crystalnano5

nano5  时间:2021-01-17  阅读:()
1DirectlyProbingLightAbsorptionEnhancementofSingleHierarchicalStructureswithEngineeredSurfaceRoughnessJingweiWang1,RunShi1,WeijunWang1,NianduoCai1,PengchengChen1,DejunKong1,AbbasAmini2&ChunCheng1Hierarchicalnanostructuresareidealarchitecturestoharvestsolarenergy.
Theunderstandingoflightabsorptioninsinglehierarchicalstructuresisemergentlyimportantandgreatlyhelpfulinenhancingmultiscaleopticalphenomenaandlightmanagement.
However,duetothegeometricalcomplexityofhierarchicalarchitectures,theoreticalandexperimentalstudiesoflightabsorptionhavefacedsignificantchallenges.
Here,wedirectlyquantifylightabsorptioninsinglehierarchicalstructuresforthefirsttimebyutilizingVO2-basednearfieldpowermeter.
Itisfoundthatlighttrappingissignificantlyenhancedinroughmicrowireswhentheroughnessamplitudeiscomparabletotheincidentlightwavelength.
TheroughnessenhancedlightabsorptionisverifiedasageneralphenomenononbothVO2andSihierarchicalstructures.
Therefore,ourworknotonlyprovidesasimpleandquantitativemethodofmeasuringlightabsorptionuponsinglegeometricallycomplexstructuresinmicro/nanoscale,butalsocontributesageneralruletorationallydesignofhierarchicalstructuresforenhancedperformanceinphotoelectricandphotochemicalapplications.
Conversionofsunlighttoelectricalandchemicalenergyisapromisingandprovenstrategyforlarge-scalepro-ductionofenergyfromarenewablesource.
Toeffectivelyharnesssolarenergy,aphotovoltaiccellorphoto-electrochemicalelectrodemustabsorbmostofthesolarspectrumandcollectthephoton-generatedcarrierswithminimallossestorecombination.
Forplanardevices,thistaskcanbedifficultbecausetherequiredthick-nessofmaterialforadequateabsorptionoflightisoftengreaterthanthedistanceoverwhichphoton-generatedchargescanbeefficientlycollected.
Semiconductormicro/nanostructuresoffernewapproachestomeettheserequirementsoflightabsorptionandchargecollection1–3.
Specifically,hierarchicalarchitecturesthatarecon-structedbymultiscalemicro/nanostructureshaveattractedintensiveattentionssincetheyareidealcandidatesforhigh-performancesolarenergyharvestingdevices4–8.
Thesestructurespossessspecificconfigurationsofmicros-calebackbonesandone-dimensional(1D)nanostructurearrayssurroundedthebackbones.
Thedirectpathwayalong1Dcrystallinenanostructuresdiminishesthepossibilityofchargerecombinationandoffersarelativelylargeaspectratioforrapidelectron-holeseparationandchargetransport,aswellaselectrochemicalreactions9–11.
Mostimportantly,high-densitytreelikebranchednanowirearraysofhierarchicalstructuresprovidelongopticalpathsforefficientlighttrappingandthuspromotetheutilizationoflightsignificantly12–16.
Plentyofeffortshavebeendevotedtothesynthesisandapplicationsofhierarchicalstructures,whilehowtheirstructuralparameters,suchasthesizeofmultiscalenanostructures,affectlightabsorptionisyettobesystematicallystudied.
Thus,quantificationoflightabsorptionuponsinglehierarchicalstructureshastobesettledurgently.
Lightabsorptionandpropagationatthesub-micrometerscalearethekeypointsformanycriticaltechnolo-giesandapplications.
Lightabsorptionof1Dnanostructurearraysisawellunderstoodphenomenonexperimen-tally,analytically(Maxwellequation),andnumerically(finiteelementmethod).
However,thelightabsorptionofsinglesub-micronsolidsisstillhardtobequantitativelydeterminedbyexperiments16–18.
Thisislargelyduetodifficultiesinaccurateanddirectcharacterizationofenergyflowandtemperaturedistributionatthisscale.
1DepartmentofMaterialsScienceandEngineering,SouthernUniversityofScienceandTechnology,Shenzhen,518055,China.
2CenterforInfrastructureEngineering,WesternSydneyUniversity,Kingswood,NewSouthWales,2751,Australia.
