densitycpanel

cpanel  时间:2021-01-04  阅读:()
ComparisonofjetsfromNewtonianandnon-Newtonianuidsinducedbyblister-actuatedlaser-inducedforwardtransfer(BA-LIFT)EmreTurkoz1LucDeike1,2CraigB.
Arnold1Received:27June2017/Accepted:8September2017Springer-VerlagGmbHGermany2017AbstractBlister-actuatedlaser-inducedforwardtransfer(BA-LIFT)isahigh-resolutionprintingtechnique,wheresmalldropletsareejectedfromathinliquidlayerontoareceiversubstrate.
Experimentswithahigh-speedcameraimagingsetupdemonstratenovelregimesduringthejetformationforthetransferofviscoelasticshear-thinningpolymersolutionscomparedtoNewtonianuids.
TheratiooftheinklmthicknessHftotheblisterheightHbisusedasadimensionlessnumberHf=Hbtoclassifydifferentjetbehaviors.
WeshowthatdifferentHf=Hbthresholdscanbedeneddependingontheelasticityoftheinklayerfortheinducedjetstoresultinbreakup.
1IntroductionLaser-inducedforwardtransfer(LIFT)isanozzle-lessprintingtechnique[1]thathasbeendevelopedovertheyearstoprintvarioustypesofmaterialsincludingpolymers[2],biomaterials[3],conductingsilverpastes[4],thinmetallms[5],carbonnanotubes[6],andviscoelasticalginatesolutions[7].
Blister-actuatedlaser-inducedfor-wardtransfer(BA-LIFT)isavariationofLIFTwherethereisaninterfacialpolymerlayerbetweenthetransparentsubstrateandtheinklayer[8].
Thistechniquehasbeendevelopedtopreventpossibledisruptionsinmechanicalandchemicalintegrityduetolaser–inkinteractions,andproventobesuccessfulintransferringsensitivematerials[9].
Thephysicsofblisterformationforthisprocesshasbeeninvestigatedexperimentally[10]andnumerically[11],andithasbeenshownthata355nmwavelengthlaserpulse(20ns)withaGaussianbeamprolefocusedonapolyimidethinlayerresultsinreproducibleblisterswhoseheightandradiusvaluesarefunctionsofthelaserenergy.
ThejetformationfromNewtonianuidshasbeeninves-tigatedexperimentallyusingtime-resolvedimaging[12]andnumericallyusingcomputationaluiddynamics(CFD)[13].
Inaddition,ananalyticalmodel[14]fortheearlytimedynamicsoftheBA-LIFTprocessshowsthattheuidaroundtheblisterundergoesshearastheinkatthevicinityoftheblisterispulledtowardsthecenteroftheblisterduringjetformation.
WhileBA-LIFTstudiessofarhavefocusedontheevaluationoftheunderlyingphysicswithjetscreatedusingNewtonianuids,real-lifeapplicationsrequiretheadap-tationofthistechniquetovarioustypesofmaterialsthatexhibitcomplexrheologicalproperties[15,16].
Inthisstudy,wepresentthefeaturesofjetsinducedusingvis-coelasticinkswiththeBA-LIFTtechnique.
ComparedtothejetscreatedfromNewtonianuids,thejetsfromvis-coelasticinksexhibitaveryhighstretchabilityduetotheirelasticity,whichcompeteswiththesurfacetension-driventhinning[17].
Wereportthatthereexistsacriticaljetvelocitythatwouldresultinthebreakupofjets.
2ExperimentalmethodsDifferentconcentrationsofxanthangum(XG)inwaterareusedasmodelnon-Newtoniansolutions.
XGsolutionisselectedastherheologicalmodiesbecauseoftheexten-siveliteraturededicatedtostudyingthesesolutions,its&CraigB.
Arnoldcbarnold@princeton.
edu1DepartmentofMechanicalandAerospaceEngineering,PrincetonUniversity,Princeton,NJ,USA2PrincetonEnvironmentalInstitute,PrincetonUniversity,Princeton,NJ,USA123Appl.
Phys.
A(2017)123:652DOI10.
1007/s00339-017-1252-3inherentviscoelasticity,andtheconvenientshear-thinningbehaviorofitsviscosity[18].
WeprepareXGinwatersolutionswithfourdifferentconcentrations([XG]=0.
05,0.
1,0.
2,and0.
4wt%).
TritonX-100surfactant(1.
