协方差相关系数相关性与协方差

协方差相关系数  时间:2021-07-23  阅读:()

相关系数和协方差所表示的意义有什么区别

二者表示变量间的共变程度,协方差是变量x的离均差乘以y的离均差再求平均得到的统计量,虽然它可以表示x和y的共变程度,但x和y的单位可能不同,这样直接将二者的离均差相乘得到的结果可能偏差很大,因此有必要统一单位,即消去x和y的单位,做法就是给协方差再分别处以x、y各自的标准差,这样得到的统计量就是相关系数 由于相关系数是协方差除以两变量标准差得到的,因此相关系数是一个标准化的变量,而协方差是未标准化变量。

方差、协方差与相关系数的关系方程式

随机变量:ξ 0,数学期望:Eξ 1,方差:若E(ξ-Eξ)^2存在,则称 Dξ=E(ξ-Eξ)^2为随机变量ξ的方差;称√Dξ为ξ的标准差。

2,协方差:给定二维随机变量 ξ (ξ1, ξ2),若:E[(ξ1-Eξ1)(ξ2-Eξ2)]存在,则称其为随机变量 (ξ1,ξ2)的协方差,记为:cov(ξ1,ξ2)=E[(ξ1-Eξ1)(ξ2-Eξ2)] 3,记:r(ξ1,ξ2)=cov(ξ1,ξ2)/[Dξ1Dξ2]^0.5 =E[(ξ1-Eξ1)(ξ2-Eξ2)] / [Dξ1Dξ2]^0.5 (Dξ1,Dξ2均大于零) 称:上式为ξ1,ξ2的‘相关系数’或‘标准协方差’。

4,以上可知方差、协方差、相关系数之间的相互关系。

相关系数和协方差所表示的意义有什么区别

相关关系是一种非确定性的关系,相关系数是研究变量之间 线性相关程度 的量。

由于研究对象的不同,分为简单相关系数,复相关系数,典型相关系数。

协方差用于在概率论和统计学中衡量两个变量的 总体误差。

概率论概率论 相关系数怎么算

相关系数 正的协方差表达了正相关性,负的协方差表达了负相关性。

对于同样的两个随机变量来说,计算出的协方差越大,相关性越强。

但随后一个问题,身高和体重的协方差为30,这究竟是多大的一个量呢?如果我们又发现,身高与鞋号的协方差为5,是否说明,相对于鞋号,身高与体重的的相关性更强呢? 这样横向对比超出了协方差的能力范围。

从日常生活经验来说,体重的上下浮动大约为20kg,而鞋号的上下浮动大约可能只是5个号码。

所以,对于体重来说,5kg与中心的偏离并不算大,而5个号码的鞋号差距,就可能是最极端的情况了。

假设身高和体重的相关强度,与身高和鞋码的相关强度类似,但由于体重本身的数值上下浮动更大,所计算出的协方差也会更大。

另一个情况,依然是计算身高与体重的协方差。

数据完全不变,而只更改单位。

我们的体重用克而不是千克做单位,计算出的协防差是原来数值的1000倍! 为了能进行这样的横向对比,我们需要排除用统一的方式来定量某个随机变量的上下浮动。

这时,我们计算相关系数(correlation coefficient)。

相关系数是“归一化”的协方差。

它的定义如下: 相关系数是用协方差除以两个随机变量的标准差。

相关系数的大小在-1和1之间变化。

再也不会出现因为计量单位变化,而数值暴涨的情况了。

? 依然使用上面的身高和体重数据,可以计算出 Var(X)=0.3×(60?70)2+0.3×(80?70)2=60 Var(Y)=0.3×(180?170)2+0.3×(160?170)2=60 ρ=30/60=0.5 这样一个“归一化”了的相关系数,更容易让人把握到相关性的强弱,也更容易在不同随机变量之间,做相关性的横向比较。