JingweiWangandRunShicontributedequallytothiswork.
CorrespondenceandrequestsformaterialsshouldbeaddressedtoC.
C.
(email:chengc@sustc.
edu.
cn)Received:29March2018Accepted:12July2018Published:xxxxxxxxOPEN2Incaseofgeometricallycomplicatednanostructures,i.
e.
,hierarchicalstructures,simulationalorexperimentalevaluationsoflightabsorptionbecomeevenmoredifficult.
Recently,wehavedevelopedopticallyreadablenear-fieldpowermeters(NFP)basedonthemetal–insulatortransition(MIT)insinglecrystalvanadiumdioxide(VO2)micro/nanobeamswhichenablesdirectquantificationoflightabsorptionofanysinglemicro/nanowires19,20.
Here,wepresentthequantitativestudyoflightabsorptionofsinglehierarchicalstructuresbyapplyingthisuniqueNFPtechnique.
ThesurfaceofVO2andSimicrowireswereengineeredbyatop-downapproachwithfocusionbeam(FIB)techniquetoformhierarchicalstructureswithcontrollabletrenchsizes.
LongVO2wiresweresuspendedfromasubstrateasNFPs.
ThehierarchicalwiresbondedtotheNFPswerelocallyheatedusingafocusedlaserwhichstimulatesthephasetransition.
Theresultantdomainstructurescanbeopticallyimaged.
Byusingtheheattransporttheory,wedeterminedthelightabsorp-tionasafunctionoftrenchdepthandspacing.
Itwasfoundthatlighttrappingwassignificantlyenhancedforhierarchicalstructures(roughmicro/nanowires)whentheamplitudeofsurfaceroughnesswascomparabletothelightwavelength.
Fromtheresults,anenhancedlightabsorptionwasobtainedfromthesinglehierarchicalstruc-turespreparedbysurfaceroughnessengineering.
ItisfoundthattheenhancedlightabsorptioncouldbeobtainedbysurfaceroughnessengineeringonbothVO2andSimaterialsystemswhichthusprovidesauniversalstrategyformodernhierarchicalstructuredesign.
MethodsFortheopticalabsorbancemeasurementsofsingleVO2andSimicrowireswithpatternedtrenches,experimentswerecarriedoutinachamberwithaquartzwindow(SeetheSupplementaryFilesforthedetailsofsampleanddevicepreparation)19–21.
ThevacuumchamberwaspumpeddowntoNano5,3831–3838(2011).
5.
Wu,W.
-Q.
etal.
HydrothermalfabricationofhierarchicallyanataseTiO2nanowirearraysonFTOglassfordye-sensitizedsolarcells.
Sci.
Rep.
3(2013).
6.
Xu,H.
J.
&Li,X.
J.
Siliconnanoporouspillararray:asiliconhierarchicalstructurewithhighlightabsorptionandtriple-bandphotoluminescence.
Opt.
Express16,2933–2941(2008).
7.
Joo,K.
Y.
etal.
FormationofHighlyEfficientDye‐SensitizedSolarCellsbyHierarchicalPoreGenerationwithNanoporousTiO2Spheres.
Adv.
Mater.
21,3668–3673(2009).
8.
Park,M.
J.
etal.
3DHierarchicalIndiumTinOxideNanotreesforEnhancementofLightExtractioninGaN‐BasedLight‐EmittingDiodes.
Adv.
Opt.
Mater.
5(2017).
9.
Gabriel,M.
M.
etal.
Imagingchargeseparationandcarrierrecombinationinnanowirepinjunctionsusingultrafastmicroscopy.
NanoLett.
14,3079–3087(2014).
10.
Roh,D.
K.
,Chi,W.
S.
,Jeon,H.
,Kim,S.
J.
&Kim,J.
H.
Highefficiencysolid-statedye-sensitizedsolarcellsassembledwithhierarchicalanatasepinetree-likeTiO2nanotubes.
Adv.
Funct.
Mater.
24,379–386(2014).
11.
Wu,W.
-Q.
,Xu,Y.
-F.
,Rao,H.
-S.
,Su,C.
-Y.
&Kuang,D.
-B.
Multistackintegrationofthree-dimensionalhyperbranchedanatasetitaniaarchitecturesforhigh-efficiencydye-sensitizedsolarcells.
J.
Am.
Chem.
Soc.
136,6437–6445(2014).
12.
