crystalnano5

nano5  时间:2021-01-17  阅读:()
1DirectlyProbingLightAbsorptionEnhancementofSingleHierarchicalStructureswithEngineeredSurfaceRoughnessJingweiWang1,RunShi1,WeijunWang1,NianduoCai1,PengchengChen1,DejunKong1,AbbasAmini2&ChunCheng1Hierarchicalnanostructuresareidealarchitecturestoharvestsolarenergy.
Theunderstandingoflightabsorptioninsinglehierarchicalstructuresisemergentlyimportantandgreatlyhelpfulinenhancingmultiscaleopticalphenomenaandlightmanagement.
However,duetothegeometricalcomplexityofhierarchicalarchitectures,theoreticalandexperimentalstudiesoflightabsorptionhavefacedsignificantchallenges.
Here,wedirectlyquantifylightabsorptioninsinglehierarchicalstructuresforthefirsttimebyutilizingVO2-basednearfieldpowermeter.
Itisfoundthatlighttrappingissignificantlyenhancedinroughmicrowireswhentheroughnessamplitudeiscomparabletotheincidentlightwavelength.
TheroughnessenhancedlightabsorptionisverifiedasageneralphenomenononbothVO2andSihierarchicalstructures.
Therefore,ourworknotonlyprovidesasimpleandquantitativemethodofmeasuringlightabsorptionuponsinglegeometricallycomplexstructuresinmicro/nanoscale,butalsocontributesageneralruletorationallydesignofhierarchicalstructuresforenhancedperformanceinphotoelectricandphotochemicalapplications.
Conversionofsunlighttoelectricalandchemicalenergyisapromisingandprovenstrategyforlarge-scalepro-ductionofenergyfromarenewablesource.
Toeffectivelyharnesssolarenergy,aphotovoltaiccellorphoto-electrochemicalelectrodemustabsorbmostofthesolarspectrumandcollectthephoton-generatedcarrierswithminimallossestorecombination.
Forplanardevices,thistaskcanbedifficultbecausetherequiredthick-nessofmaterialforadequateabsorptionoflightisoftengreaterthanthedistanceoverwhichphoton-generatedchargescanbeefficientlycollected.
Semiconductormicro/nanostructuresoffernewapproachestomeettheserequirementsoflightabsorptionandchargecollection1–3.
Specifically,hierarchicalarchitecturesthatarecon-structedbymultiscalemicro/nanostructureshaveattractedintensiveattentionssincetheyareidealcandidatesforhigh-performancesolarenergyharvestingdevices4–8.
Thesestructurespossessspecificconfigurationsofmicros-calebackbonesandone-dimensional(1D)nanostructurearrayssurroundedthebackbones.
Thedirectpathwayalong1Dcrystallinenanostructuresdiminishesthepossibilityofchargerecombinationandoffersarelativelylargeaspectratioforrapidelectron-holeseparationandchargetransport,aswellaselectrochemicalreactions9–11.
Mostimportantly,high-densitytreelikebranchednanowirearraysofhierarchicalstructuresprovidelongopticalpathsforefficientlighttrappingandthuspromotetheutilizationoflightsignificantly12–16.
Plentyofeffortshavebeendevotedtothesynthesisandapplicationsofhierarchicalstructures,whilehowtheirstructuralparameters,suchasthesizeofmultiscalenanostructures,affectlightabsorptionisyettobesystematicallystudied.
Thus,quantificationoflightabsorptionuponsinglehierarchicalstructureshastobesettledurgently.
Lightabsorptionandpropagationatthesub-micrometerscalearethekeypointsformanycriticaltechnolo-giesandapplications.
Lightabsorptionof1Dnanostructurearraysisawellunderstoodphenomenonexperimen-tally,analytically(Maxwellequation),andnumerically(finiteelementmethod).
However,thelightabsorptionofsinglesub-micronsolidsisstillhardtobequantitativelydeterminedbyexperiments16–18.
Thisislargelyduetodifficultiesinaccurateanddirectcharacterizationofenergyflowandtemperaturedistributionatthisscale.
1DepartmentofMaterialsScienceandEngineering,SouthernUniversityofScienceandTechnology,Shenzhen,518055,China.
2CenterforInfrastructureEngineering,WesternSydneyUniversity,Kingswood,NewSouthWales,2751,Australia.
JingweiWangandRunShicontributedequallytothiswork.
