协方差相关系数相关性与协方差

协方差相关系数  时间:2021-07-23  阅读:()

相关系数和协方差所表示的意义有什么区别

二者表示变量间的共变程度,协方差是变量x的离均差乘以y的离均差再求平均得到的统计量,虽然它可以表示x和y的共变程度,但x和y的单位可能不同,这样直接将二者的离均差相乘得到的结果可能偏差很大,因此有必要统一单位,即消去x和y的单位,做法就是给协方差再分别处以x、y各自的标准差,这样得到的统计量就是相关系数 由于相关系数是协方差除以两变量标准差得到的,因此相关系数是一个标准化的变量,而协方差是未标准化变量。

方差、协方差与相关系数的关系方程式

随机变量:ξ 0,数学期望:Eξ 1,方差:若E(ξ-Eξ)^2存在,则称 Dξ=E(ξ-Eξ)^2为随机变量ξ的方差;称√Dξ为ξ的标准差。

2,协方差:给定二维随机变量 ξ (ξ1, ξ2),若:E[(ξ1-Eξ1)(ξ2-Eξ2)]存在,则称其为随机变量 (ξ1,ξ2)的协方差,记为:cov(ξ1,ξ2)=E[(ξ1-Eξ1)(ξ2-Eξ2)] 3,记:r(ξ1,ξ2)=cov(ξ1,ξ2)/[Dξ1Dξ2]^0.5 =E[(ξ1-Eξ1)(ξ2-Eξ2)] / [Dξ1Dξ2]^0.5 (Dξ1,Dξ2均大于零) 称:上式为ξ1,ξ2的‘相关系数’或‘标准协方差’。

4,以上可知方差、协方差、相关系数之间的相互关系。

相关系数和协方差所表示的意义有什么区别

相关关系是一种非确定性的关系,相关系数是研究变量之间 线性相关程度 的量。

由于研究对象的不同,分为简单相关系数,复相关系数,典型相关系数。

协方差用于在概率论和统计学中衡量两个变量的 总体误差。

概率论概率论 相关系数怎么算

相关系数 正的协方差表达了正相关性,负的协方差表达了负相关性。

对于同样的两个随机变量来说,计算出的协方差越大,相关性越强。

但随后一个问题,身高和体重的协方差为30,这究竟是多大的一个量呢?如果我们又发现,身高与鞋号的协方差为5,是否说明,相对于鞋号,身高与体重的的相关性更强呢? 这样横向对比超出了协方差的能力范围。

从日常生活经验来说,体重的上下浮动大约为20kg,而鞋号的上下浮动大约可能只是5个号码。

所以,对于体重来说,5kg与中心的偏离并不算大,而5个号码的鞋号差距,就可能是最极端的情况了。

假设身高和体重的相关强度,与身高和鞋码的相关强度类似,但由于体重本身的数值上下浮动更大,所计算出的协方差也会更大。

另一个情况,依然是计算身高与体重的协方差。

数据完全不变,而只更改单位。

我们的体重用克而不是千克做单位,计算出的协防差是原来数值的1000倍! 为了能进行这样的横向对比,我们需要排除用统一的方式来定量某个随机变量的上下浮动。

这时,我们计算相关系数(correlation coefficient)。

相关系数是“归一化”的协方差。

它的定义如下: 相关系数是用协方差除以两个随机变量的标准差。

相关系数的大小在-1和1之间变化。

再也不会出现因为计量单位变化,而数值暴涨的情况了。

? 依然使用上面的身高和体重数据,可以计算出 Var(X)=0.3×(60?70)2+0.3×(80?70)2=60 Var(Y)=0.3×(180?170)2+0.3×(160?170)2=60 ρ=30/60=0.5 这样一个“归一化”了的相关系数,更容易让人把握到相关性的强弱,也更容易在不同随机变量之间,做相关性的横向比较。