Garnett,E.
&Yang,P.
Lighttrappinginsiliconnanowiresolarcells.
NanoLett.
10,1082–1087(2010).
Figure3.
EffectofsurfaceroughnessontheopticalabsorptionofasingleSimicrowire.
(a)AsurfaceroughnessmodifiedSimicrowirebondedtoaVO2NFP.
TheleftpanelshowstheopticalimagesoftheSi-VO2systemwithlaseroffandon.
AM/IdomainwallistriggeredwhenthelaserisonandheatunidirectionallytransfersfromSimicrowiretotheVO2NFP.
(b)TheenlargedSEMimageandopticalimageofthepatternedsectionsoftheSimicrowire.
TheSimicrowiresurfaceiscarvedwiththetrenchesofdifferentdepthsandspacingusingFIB.
Theroughenedpartsshowacleardarkercontrastcomparedwiththesmoothpartintheopticalreflection,indicatingeffectivelyenhancedlightabsorption.
(c)OpticalabsorptionforaSiwirewiththeradiusof2.
1μmasafunctionoftrenchspacing(redcircles,depthfixedat400nm)ortrenchdepth(greensquares,spacingfixedat250nm).
Theincidentlaserwavelengthis488nmasindicatedwiththeblueline.
Solidlinesanddashedlinesareguidancefortheeye.
613.
Sheng,X.
etal.
Designandnon-lithographicfabricationoflighttrappingstructuresforthinfilmsiliconsolarcells.
Adv.
Mater.
23,843–847(2011).
14.
Wang,Z.
etal.
ZnO/ZnSxSe1xcore/shellnanowirearraysasphotoelectrodeswithefficientvisiblelightabsorption.
Appl.
Phys.
Lett.
101,073105(2012).
15.
Ko,S.
H.
etal.
NanoforestofHydrothermallyGrownHierarchicalZnONanowiresforaHighEfficiencyDye-SensitizedSolarCell.
NanoLett.
11,666–671(2011).
16.
Zhai,T.
etal.
FabricationofHigh-QualityIn2Se3NanowireArraystowardHigh-PerformanceVisible-LightPhotodetectors.
ACSNano4,1596–1602(2010).
17.
Cao,L.
etal.
Engineeringlightabsorptioninsemiconductornanowiredevices.
Nat.
Mater.
8,643(2009).
18.
Kim,P.
,Shi,L.
,Majumdar,A.
&McEuen,P.
Thermaltransportmeasurementsofindividualmultiwallednanotubes.
Phy.
Rev.
Lett.
87,215502(2001).
19.
Cheng,C.
etal.
DirectlyMeteringLightAbsorptionandHeatTransferinSingleNanowiresUsingMetal–InsulatorTransitioninVO2.
Adv.
Opt.
Mater.
3,336–341(2015).
20.
Cheng,C.
etal.
Heattransferacrosstheinterfacebetweennanoscalesolidsandgas.
ACSNano5,10102–10107(2011).
21.
Cheng,C.
,Liu,K.
,Xiang,B.
,Suh,J.
&Wu,J.
Ultra-long,free-standing,single-crystallinevanadiumdioxidemicro/nanowiresgrownbysimplethermalevaporation.
Appl.
Phys.
Lett.
100,103111(2012).
22.
Berglund,C.
N.
&Guggenheim,H.
J.
ElectronicPropertiesofVO2neartheSemiconductor-MetalTransition.
Phy.
Rev.
185,1022–1033(1969).
23.
Isabella,O.
,Kr,J.
&Zeman,M.
Modulatedsurfacetexturesforenhancedlighttrappinginthin-filmsiliconsolarcells.
Appl.
Phys.
Lett.
97,101106(2010).
24.
Tiedje,T.
,Abeles,B.
,Cebulka,J.
&Pelz,J.
Photoconductivityenhancementbylighttrappinginroughamorphoussilicon.
Appl.
Phys.
Lett.
42,712–714(1983).
25.
Gaucher,A.
etal.
Ultrathinepitaxialsiliconsolarcellswithinvertednanopyramidarraysforefficientlighttrapping.
NanoLett.
16,5358–5364(2016).
26.
vanLare,M.
-C.
&Polman,A.
Optimizedscatteringpowerspectraldensityofphotovoltaiclight-trappingpatterns.
ACSPhotonics2,822–831(2015).
27.