CorrespondenceandrequestsformaterialsshouldbeaddressedtoC.
C.
(email:chengc@sustc.
edu.
cn)Received:29March2018Accepted:12July2018Published:xxxxxxxxOPEN2Incaseofgeometricallycomplicatednanostructures,i.
e.
,hierarchicalstructures,simulationalorexperimentalevaluationsoflightabsorptionbecomeevenmoredifficult.
Recently,wehavedevelopedopticallyreadablenear-fieldpowermeters(NFP)basedonthemetal–insulatortransition(MIT)insinglecrystalvanadiumdioxide(VO2)micro/nanobeamswhichenablesdirectquantificationoflightabsorptionofanysinglemicro/nanowires19,20.
Here,wepresentthequantitativestudyoflightabsorptionofsinglehierarchicalstructuresbyapplyingthisuniqueNFPtechnique.
ThesurfaceofVO2andSimicrowireswereengineeredbyatop-downapproachwithfocusionbeam(FIB)techniquetoformhierarchicalstructureswithcontrollabletrenchsizes.
LongVO2wiresweresuspendedfromasubstrateasNFPs.
ThehierarchicalwiresbondedtotheNFPswerelocallyheatedusingafocusedlaserwhichstimulatesthephasetransition.
Theresultantdomainstructurescanbeopticallyimaged.
Byusingtheheattransporttheory,wedeterminedthelightabsorp-tionasafunctionoftrenchdepthandspacing.
Itwasfoundthatlighttrappingwassignificantlyenhancedforhierarchicalstructures(roughmicro/nanowires)whentheamplitudeofsurfaceroughnesswascomparabletothelightwavelength.
Fromtheresults,anenhancedlightabsorptionwasobtainedfromthesinglehierarchicalstruc-turespreparedbysurfaceroughnessengineering.
ItisfoundthattheenhancedlightabsorptioncouldbeobtainedbysurfaceroughnessengineeringonbothVO2andSimaterialsystemswhichthusprovidesauniversalstrategyformodernhierarchicalstructuredesign.
MethodsFortheopticalabsorbancemeasurementsofsingleVO2andSimicrowireswithpatternedtrenches,experimentswerecarriedoutinachamberwithaquartzwindow(SeetheSupplementaryFilesforthedetailsofsampleanddevicepreparation)19–21.
ThevacuumchamberwaspumpeddowntoNano5,3831–3838(2011).
5.
Wu,W.
-Q.
etal.
HydrothermalfabricationofhierarchicallyanataseTiO2nanowirearraysonFTOglassfordye-sensitizedsolarcells.
Sci.
Rep.
3(2013).
6.
Xu,H.
J.
&Li,X.
J.
Siliconnanoporouspillararray:asiliconhierarchicalstructurewithhighlightabsorptionandtriple-bandphotoluminescence.
Opt.
Express16,2933–2941(2008).
7.
Joo,K.
Y.
etal.
FormationofHighlyEfficientDye‐SensitizedSolarCellsbyHierarchicalPoreGenerationwithNanoporousTiO2Spheres.
Adv.
Mater.
21,3668–3673(2009).
8.
Park,M.
J.
etal.
3DHierarchicalIndiumTinOxideNanotreesforEnhancementofLightExtractioninGaN‐BasedLight‐EmittingDiodes.
Adv.
Opt.
Mater.
5(2017).
9.
Gabriel,M.
M.
etal.
Imagingchargeseparationandcarrierrecombinationinnanowirepinjunctionsusingultrafastmicroscopy.
NanoLett.
14,3079–3087(2014).
10.
Roh,D.
K.
,Chi,W.
S.
,Jeon,H.
,Kim,S.
J.
&Kim,J.
H.
Highefficiencysolid-statedye-sensitizedsolarcellsassembledwithhierarchicalanatasepinetree-likeTiO2nanotubes.
Adv.
Funct.
Mater.
24,379–386(2014).
11.
Wu,W.
-Q.
,Xu,Y.
-F.
,Rao,H.
-S.
,Su,C.
-Y.
&Kuang,D.
-B.
Multistackintegrationofthree-dimensionalhyperbranchedanatasetitaniaarchitecturesforhigh-efficiencydye-sensitizedsolarcells.
J.
Am.
Chem.
Soc.
136,6437–6445(2014).
12.
Garnett,E.
&Yang,P.
