协方差相关系数相关性与协方差

协方差相关系数  时间:2021-07-23  阅读:()

相关系数和协方差所表示的意义有什么区别

二者表示变量间的共变程度,协方差是变量x的离均差乘以y的离均差再求平均得到的统计量,虽然它可以表示x和y的共变程度,但x和y的单位可能不同,这样直接将二者的离均差相乘得到的结果可能偏差很大,因此有必要统一单位,即消去x和y的单位,做法就是给协方差再分别处以x、y各自的标准差,这样得到的统计量就是相关系数 由于相关系数是协方差除以两变量标准差得到的,因此相关系数是一个标准化的变量,而协方差是未标准化变量。

方差、协方差与相关系数的关系方程式

随机变量:ξ 0,数学期望:Eξ 1,方差:若E(ξ-Eξ)^2存在,则称 Dξ=E(ξ-Eξ)^2为随机变量ξ的方差;称√Dξ为ξ的标准差。

2,协方差:给定二维随机变量 ξ (ξ1, ξ2),若:E[(ξ1-Eξ1)(ξ2-Eξ2)]存在,则称其为随机变量 (ξ1,ξ2)的协方差,记为:cov(ξ1,ξ2)=E[(ξ1-Eξ1)(ξ2-Eξ2)] 3,记:r(ξ1,ξ2)=cov(ξ1,ξ2)/[Dξ1Dξ2]^0.5 =E[(ξ1-Eξ1)(ξ2-Eξ2)] / [Dξ1Dξ2]^0.5 (Dξ1,Dξ2均大于零) 称:上式为ξ1,ξ2的‘相关系数’或‘标准协方差’。

4,以上可知方差、协方差、相关系数之间的相互关系。

相关系数和协方差所表示的意义有什么区别

相关关系是一种非确定性的关系,相关系数是研究变量之间 线性相关程度 的量。

由于研究对象的不同,分为简单相关系数,复相关系数,典型相关系数。

协方差用于在概率论和统计学中衡量两个变量的 总体误差。

概率论概率论 相关系数怎么算

相关系数 正的协方差表达了正相关性,负的协方差表达了负相关性。

对于同样的两个随机变量来说,计算出的协方差越大,相关性越强。

但随后一个问题,身高和体重的协方差为30,这究竟是多大的一个量呢?如果我们又发现,身高与鞋号的协方差为5,是否说明,相对于鞋号,身高与体重的的相关性更强呢? 这样横向对比超出了协方差的能力范围。

从日常生活经验来说,体重的上下浮动大约为20kg,而鞋号的上下浮动大约可能只是5个号码。

所以,对于体重来说,5kg与中心的偏离并不算大,而5个号码的鞋号差距,就可能是最极端的情况了。

假设身高和体重的相关强度,与身高和鞋码的相关强度类似,但由于体重本身的数值上下浮动更大,所计算出的协方差也会更大。

另一个情况,依然是计算身高与体重的协方差。

数据完全不变,而只更改单位。

我们的体重用克而不是千克做单位,计算出的协防差是原来数值的1000倍! 为了能进行这样的横向对比,我们需要排除用统一的方式来定量某个随机变量的上下浮动。

这时,我们计算相关系数(correlation coefficient)。

相关系数是“归一化”的协方差。

它的定义如下: 相关系数是用协方差除以两个随机变量的标准差。

相关系数的大小在-1和1之间变化。

再也不会出现因为计量单位变化,而数值暴涨的情况了。

? 依然使用上面的身高和体重数据,可以计算出 Var(X)=0.3×(60?70)2+0.3×(80?70)2=60 Var(Y)=0.3×(180?170)2+0.3×(160?170)2=60 ρ=30/60=0.5 这样一个“归一化”了的相关系数,更容易让人把握到相关性的强弱,也更容易在不同随机变量之间,做相关性的横向比较。

