.
C.
Ferrari,D.
W.
Boukhvalov,M.
I.
Katsnelson,A.
K.
Geim,K.
S.
Novoselov,Science2009,323,610.
[11]R.
Balog,B.
Jrgensen,L.
Nilsson,M.
Andersen,E.
Rienks,M.
Bianchi,M.
Fanetti,E.
Lgsgaard,A.
Baraldi,S.
Lizzit,Z.
Sljivancanin,F.
Besenbacher,B.
Hammer,T.
G.
Pedersen,P.
Hofmann,L.
Hornekr,Nat.
Mater.
2010,9,315.
[12]R.
R.
Nair,W.
C.
Ren,R.
Jalil,I.
Riaz,V.
G.
Kravets,L.
Britnell,P.
Blake,F.
Schedin,A.
S.
Mayorov,S.
J.
Yuan,M.
I.
Katsnelson,H.
M.
Cheng,W.
Strupinski,L.
G.
Bulusheva,A.
V.
Okotrub,I.
V.
Grigorieva,A.
N.
Grigorenko,K.
S.
Novoselov,A.
K.
Geim,Small2010,6,2877.
[13]Z.
Sun,C.
L.
Pint,D.
C.
Marcano,C.
Zhang,J.
Yao,G.
Ruan,Z.
Yan,Y.
Zhu,R.
H.
Hauge,J.
M.
Tour,Nat.
Commun.
2011,2,559.
[14]J.
Bai,X.
Zhong,S.
Jiang,Y.
Huang,X.
Duan,Nat.
Nanotechnol.
2010,5,190.
[15]Z.
Osvath,E.
Gergely-Fulop,N.
Nagy,A.
Deak,P.
Nemes-Incze,X.
Jin,C.
Hwang,L.
P.
Biro,Nanoscale2014,6,6030.
[16]M.
Yamamoto,O.
Pierre-Louis,J.
Huang,M.
S.
Fuhrer,T.
L.
Einstein,W.
G.
Cullen,Phys.
Rev.
X2012,2,041018.
[17]J.
Martin,N.
Akerman,G.
Ulbricht,T.
Lohmann,J.
H.
Smet,K.
vonKlitzing,A.
Yacoby,Nat.
Phys.
2008,4,144.
[18]Q.
H.
Wang,Z.
Jin,K.
K.
Kim,A.
J.
Hilmer,G.
L.
C.
Paulus,C.
-J.
Shih,M.
-H.
Ham,J.
D.
Sanchez-Yamagishi,K.
Watanabe,T.
Taniguchi,J.
Kong,P.
Jarillo-Herrero,M.
S.
Strano,Nat.
Chem.
2012,4,724.
[19]N.
Levy,S.
A.
Burke,K.
L.
Meaker,M.
Panlasigui,A.
Zettl,F.
Guinea,A.
H.
C.
Neto,M.
F.
Crommie,Science2010,329,544.
[20]N.
N.
Klimov,S.
Jung,S.
Zhu,T.
Li,C.
A.
Wright,S.
D.
Solares,D.
B.
Newell,N.
B.
Zhitenev,J.
A.
Stroscio,Science2012,336,1557.
[21]F.
Guinea,M.
I.
Katsnelson,A.
K.
Geim,Nat.
Phys.
2010,6,30.
[22]M.
A.
Bissett,S.
Konabe,S.
Okada,M.
Tsuji,H.
Ago,ACSNano2013,7,10335.
[23]Q.
Wu,Y.
Wu,Y.
Hao,J.
Geng,M.
Charlton,S.
Chen,Y.
Ren,H.
Ji,H.
Li,D.
W.
Boukhvalov,R.
D.
Piner,C.
W.
Bielawski,R.
S.
Ruoff,Chem.
Commun.
2013,49,677.
[24]W.
Bao,F.
Miao,Z.
Chen,H.
Zhang,W.
Jang,C.
Dames,C.
N.
Lau,Nat.
Nanotechnol.
2009,4,562.
[25]D.
Yoon,Y.
-W.
Son,H.
Cheong,NanoLett.
2011,11,3227.
[26]E.
Bekyarova,M.
E.
Itkis,P.
Ramesh,C.
Berger,M.
Sprinkle,W.
A.
deHeer,R.
C.
Haddon,J.
Am.
Chem.
Soc.
2009,131,1336.
[27]M.
S.
Dresselhaus,A.
Jorio,M.
Hofmann,G.
Dresselhaus,R.
Saito,NanoLett.
2010,10,751.
[28]L.
Gan,D.
Zhang,X.
Guo,Small2012,8,1326.
[29]A.
Das,S.
Pisana,B.
Chakraborty,S.
Piscanec,S.
K.
Saha,U.
V.
Waghmare,K.
S.
Novoselov,H.
R.
Krishnamurthy,A.
K.
Geim,A.
C.
Ferrari,A.
K.
Sood,Nat.
Nanotechnol.
2008,3,210.
[30]O.
Frank,G.
Tsoukleri,J.
Parthenios,K.
Papagelis,I.
Riaz,R.
Jalil,K.
S.
Novoselov,C.
Galiotis,ACSNano2010,4,3131.
[31]N.
Petrone,C.
R.
Dean,I.
Meric,A.
M.
vanderZande,P.
Y.
Huang,L.
Wang,D.
Muller,K.
L.
Shepard,J.
Hone,NanoLett.
2012,12,2751.
[32]G.
Kresse,J.
Furthmüller,Comp.
Mater.
Sci.
1996,6,15.
[33]J.
P.
Perdew,K.
Burke,M.
Ernzerhof,Phys.
Rev.
Lett.
1996,77,3865.