Lighttrappinginsiliconnanowiresolarcells.
NanoLett.
10,1082–1087(2010).
Figure3.
EffectofsurfaceroughnessontheopticalabsorptionofasingleSimicrowire.
(a)AsurfaceroughnessmodifiedSimicrowirebondedtoaVO2NFP.
TheleftpanelshowstheopticalimagesoftheSi-VO2systemwithlaseroffandon.
AM/IdomainwallistriggeredwhenthelaserisonandheatunidirectionallytransfersfromSimicrowiretotheVO2NFP.
(b)TheenlargedSEMimageandopticalimageofthepatternedsectionsoftheSimicrowire.
TheSimicrowiresurfaceiscarvedwiththetrenchesofdifferentdepthsandspacingusingFIB.
Theroughenedpartsshowacleardarkercontrastcomparedwiththesmoothpartintheopticalreflection,indicatingeffectivelyenhancedlightabsorption.
(c)OpticalabsorptionforaSiwirewiththeradiusof2.
1μmasafunctionoftrenchspacing(redcircles,depthfixedat400nm)ortrenchdepth(greensquares,spacingfixedat250nm).
Theincidentlaserwavelengthis488nmasindicatedwiththeblueline.
Solidlinesanddashedlinesareguidancefortheeye.
613.
Sheng,X.
etal.
Designandnon-lithographicfabricationoflighttrappingstructuresforthinfilmsiliconsolarcells.
Adv.
Mater.
23,843–847(2011).
14.
Wang,Z.
etal.
ZnO/ZnSxSe1xcore/shellnanowirearraysasphotoelectrodeswithefficientvisiblelightabsorption.
Appl.
Phys.
Lett.
101,073105(2012).
15.
Ko,S.
H.
etal.
NanoforestofHydrothermallyGrownHierarchicalZnONanowiresforaHighEfficiencyDye-SensitizedSolarCell.
NanoLett.
11,666–671(2011).
16.
Zhai,T.
etal.
FabricationofHigh-QualityIn2Se3NanowireArraystowardHigh-PerformanceVisible-LightPhotodetectors.
ACSNano4,1596–1602(2010).
17.
Cao,L.
etal.
Engineeringlightabsorptioninsemiconductornanowiredevices.
Nat.
Mater.
8,643(2009).
18.
Kim,P.
,Shi,L.
,Majumdar,A.
&McEuen,P.
Thermaltransportmeasurementsofindividualmultiwallednanotubes.
Phy.
Rev.
Lett.
87,215502(2001).
19.
Cheng,C.
etal.
DirectlyMeteringLightAbsorptionandHeatTransferinSingleNanowiresUsingMetal–InsulatorTransitioninVO2.
Adv.
Opt.
Mater.
3,336–341(2015).
20.
Cheng,C.
etal.
Heattransferacrosstheinterfacebetweennanoscalesolidsandgas.
ACSNano5,10102–10107(2011).
21.
Cheng,C.
,Liu,K.
,Xiang,B.
,Suh,J.
&Wu,J.
Ultra-long,free-standing,single-crystallinevanadiumdioxidemicro/nanowiresgrownbysimplethermalevaporation.
Appl.
Phys.
Lett.
100,103111(2012).
22.
Berglund,C.
N.
&Guggenheim,H.
J.
ElectronicPropertiesofVO2neartheSemiconductor-MetalTransition.
Phy.
Rev.
185,1022–1033(1969).
23.
Isabella,O.
,Kr,J.
&Zeman,M.
Modulatedsurfacetexturesforenhancedlighttrappinginthin-filmsiliconsolarcells.
Appl.
Phys.
Lett.
97,101106(2010).
24.
Tiedje,T.
,Abeles,B.
,Cebulka,J.
&Pelz,J.
Photoconductivityenhancementbylighttrappinginroughamorphoussilicon.
Appl.
Phys.
Lett.
42,712–714(1983).
25.
Gaucher,A.
etal.
Ultrathinepitaxialsiliconsolarcellswithinvertednanopyramidarraysforefficientlighttrapping.
NanoLett.
16,5358–5364(2016).
26.
vanLare,M.
-C.
&Polman,A.
Optimizedscatteringpowerspectraldensityofphotovoltaiclight-trappingpatterns.
ACSPhotonics2,822–831(2015).
27.
Fan,Z.
etal.
