accidental海贼王644

海贼王644  时间:2021-01-20  阅读:()
Op.
52ConstructingDigitalSignaturesfromaOneWayFunctionLeslieLamportComputerScienceLaboratorySRIInternational18October1979CSL-98333RavenswoodAve.
MenloPark,California94025(415)326-6200Cable:SRIINTLMPKTWX:910-373-124611.
IntroductionAdigitalsignaturecreatedbyasenderPforadocumentmisadataitemOp(m)havingthepropertythatuponreceivingmandap(m),onecandetermine(andifnecessaryproveinacourtoflaw)thatPgeneratedthedocumentm.
Aonewayfunctionisafunctionthatiseasytocompute,butwhoseinverseisdifficulttocompute[1].
Morepreciselyaonewayfunctionisafunctionfromasetofdataobjectstoasetofvalueshavingthefollowingtwoproperties:1.
Givenanyvaluev,itiscomputationallyinfeasibletofindadataobjectdsuchthat(d)=v.
2.
Givenanydataobjectd,itiscomputationallyinfeasibletofindadifferentdataobjectdfsuchthat(d!
d)Ifthesetofdataobjectsislargerthanthesetofvalues,thensuchafunctionissometimescalledaonewayhashingfunction.
Wewilldescribeamethodforconstructingdigitalsignaturesfromsuchaonewayfunction.
OurmethodisanimprovementofamethoddevisedbyRabin[2].
LikeRabin's,itrequiresthesenderPtodepositapieceofdataocinsometrustedpublicrepositoryforeachdocumenthewishestosign.
Thisrepositorymusthavethefollowingproperties:-otcanbereadbyanyonewhowantstoverifyPfssignature.
-ItcanbeproveninacourtoflawthatPwasthecreaterofoc.
Onceochasbeenplacedintherepository,Pcanuseittogenerateasignatureforanysingledocumenthewishestosend.
Rabin'smethodhasthefollowingdrawbacksnotpresentinours.
1.
ThedocumentmmustbesenttoasinglerecipientQ,whothenrequestsadditionalinformationfromPtovalidatethesignature.
Pcannotdivulgeanyadditionalvalidatinginformationwithoutcompromisinginformationthatmustremainprivatetopreventsomeoneelsefromgeneratinganewdocumentmfwithavalidsignatureap(mf).
2.
Foracourtoflawtodetermineifthesignatureisvalid,itisnecessaryforPtogivethecourtadditionalprivateinformation.
Thishasthefollowingimplications.
.
P—oratrustedrepresentativeofP—mustbeavailabletothecourt,-Pmustmaintainprivateinformationwhoseaccidentaldisclosurewouldenablesomeoneelsetoforgehissignatureonadocument.
Withourmethod,Pgeneratesasignaturethatisverifiablebyanyone,withnofurtheractiononPfspart.
Aftergeneratingthesignature,Pcandestroytheprivateinformationthatwouldenablesomeoneelsetoforgehissignature.
TheadvantagesofourmethodoverRabin'sareillustratedbythefollowingconsiderationswhenthesigneddocumentmisacheckfromPpayabletoQ.
1.
ItiseasyforQtoendorsethecheckpayabletoathirdpartyRbysendinghimthesignedmessage"makempayabletoRlf.
However,withRabin'sscheme,RcannotdetermineifthecheckmwasreallysignedbyP,sohemustworryaboutforgerybyQaswellaswhetherornotPcancoverthecheck.
Withourmethod,thereisnowayforQtoforgethecheck,sotheendorsedcheckisasgoodasacheckpayabledirectlytoRsignedbyP.
(However,someadditionalmechanismmustbeintroducedtoprevent0fromcashingtheoriginalcheckafterhehassigneditovertoR.
)2.
IfPdieswithoutleavingtheexecutorsofhisestatetheinformationheusedtogeneratehissignatures,thenRabin'smethodcannotpreventQfromundetectablyalteringthecheckm—forexample,bychangingtheamountofmoneypayable.
Suchposthumousforgeryisimpossiblewithourmethod.
3.
WithRabin'smethod,tobeabletosuccessfullychallengeanyattemptbyQtomodifythecheckbeforecashingit,Pmustmaintaintheprivateinformationheusedtogeneratehissignature.
Ifanyone(notjustQ)stolethatinformation,thatpersoncouldforgeacheckfromPpayabletohim.
OurmethodallowsPtodestroythisprivateinformationaftersigningthecheck.
2.
TheAlgorithmWeassumeasetMofpossibledocuments,asetICofpossiblekeys,1TheelementsofKarenotkeysintheusualcryptographicsense,butarearbitrarydataitems.
WecallthemkeysbecausetheyplaythesameroleasthekeysinRabin'salgorithm.
andasetV^ofpossiblevalues.
Let2denotethesetofallsubsetsof{1,.
.
.
,40}containingexactly20elements.
(Thenumbers40and20arearbitrary,andcouldbereplacedby2nandn.
WeareusingthesenumbersbecausetheywereusedbyRabin,andwewishtomakeiteasyforthereadertocompareourmethodwithhis.
)Weassumethefollowingtwofunctions.
1.
AfunctionF:IC->V_withthefollowingtwoproperties:a.
GivenanyvaluevinVfitiscomputationallyinfeasibletofindakeykinKsuchthatF(k)=v.
b.
Foranysmallsetofvaluesv1f.
.
.
,vffl,itiseasytofindakeyksuchthatF(k)isnotequaltoanyofthevi2.
AfunctionG:M^->2withthepropertythatgivenanydocumentminM,itiscomputationallyinfeasibletofindadocumentm1imsuchthatG(mf)=G(m).
