协方差相关系数相关性与协方差

协方差相关系数  时间:2021-07-23  阅读:()

相关系数和协方差所表示的意义有什么区别

二者表示变量间的共变程度,协方差是变量x的离均差乘以y的离均差再求平均得到的统计量,虽然它可以表示x和y的共变程度,但x和y的单位可能不同,这样直接将二者的离均差相乘得到的结果可能偏差很大,因此有必要统一单位,即消去x和y的单位,做法就是给协方差再分别处以x、y各自的标准差,这样得到的统计量就是相关系数 由于相关系数是协方差除以两变量标准差得到的,因此相关系数是一个标准化的变量,而协方差是未标准化变量。

方差、协方差与相关系数的关系方程式

随机变量:ξ 0,数学期望:Eξ 1,方差:若E(ξ-Eξ)^2存在,则称 Dξ=E(ξ-Eξ)^2为随机变量ξ的方差;称√Dξ为ξ的标准差。

2,协方差:给定二维随机变量 ξ (ξ1, ξ2),若:E[(ξ1-Eξ1)(ξ2-Eξ2)]存在,则称其为随机变量 (ξ1,ξ2)的协方差,记为:cov(ξ1,ξ2)=E[(ξ1-Eξ1)(ξ2-Eξ2)] 3,记:r(ξ1,ξ2)=cov(ξ1,ξ2)/[Dξ1Dξ2]^0.5 =E[(ξ1-Eξ1)(ξ2-Eξ2)] / [Dξ1Dξ2]^0.5 (Dξ1,Dξ2均大于零) 称:上式为ξ1,ξ2的‘相关系数’或‘标准协方差’。

4,以上可知方差、协方差、相关系数之间的相互关系。

相关系数和协方差所表示的意义有什么区别

相关关系是一种非确定性的关系,相关系数是研究变量之间 线性相关程度 的量。

由于研究对象的不同,分为简单相关系数,复相关系数,典型相关系数。

协方差用于在概率论和统计学中衡量两个变量的 总体误差。

概率论概率论 相关系数怎么算

相关系数 正的协方差表达了正相关性,负的协方差表达了负相关性。

对于同样的两个随机变量来说,计算出的协方差越大,相关性越强。

但随后一个问题,身高和体重的协方差为30,这究竟是多大的一个量呢?如果我们又发现,身高与鞋号的协方差为5,是否说明,相对于鞋号,身高与体重的的相关性更强呢? 这样横向对比超出了协方差的能力范围。

从日常生活经验来说,体重的上下浮动大约为20kg,而鞋号的上下浮动大约可能只是5个号码。

所以,对于体重来说,5kg与中心的偏离并不算大,而5个号码的鞋号差距,就可能是最极端的情况了。

假设身高和体重的相关强度,与身高和鞋码的相关强度类似,但由于体重本身的数值上下浮动更大,所计算出的协方差也会更大。

另一个情况,依然是计算身高与体重的协方差。

数据完全不变,而只更改单位。

我们的体重用克而不是千克做单位,计算出的协防差是原来数值的1000倍! 为了能进行这样的横向对比,我们需要排除用统一的方式来定量某个随机变量的上下浮动。

这时,我们计算相关系数(correlation coefficient)。

相关系数是“归一化”的协方差。

它的定义如下: 相关系数是用协方差除以两个随机变量的标准差。

相关系数的大小在-1和1之间变化。

再也不会出现因为计量单位变化,而数值暴涨的情况了。

? 依然使用上面的身高和体重数据,可以计算出 Var(X)=0.3×(60?70)2+0.3×(80?70)2=60 Var(Y)=0.3×(180?170)2+0.3×(160?170)2=60 ρ=30/60=0.5 这样一个“归一化”了的相关系数,更容易让人把握到相关性的强弱,也更容易在不同随机变量之间,做相关性的横向比较。