0wt%)isaddedtothesolutiontoincreasethewettabilityofXGsolutiononthepolyimide.
Thesolutionsarestirredfor24hbeforetherheologicalmeasurementsandBA-LIFTexperimentstoensurehomogeneity.
ThemodelNewtonianuidusedinthisstudyisN-methyl-2-pyrrolidone(NMP)withtheviscosityl1:7mPas,thedensityq1030kg/m3,andthesurfacetensionc40:79mN/m.
TheshearrheometryofsolutionsisevaluatedusingAntonPaarPhysicaMCR-301rheometerusingadouble-gapgeometry.
Smallamplitudeoscillatoryshearrheometryinlinearviscoelasticregimeisutilizedtoevaluatetheyieldstressofthesolutions.
Theinterfacialpolyimidelayerispreparedbyspincoatingpolyimideresin(HDMicrosystemsPI2525)ontoglassmicroscopeslidesat500rpmfor10sfollowedbyafasterspinat3000rpmfor40s.
Subsequently,theslidesarebakedat120Cfor30minfollowedbyanother30minat360Ctocompletetheimidizationprocess,whichyields6.
9lm-thickpolyimidelayersonglassslides.
Theinksarecoatedonthepolymerlayerusingabladecoater.
Thethin-lmthicknessesaremeasuredusingaconfocalmicroscope.
Afrequency-tripledNd:YVO4laser(CoherentAVIA,20ns)isusedtogenerateapulsewith355-nmwavelength[10].
Thelaserbeamdiameterisapproximately20lm.
High-speedvideosarecapturedusingaPhantomv2512(VisionResearch)camerawitharangeof500,000–700,000framespersecondsand0.
26px/lmresolutionthankstoa10objective(Mitutoyo).
Thecameraexposuretimeis1.
0ls.
Sincethehigh-speedcameraworksinapost-triggercapturesettingwithacontinuousbacklight,therstimagewherethelaserpulseorajetfeatureisvisibleisdesignatedast0,whichdenotesthereferencetime.
Withtheuseofthehighspeedofthecamera,wecouldobtainmultipleimagesduringthejetmotion,andanalyzetheformationofjetsfromnon-Newtonianuids.
3Results3.
1CharacterizationofinksXGsolutionsexhibitshear-thinningandtheirshearviscosityvaluescanbeexpressedintheformofapowerlawl_ca_cn,where_cistheshearrate,nistheexponent,andaisthepowerlawcoefcient.
Theshear-thinningexponentdecreasesandthezero-shearviscosityincreaseswiththeXGconcentration([XG]).
Theyieldstresssyisevaluatedusingshearoscillatoryrheometrybydoingastresssweepat1Hzandreadingthecross-overofelastic(G0)andloss(G00)moduli.
ThesevaluesarepresentedinTable1alongwiththepowerlawparametersforXGsolutionsusedinthisstudy.
Theadditionofsurfactantaffectsthesurfacetensionofthesolutionsdrastically.
Usingapendantdropmethod,thesurfacetensionofthesolutionsisevaluatedas30.
6mN/m.
DuetothelowconcentrationofXG,thesolutionscanbeassumedtohavethesamedensityaswater(qw1000kg/m3).
NMPandXGsolutions,therefore,haveverysimilardensityandsurfacetensionvalues.
Furthermore,sinceXGsolutioniswater-basedandshear-thinning,itsviscosityapproacheswaterviscosity(lw1:002mPas)athighshear-ratesassociatedwiththeBA-LIFTprocess.
ThebiggestdifferencebetweenthesetwoinksistheinherentelasticityoftheXGsolutions.
3.
2BlisterprolesBlistersaregeneratedonthepolyimidelmusingalaserpulsethathasaGaussian-likeprole.
TheabsorptionprocessandtheresultingblisterformationaredepictedinFig.
1a.
Thelaserpulsecausesthedecompositionofthepolyimidelayer,whichleadstotheablationofpolyimidefromthetransparentglasssubstrate.
WhiletheinitialinklayerthicknessisdenotedwithHf,theradiusandtheheightoftheresultingblistersaredenotedwithRbandHb,respectively.
BlisterprolesmeasuredusingaconfocalmicroscopeareplottedinFig.
1b.
Figure1bshowsthattheblisterheightHbincreaseswiththelaserenergy.
Sincethepulsedurationisconstantfromonepulsetothenext,largerblisterheightisanindicationofthefasterblisterexpan-sion.