Fan,Z.
etal.
Light-TrappingCharacteristicsofAgNanoparticlesforEnhancingtheEnergyConversionEfficiencyofHybridSolarCells.
ACSAppl.
Mat.
&Interfaces9,35998–36008(2017).
28.
Kim,S.
-K.
etal.
Tuninglightabsorptionincore/shellsiliconnanowirephotovoltaicdevicesthroughmorphologicaldesign.
NanoLett.
12,4971–4976(2012).
29.
Sandhu,S.
,Yu,Z.
&Fan,S.
Detailedbalanceanalysisandenhancementofopen-circuitvoltageinsingle-nanowiresolarcells.
NanoLett.
14,1011–1015(2014).
30.
Nowzari,A.
etal.
AcomparativestudyofabsorptioninverticallyandlaterallyorientedInPcore–shellnanowirephotovoltaicdevices.
NanoLett.
15,1809–1814(2015).
31.
DeLuca,M.
etal.
PolarizedlightabsorptioninwurtziteInPnanowireensembles.
NanoLett.
15,998–1005(2015).
32.
Lee,H.
etal.
Nanowire-on-Nanowire:All-NanowireElectronicsbyOn-DemandSelectiveIntegrationofHierarchicalHeterogeneousNanowires.
ACSNano(2017).
33.
Bell,A.
P.
etal.
Quantitativestudyofthephotothermalpropertiesofmetallicnanowirenetworks.
ACSNano9,5551–5558(2015).
34.
Versteegh,M.
A.
,vanderWel,R.
E.
&Dijkhuis,J.
I.
MeasurementoflightdiffusioninZnOnanowireforests.
Appl.
Phys.
Lett.
100,101108(2012).
35.
Jurgilaitis,A.
etal.
MeasurementsoflightabsorptionefficiencyinInSbnanowires.
Struct.
Dyn.
1,014502(2014).
36.
Park,Y.
-S.
&Lee,J.
S.
CorrelatingLightAbsorptionwithVariousNanostructureGeometriesinVerticallyAlignedSiNanowireArrays.
ACSPhotonics4,2587–2594(2017).
37.
Frederiksen,R.
etal.
VisualUnderstandingofLightAbsorptionandWaveguidinginStandingNanowireswith3Dfluorescenceconfocalmicroscopy.
ACSPhotonics4,2235–2241(2017).
38.
Fan,Z.
etal.
Orderedarraysofdual-diameternanopillarsformaximizedopticalabsorption.
NanoLett.
10,3823–3827(2010).
39.
Meng,S.
,Ren,J.
&Kaxiras,E.
NaturaldyesadsorbedonTiO2nanowireforphotovoltaicapplications:enhancedlightabsorptionandultrafastelectroninjection.
NanoLett.
8,3266–3272(2008).
40.
Jain,V.
etal.
InP/InAsPNanowire-basedSpatiallySeparateAbsorptionandMultiplicationAvalanchePhotodetectors.
ACSPhotonics4(11),2693(2017).
41.
Park,J.
-S.
etal.
EnhancementofLightAbsorptioninSiliconNanowirePhotovoltaicDeviceswithDielectricandMetallicGratingStructures.
NanoLett.
17,7731–7736(2017).
42.
Wei,W.
-R.
etal.
Above-11%-efficiencyorganic–inorganichybridsolarcellswithomnidirectionalharvestingcharacteristicsbyemployinghierarchicalphoton-trappingstructures.
NanoLett.
13,3658–3663(2013).
43.
Hu,L.
&Chen,G.
Analysisofopticalabsorptioninsiliconnanowirearraysforphotovoltaicapplications.
NanoLett.
7,3249–3252(2007).
AcknowledgementsThisworkwassupportedbytheNationalNaturalScienceFoundationofChina(GrantNo.
51776094),theGuangdong-HongKongjointinnovationproject(GrantNo.
2016A050503012),theGuangdongNaturalScienceFundsforDistinguishedYoungScholars(GrantNo.
2015A030306044),andtheTrainingProgramforOutstandingYoungTeachersatHigherEducationInstitutionsofGuangdongProvince(GrantYQ2015151),Climbingproject(pdjh2017c0030),StudentInnovationTrainingProgram(2017X40).
ThestartinggrantsfromSouthernUniversityofScienceandTechnologyareacknowledged.
