accidental海贼王644
海贼王644 时间:2021-01-20 阅读:(
)
Op.
52ConstructingDigitalSignaturesfromaOneWayFunctionLeslieLamportComputerScienceLaboratorySRIInternational18October1979CSL-98333RavenswoodAve.
MenloPark,California94025(415)326-6200Cable:SRIINTLMPKTWX:910-373-124611.
IntroductionAdigitalsignaturecreatedbyasenderPforadocumentmisadataitemOp(m)havingthepropertythatuponreceivingmandap(m),onecandetermine(andifnecessaryproveinacourtoflaw)thatPgeneratedthedocumentm.
Aonewayfunctionisafunctionthatiseasytocompute,butwhoseinverseisdifficulttocompute[1].
Morepreciselyaonewayfunctionisafunctionfromasetofdataobjectstoasetofvalueshavingthefollowingtwoproperties:1.
Givenanyvaluev,itiscomputationallyinfeasibletofindadataobjectdsuchthat(d)=v.
2.
Givenanydataobjectd,itiscomputationallyinfeasibletofindadifferentdataobjectdfsuchthat(d!
d)Ifthesetofdataobjectsislargerthanthesetofvalues,thensuchafunctionissometimescalledaonewayhashingfunction.
Wewilldescribeamethodforconstructingdigitalsignaturesfromsuchaonewayfunction.
OurmethodisanimprovementofamethoddevisedbyRabin[2].
LikeRabin's,itrequiresthesenderPtodepositapieceofdataocinsometrustedpublicrepositoryforeachdocumenthewishestosign.
Thisrepositorymusthavethefollowingproperties:-otcanbereadbyanyonewhowantstoverifyPfssignature.
-ItcanbeproveninacourtoflawthatPwasthecreaterofoc.
Onceochasbeenplacedintherepository,Pcanuseittogenerateasignatureforanysingledocumenthewishestosend.
Rabin'smethodhasthefollowingdrawbacksnotpresentinours.
1.
ThedocumentmmustbesenttoasinglerecipientQ,whothenrequestsadditionalinformationfromPtovalidatethesignature.
Pcannotdivulgeanyadditionalvalidatinginformationwithoutcompromisinginformationthatmustremainprivatetopreventsomeoneelsefromgeneratinganewdocumentmfwithavalidsignatureap(mf).
2.
Foracourtoflawtodetermineifthesignatureisvalid,itisnecessaryforPtogivethecourtadditionalprivateinformation.
Thishasthefollowingimplications.
.
P—oratrustedrepresentativeofP—mustbeavailabletothecourt,-Pmustmaintainprivateinformationwhoseaccidentaldisclosurewouldenablesomeoneelsetoforgehissignatureonadocument.
Withourmethod,Pgeneratesasignaturethatisverifiablebyanyone,withnofurtheractiononPfspart.
Aftergeneratingthesignature,Pcandestroytheprivateinformationthatwouldenablesomeoneelsetoforgehissignature.
TheadvantagesofourmethodoverRabin'sareillustratedbythefollowingconsiderationswhenthesigneddocumentmisacheckfromPpayabletoQ.
1.
ItiseasyforQtoendorsethecheckpayabletoathirdpartyRbysendinghimthesignedmessage"makempayabletoRlf.
However,withRabin'sscheme,RcannotdetermineifthecheckmwasreallysignedbyP,sohemustworryaboutforgerybyQaswellaswhetherornotPcancoverthecheck.
Withourmethod,thereisnowayforQtoforgethecheck,sotheendorsedcheckisasgoodasacheckpayabledirectlytoRsignedbyP.
(However,someadditionalmechanismmustbeintroducedtoprevent0fromcashingtheoriginalcheckafterhehassigneditovertoR.
)2.
IfPdieswithoutleavingtheexecutorsofhisestatetheinformationheusedtogeneratehissignatures,thenRabin'smethodcannotpreventQfromundetectablyalteringthecheckm—forexample,bychangingtheamountofmoneypayable.
Suchposthumousforgeryisimpossiblewithourmethod.
3.
WithRabin'smethod,tobeabletosuccessfullychallengeanyattemptbyQtomodifythecheckbeforecashingit,Pmustmaintaintheprivateinformationheusedtogeneratehissignature.
Ifanyone(notjustQ)stolethatinformation,thatpersoncouldforgeacheckfromPpayabletohim.
OurmethodallowsPtodestroythisprivateinformationaftersigningthecheck.
2.
TheAlgorithmWeassumeasetMofpossibledocuments,asetICofpossiblekeys,1TheelementsofKarenotkeysintheusualcryptographicsense,butarearbitrarydataitems.