? 双变量正态分布 双变量正态分布是一种常见的联合分布。

它描述了两个随机变量X1和X2的概率分布。

概率密度的表达式如下: X1和X2的边缘密度分别为两个正态分布,即正态分布N(μ1,σ1),?N(μ2,σ2)。

另一方面,除非ρ=0,否则联合分布也并不是两个正态分布的简单相乘。

可以证明,ρ正是双变量正态分布中,两个变量的相关系数。

? 现在绘制该分布的图像。

可惜的是,现在的scipy.stats并没有该分布。

需要自行编写。

选取所要绘制的正态分布,为了简单起见,让μ1=0,?μ2=0,?σ1=1,σ2=1。

我们先让ρ=0,此时的联合分布相当于两个正态分布的乘积。

绘制不同视角的同一分布,结果如下。

可以看到,概率分布是中心对称的。

再让ρ=0.8,也就是说,两个随机变量的相关系数为0.8。

绘制不同视角的同一分布,结果如下。

可以看到,概率分布并不中心对称。

沿着Y=X这条线,概率曲面隆起,概率明显比较高。

而沿着Y=?X这条线,概率较低。

这也就是我们所说的正相关。

现在,ρ对于我们来说,有了更具体的现实意义。

相关性与协方差

是概率论和数理统计的内容吗? 量E{[X-E(X)][Y-E(Y)]}称为随机变量X与Y的协方差,记为Cov(X,Y) 即, COV(X,Y)=E{{X-E(X)][Y-E(Y)]} 而 p=COV(X,Y)/sqrt[D(X)*D(Y)] 称为随机变量X与Y的相关系数。

当p=0时,X ,Y不相关,表示X与Y之间不存在线性关系【但是有可能存在除线性以外的关系】 XY相互独立 =>XY不相关 XY相关=> XY 不独立

Vinahost - 越南VPS主机商月6美元 季付以上赠送时长最多半年

Vinahost,这个主机商还是第一次介绍到,翻看商家的介绍信息,是一家成立于2008年的老牌越南主机商,业务涵盖网站设计、域名、SSL证书、电子邮箱、虚拟主机、越南VPS、云计算、越南服务器出租以及设备托管等,机房主要在越南胡志明市的Viettle和VNPT数据中心,其中VNPT数据中心对于国内是三网直连,速度优。类似很多海外主机商一样,希望拓展自己的业务,必须要降价优惠或者增加机房迎合需求用户...

RackNerd:特价美国服务器促销,高配低价,美国多机房可选择,双E526**+AMD3700+NVMe

racknerd怎么样?racknerd今天发布了几款美国特价独立服务器的促销,本次商家主推高配置的服务器,各个配置给的都比较高,有Intel和AMD两种,硬盘也有NVMe和SSD等多咱组合可以选择,机房目前有夏洛特、洛杉矶、犹他州可以选择,性价比很高,有需要独服的朋友可以看看。点击进入:racknerd官方网站RackNerd暑假独服促销:CPU:双E5-2680v3 (24核心,48线程)内存...

TTcloud(月$70)E3-1270V3 8GB内存 10Mbps带宽 ,日本独立服务器

关于TTCLOUD服务商在今年初的时候有介绍过一次,而且对于他们家的美国圣何塞服务器有过简单的测评,这个服务商主要是提供独立服务器业务的。目前托管硬件已经达到5000台服务器或节点,主要经营圣何塞,洛杉矶以及日本东京三个地区的数据中心业务。这次看到商家有推出了新上架的日本独立服务器促销活动,价格 $70/月起,季付送10Mbps带宽。也可以跟进客户的需求进行各种DIY定制。内存CPU硬盘流量带宽价...

协方差相关系数为你推荐
windowsphone手机Windows Phone 手机有哪些色中色luntanwww.fzluntan.tk是什么类型的网站啊?magento模板magento系统缩略图大小在哪里修改?百度创业史百度能创业成功的原因是什么电梯物联网平台国内物联网公司排名,知道的帅哥美女快来回答哦!谢谢了!人脸检测综述人脸识别的主要应用方向及其优缺点?北漂论坛请问北票有论坛吗智能公共广播系统智能广播系统怎么实现?音响解码音响功放:源码输出和解码输出有什么区别发送验证码关联手机号码发送短信验证码
江西服务器租用 php空间租用 河南vps 花生壳免费域名 过期域名抢注 raksmart 国外php主机 rak机房 镇江联通宽带 合肥鹏博士 777te 福建天翼加速 泉州电信 adroit 支付宝扫码领红包 流媒体加速 吉林铁通 美国独立日 ebay注册 cxz 更多