Light-TrappingCharacteristicsofAgNanoparticlesforEnhancingtheEnergyConversionEfficiencyofHybridSolarCells.
ACSAppl.
Mat.
&Interfaces9,35998–36008(2017).
28.
Kim,S.
-K.
etal.
Tuninglightabsorptionincore/shellsiliconnanowirephotovoltaicdevicesthroughmorphologicaldesign.
NanoLett.
12,4971–4976(2012).
29.
Sandhu,S.
,Yu,Z.
&Fan,S.
Detailedbalanceanalysisandenhancementofopen-circuitvoltageinsingle-nanowiresolarcells.
NanoLett.
14,1011–1015(2014).
30.
Nowzari,A.
etal.
AcomparativestudyofabsorptioninverticallyandlaterallyorientedInPcore–shellnanowirephotovoltaicdevices.
NanoLett.
15,1809–1814(2015).
31.
DeLuca,M.
etal.
PolarizedlightabsorptioninwurtziteInPnanowireensembles.
NanoLett.
15,998–1005(2015).
32.
Lee,H.
etal.
Nanowire-on-Nanowire:All-NanowireElectronicsbyOn-DemandSelectiveIntegrationofHierarchicalHeterogeneousNanowires.
ACSNano(2017).
33.
Bell,A.
P.
etal.
Quantitativestudyofthephotothermalpropertiesofmetallicnanowirenetworks.
ACSNano9,5551–5558(2015).
34.
Versteegh,M.
A.
,vanderWel,R.
E.
&Dijkhuis,J.
I.
MeasurementoflightdiffusioninZnOnanowireforests.
Appl.
Phys.
Lett.
100,101108(2012).
35.
Jurgilaitis,A.
etal.
MeasurementsoflightabsorptionefficiencyinInSbnanowires.
Struct.
Dyn.
1,014502(2014).
36.
Park,Y.
-S.
&Lee,J.
S.
CorrelatingLightAbsorptionwithVariousNanostructureGeometriesinVerticallyAlignedSiNanowireArrays.
ACSPhotonics4,2587–2594(2017).
37.
Frederiksen,R.
etal.
VisualUnderstandingofLightAbsorptionandWaveguidinginStandingNanowireswith3Dfluorescenceconfocalmicroscopy.
ACSPhotonics4,2235–2241(2017).
38.
Fan,Z.
etal.
Orderedarraysofdual-diameternanopillarsformaximizedopticalabsorption.
NanoLett.
10,3823–3827(2010).
39.
Meng,S.
,Ren,J.
&Kaxiras,E.
NaturaldyesadsorbedonTiO2nanowireforphotovoltaicapplications:enhancedlightabsorptionandultrafastelectroninjection.
NanoLett.
8,3266–3272(2008).
40.
Jain,V.
etal.
InP/InAsPNanowire-basedSpatiallySeparateAbsorptionandMultiplicationAvalanchePhotodetectors.
ACSPhotonics4(11),2693(2017).
41.
Park,J.
-S.
etal.
EnhancementofLightAbsorptioninSiliconNanowirePhotovoltaicDeviceswithDielectricandMetallicGratingStructures.
NanoLett.
17,7731–7736(2017).
42.
Wei,W.
-R.
etal.
Above-11%-efficiencyorganic–inorganichybridsolarcellswithomnidirectionalharvestingcharacteristicsbyemployinghierarchicalphoton-trappingstructures.
NanoLett.
13,3658–3663(2013).
43.
Hu,L.
&Chen,G.
Analysisofopticalabsorptioninsiliconnanowirearraysforphotovoltaicapplications.
NanoLett.
7,3249–3252(2007).
AcknowledgementsThisworkwassupportedbytheNationalNaturalScienceFoundationofChina(GrantNo.
51776094),theGuangdong-HongKongjointinnovationproject(GrantNo.
2016A050503012),theGuangdongNaturalScienceFundsforDistinguishedYoungScholars(GrantNo.
2015A030306044),andtheTrainingProgramforOutstandingYoungTeachersatHigherEducationInstitutionsofGuangdongProvince(GrantYQ2015151),Climbingproject(pdjh2017c0030),StudentInnovationTrainingProgram(2017X40).
ThestartinggrantsfromSouthernUniversityofScienceandTechnologyareacknowledged.
TheauthorsalsoappreciatethevaluablesuggestionsfromProf.
JunqiaoWufromUniversityofCalifornia,Berkeley.
