协方差相关系数相关性与协方差

协方差相关系数  时间:2021-07-23  阅读:()

相关系数和协方差所表示的意义有什么区别

二者表示变量间的共变程度,协方差是变量x的离均差乘以y的离均差再求平均得到的统计量,虽然它可以表示x和y的共变程度,但x和y的单位可能不同,这样直接将二者的离均差相乘得到的结果可能偏差很大,因此有必要统一单位,即消去x和y的单位,做法就是给协方差再分别处以x、y各自的标准差,这样得到的统计量就是相关系数 由于相关系数是协方差除以两变量标准差得到的,因此相关系数是一个标准化的变量,而协方差是未标准化变量。

方差、协方差与相关系数的关系方程式

随机变量:ξ 0,数学期望:Eξ 1,方差:若E(ξ-Eξ)^2存在,则称 Dξ=E(ξ-Eξ)^2为随机变量ξ的方差;称√Dξ为ξ的标准差。

2,协方差:给定二维随机变量 ξ (ξ1, ξ2),若:E[(ξ1-Eξ1)(ξ2-Eξ2)]存在,则称其为随机变量 (ξ1,ξ2)的协方差,记为:cov(ξ1,ξ2)=E[(ξ1-Eξ1)(ξ2-Eξ2)] 3,记:r(ξ1,ξ2)=cov(ξ1,ξ2)/[Dξ1Dξ2]^0.5 =E[(ξ1-Eξ1)(ξ2-Eξ2)] / [Dξ1Dξ2]^0.5 (Dξ1,Dξ2均大于零) 称:上式为ξ1,ξ2的‘相关系数’或‘标准协方差’。

4,以上可知方差、协方差、相关系数之间的相互关系。

相关系数和协方差所表示的意义有什么区别

相关关系是一种非确定性的关系,相关系数是研究变量之间 线性相关程度 的量。

由于研究对象的不同,分为简单相关系数,复相关系数,典型相关系数。

协方差用于在概率论和统计学中衡量两个变量的 总体误差。

概率论概率论 相关系数怎么算

相关系数 正的协方差表达了正相关性,负的协方差表达了负相关性。

对于同样的两个随机变量来说,计算出的协方差越大,相关性越强。

但随后一个问题,身高和体重的协方差为30,这究竟是多大的一个量呢?如果我们又发现,身高与鞋号的协方差为5,是否说明,相对于鞋号,身高与体重的的相关性更强呢? 这样横向对比超出了协方差的能力范围。

从日常生活经验来说,体重的上下浮动大约为20kg,而鞋号的上下浮动大约可能只是5个号码。

所以,对于体重来说,5kg与中心的偏离并不算大,而5个号码的鞋号差距,就可能是最极端的情况了。

假设身高和体重的相关强度,与身高和鞋码的相关强度类似,但由于体重本身的数值上下浮动更大,所计算出的协方差也会更大。

另一个情况,依然是计算身高与体重的协方差。

数据完全不变,而只更改单位。

我们的体重用克而不是千克做单位,计算出的协防差是原来数值的1000倍! 为了能进行这样的横向对比,我们需要排除用统一的方式来定量某个随机变量的上下浮动。

这时,我们计算相关系数(correlation coefficient)。

相关系数是“归一化”的协方差。

它的定义如下: 相关系数是用协方差除以两个随机变量的标准差。

相关系数的大小在-1和1之间变化。

再也不会出现因为计量单位变化,而数值暴涨的情况了。

? 依然使用上面的身高和体重数据,可以计算出 Var(X)=0.3×(60?70)2+0.3×(80?70)2=60 Var(Y)=0.3×(180?170)2+0.3×(160?170)2=60 ρ=30/60=0.5 这样一个“归一化”了的相关系数,更容易让人把握到相关性的强弱,也更容易在不同随机变量之间,做相关性的横向比较。

