accidental海贼王644

海贼王644  时间:2021-01-20  阅读:()
Op.
52ConstructingDigitalSignaturesfromaOneWayFunctionLeslieLamportComputerScienceLaboratorySRIInternational18October1979CSL-98333RavenswoodAve.
MenloPark,California94025(415)326-6200Cable:SRIINTLMPKTWX:910-373-124611.
IntroductionAdigitalsignaturecreatedbyasenderPforadocumentmisadataitemOp(m)havingthepropertythatuponreceivingmandap(m),onecandetermine(andifnecessaryproveinacourtoflaw)thatPgeneratedthedocumentm.
Aonewayfunctionisafunctionthatiseasytocompute,butwhoseinverseisdifficulttocompute[1].
Morepreciselyaonewayfunctionisafunctionfromasetofdataobjectstoasetofvalueshavingthefollowingtwoproperties:1.
Givenanyvaluev,itiscomputationallyinfeasibletofindadataobjectdsuchthat(d)=v.
2.
Givenanydataobjectd,itiscomputationallyinfeasibletofindadifferentdataobjectdfsuchthat(d!
d)Ifthesetofdataobjectsislargerthanthesetofvalues,thensuchafunctionissometimescalledaonewayhashingfunction.
Wewilldescribeamethodforconstructingdigitalsignaturesfromsuchaonewayfunction.
OurmethodisanimprovementofamethoddevisedbyRabin[2].
LikeRabin's,itrequiresthesenderPtodepositapieceofdataocinsometrustedpublicrepositoryforeachdocumenthewishestosign.
Thisrepositorymusthavethefollowingproperties:-otcanbereadbyanyonewhowantstoverifyPfssignature.
-ItcanbeproveninacourtoflawthatPwasthecreaterofoc.
Onceochasbeenplacedintherepository,Pcanuseittogenerateasignatureforanysingledocumenthewishestosend.
Rabin'smethodhasthefollowingdrawbacksnotpresentinours.
1.
ThedocumentmmustbesenttoasinglerecipientQ,whothenrequestsadditionalinformationfromPtovalidatethesignature.
Pcannotdivulgeanyadditionalvalidatinginformationwithoutcompromisinginformationthatmustremainprivatetopreventsomeoneelsefromgeneratinganewdocumentmfwithavalidsignatureap(mf).
2.
Foracourtoflawtodetermineifthesignatureisvalid,itisnecessaryforPtogivethecourtadditionalprivateinformation.
Thishasthefollowingimplications.
.
P—oratrustedrepresentativeofP—mustbeavailabletothecourt,-Pmustmaintainprivateinformationwhoseaccidentaldisclosurewouldenablesomeoneelsetoforgehissignatureonadocument.
Withourmethod,Pgeneratesasignaturethatisverifiablebyanyone,withnofurtheractiononPfspart.
Aftergeneratingthesignature,Pcandestroytheprivateinformationthatwouldenablesomeoneelsetoforgehissignature.
TheadvantagesofourmethodoverRabin'sareillustratedbythefollowingconsiderationswhenthesigneddocumentmisacheckfromPpayabletoQ.
1.
ItiseasyforQtoendorsethecheckpayabletoathirdpartyRbysendinghimthesignedmessage"makempayabletoRlf.
However,withRabin'sscheme,RcannotdetermineifthecheckmwasreallysignedbyP,sohemustworryaboutforgerybyQaswellaswhetherornotPcancoverthecheck.
Withourmethod,thereisnowayforQtoforgethecheck,sotheendorsedcheckisasgoodasacheckpayabledirectlytoRsignedbyP.
(However,someadditionalmechanismmustbeintroducedtoprevent0fromcashingtheoriginalcheckafterhehassigneditovertoR.
)2.
IfPdieswithoutleavingtheexecutorsofhisestatetheinformationheusedtogeneratehissignatures,thenRabin'smethodcannotpreventQfromundetectablyalteringthecheckm—forexample,bychangingtheamountofmoneypayable.
Suchposthumousforgeryisimpossiblewithourmethod.
3.
WithRabin'smethod,tobeabletosuccessfullychallengeanyattemptbyQtomodifythecheckbeforecashingit,Pmustmaintaintheprivateinformationheusedtogeneratehissignature.
Ifanyone(notjustQ)stolethatinformation,thatpersoncouldforgeacheckfromPpayabletohim.
OurmethodallowsPtodestroythisprivateinformationaftersigningthecheck.
2.
TheAlgorithmWeassumeasetMofpossibledocuments,asetICofpossiblekeys,1TheelementsofKarenotkeysintheusualcryptographicsense,butarearbitrarydataitems.
WecallthemkeysbecausetheyplaythesameroleasthekeysinRabin'salgorithm.
andasetV^ofpossiblevalues.
Let2denotethesetofallsubsetsof{1,.
.
.
,40}containingexactly20elements.
(Thenumbers40and20arearbitrary,andcouldbereplacedby2nandn.
WeareusingthesenumbersbecausetheywereusedbyRabin,andwewishtomakeiteasyforthereadertocompareourmethodwithhis.
)Weassumethefollowingtwofunctions.
1.
AfunctionF:IC->V_withthefollowingtwoproperties:a.
GivenanyvaluevinVfitiscomputationallyinfeasibletofindakeykinKsuchthatF(k)=v.
b.
Foranysmallsetofvaluesv1f.
.
.
,vffl,itiseasytofindakeyksuchthatF(k)isnotequaltoanyofthevi2.
AfunctionG:M^->2withthepropertythatgivenanydocumentminM,itiscomputationallyinfeasibletofindadocumentm1imsuchthatG(mf)=G(m).