? 双变量正态分布 双变量正态分布是一种常见的联合分布。

它描述了两个随机变量X1和X2的概率分布。

概率密度的表达式如下: X1和X2的边缘密度分别为两个正态分布,即正态分布N(μ1,σ1),?N(μ2,σ2)。

另一方面,除非ρ=0,否则联合分布也并不是两个正态分布的简单相乘。

可以证明,ρ正是双变量正态分布中,两个变量的相关系数。

? 现在绘制该分布的图像。

可惜的是,现在的scipy.stats并没有该分布。

需要自行编写。

选取所要绘制的正态分布,为了简单起见,让μ1=0,?μ2=0,?σ1=1,σ2=1。

我们先让ρ=0,此时的联合分布相当于两个正态分布的乘积。

绘制不同视角的同一分布,结果如下。

可以看到,概率分布是中心对称的。

再让ρ=0.8,也就是说,两个随机变量的相关系数为0.8。

绘制不同视角的同一分布,结果如下。

可以看到,概率分布并不中心对称。

沿着Y=X这条线,概率曲面隆起,概率明显比较高。

而沿着Y=?X这条线,概率较低。

这也就是我们所说的正相关。

现在,ρ对于我们来说,有了更具体的现实意义。

相关性与协方差

是概率论和数理统计的内容吗? 量E{[X-E(X)][Y-E(Y)]}称为随机变量X与Y的协方差,记为Cov(X,Y) 即, COV(X,Y)=E{{X-E(X)][Y-E(Y)]} 而 p=COV(X,Y)/sqrt[D(X)*D(Y)] 称为随机变量X与Y的相关系数。

当p=0时,X ,Y不相关,表示X与Y之间不存在线性关系【但是有可能存在除线性以外的关系】 XY相互独立 =>XY不相关 XY相关=> XY 不独立

趣米云(18元/月)香港三网CN2云服器低至;1核1G/30G系统盘+20G数据盘/10M带宽

趣米云怎么样?趣米云是创建于2021年的国人IDC商家,虽然刚刚成立,但站长早期为3家IDC提供技术服务,已从业2年之久,目前主要从事出售香港vps、香港独立服务器、香港站群服务器等,目前在售VPS线路有三网CN2、CN2 GIA,该公司旗下产品均采用KVM虚拟化架构。由于内存资源大部分已售,而IP大量闲置,因此我们本月新增1c1g优惠套餐。点击进入:趣米云官方网站地址香港三网CN2云服务器机型活...

iWebFusion:独立服务器月付57美元起/5个机房可选,10Gbps服务器月付149美元起

iWebFusion(iWFHosting)在部落分享过很多次了,这是成立于2001年的老牌国外主机商H4Y旗下站点,提供的产品包括虚拟主机、VPS和独立服务器租用等等,其中VPS主机基于KVM架构,数据中心可选美国洛杉矶、北卡、本德、蒙蒂塞洛等。商家独立服务器可选5个不同机房,最低每月57美元起,而大流量10Gbps带宽服务器也仅149美元起。首先我们分享几款常规服务器配置信息,以下机器可选择5...

特网云,美国独立物理服务器 Atom d525 4G 100M 40G防御 280元/月 香港站群 E3-1200V2 8G 10M 1500元/月

特网云为您提供高速、稳定、安全、弹性的云计算服务计算、存储、监控、安全,完善的云产品满足您的一切所需,深耕云计算领域10余年;我们拥有前沿的核心技术,始终致力于为政府机构、企业组织和个人开发者提供稳定、安全、可靠、高性价比的云计算产品与服务。公司名:珠海市特网科技有限公司官方网站:https://www.56dr.com特网云为您提供高速、稳定、安全、弹性的云计算服务 计算、存储、监控、安全,完善...

协方差相关系数为你推荐
采集卡万能驱动谁有采集卡7304的万能驱动或者专门的驱动,我的找不到了大蟒蛇平台PY平台是什么?java学习思维导图怎样使用思维导图软件美国大选投票实时数据美国总统大选选票如何统计圣诞节网页制作如何制作圣诞节贺卡msn邮箱后缀MSN可加哪几种后缀的email?iphone12或支持北斗导航苹果12屏幕设置淘气鸟乌儿很淘气,飞来飞去,蹦蹦跳跳,请你用“一会儿…一会儿…一会儿…”写写鸟儿?物联卡官网移动物联卡怎么注册微信语音在哪个文件夹微信语音收藏在哪个手机文件夹 安卓手机
ip查域名 香港服务器租用 台湾服务器租用 什么是域名解析 国外永久服务器 t牌 ubuntu更新源 admit的用法 赞助 腾讯实名认证中心 香港亚马逊 512mb 沈阳主机托管 湖南idc 国外网页代理 netvigator websitepanel restart WHMCS zencart安装 更多