TheauthorsalsoappreciatethevaluablesuggestionsfromProf.
JunqiaoWufromUniversityofCalifornia,Berkeley.
AuthorContributionsJ.
W.
andR.
S.
carriedouttheexperimentanddesignedthestudy.
C.
C.
draftedthearticle.
W.
W.
,N.
C.
,P.
C.
,D.
K.
,A.
A.
performedcriticalrevision.
Allauthorsreadandapprovedthefnalmanuscript.
AdditionalInformationSupplementaryinformationaccompaniesthispaperathttps://doi.
org/10.
1038/s41598-018-29652-8.
CompetingInterests:Theauthorsdeclarenocompetinginterests.
Publisher'snote:SpringerNatureremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.
7OpenAccessThisarticleislicensedunderaCreativeCommonsAttribution4.
0InternationalLicense,whichpermitsuse,sharing,adaptation,distributionandreproductioninanymediumorformat,aslongasyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCre-ativeCommonslicense,andindicateifchangesweremade.
Theimagesorotherthirdpartymaterialinthisarticleareincludedinthearticle'sCreativeCommonslicense,unlessindicatedotherwiseinacreditlinetothematerial.
Ifmaterialisnotincludedinthearticle'sCreativeCommonslicenseandyourintendeduseisnotper-mittedbystatutoryregulationorexceedsthepermitteduse,youwillneedtoobtainpermissiondirectlyfromthecopyrightholder.
Toviewacopyofthislicense,visithttp://creativecommons.
org/licenses/by/4.
0/.
TheAuthor(s)2018

HostYun:联通AS9929线路,最低月付18元起,最高500Mbps带宽,洛杉矶机房

最近AS9929线路比较火,联通A网,对标电信CN2,HostYun也推出了走联通AS9929线路的VPS主机,基于KVM架构,开设在洛杉矶机房,采用SSD硬盘,分为入门和高带宽型,最高提供500Mbps带宽,可使用9折优惠码,最低每月仅18元起。这是一家成立于2008年的VPS主机品牌,原主机分享组织(hostshare.cn),商家以提供低端廉价VPS产品而广为人知,是小成本投入学习练手首选。...

racknerd新上架“洛杉矶”VPS$29/年,3.8G内存/3核/58gSSD/5T流量

racknerd发表了2021年美国独立日的促销费用便宜的vps,两种便宜的美国vps位于洛杉矶multacom室,访问了1Gbps的带宽,采用了solusvm管理,硬盘是SSDraid10...近两年来,racknerd的声誉不断积累,服务器的稳定性和售后服务。官方网站:https://www.racknerd.com多种加密数字货币、信用卡、PayPal、支付宝、银联、webmoney,可以付...

无视CC攻击CDN ,DDOS打不死高防CDN,免备案CDN,月付58元起

快快CDN主营业务为海外服务器无须备案,高防CDN,防劫持CDN,香港服务器,美国服务器,加速CDN,是一家综合性的主机服务商。美国高防服务器,1800DDOS防御,单机1800G DDOS防御,大陆直链 cn2线路,线路友好。快快CDN全球安全防护平台是一款集 DDOS 清洗、CC 指纹识别、WAF 防护为一体的外加全球加速的超强安全加速网络,为您的各类型业务保驾护航加速前进!价格都非常给力,需...

nano5为你推荐
租用虚拟主机租用虚拟主机 与 网络空间租赁有什么区别美国虚拟主机空间请经验丰富的高手给指导一下,我想选择适合个人网站应用的美国虚拟主机(空间),都是哪些服务商比较好?域名空间代理域名空间代理商哪个好?域名备案查询怎么查看域名在什么空间备案的?免费国外空间那个国外空间好啊啊 价格便宜 急需ip代理地址ip代理是什么?海外域名外贸网站如何选择合适的海外域名?香港虚拟主机推荐一下香港的虚拟主机公司!万网虚拟主机如何购买万网的虚拟主机?apache虚拟主机如何用Apache配置安全虚拟主机 - PHP进阶讨论
短域名 加勒比群岛 便宜域名 美国便宜货网站 轻博 tightvnc 网通ip dux 刀片服务器的优势 什么是服务器托管 idc查询 最漂亮的qq空间 服务器是干什么用的 网页提速 独立主机 中国域名 免费网络 iki 贵阳电信 畅行云 更多