? 双变量正态分布 双变量正态分布是一种常见的联合分布。

它描述了两个随机变量X1和X2的概率分布。

概率密度的表达式如下: X1和X2的边缘密度分别为两个正态分布,即正态分布N(μ1,σ1),?N(μ2,σ2)。

另一方面,除非ρ=0,否则联合分布也并不是两个正态分布的简单相乘。

可以证明,ρ正是双变量正态分布中,两个变量的相关系数。

? 现在绘制该分布的图像。

可惜的是,现在的scipy.stats并没有该分布。

需要自行编写。

选取所要绘制的正态分布,为了简单起见,让μ1=0,?μ2=0,?σ1=1,σ2=1。

我们先让ρ=0,此时的联合分布相当于两个正态分布的乘积。

绘制不同视角的同一分布,结果如下。

可以看到,概率分布是中心对称的。

再让ρ=0.8,也就是说,两个随机变量的相关系数为0.8。

绘制不同视角的同一分布,结果如下。

可以看到,概率分布并不中心对称。

沿着Y=X这条线,概率曲面隆起,概率明显比较高。

而沿着Y=?X这条线,概率较低。

这也就是我们所说的正相关。

现在,ρ对于我们来说,有了更具体的现实意义。

相关性与协方差

是概率论和数理统计的内容吗? 量E{[X-E(X)][Y-E(Y)]}称为随机变量X与Y的协方差,记为Cov(X,Y) 即, COV(X,Y)=E{{X-E(X)][Y-E(Y)]} 而 p=COV(X,Y)/sqrt[D(X)*D(Y)] 称为随机变量X与Y的相关系数。

当p=0时,X ,Y不相关,表示X与Y之间不存在线性关系【但是有可能存在除线性以外的关系】 XY相互独立 =>XY不相关 XY相关=> XY 不独立

DMIT:美国cn2 gia线路vps,高性能 AMD EPYC/不限流量(Premium Unmetered),$179.99/月起

DMIT怎么样?DMIT最近动作频繁,前几天刚刚上架了日本lite版VPS,正在酝酿上线日本高级网络VPS,又差不多在同一时间推出了美国cn2 gia线路不限流量的美国云服务器,不过价格太过昂贵。丐版只有30M带宽,月付179.99美元 !!目前,美国云服务器已经有个4个套餐,分别是,Premium(cn2 gia线路)、Lite(普通直连)、Premium Secure(带高防的cn2 gia线...

萤光云(13.25元)香港CN2 新购首月6.5折

萤光云怎么样?萤光云是一家国人云厂商,总部位于福建福州。其成立于2002年,主打高防云服务器产品,主要提供福州、北京、上海BGP和香港CN2节点。萤光云的高防云服务器自带50G防御,适合高防建站、游戏高防等业务。目前萤光云推出北京云服务器优惠活动,机房为北京BGP机房,购买北京云服务器可享受6.5折优惠+51元代金券(折扣和代金券可叠加使用)。活动期间还支持申请免费试用,需提交工单开通免费试用体验...

ProfitServer折优惠西班牙vps,荷兰vps,德国vps,5折优惠,不限制流量

profitserver正在对德国vps(法兰克福)、西班牙vps(马德里)、荷兰vps(杜廷赫姆)这3处数据中心内的VPS进行5折优惠促销。所有VPS基于KVM虚拟,纯SSD阵列,自带一个IPv4,不限制流量,在后台支持自定义ISO文件,方便大家折腾!此外还有以下数据中心:俄罗斯(多机房)、捷克、保加利亚、立陶宛、新加坡、美国(洛杉矶、锡考克斯、迈阿密)、瑞士、波兰、乌克兰,VPS和前面的一样性...

协方差相关系数为你推荐
qq空间维护QQ空间正在维护中,暂不支持访问是怎么回事人脸检测综述人脸检测技术的研究现状智能公共广播系统智能广播系统怎么实现?做视频的免费软件求有哪种视频制作软件是全免费的啊?联通玩电信游戏关于联通到底能不能去电信区玩游戏。。。。oa源码lotus的oa源码,怎么样?oa系统包含哪些模块OA系统一般包含哪些功能模块?盈科oa办公系统oa登录不了cad图批量打印CAD怎样批量打印图纸cad图批量打印在cad中如何进行批量打印
中国域名网 美国主机推荐 福建天翼加速 gspeed 网络空间租赁 卡巴斯基破解版 万网主机管理 国外在线代理服务器 lamp怎么读 国外免费云空间 免备案jsp空间 xshell5注册码 免费网站加速 删除域名 游戏服务器 日本小学生 iptables 挂马检测工具 dns是什么意思 次时代主机 更多