AuthorContributionsJ.
W.
andR.
S.
carriedouttheexperimentanddesignedthestudy.
C.
C.
draftedthearticle.
W.
W.
,N.
C.
,P.
C.
,D.
K.
,A.
A.
performedcriticalrevision.
Allauthorsreadandapprovedthefnalmanuscript.
AdditionalInformationSupplementaryinformationaccompaniesthispaperathttps://doi.
org/10.
1038/s41598-018-29652-8.
CompetingInterests:Theauthorsdeclarenocompetinginterests.
Publisher'snote:SpringerNatureremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.
7OpenAccessThisarticleislicensedunderaCreativeCommonsAttribution4.
0InternationalLicense,whichpermitsuse,sharing,adaptation,distributionandreproductioninanymediumorformat,aslongasyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCre-ativeCommonslicense,andindicateifchangesweremade.
Theimagesorotherthirdpartymaterialinthisarticleareincludedinthearticle'sCreativeCommonslicense,unlessindicatedotherwiseinacreditlinetothematerial.
Ifmaterialisnotincludedinthearticle'sCreativeCommonslicenseandyourintendeduseisnotper-mittedbystatutoryregulationorexceedsthepermitteduse,youwillneedtoobtainpermissiondirectlyfromthecopyrightholder.
Toviewacopyofthislicense,visithttp://creativecommons.
org/licenses/by/4.
0/.
TheAuthor(s)2018

欧路云:美国200G高防云-10元/月,香港云-15元/月,加拿大480G高防云-23元/月

欧路云 主要运行弹性云服务器,可自由定制配置,可选加拿大的480G超高防系列,也可以选择美国(200G高防)系列,也有速度直逼内地的香港CN2系列。所有配置都可以在下单的时候自行根据项目 需求来定制自由升级降级 (降级按天数配置费用 退款回预存款)。由专业人员提供一系列的技术支持!官方网站:https://www.oulucloud.com/云服务器(主机测评专属优惠)全场8折 优惠码:zhuji...

2021年国内/国外便宜VPS主机/云服务器商家推荐整理

2021年各大云服务商竞争尤为激烈,因为云服务商家的竞争我们可以选择更加便宜的VPS或云服务器,这样成本更低,选择空间更大。但是,如果我们是建站用途或者是稳定项目的,不要太过于追求便宜VPS或便宜云服务器,更需要追求稳定和服务。不同的商家有不同的特点,而且任何商家和线路不可能一直稳定,我们需要做的就是定期观察和数据定期备份。下面,请跟云服务器网(yuntue.com)小编来看一下2021年国内/国...

简单测评melbicom俄罗斯莫斯科数据中心的VPS,三网CN2回国,电信双程cn2

melbicom从2015年就开始运作了,在国内也是有一定的粉丝群,站长最早是从2017年开始介绍melbicom。上一次测评melbicom是在2018年,由于期间有不少人持续关注这个品牌,而且站长貌似也听说过路由什么的有变动的迹象。为此,今天重新对莫斯科数据中心的VPS进行一次简单测评,数据仅供参考。官方网站: https://melbicom.net比特币、信用卡、PayPal、支付宝、银联...

nano5为你推荐
免费美国主机谁有免费空间?给我提供一个,主机屋的就不要了,美国主机也行,但是必须得稳定,谢谢免费国内空间想做一个网站想找个免费的空间最好是国外的,国内的太多都是骗人的或者不稳定的。谢谢!ip代理地址IP代理什么意思?便宜的虚拟主机免费、便宜的虚拟主机哪里有?要好用的 ,速度快的网站空间域名关于网站的域名和空间?成都虚拟空间虚拟主机哪家最好~~~网站空间商哪有好一点的网站空间商?欢迎友友们给我推荐下,深圳网站空间求免费稳定空间网站?100m虚拟主机一般100-200M虚拟主机一天最多支持多少人访问啊?重庆虚拟主机万网M3型虚拟主机怎么样?速度如何?
免费域名空间申请 网站域名备案查询 免费com域名申请 外国服务器 毫秒英文 699美元 国外视频网站有哪些 腾讯总部在哪 我的世界服务器ip 中国域名 畅行云 lamp什么意思 hdchina reboot asp简介 赵蓉 华为云服务器宕机 冰盾ddos防火墙 56折扣网 昌德讯 更多