? 双变量正态分布 双变量正态分布是一种常见的联合分布。

它描述了两个随机变量X1和X2的概率分布。

概率密度的表达式如下: X1和X2的边缘密度分别为两个正态分布,即正态分布N(μ1,σ1),?N(μ2,σ2)。

另一方面,除非ρ=0,否则联合分布也并不是两个正态分布的简单相乘。

可以证明,ρ正是双变量正态分布中,两个变量的相关系数。

? 现在绘制该分布的图像。

可惜的是,现在的scipy.stats并没有该分布。

需要自行编写。

选取所要绘制的正态分布,为了简单起见,让μ1=0,?μ2=0,?σ1=1,σ2=1。

我们先让ρ=0,此时的联合分布相当于两个正态分布的乘积。

绘制不同视角的同一分布,结果如下。

可以看到,概率分布是中心对称的。

再让ρ=0.8,也就是说,两个随机变量的相关系数为0.8。

绘制不同视角的同一分布,结果如下。

可以看到,概率分布并不中心对称。

沿着Y=X这条线,概率曲面隆起,概率明显比较高。

而沿着Y=?X这条线,概率较低。

这也就是我们所说的正相关。

现在,ρ对于我们来说,有了更具体的现实意义。

相关性与协方差

是概率论和数理统计的内容吗? 量E{[X-E(X)][Y-E(Y)]}称为随机变量X与Y的协方差,记为Cov(X,Y) 即, COV(X,Y)=E{{X-E(X)][Y-E(Y)]} 而 p=COV(X,Y)/sqrt[D(X)*D(Y)] 称为随机变量X与Y的相关系数。

当p=0时,X ,Y不相关,表示X与Y之间不存在线性关系【但是有可能存在除线性以外的关系】 XY相互独立 =>XY不相关 XY相关=> XY 不独立

HostKvm($4.25/月),俄罗斯CN2带宽大升级,俄罗斯/香港高防限量5折优惠进行中

HostKvm是一家成立于2013年的国外VPS服务商,产品基于KVM架构,数据中心包括日本、新加坡、韩国、美国、俄罗斯、中国香港等多个地区机房,均为国内直连或优化线路,延迟较低,适合建站或者远程办公等。本月,商家旗下俄罗斯、新加坡、美国、香港等节点带宽进行了大幅度升级,俄罗斯机房国内电信/联通直连,CN2线路,150Mbps(原来30Mbps)带宽起,目前俄罗斯和香港高防节点5折骨折码继续优惠中...

速云:广州移动/深圳移动/广东联通/香港HKT等VDS,9折优惠,最低月付9元;深圳独立服务器1050元/首月起

速云怎么样?速云,国人商家,提供广州移动、深圳移动、广州茂名联通、香港hkt等VDS和独立服务器。现在暑期限时特惠,力度大。广州移动/深圳移动/广东联通/香港HKT等9折优惠,最低月付9元;暑期特惠,带宽、流量翻倍,深港mplc免费试用!点击进入:速云官方网站地址速云优惠码:全场9折优惠码:summer速云优惠活动:活动期间,所有地区所有配置可享受9折优惠,深圳/广州地区流量计费VDS可选择流量翻...

亚洲云-浙江高防BGP,至强铂金8270,提供自助防火墙管理,超大内存满足你各种需求

官方网站:点击访问亚洲云官网618活动方案:618特价活动(6.18-6.30)全站首月活动月底结束!地区:浙江高防BGPCPU:至强铂金8270主频7 默频3.61 睿频4.0核心:8核(最高支持64核)内存:8G(最高支持128G)DDR4 3200硬盘:40G系统盘+80G数据盘带宽:上行:20Mbps/下行:1000Mbps防御:100G(可加至300G)防火墙:提供自助 天机盾+金盾 管...

协方差相关系数为你推荐
软件开发的周期知道开发一款App的周期是多久吗CA3445ca724的临床意义linksys无线路由器设置关于LINKSYS BEFW11S4无线路由器设置iphone12或支持北斗导航苹果手机怎样下载北斗导航电梯物联网平台控网有什么作用?如何应用在电梯的管理中?linux操作系统好吗linux系统好不好学??云图好看吗云图好看么?慕课网址慕课网是什么?nero教程NERO怎么使用?盈科oa办公系统如何登录OA
免费虚拟主机 河南虚拟主机 日本动态vps 域名主机基地 host1plus vmsnap3 paypal认证 xfce 云图标 国内加速器 谁的qq空间最好看 工信部icp备案号 河南移动m值兑换 外贸空间 广州服务器托管 博客域名 tracert 遨游论坛 挂马检测工具 竞彩论坛空间 更多