ForthefunctionF,wecanuseanyonewayfunctionwhosedomainisthesetofkeys.
ThesecondpropertyofFfollowseasilyfromthesecondpropertyoftheonewayfunction.
WewilldiscusslaterhowthefunctionGcanbeconstructedfromanordinaryonewayfunction.
Forconvenience,weassumethatPwantstogenerateonlyasinglesigneddocument.
Later,weindicatehowhecansignmanydifferentdocuments.
ThesenderPfirstchooses40keysk^suchthatallthevaluesFCk.
^)aredistinct.
(OursecondassumptionaboutFmakesthiseasytodo.
)Heputsinapublicrepositorythedataitemat=(F(k.
F(kjj0)).
NotethatPdoesnotdivulgethekeys^,whichbyourfirstassumptionaboutFcannotbecomputedfroma.
Togenerateasignatureforadocumentra,PfirstcomputesG(m)toobtainasetli-j,.
.
.
,i2o^°^integers.
Thesignatureconsistsofthe20keysk,L.
Moreprecisely,wehaveap(m)=(k_.
k_.
),i1i2Qri1i20wherethei-aredefinedbythefollowingtworequirements:(i)G(m)=Ult.
.
.
,i20}.
(ii)i1computationallyinfeasible.
)Suchfunctionsaredescribedin[1]and[2].
TheobviouswaytoconstructtherequiredfunctionGistolet$besuchaonewayfunction,anddefineG(m)toequalR((m)),whereR:{0,.
.
.
,2n-1}-2.
ItiseasytoconstructafunctionRhavingtherequiredrangeanddomain.
Forexample,onecancomputeR(s)inductivelyasfollows:1.
Dividesby40toobtainaquotientqandaremainderr2.
Usertochooseanelementxfrom{1,.
.
.
,40}.
(Thisiseasytodo,since0rjtobesurethattheresultingfunctionGhastherequiredproperty.
Wesuspectthatformostonewayfunctions,thismethodwouldwork.
However,wecannotprovethis.
ThereasonconstructingGinthismannermightnotworkisthatthefunctionRfrom{0,.
.
.
,2n}into2isamanytoonemapping,andtheresulting"collapsing11ofthedomainmightdefeattheonewaynatureof.
However,itiseasytoshowthatifthefunctionRisonetoone,thenproperty(ii)ofimpliesthatGhastherequiredproperty.
ToconstructG,weneedonlyfindaneasilycomputableonetoonefunctionRfrom{0,.
.
.
,2n-1}into2,forareasonablylargevalueofn.
WecansimplifyourtaskbyobservingthatthefunctionGneednotbedefinedontheentiresetofdocuments.
Itsufficesthatforanydocumentm,itiseasytomodifyminaharmlesswaytogetanewdocumentthatisinthedomainofG.
Forexample,onemightincludeameaninglessnumberaspartofthedocument,andchoosedifferentvaluesofthatnumberuntilheobtainsadocumentthatisinthedomainofG.
Thisisanacceptableprocedureif(i)itiseasytodeterminewhetheradocumentisinthedomain,and(ii)theexpectednumberofchoicesonemustmakebeforefindingadocumentinthedomainissmall.
Withthisinmind,weletn=MOanddefineR(s)asfollows:ifthebinaryrepresentationofscontainsexactly20ones,thenR(s)={i:theitjibitofsequalsone},otherwiseR(s)isundefined.
Approximately13%ofall40bitnumberscontainexactly20ones.
Hence,iftheonewayfunctionissufficientlyrandomizing,thereisa.
13probabilitythatanygivendocumentwillbeinthedomainofG.
Thismeansthatrandomlychoosingdocuments(ormodificationstoadocument),theexpectednumberofchoicesbeforefindingoneinthedomainofGisapproximately8.
Moreover,after17pchoices,theprobabilityofnothavingfoundadocumentinthedomainofGisabout1/10^.
(Ifweuse60keysinsteadof40,theexpectednumberofchoicestofindadocumentinthedomainbecomesabout10,and22pchoicesareneededtoreducetheprobabilityofnotfindingoneto1/10p.
)Iftheonewayfunctionkiseasytocompute,thenthesenumbersindicatethattheexpectedamountofefforttocomputeGisreasonable.
However,itdoesseemundesirabletohavetotrysomanydocumentsbeforefindingoneinthedomainofG.
WehopethatsomeonecanfindamoreelegantmethodforconstructingthefunctionG,perhapsbyfindingaoneto.
onefunctionRwhichisdefinedonalargersubsetof{0,.
.
.
,2n}.
Note;WehavethusfarinsistedthatG(m)beasubsetof{1,.
.
.
,40}consistingofexactly20elements.
ItisclearthatthegenerationandverificationprocedurecanbeappliedifG(m)isanypropersubset.
AnexaminationofourcorrectnessproofshowsthatifweallowG(m)tohaveanynumberofelementslessthan40,thenourmethodwouldstillhavethesamecorrectnesspropertiesifGsatisfiesthefollowingproperty:-ForanydocumentmfitiscomputationallyinfeasibletofindadifferentdocumentmfsuchthatG(mf)isasubsetofG(m).
BytakingtherangeofGtobethecollectionof20elementsubsets,weinsurethatG(mf)cannotbeapropersubsetofG(m).
However,itmaybepossibletoconstructafunctionGsatisfyingthisrequirementwithoutconstrainingtherangeofGinthisway.
REFERENCES[1]Diffie,W.
andHellman,M.
"NewDirectionsinCryptography".
IEEETrans,^nInformationTheoryIT-22_(November1976),544-654.
[2]Rabin,M.
"DigitalizedSignatures",inFoundationsofSecureComputing,AcademicPress(1978),155-168.

