协方差相关系数相关系数的含义
协方差相关系数 时间:2021-07-23 阅读:(
)
相关系数与协方差有什么关系
相关系数与协方差的关系:
1、相关系数与协方差一定是在投资组合中出现的,只有组合才有相关系数和协方差。
单个资产是没有相关系数和协方差之说的。
2、相关系数和协方差的变动方向是一致的,相关系数的负的,协方差一定是负的。
3、相关系数是变量之间相关程度的指标根据协方差的公式可知,协方差与相关系数的正负号相同,但是协方差是相关系数和两证券的标准差的乘积,所以协方差表示两种证劵之间共同变动的程度。
扩展资料
1、
?,?
?是一个可以表征?
?和?
?之间线性关系紧密程度的量。
它具有两个性质:
(1)、?
(2)、?
?的充要条件是,存在常数a,b,使得?
2、协方差的性质
(1)、Cov(X,Y)=Cov(Y,X);
(2)、Cov(aX,bY)=abCov(X,Y),(a,b是常数);
(3)、Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)。
由协方差定义,可以看出Cov(X,X)=D(X),Cov(Y,Y)=D(Y)。
参考资料:搜狗百科——协方差
参考资料:搜狗百科——相关系数数学高手在哪里?协方差与相关系数之间有什么关系?它们对二维随机变量的反映有什么不同?希望解释的准确
摘要:协方差Cov(X,Y)是描述二维随机变量两个分量间相互关联程度的一个特征数,如果将协方差相应标准化变量就得到相关系数Corr(X,Y)。
从而可以引进相关系数Corr(X,Y)去刻画二维随机变量两个分量间相互关联程度。
且事实表明,相关系数明显被广泛应用。
本文的目的在于从协方差与相关系数的关系的角度去探讨协方差与相关系数的优缺点,并具体介绍协方差和相关系数这两个描述二维随机变量间相关性的特征数。
关键字:协方差Cov(X,Y) 相关系数Corr(X,Y) 相互关联程度
1 协方差、相关系数的定义及性质
设(X ,Y)是一个二维随机变量,若E{ [ X-E(X) ] [ Y-E(Y) ] }存在,则称此数学期望为X与Y的协方差,并记为Cov(X,Y)=E{ [ X-E(X) ] [ Y-E(Y) ] },特别有Cov(X,X)=Var(X)。
从协方差的定义可以看出,它是X的偏差“X-E(X) ”与Y的偏差“Y-E(Y)”的乘积的数学期望。
由于偏差可正可负,故协方差也可正可负,也可为零,其具体表现如下:
·当Cov(X,Y)>0时,称X与Y正相关,这时两个偏差 [ X-E(X) ] 与[ Y-E(Y) ] 同时增加或同时减少,由于E(X)与E(Y)都是常数,故等价于X与Y同时增加或同时减少,这就是正相关的含义。
大哥,您好,我想知道协方差,相关系数的一些相关知识,看不懂协方差的那个计算公式哦
两个不同参数之间的方差就是协方差
若两个随机变量X和Y相互独立,则E[(X-E(X))(Y-E(Y))]=0,因而若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。
定义
E[(X-E(X))(Y-E(Y))]称为随机变量X和Y的协方差,记作COV(X,Y),即COV(X,Y)=E[(X-E(X))(Y-E(Y))]。
协方差与方差之间有如下关系:
D(X+Y)=D(X)+D(Y)+2COV(X,Y)
D(X-Y)=D(X)+D(Y)-2COV(X,Y)
因此,COV(X,Y)=E(XY)-E(X)E(Y)。
[编辑本段]
协方差的性质
(1)COV(X,Y)=COV(Y,X);
(2)COV(aX,bY)=abCOV(X,Y),(a,b是常数);
(3)COV(X1+X2,Y)=COV(X1,Y)+COV(X2,Y)。
由协方差定义,可以看出COV(X,X)=D(X),COV(Y,Y)=D(Y)。
协方差作为描述X和Y相关程度的量,在同一物理量纲之下有一定的作用,但同样的两个量采用不同的量纲使它们的协方差在数值上表现出很大的差异。
为此引入如下概念:
定义
ρXY=COV(X,Y)/√D(X)√D(Y),称为随机变量X和Y的相关系数。
定义
若ρXY=0,则称X与Y不相关。
即ρXY=0的充分必要条件是COV(X,Y)=0,亦即不相关和协方差为零是等价的。
定理
设ρXY是随机变量X和Y的相关系数,则有
(1)∣ρXY∣≤1;
(2)∣ρXY∣=1充分必要条件为P{Y=aX+b}=1,(a,b为常数,a≠0)
定义
设X和Y是随机变量,若E(X^k),k=1,2,...存在,则称它为X的k阶原点矩,简称k阶矩。