ForthefunctionF,wecanuseanyonewayfunctionwhosedomainisthesetofkeys.
ThesecondpropertyofFfollowseasilyfromthesecondpropertyoftheonewayfunction.
WewilldiscusslaterhowthefunctionGcanbeconstructedfromanordinaryonewayfunction.
Forconvenience,weassumethatPwantstogenerateonlyasinglesigneddocument.
Later,weindicatehowhecansignmanydifferentdocuments.
ThesenderPfirstchooses40keysk^suchthatallthevaluesFCk.
^)aredistinct.
(OursecondassumptionaboutFmakesthiseasytodo.
)Heputsinapublicrepositorythedataitemat=(F(k.
F(kjj0)).
NotethatPdoesnotdivulgethekeys^,whichbyourfirstassumptionaboutFcannotbecomputedfroma.
Togenerateasignatureforadocumentra,PfirstcomputesG(m)toobtainasetli-j,.
.
.
,i2o^°^integers.
Thesignatureconsistsofthe20keysk,L.
Moreprecisely,wehaveap(m)=(k_.
k_.
),i1i2Qri1i20wherethei-aredefinedbythefollowingtworequirements:(i)G(m)=Ult.
.
.
,i20}.
(ii)i1computationallyinfeasible.
)Suchfunctionsaredescribedin[1]and[2].
TheobviouswaytoconstructtherequiredfunctionGistolet$besuchaonewayfunction,anddefineG(m)toequalR((m)),whereR:{0,.
.
.
,2n-1}-2.
ItiseasytoconstructafunctionRhavingtherequiredrangeanddomain.
Forexample,onecancomputeR(s)inductivelyasfollows:1.
Dividesby40toobtainaquotientqandaremainderr2.
Usertochooseanelementxfrom{1,.
.
.
,40}.
(Thisiseasytodo,since0rjtobesurethattheresultingfunctionGhastherequiredproperty.
Wesuspectthatformostonewayfunctions,thismethodwouldwork.
However,wecannotprovethis.
ThereasonconstructingGinthismannermightnotworkisthatthefunctionRfrom{0,.
.
.
,2n}into2isamanytoonemapping,andtheresulting"collapsing11ofthedomainmightdefeattheonewaynatureof.
However,itiseasytoshowthatifthefunctionRisonetoone,thenproperty(ii)ofimpliesthatGhastherequiredproperty.
ToconstructG,weneedonlyfindaneasilycomputableonetoonefunctionRfrom{0,.
.
.
,2n-1}into2,forareasonablylargevalueofn.
WecansimplifyourtaskbyobservingthatthefunctionGneednotbedefinedontheentiresetofdocuments.
Itsufficesthatforanydocumentm,itiseasytomodifyminaharmlesswaytogetanewdocumentthatisinthedomainofG.
Forexample,onemightincludeameaninglessnumberaspartofthedocument,andchoosedifferentvaluesofthatnumberuntilheobtainsadocumentthatisinthedomainofG.
Thisisanacceptableprocedureif(i)itiseasytodeterminewhetheradocumentisinthedomain,and(ii)theexpectednumberofchoicesonemustmakebeforefindingadocumentinthedomainissmall.
Withthisinmind,weletn=MOanddefineR(s)asfollows:ifthebinaryrepresentationofscontainsexactly20ones,thenR(s)={i:theitjibitofsequalsone},otherwiseR(s)isundefined.
Approximately13%ofall40bitnumberscontainexactly20ones.
Hence,iftheonewayfunctionissufficientlyrandomizing,thereisa.
13probabilitythatanygivendocumentwillbeinthedomainofG.
Thismeansthatrandomlychoosingdocuments(ormodificationstoadocument),theexpectednumberofchoicesbeforefindingoneinthedomainofGisapproximately8.
Moreover,after17pchoices,theprobabilityofnothavingfoundadocumentinthedomainofGisabout1/10^.
(Ifweuse60keysinsteadof40,theexpectednumberofchoicestofindadocumentinthedomainbecomesabout10,and22pchoicesareneededtoreducetheprobabilityofnotfindingoneto1/10p.
)Iftheonewayfunctionkiseasytocompute,thenthesenumbersindicatethattheexpectedamountofefforttocomputeGisreasonable.
However,itdoesseemundesirabletohavetotrysomanydocumentsbeforefindingoneinthedomainofG.
WehopethatsomeonecanfindamoreelegantmethodforconstructingthefunctionG,perhapsbyfindingaoneto.
onefunctionRwhichisdefinedonalargersubsetof{0,.
.
.
,2n}.
Note;WehavethusfarinsistedthatG(m)beasubsetof{1,.
.
.
,40}consistingofexactly20elements.
ItisclearthatthegenerationandverificationprocedurecanbeappliedifG(m)isanypropersubset.
AnexaminationofourcorrectnessproofshowsthatifweallowG(m)tohaveanynumberofelementslessthan40,thenourmethodwouldstillhavethesamecorrectnesspropertiesifGsatisfiesthefollowingproperty:-ForanydocumentmfitiscomputationallyinfeasibletofindadifferentdocumentmfsuchthatG(mf)isasubsetofG(m).
BytakingtherangeofGtobethecollectionof20elementsubsets,weinsurethatG(mf)cannotbeapropersubsetofG(m).
However,itmaybepossibletoconstructafunctionGsatisfyingthisrequirementwithoutconstrainingtherangeofGinthisway.
REFERENCES[1]Diffie,W.
andHellman,M.
"NewDirectionsinCryptography".
IEEETrans,^nInformationTheoryIT-22_(November1976),544-654.
[2]Rabin,M.
"DigitalizedSignatures",inFoundationsofSecureComputing,AcademicPress(1978),155-168.