Pia云服务商春节6.66折 美国洛杉矶/中国香港/俄罗斯和深圳机房

Pia云这个商家的云服务器在前面也有介绍过几次,从价格上确实比较便宜。我们可以看到最低云服务器低至月付20元,服务器均采用KVM虚拟架构技术,数据中心包括美国洛杉矶、中国香港、俄罗斯和深圳地区,这次春节活动商家的活动力度比较大推出出全场6.66折,如果我们有需要可以体验。初次体验的记得月付方案,如果合适再续约。pia云春节活动优惠券:piayun-2022 Pia云服务商官方网站我们一起看看这次活...

BuyVM($5/月)不限流量流媒体优化VPS主机 1GB内存

BuyVM商家属于比较老牌的服务商,早年有提供低价年付便宜VPS主机还记得曾经半夜的时候抢购的。但是由于这个商家风控非常严格,即便是有些是正常的操作也会导致被封账户,所以后来陆续无人去理睬,估计被我们风控的抢购低价VPS主机已经手足无措。这两年商家重新调整,而且风控也比较规范,比如才入手他们新上线的流媒体优化VPS主机也没有不适的提示。目前,BuyVM商家有提供新泽西、迈阿密等四个机房的VPS主机...

BuyVM老牌商家新增迈阿密机房 不限流量 月付2美元

我们很多老用户对于BuyVM商家还是相当熟悉的,也有翻看BuyVM相关的文章可以追溯到2014年的时候有介绍过,不过那时候介绍这个商家并不是很多,主要是因为这个商家很是刁钻。比如我们注册账户的信息是否完整,以及我们使用是否规范,甚至有其他各种问题导致我们是不能购买他们家机器的。以前你嚣张是很多人没有办法购买到其他商家的机器,那时候其他商家的机器不多。而如今,我们可选的商家比较多,你再也嚣张不起来。...

www.20ren.com为你推荐
比肩工场比肩接踵的意思www.7788k.comwww.6601txq.com.有没有这个网站机器蜘蛛挑战或是生存Boss是一只巨型机器蜘蛛的第一人称射击游戏叫什么19ise.com欲火难耐看什么电影 19部性感至极的佳片hao.rising.cn瑞星强制篡改主页 HTTP://HAO.RISING.CN 各位有什么办法可以解决吗?关键词分析怎么样分析关键词?月风随笔散文校园月色600字初中作文盗车飞侠侠盗飞车罪恶都市全部秘籍ps手柄版的b.faloo.com坏蛋是这样炼成的2出的最快的网站是那个?邯郸纠风网邯郸媒体曝光电话多少
pw域名 秒解服务器 火车票抢票攻略 北京主机 中国特价网 铁通流量查询 中国网通测速 电信虚拟主机 能外链的相册 个人免费主页 独享主机 我的世界服务器ip 国外的代理服务器 免费网络 万网空间 服务器防御 privatetracker hosting24 免费网站加速 so域名 更多