若E{[X-E(X)]^k},k=1,2,...存在,则称它为X的k阶中心矩。
若E(X^kY^l),k、l=1,2,...存在,则称它为X和Y的k+l阶混合原点矩。
若E{[X-E(X)]^k[Y-E(Y)]^l},k、l=1,2,...存在,则称它为X和Y的k+l阶混合中心矩。
显然,X的数学期望E(X)是X的一阶原点矩,方差D(X)是X的二阶中心矩,协方差COV(X,Y)是X和Y的二阶混合中心矩。
[编辑本段]
协方差在农业上的应用
农业科学实验中,经常会出现可以控制的质量因子和不可以控制的数量因子同时影响实验结果的情况,这时就需要采用协方差分析的统计处理方法,将质量因子与数量因子(也称协变量)综合起来加以考虑。
比如,要研究3种肥料对苹果产量的实际效应,而各棵苹果树头年的“基础产量”不一致,但对试验结果又有一定的影响。
要消除这一因素带来的影响,就需将各棵苹果树第1年年产量这一因素作为协变量进行协方差分析,才能得到正确的实验结果。
a =
-1 1 2
-2 3 1
4 0 3
for i=1:size(a,2)
for j=1:size(a,2)
c(i,j)=sum((a(:,i)-mean(a(:,i))).*(a(:,j)-mean(a(:,j))))/(size(a,1)-1);
end
end
c =
10.3333 -4.1667 3.0000
-4.1667 2.3333 -1.5000
3.0000 -1.5000 1.0000
c为求得的协方差矩阵,在matlab以矩阵a的每一列为变量,对应的每一行为样本。
这样在矩阵a中就有3个列变量分别为a(:,1), a(:,2), a(:,3)。
在协方差矩阵c中,每一个元素c(i,j)为对第i列与第j列的协方差,例如c(1,2) = -4.1667为第一列与第二列的协方差。
拿c(1,2)的求解过程来说
c(1,2)=sum((a(:,1)-mean(a(:,1))).*(a(:,2)-mean(a(:,2))))/(size(a,1)-1);
1. a(:,1)-mean(a(:,1)),第一列的元素减去该列的均值得到
-1.3333
-2.3333
3.6667
2, a(:,2)-mean(a(:,2)),第二列的元素减去该列的均值得到
-0.3333
1.6667
-1.3333
3, 再将第一步与第二部的结果相乘
-1.3333 -0.3333 0.4444
-2.3333 .* 1.6667 = -3.8889
3.6667 -1.3333 -4.8889
4, 再将结果求和/size(a,1)-1 得 -4.1667,该值即为c(1,2)的值。
再细看一下是不是与协方差公式:Cov(X,Y) = E{ [ (X-E(X) ] [ (Y-E(Y) ] } 过程基本一致呢,只是在第4步的时候matlab做了稍微的调整,自由度为n-1,减少了一行的样本值个数。
已知协方差求其特征值:
先写出协方差矩阵s,再调用eig(s)这个库函数,调用方法:[ev,ed]=eig(s).ed为特征值矩阵,ev特征向量矩阵,排列顺序:从低阶到高阶。
》s=[2291.333 1340 1934 2523.333 1245.333 2482; 1340 956.6667 1596 1401.333 883.3333 1480;1934 1596 4281.667 1436.667 1663 1945.667;2523.333 1401.333 1436.667 2984.667 1236 2800.667; 1245.333 883.333 1663 1236 843 1343;2482 1480 1945.667 2800.667 1343 2729.667]》[ev,ed]=eig(s) 先写出协方差矩阵s,再调用eig(s)这个库函数,调用方法:[ev,ed]=eig(s).ed为特征值矩阵,ev特征向量矩阵,排列顺序:从低阶到高阶。
》s=[2291.333 1340 1934 2523.333 1245.333 2482; 1340 956.6667 1596 1401.333 883.3333 1480;1934 1596 4281.667 1436.667 1663 1945.667;2523.333 1401.333 1436.667 2984.667 1236 2800.667; 1245.333 883.333 1663 1236 843 1343;2482 1480 1945.667 2800.667 1343 2729.667]》[ev,ed]=eig(s)标准差,协方差,相关系数的公式是什么