WecallthemkeysbecausetheyplaythesameroleasthekeysinRabin'salgorithm.
andasetV^ofpossiblevalues.
Let2denotethesetofallsubsetsof{1,.
.
.
,40}containingexactly20elements.
(Thenumbers40and20arearbitrary,andcouldbereplacedby2nandn.
WeareusingthesenumbersbecausetheywereusedbyRabin,andwewishtomakeiteasyforthereadertocompareourmethodwithhis.
)Weassumethefollowingtwofunctions.
1.
AfunctionF:IC->V_withthefollowingtwoproperties:a.
GivenanyvaluevinVfitiscomputationallyinfeasibletofindakeykinKsuchthatF(k)=v.
b.
Foranysmallsetofvaluesv1f.
.
.
,vffl,itiseasytofindakeyksuchthatF(k)isnotequaltoanyofthevi2.
AfunctionG:M^->2withthepropertythatgivenanydocumentminM,itiscomputationallyinfeasibletofindadocumentm1imsuchthatG(mf)=G(m).
ForthefunctionF,wecanuseanyonewayfunctionwhosedomainisthesetofkeys.
ThesecondpropertyofFfollowseasilyfromthesecondpropertyoftheonewayfunction.
WewilldiscusslaterhowthefunctionGcanbeconstructedfromanordinaryonewayfunction.
Forconvenience,weassumethatPwantstogenerateonlyasinglesigneddocument.
Later,weindicatehowhecansignmanydifferentdocuments.
ThesenderPfirstchooses40keysk^suchthatallthevaluesFCk.
^)aredistinct.
(OursecondassumptionaboutFmakesthiseasytodo.
)Heputsinapublicrepositorythedataitemat=(F(k.
F(kjj0)).
NotethatPdoesnotdivulgethekeys^,whichbyourfirstassumptionaboutFcannotbecomputedfroma.
Togenerateasignatureforadocumentra,PfirstcomputesG(m)toobtainasetli-j,.
.
.
,i2o^°^integers.
Thesignatureconsistsofthe20keysk,L.
Moreprecisely,wehaveap(m)=(k_.
k_.
),i1i2Qri1i20wherethei-aredefinedbythefollowingtworequirements:(i)G(m)=Ult.
.
.
,i20}.
(ii)i1computationallyinfeasible.
)Suchfunctionsaredescribedin[1]and[2].
TheobviouswaytoconstructtherequiredfunctionGistolet$besuchaonewayfunction,anddefineG(m)toequalR((m)),whereR:{0,.
.
.
,2n-1}-2.
ItiseasytoconstructafunctionRhavingtherequiredrangeanddomain.
Forexample,onecancomputeR(s)inductivelyasfollows:1.
Dividesby40toobtainaquotientqandaremainderr2.
Usertochooseanelementxfrom{1,.
.
.
,40}.
(Thisiseasytodo,since0rjtobesurethattheresultingfunctionGhastherequiredproperty.
Wesuspectthatformostonewayfunctions,thismethodwouldwork.
However,wecannotprovethis.
ThereasonconstructingGinthismannermightnotworkisthatthefunctionRfrom{0,.
.
.
,2n}into2isamanytoonemapping,andtheresulting"collapsing11ofthedomainmightdefeattheonewaynatureof.
However,itiseasytoshowthatifthefunctionRisonetoone,thenproperty(ii)ofimpliesthatGhastherequiredproperty.
ToconstructG,weneedonlyfindaneasilycomputableonetoonefunctionRfrom{0,.
.
.
,2n-1}into2,forareasonablylargevalueofn.
WecansimplifyourtaskbyobservingthatthefunctionGneednotbedefinedontheentiresetofdocuments.
Itsufficesthatforanydocumentm,itiseasytomodifyminaharmlesswaytogetanewdocumentthatisinthedomainofG.
Forexample,onemightincludeameaninglessnumberaspartofthedocument,andchoosedifferentvaluesofthatnumberuntilheobtainsadocumentthatisinthedomainofG.
Thisisanacceptableprocedureif(i)itiseasytodeterminewhetheradocumentisinthedomain,and(ii)theexpectednumberofchoicesonemustmakebeforefindingadocumentinthedomainissmall.
Withthisinmind,weletn=MOanddefineR(s)asfollows:ifthebinaryrepresentationofscontainsexactly20ones,thenR(s)={i:theitjibitofsequalsone},otherwiseR(s)isundefined.
Approximately13%ofall40bitnumberscontainexactly20ones.
Hence,iftheonewayfunctionissufficientlyrandomizing,thereisa.
13probabilitythatanygivendocumentwillbeinthedomainofG.
Thismeansthatrandomlychoosingdocuments(ormodificationstoadocument),theexpectednumberofchoicesbeforefindingoneinthedomainofGisapproximately8.