Keepingthebeamdiameterconstantandchangingthelaserenergybetween14.
4and28.
2lJ,theheightoftheblistercanbeassumedtobelinearlydependentonthelaserenergyasHb0:6684E0:78(inlm),whereEisthelaserenergy.
Ontheotherhand,theinkthicknessHfisdirectlyproportionaltotheresistanceduetoinertiatotheblisterexpansion.
ItwasshownthatthethresholdlaserenergyformaterialtransferdependsontheinkthicknesslinearlyforNewtonianinks[13].
Thus,wedeneadimensionlessparameterasHf=HbtocomparetheeffectofTable1Coefcientsofthepowerlawl_ca_cnofviscosityversusshearratewithyieldstresssyvalues[XG](%)ansy(Pa)0.
050.
269-0.
6070.
60.
10.
365-0.
6421.
40.
21.
122-0.
7402.
10.
42.
14-0.
7724.
0652Page2of6E.
Turkozetal.
123theuidinkthicknesstotheenergydepositedintothesystem.
WenotethattheHf=Hbparameterdoesnotincludeanyinformationabouttheradiusandtheshapeoftheblister,andamoregeneralanalysiswhichincludesdif-ferentblistershapesandradiiwouldrequiretheutilizationofadifferentdimensionlessparameter.
3.
3ImagesofBA-LIFTjets3.
3.
1Comparisonofjetimagesfromnon-NewtonianandNewtonianuidsFigure2a,bshowsjetsinducedfroma57lm-thickNMPink,whereahighenergyblister(Hb16:2lm,Hf=Hb3:51)resultsinmultipledropletformation(Fig.
2a),andalowenergyblister(Hb8:6lm,Hf=Hb6:63)resultsinjettingwithoutbreakup(Fig.
2b).
Weobservethatthejetisfasterandstretchesmoretobreakupintomultipledropletsthanthejettingwithoutbreakupcase.
ThejetpresentedinFig.
2areaches430.
4lmin1.
82ls,whilethejetinFig.
2breachesonly52lmin14.
54ls.
Multiple-dropbreakupandjettingwithoutbreakupcasesforXGsolutionsarepresentedinFig.
3a,b,respectively.
Theseguresshowthemultiple-dropbreakupandjettingwithoutbreakupregimesobtainedfor[XG]=0.
05wt%.
Bothmultiple-dropandjettingwithoutbreakupregimesarequalitativelyverydifferentfromtheseregimesobservedwithXGsolutions.
ItisseenfromFig.
3athatevenifthenon-NewtonianlamentstretchesuptoasimilaramountastheNewtonianlamentinFig.
2a,thenon-Newtonianl-amentdoesnotpinch-offfromthebaseofthejetastheNewtonianjetdoesatt027:27ls,butinstead,thenon-Newtonianjetbreaksacertaindistanceawayfromitsbasethatislargerthanitsradius.
Inaddition,wedonotseetheformationofmultipledropletsfromthelongnon-Newto-nianlamentasisthecasewiththeNewtonianlamentatFig.
1Absorptionofthelaserenergybythepolyimidelayerandtheblistergeneration.
aDimensionlessparameterHf=Hbisutilizedtodenotetherelativeeffectoftheblisterexpansiontotheresistanceagainstthejetformationbythebulkuid.
bBlisterprolescorrespondingtodifferentlaserenergiesmeasuredbylaserscanningmicroscopyFig.
2Twodifferentcasesofhigh-speedimagingwithNMP(Hf57lm):ahighenergyblister(Hb16:2lm,Hf=Hb3:51)resultinginbreakupwithmultipledrops,blowenergyblister(Hb8:6lm,Hf=Hb6:63)resultinginjettingwithoutbreakup.
Imagesarefromthevideoscapturedbythehigh-speedcamera,andt0isthereferencetime.
Scalebarsrepresent75lmComparisonofjetsfromNewtonianandnon-Newtonianuids…Page3of6652123t050:91ls.
Thiscomparisonshowsusthatthevis-coelasticityreducesthenumberofdropletsproducedfromasinglelament.
Thismatchestheobservationpresentedinaworkonthefragmentationofviscoelasticlaments[19],whereitisshownthatfewerdropletsareformedfromviscoelasticlamentscomparedtoNewtonianlaments.
TheinherentviscoelasticityofXGinksslowstheradialthinningofthejet,whichcausesfewerdropletscomparedtoajetformedfromNMPinks.