标准差
D (X ) = E [X - E(X)]2
根号D (X )为 X 的均方差或标准差
常用公式D(X)=E(X2)-E2(X)
协方差
COV(X,Y)=E([X-E(X)][Y-E(Y)])
相关系数
协方差/[根号D(X)*根号D(Y)]协方差分析和相关系数怎么作图
1)先键入:A1,B1,C1,D1,E1原始数据;//:第一行数据:1,2,3,4,5;2)再键入:A2,B2,C2,D2,E2原始数据;//:第二行数据:3,5,7,9,10;3)选中一个空格:如:A34)点击:fx出现一个对话框,点击go,点击mended寻找statistical(统计)选中:correl(相关系数)5)出现新对话框:在数组1,键入A1:E1;在数组2,键入:A2:E2点击:OK6)在A3空格内显示:0.99388373就是要求的相关系数!7)按列输入数据也是一样。
相关系数的含义
原发布者:qiqi7073
4.3协方差相关系数一、协方差的定义二、协方差的性质三、相关系数的定义四、相关系数的性质对于二维随机变量(,)来说,数学期望E,E仅仅反映了与各自的平均值,而方差D,D也仅反映了与各自离开均值的偏离程度,它们没有提供与之间相互联系的任何信息。
而事实上,从前面的二维随机变量(,)联合分布律或联合概率密度的讨论,我们知道与之间是存在着密切联系,因此,我们也希望有一个数字特征能够在一定程度上反映这种联系。
这便是本节要讨论的问题。
在方差性质4的证明中,我们已经发现当与独立时,必有E[(E)(E)]0也就是说,当E[(E)(E)]0时,与肯定不独立,由此说明式E[(E)(E)]0在一定程度上反映了、间的某种联系。
一、协方差的定义定义称E[(E)(E)]为随机变量与的协方差,记为Cov(,),即Cov(,)E[(E)(E)]由定义可知,在离散型场合下的协方差是通过和式来表示的,即Cov(,)(xiE)(yjE)piji1j1在连续型场合下的协方差是通过积分来表示的,即Cov(,)(xE)(yE)f(x,y)dydx特别,当=时,有Cov(,)E[(E)(E)]E(
美国高防服务器提速啦专业提供美国高防服务器,美国高防服务器租用,美国抗攻击服务器,高防御美国服务器租用等。我们的海外高防服务器带给您坚不可摧的DDoS防护,保障您的业务不受攻击影响。HostEase美国高防服务器位于加州和洛杉矶数据中心,均为国内访问速度最快最稳定的美国抗攻击机房,带给您快速的访问体验。我们的高防服务器配有最高层级的DDoS防护系统,每款抗攻击服务器均拥有免费DDoS防护额度,让您...
百驰云成立于2017年,是一家新国人IDC商家,且正规持证IDC/ISP/CDN,商家主要提供数据中心基础服务、互联网业务解决方案,及专属服务器租用、云服务器、云虚拟主机、专属服务器托管、带宽租用等产品和服务。百驰云提供源自大陆、香港、韩国和美国等地骨干级机房优质资源,包括BGP国际多线网络,CN2点对点直连带宽以及国际顶尖品牌硬件。专注为个人开发者用户,中小型,大型企业用户提供一站式核心网络云端...
justhost怎么样?justhost服务器好不好?JustHost是一家成立于2006年的俄罗斯服务器提供商,支持支付宝付款,服务器价格便宜,200Mbps大带宽不限流量,支持免费更换5次IP,支持控制面板自由切换机房,目前JustHost有俄罗斯6个机房可以自由切换选择,最重要的还是价格真的特别便宜,最低只需要87卢布/月,约8.5元/月起!总体来说,性价比很高,性价比不错,有需要的朋友可以...
协方差相关系数为你推荐
防恶意点击防恶意点击的原理是什么,是根据什么判定的?网龙吧刘谦吧 百度贴吧java学习思维导图思维导图培训教程?思维导图软件MindManager,freemind,xmind哪个好?微软将停止支持32位Win10系统你使用的Windows10即将终止服务是什么意思?呼叫中心搭建呼叫中心怎么建设windows7系统要求win7系统要求1518qq几开头的QQ号好智能公共广播系统智能广播系统怎么实现?智能公共广播系统智能公共广播系统js-3301数码mp3编程器怎么使用云图好看吗电影《云图》到底讲的什么,没看懂,高手来说一下。
俄罗斯vps 域名备案信息查询 科迈动态域名 踢楼 美国主机评论 Dedicated linode代购 私服服务器 directadmin debian6 eq2 丹弗 gg广告 cpanel空间 毫秒英文 怎样建立邮箱 免费phpmysql空间 爱奇艺会员免费试用 上海联通宽带测速 海外空间 更多