? 双变量正态分布 双变量正态分布是一种常见的联合分布。

它描述了两个随机变量X1和X2的概率分布。

概率密度的表达式如下: X1和X2的边缘密度分别为两个正态分布,即正态分布N(μ1,σ1),?N(μ2,σ2)。

另一方面,除非ρ=0,否则联合分布也并不是两个正态分布的简单相乘。

可以证明,ρ正是双变量正态分布中,两个变量的相关系数。

? 现在绘制该分布的图像。

可惜的是,现在的scipy.stats并没有该分布。

需要自行编写。

选取所要绘制的正态分布,为了简单起见,让μ1=0,?μ2=0,?σ1=1,σ2=1。

我们先让ρ=0,此时的联合分布相当于两个正态分布的乘积。

绘制不同视角的同一分布,结果如下。

可以看到,概率分布是中心对称的。

再让ρ=0.8,也就是说,两个随机变量的相关系数为0.8。

绘制不同视角的同一分布,结果如下。

可以看到,概率分布并不中心对称。

沿着Y=X这条线,概率曲面隆起,概率明显比较高。

而沿着Y=?X这条线,概率较低。

这也就是我们所说的正相关。

现在,ρ对于我们来说,有了更具体的现实意义。

相关性与协方差

是概率论和数理统计的内容吗? 量E{[X-E(X)][Y-E(Y)]}称为随机变量X与Y的协方差,记为Cov(X,Y) 即, COV(X,Y)=E{{X-E(X)][Y-E(Y)]} 而 p=COV(X,Y)/sqrt[D(X)*D(Y)] 称为随机变量X与Y的相关系数。

当p=0时,X ,Y不相关,表示X与Y之间不存在线性关系【但是有可能存在除线性以外的关系】 XY相互独立 =>XY不相关 XY相关=> XY 不独立

腾讯云轻量应用服务器关于多个实例套餐带宽

腾讯云轻量应用服务器又要免费升级配置了,之前已经免费升级过一次了(腾讯云轻量应用服务器套餐配置升级 轻量老用户专享免费升配!),这次在上次的基础上再次升级。也许这就是良心云吧,名不虚传。腾讯云怎么样?腾讯云好不好。腾讯云轻量应用服务器 Lighthouse 是一种易于使用和管理、适合承载轻量级业务负载的云服务器,能帮助个人和企业在云端快速构建网站、博客、电商、论坛等各类应用以及开发测试环境,并提供...

Hostodo商家提供两年大流量美国VPS主机 可选拉斯维加斯和迈阿密

Hostodo商家算是一个比较小众且运营比较久的服务商,而且还是率先硬盘更换成NVMe阵列的,目前有提供拉斯维加斯和迈阿密两个机房。看到商家这两年的促销套餐方案变化还是比较大的,每个月一般有这么两次的促销方案推送,可见商家也在想着提高一些客户量。毕竟即便再老的服务商,你不走出来让大家知道,迟早会落寞。目前,Hostodo有提供两款大流量的VPS主机促销,机房可选拉斯维加斯和迈阿密两个数据中心,且都...

Hostodo,美国独立日特价优惠,四款特价VPS云服务器7折,KVM虚拟架构,NVMe阵列,1核512M内存1Gbps带宽3T月流量,13.99美元/月,赠送DirectAdmin授权

Hostodo近日发布了美国独立日优惠促销活动,主要推送了四款特价优惠便宜的VPS云服务器产品,基于KVM虚拟架构,NVMe阵列,1Gbps带宽,默认分配一个IPv4+/64 IPv6,采用solusvm管理,赠送收费版DirectAdmin授权,服务有效期内均有效,大致约为7折优惠,独立日活动时间不定,活动机型售罄为止,有需要的朋友可以尝试一下。Hostodo怎么样?Hostodo服务器好不好?...

协方差相关系数为你推荐
office软件包office软件包括哪几个部分发博客怎么发博客?excel2003官方microsoft office 2003下载qq空间个性域名QQ空间里什么是 空间个性域名多重阴影[讨论]《多重阴影》的中文配音好熟悉啊!微软将停止支持32位Win10系统你使用的Windows10即将终止服务是什么意思?百度创业史简论《创业史》的思想内容.艺术手法百度创业史百度的创始人是谁物联卡官网移动物联卡怎么注册人脸检测综述人脸检测技术的来源
顶级域名 stablehost koss 网站挂马检测工具 百兆独享 泉州移动 美国在线代理服务器 最好的qq空间 服务器监测 厦门电信 四川电信商城 韩国代理ip 游戏服务器出租 免费个人主页 创速 汤博乐 ncp是什么 godaddy退款 hosting linux服务器系统 更多