Moreover,after17pchoices,theprobabilityofnothavingfoundadocumentinthedomainofGisabout1/10^.
(Ifweuse60keysinsteadof40,theexpectednumberofchoicestofindadocumentinthedomainbecomesabout10,and22pchoicesareneededtoreducetheprobabilityofnotfindingoneto1/10p.
)Iftheonewayfunctionkiseasytocompute,thenthesenumbersindicatethattheexpectedamountofefforttocomputeGisreasonable.
However,itdoesseemundesirabletohavetotrysomanydocumentsbeforefindingoneinthedomainofG.
WehopethatsomeonecanfindamoreelegantmethodforconstructingthefunctionG,perhapsbyfindingaoneto.
onefunctionRwhichisdefinedonalargersubsetof{0,.
.
.
,2n}.
Note;WehavethusfarinsistedthatG(m)beasubsetof{1,.
.
.
,40}consistingofexactly20elements.
ItisclearthatthegenerationandverificationprocedurecanbeappliedifG(m)isanypropersubset.
AnexaminationofourcorrectnessproofshowsthatifweallowG(m)tohaveanynumberofelementslessthan40,thenourmethodwouldstillhavethesamecorrectnesspropertiesifGsatisfiesthefollowingproperty:-ForanydocumentmfitiscomputationallyinfeasibletofindadifferentdocumentmfsuchthatG(mf)isasubsetofG(m).
BytakingtherangeofGtobethecollectionof20elementsubsets,weinsurethatG(mf)cannotbeapropersubsetofG(m).
However,itmaybepossibletoconstructafunctionGsatisfyingthisrequirementwithoutconstrainingtherangeofGinthisway.
REFERENCES[1]Diffie,W.
andHellman,M.
"NewDirectionsinCryptography".
IEEETrans,^nInformationTheoryIT-22_(November1976),544-654.
[2]Rabin,M.
"DigitalizedSignatures",inFoundationsofSecureComputing,AcademicPress(1978),155-168.
在之前的一些文章中有提到HostYun商家的信息,这个商家源头是比较老的,这两年有更换新的品牌域名。在陆续的有新增机房,价格上还是走的低价格路线,所以平时的折扣力度已经是比较低的。在前面我也有介绍到提供九折优惠,这个品牌商家就是走的低价量大为主。中秋节即将到,商家也有推出稍微更低的88折。全场88折优惠码:moon88这里,整理部分HostYun商家的套餐。所有的价格目前都是原价,我们需要用折扣码...
妮妮云的来历妮妮云是 789 陈总 张总 三方共同投资建立的网站 本着“良心 便宜 稳定”的初衷 为小白用户避免被坑妮妮云的市场定位妮妮云主要代理市场稳定速度的云服务器产品,避免新手购买云服务器的时候众多商家不知道如何选择,妮妮云就帮你选择好了产品,无需承担购买风险,不用担心出现被跑路 被诈骗的情况。妮妮云的售后保证妮妮云退款 通过于合作商的友好协商,云服务器提供2天内全额退款到网站余额,超过2天...
搬瓦工怎么样?2021年7月最新vps套餐推荐及搬瓦工优惠码整理,搬瓦工优惠码可以在购买的时候获取一些优惠,一般来说力度都在 6% 左右。本文整理一下 2021 年 7 月最新的搬瓦工优惠码,目前折扣力度最大是 6.58%,并且是循环折扣,续费有效,可以一直享受优惠价格续费的。搬瓦工优惠码基本上可能每年才会更新一次,大家可以收藏本文,会保持搬瓦工最新优惠码更新的。点击进入:搬瓦工最新官方网站搬瓦工...
海贼王644为你推荐
美团月付怎么关闭美团外卖如何关闭快捷支付方式游戏加速器哪个好大家玩游戏用的都是什么加速器啊,哪个效果最好机械表和石英表哪个好石英表和机械表哪个好浮动利率和固定利率哪个好贷款选择浮动利率还是固定利率手机杀毒软件哪个好手机用杀毒软件,用哪样的好二手车网站哪个好二手车网站哪家好?哪个信息更可靠?二手车网站哪个好二手车交易网哪个好?手机音乐播放器哪个好哪种手机音乐播放器最好红茶和绿茶哪个好红茶和绿茶哪个好?qq空间登录网页版求这张图的原图,是QQ空间最近网页版登录界面的背景
debian6 警告本网站美国保护 adroit 免费申请个人网站 重庆双线服务器托管 双12 香港亚马逊 全能空间 lamp是什么意思 阿里云邮箱申请 碳云 winds 侦探online 免费服务器 火山互联 硬防 装修瓦工培训 阿里云主机 电脑主机配置 天翼云主机 更多