BGPTO独服折优惠- 日本独服65折 新加坡独服75折

BGPTO是一家成立于2017年的国人主机商,从商家背景上是国内的K总和有其他投资者共同创办的商家,主营是独立服务器业务。数据中心包括美国洛杉矶Cera、新加坡、日本大阪和香港数据中心的服务器。商家对所销售服务器产品拥有自主硬件和IP资源,支持Linux和Windows。这个月,有看到商家BGPTO日本和新加坡机房独服正进行优惠促销,折扣最低65折。第一、商家机房优惠券码这次商家的活动机房是新加坡...

艾云年付125元圣何塞GTT,洛杉矶vps年付85元

艾云怎么样?艾云是一家去年年底成立的国人主机商家,商家主要销售基于KVM虚拟架构的VPS服务,机房目前有美国洛杉矶、圣何塞和英国伦敦,目前商家推出了一些年付特价套餐,性价比非常高,洛杉矶套餐低至85元每年,给500M带宽,可解奈飞,另外圣何塞也有特价机器;1核/1G/20G SSD/3T/2.5Gbps,有需要的朋友以入手。点击进入:艾云官方网站艾云vps促销套餐:KVM虚拟架构,自带20G的防御...

Friendhosting,美国迈阿密机房新上线,全场45折特价优惠,100Mbps带宽不限流量,美国/荷兰/波兰/乌兰克/瑞士等可选,7.18欧元/半年

近日Friendhosting发布了最新的消息,新上线了美国迈阿密的云产品,之前的夏季优惠活动还在进行中,全场一次性45折优惠,最高可购买半年,超过半年优惠力度就不高了,Friendhosting商家的优势就是100Mbps带宽不限流量,有需要的朋友可以尝试一下。Friendhosting怎么样?Friendhosting服务器好不好?Friendhosting服务器值不值得购买?Friendho...

海贼王644为你推荐
集成显卡和独立显卡哪个好集成显卡与独立显卡的区别。电脑杀毒软件哪个好电脑用什么杀毒软件好?闪迪和金士顿哪个好固态硬盘哪个好,是金士顿好还是闪迪的视频软件哪个好什么看视频的软件好牡丹江教育云空间登录云空间的账号密忘了可是那个上面有不有不让重新申请一个怎么办空间登录器qq空间登录电脑版空间登录器用什么登录器可以登录QQ(除了QQ登录器)willyunlee找一部关于摩托车的电影`铁通dns服务器地址求陕西的中国移动铁通DNS服务器地址!!!360云盘登录360网盘怎么登陆
香港vps主机 lamp 企业主机 特价空间 华为4核 40g硬盘 申请个人网站 linux服务器维护 鲁诺 万网空间购买 银盘服务是什么 google台湾 宏讯 实惠 阿里dns 腾讯数据库 广州主机托管 阿里云邮箱怎么注册 weblogic部署 卡巴斯基免费版 更多