Wealsoobservethatthedropletisgettinglargerasthejetisretracted.
ComparingFig.
2bwithFig.
3bindicatesthatthefea-turesforthejettingwithoutbreakupareverydifferentbetweenthesetwotypesofuid.
Weobservethatthenon-Newtonianjetcreatedusing[XG]=0.
05wt%solutioncanbestretchedmorethantheNewtonianjetcreatedusingNMPanditstillcanretractwithoutproducingadroplet.
TheNMPjetinFig.
2bstretches91%oftheinklmthickness,whiletheXGjetstretches549%oftheinklmthickness.
3.
3.
2StretchingandelasticityofjetsfromxanthangumsolutionsAnimportantfeatureobservedduringtheexperimentsistheamountofstretchingassociatedwithXGconcentra-tions.
Weobservethatastheyieldstresssyoftheuidincreases,theamountofmaximumstretchingdecreasesforsimilarHf=Hbvalues.
ThisisshowninFig.
4a–c,whereimagesforthejettingwithoutbreakupregimefor[XG]=0.
1,0.
2,and0.
4wt%arepresented,respectively.
ItisshownintheseguresthatforsimilarHf=Hbvalues,theamountofstretchingdecreasesasthepolymerconcentra-tionincreases.
Inthesegures,thejetsstretchupto842,339,and243%oftheirinitialinkthicknessvaluesfor[XG]=0.
1,0.
2,0.
4wt%,respectively.
WeseeinFig.
4athatfor[XG]=0.
1wt%andHf=Hb5:65,adropletisformedatthetipofthejet.
Thisdropletgrowsasthejetgetsretractedtotheink,whichindicatesthatthereisapointalongthelamentwheretheaxialjetvelocityiszero.
Figure4bshowsimagesforthe[XG]=0.
2wt%andHf=Hb5:06case.
Asthejetretractsback,weseetheformationofashoulder-likestructurearound36.
9ls.
Thisstructurestaysasthejetisretracted,whicheventuallyroundsupandremainsvisibleaslongas167.
7ls.
Figure4cshowsimagesforthe[XG]=0.
4wt%andHf=Hb5:63.
Weseethattheleastamountofstretchingisobservedatthiscase.
Thisisexpected,because[XG]=0.
4wt%solutionshavethehighestyieldstress(sy4:0Pa)amongallthesolutionsusedinthisstudy.
Inthiscase,wedonotseetheformationofashoulderveryFig.
3Twodifferentcasesofhigh-speedimagingwith[XG]=0.
05wt%:ahighenergyblister(Hb16:2lm,Hf=Hb6:80)resultinginbreakupwithmultipledrops,blowenergyblister(Hb8:6lm,Hf=Hb8:65)resultinginjettingwithoutbreakup.
Imagesarefromthevideoscapturedbythehigh-speedcamera,andt0isthereferencetime.
Scalebarsrepresent75lmFig.
4Differentamountsofstretchingversuselasticity.
Higherelasticityaffectstheamountofstretching.
a[XG]=0.
1wt%,Hf=Hb5:65.
b[XG]=0.
2wt%,Hf=Hb5:06.
c[XG]=0.
4wt%,Hf=Hb5:63.
Imagesarefromthevideoscapturedbythehigh-speedcamera,andt0isthereferencetime.
Scalebarsrepresent75lm652Page4of6E.
Turkozetal.
123clearly;however,theretractedjetroundsupandisstillvisibleat149.
2ls.
AsampleofjetlengthversustimecurvesisplottedinFig.
5.
Exceptforthersttwoseries(Hf=Hb5:14andHf=Hb6:80with[XG]=0.
05wt%),allthedatapointsbelongtothecaseswherejetseventuallyretractbacktotheinklayersurface.
Wenotethatthetwocaseswithbreakuphaveadistinctivelyhighervelocitycomparedtothecaseswithoutbreakup.
Inaddition,weseethattheamountofstretchingincreasesastherelativeinkthicknessHf=Hbisdecreased.
Fromourexperiments,weseethatthethresholdHf=HbvaluesforbreakupcanbelistedasgiveninTable2.
ThisalsosuggeststhatacriticalvelocityorWebernumber(WeqU2jetRjet=r,whereqistheinkdensity,Ujetistheaxialjetvelocity,Rjetisthejetradius,andristhesurfacetension)mightbenecessarytoobtaindropsonviscoelasticligamentsasinthecaseofNewtonianlaments[20],whilethisthresholdmightdependontheyieldstressofthevis-coelasticlament.