易探云韩国云服务器仅50元/月,510元/年起

韩国云服务器哪个好?韩国云服务器好用吗?韩国是距离我国很近的一个国家,很多站长用户在考虑国外云服务器时,也会将韩国云服务器列入其中。绝大部分用户都是接触的免备案香港和美国居多,在加上服务器确实不错,所以形成了习惯性依赖。但也有不少用户开始寻找其它的海外免备案云服务器,比如韩国云服务器。下面云服务器网(yuntue.com)就推荐最好用的韩国cn2云服务器,韩国CN2云服务器租用推荐。为什么推荐租用...

ParkinHost:俄罗斯离岸主机,抗投诉VPS,200Mbps带宽/莫斯科CN2线路/不限流量/无视DMCA/55折促销26.4欧元 /年起

外贸主机哪家好?抗投诉VPS哪家好?无视DMCA。ParkinHost今年还没有搞过促销,这次parkinhost俄罗斯机房上新服务器,母机采用2个E5-2680v3处理器、128G内存、RAID10硬盘、2Gbps上行线路。具体到VPS全部200Mbps带宽,除了最便宜的套餐限制流量之外,其他的全部是无限流量VPS。ParkinHost,成立于 2013 年,印度主机商,隶属于 DiggDigi...

易探云香港云服务器价格多少钱1个月/1年?

易探云怎么样?易探云是目前国内少数优质的香港云服务器服务商家,目前推出多个香港机房的香港云服务器,有新界、九龙、沙田、葵湾等机房,还提供CN2、BGP及CN2三网直连香港云服务器。近年来,许多企业外贸出海会选择香港云服务器来部署自己的外贸网站,使得越来越多的用户会选择易探云作为网站服务提供平台。今天,云服务器网(yuntue.com)小编来谈谈易探云和易探云服务器怎么样?具体香港云服务器多少钱1个...

海贼王644为你推荐
电脑桌面背景图片电脑桌面壁纸法兰绒和珊瑚绒哪个好珊瑚绒和法兰绒哪个暖和录音软件哪个好录音软件哪个好用又简单等额本息等额本金哪个好到底是等额本息好还是等额本金好?手机音乐播放器哪个好手机哪个音乐播放器的音质更好?oppo和vivo哪个好买oppo手机好还是vivo的好?oppo和vivo哪个好vivo和oppo建议买哪个qq空间登录界面我的手机QQ打开应该是九个选项,什么空间,但是现在打开怎么直接是QQ登录界面,这个撇手机willyunlee电影拳皇演的是什么意思dns服务器故障dns服务器异常怎么办
深圳域名注册 flashfxp怎么用 hostmonster 国外服务器网站 哈喽图床 京东云擎 免费静态空间 最好看的qq空间 免费网站申请 创梦 个人域名 柚子舍官网 怎样建立邮箱 股票老左 hkg 免费吧 东莞数据中心 中国电信测速网 河南移动m值兑换 登陆空间 更多