Weobservefromourexperimentsthattherearetwomainfactorsthatdeterminethefeaturesoftheviscoelasticjets:(1)relativeinkthicknesscomparedtotheblisterheight(Hf=Hb);(2)polymerconcentration,whichaffectstheyieldstresssyandviscosityoftheink.
Theincreasinginkthicknessresultsinlargerinertialresistanceasexplainedin[13],wherethethresholdenergyforjetfor-mationhasbeenshowntobelinearlydependentontheinkthicknessforNewtonianinks.
Inadditiontotheinertialeffects,forourexperiments,theelasticityandhighvis-cosityoftheinklayercomeintothepicture.
Duetotheshear-thinningbehavioroftheinklayer,theeffectivevis-cosityoftheinkdecreasesastheuidfromthevicinityoftheblistergetspulledintowardsthecenteroftheblister[14].
Afterjetformation,theliquidlamentresiststhemotionintheaxialdirection.
Theresistanceisproportionaltotheelasticityofthelament;therefore,ahigherlaserenergyisrequiredtostretchlamentswithhigherelasticity.
4ConclusionsInsummary,thisworkpresentsnewinsightsintothemechanismsoflaser-inducedejectionsofnon-Newtonianuids.
WedemonstratedthatrelativetoNewtonianuidswithcomparablesurfacetension,density,andviscosity,thejetsinducedfromviscoelasticinkscanstretchsignicantlyfurtherbeforebreakup,wherebytheamountofstretchingdependsontheelasticityandtherelativethicknessHf=Hboftheinklayer.
Athresholdlaserenergyatwhichtheviscoelasticuidcanstretchtothepointofbreakupisfound,andthislaserenergydependsontheyieldstressoftheuid.
AlthoughtheexperimentalsetupusedinthisstudyisbasedonBA-LIFT,theresultsandinterpretationscanapplytootherLIFTtechniques.
AcknowledgementsWeacknowledgesupportoftheNationalSci-enceFoundation(NSF)throughaMaterialsResearchScienceandEngineeringCenterprogramthroughthePrincetonCenterforCom-plexMaterials(DMR-1420541).
References1.
C.
B.
Arnold,P.
Serra,A.
Pique,MRSBull.
32(01),23(2007)2.
A.
Palla-Papavlu,V.
Dinca,C.
Luculescu,J.
Shaw-Stewart,M.
Nagel,T.
Lippert,M.
Dinescu,J.
Opt.
12(12),124014(2010)3.
B.
Hopp,T.
Smausz,N.
Kresz,N.
Barna,Z.
Bor,L.
Kolozsvari,D.
B.
Chrisey,A.
Szabo,A.
Nogradi,TissueEng.
11(11–12),1817(2005)4.
C.
Boutopoulos,I.
Kalpyris,E.
Serpetzoglou,I.
Zergioti,Microuid.
Nanouid.
16(3),493(2014)5.
A.
I.
Kuznetsov,C.
Unger,J.
Koch,B.
N.
Chichkov,Appl.
Phys.
A106(3),479(2012)6.
A.
Palla-Papavlu,M.
Dinescu,A.
Wokaun,T.
Lippert,Appl.
Phys.
A117(1),371(2014)7.
Z.
Zhang,R.
Xiong,R.
Mei,Y.
Huang,D.
B.
Chrisey,Langmuir31(23),6447(2015)8.
N.
T.
Kattamis,P.
E.
Purnick,R.
Weiss,C.
B.
Arnold,Appl.
Phys.
Lett.
91(17),171120(2007)Fig.
5Jetlengthversustimeplotforvarioustestcases.
Thefastesttwocases(Hf=Hb5:14andHf=Hb6:80for[XG]=0.
05wt%)resultwithpinch-off,whileothersrepresentcaseswherejetsretractbacktotheinksurfaceTable2ThresholdHf=HbvaluesforbreakupevaluatedfordifferentXGconcentrations[XG](%)syHf=Hb0.
050.
2696.
830.
10.
3652.
480.
21.
1222.
180.
42.
140.
53ComparisonofjetsfromNewtonianandnon-Newtonianuids…Page5of66521239.
N.
T.
Kattamis,N.
D.
McDaniel,S.
Bernhard,C.
B.
Arnold,Organ.
Electron.
12(7),1152(2011)10.
M.
S.
Brown,N.
T.
Kattamis,C.
B.
Arnold,J.
Appl.
Phys.
107(8),083103(2010)11.
N.
T.
Kattamis,M.
S.
Brown,C.
B.
Arnold,J.
Mater.
Res.
26(18),2438(2011)12.
M.
S.
Brown,N.
T.
Kattamis,C.
B.
Arnold,Microuid.
Nanouid.
11(2),199(2011)13.
M.
S.
Brown,C.
F.
Brasz,Y.
Ventikos,C.
B.
Arnold,J.
FluidMech.
709,341(2012)14.
C.
F.
Brasz,C.
B.
Arnold,H.
A.
Stone,J.
R.
Lister,J.
FluidMech.
767,811(2015)15.
M.
Duocastella,J.
Fernandez-Pradas,P.
Serra,J.
Morenza,Appl.
Phys.
A93(2),453(2008)16.
V.
Dinca,A.
Patrascioiu,J.
Fernandez-Pradas,J.
Morenza,P.
Serra,Appl.
Surf.
Sci.
258(23),9379(2012)17.
A.
Ardekani,V.
Sharma,G.
McKinley,J.
FluidMech.
665,46(2010)18.
M.
Zirnsak,D.
Boger,V.
Tirtaatmadja,J.
Rheol.
43(3),627(1999)19.
B.
Keshavarz,E.
C.
Houze,J.
R.
Moore,M.
R.
Koerner,G.
H.
McKinley,Phys.
Rev.
Lett.
117(15),154502(2016)20.
J.
Hinze,AIChEJ.
1(3),289(1955)652Page6of6E.
Turkozetal.
123

百纵科技(1399元/月)香港CN2站群232IP

湖南百纵科技有限公司是一家具有ISP ICP 电信增值许可证的正规公司,多年不断转型探索现已颇具规模,公司成立于2009年 通过多年经营积累目前已独具一格,公司主要经营有国内高防服务器,香港服务器,美国服务器,站群服务器,东南亚服务器租用,国内香港美国云服务器,以及全球专线业务!活动方案:主营:1、美国CN2云服务器,美国VPS,美国高防云主机,美国独立服务器,美国站群服务器,美国母机。2、香港C...

ATCLOUD.NET-OVH海外高防云主机,采用KVM架构,稳定安全且便宜好用,仅3刀起

官方网站:点击访问ATCLOUD.NET官网优惠码:目前提供Cloud VPS与Storage VPS两款产品的六折优惠活动(续费同价,截止至2021年5月31日)优惠码:UMMBPBR20Z活动方案:一、型号CPU内存磁盘流量优惠价格购买链接VPS-1GB0.5×2.6+GHz1GB20GB1TB$3立即购买VPS-2GB1×2.6+GHz2GB50GB2TB$6立即购买VPS-4GB2×2.6...

Friendhosting 黑色星期五 VDS/VPS可享四五折优惠促销

Friendhosting商家在前面的篇幅中也又陆续介绍到,是一家保加利亚主机商,主要提供销售VPS和独立服务器出租业务,数据中心分布在:荷兰、保加利亚、立陶宛、捷克、乌克兰和美国洛杉矶等。这不近期黑色星期五活动,商家也有推出了黑五优惠,VPS全场一次性45折,虚拟主机4折,全球多机房可选,老用户续费可获9折加送1个月使用时长,VDS折后最低仅€14.53/年,有需要的可以看看。Friendhos...

cpanel为你推荐
vps试用求个免费现成的vps(可永久可试用)域名主机域名,主机空间和网站文件三者之间的区别是什么美国vps主机美国VPS好?还是香港VPS好?国内ip代理谁有最快的国内IP代理HTTP美国服务器托管美国服务器租用有那些机房,他们的优缺点是什么?台湾vps香港vps和台湾vps哪个好用台湾主机台湾的第一台电脑虚拟主机评测网哪里有可靠的免费虚拟主机域名网站域名和网址一样吗?域名停靠怎么域名停靠?
最新代理服务器 紧急升级请记住新域名 免费动态域名解析 国外永久服务器 css样式大全 dropbox网盘 windows2003iso 台湾谷歌网址 本网站在美国维护 数字域名 老左正传 php空间购买 七夕快乐英语 美国独立日 空间登录首页 免费个人网页 测试网速命令 mteam 建站论坛 美国服务器 更多