VLSnano5

nano5  时间:2021-01-17  阅读:()
ThermalTestofanImprovedPlatformforSiliconNanowire-BasedThermoelectricMicro-generatorsC.
CALAZA,1,3L.
FONSECA,1,4M.
SALLERAS,1I.
DONMEZ,1A.
TARANCON,2A.
MORATA,2J.
D.
SANTOS,2andG.
GADEA21.
—IMB-CNM(CSIC),CampusUAB,08193Bellaterra,Barcelona,Spain.
2.
—IREC,C/JardinsdelesDonesdeNegre1,pl2a,08930Barcelona,Spain.
3.
—e-mail:carlos.
calaza@imb-cnm.
csic.
es.
4.
—e-mail:luis.
fonseca@csic.
esThisworkreportsonanimproveddesignintendedtoenhancethethermalisolationbetweenthehotandcoldpartsofasilicon-basedthermoelectricmicrogenerator.
Micromachiningtechniquesandsilicononinsulatorsub-stratesareusedtoobtainasuspendedsiliconplatformsurroundedbyabulksiliconrim,inwhicharraysofbottom-upsiliconnanowiresareintegratedlaterontojoinbothpartswithathermoelectricactivematerial.
Inpreviousdesignstheplatformwaslinkedtotherimbymeansofbulksiliconbridges,usedasmechanicalsupportandholderfortheelectricalconnections.
Suchsupportsseverelyreduceplatformthermalisolationandpenalisethefunc-tionalareaduetotheneedoflongersupports.
Anewtechnologicalrouteisplannedtoobtainlowthermalconductancesupports,makinguseofapar-ticulargeometricaldesignandawetbulkmicromachiningprocesstoselec-tivelyremovesiliconshapingathindielectricmembrane.
Thermalconductancemeasurementshavebeenperformedtoanalysetheinuenceofthedifferentdesignparametersofthesuspendedplatform(supporttype,bridge/membranelength,separationbetweenplatformandsiliconrim,)onoverallthermalisolation.
Athermalconductancereductionfrom1.
82mW/Kto1.
03mW/K,hasbeenobtainedontesteddevicesbychangingthesupporttype,eventhoughitslengthhasbeenhalved.
Keywords:Microgenerator,thermoelectricity,harvestingINTRODUCTIONMostofworld'spoweruseisgeneratedbymeansofheatenginesusingfossilfuelcombustion,butalmosttwo-thirdsoftheenergythatisfedintothesesystemsradiatesaway,becomingawasteheatsource.
1Thermoelectricmodules,whichhavethecapabilityofconvertingheatintoelectricity,havebeenproposedasapromisingsolutiontoturnthiswasteheatintousefulpower.
Althoughrecentre-searchhasbeenintenselyexploringnewmaterialsandtechnicalroutestoboosttheefciencyofsuchdevices,thermoelectricenergyconversionstillrep-resentsamajorscienticchallengetowardsaneffectivewasteheatrecovery.
Severalhigh-perfor-mancethermoelectricmaterials,suchasBi-Tebasedalloys,skutteruditecompounds,Ag-Pb-Sb-Tequaternarysystemsandhalf-Heuslercompounds2–6havebeenlatelyreportedasefcientthermoelectricmaterials,buttheyareknowntobescarceandexpensive,toxicinsomecases,aswellasdifculttointegrateinmicroelectronics.
Alternativedevelop-mentsfocusonthesmartstructuringofmainstreammicroelectronicmaterialsasaroutetoachievesili-con-basedthermoelectricgenerators.
Individualsiliconnanowires(SiNWs)haveshownanen-hancedthermoelectricperformanceoverthatofthebulksilicon(ZT0.
01).
7,8However,eventhoughimprovedZTvalueshavebeenreported,thedis-cussionaroundwhetherthisnanomaterialwillen-abletheproductionofcompetitivethermoelectricdevicesisstillopen.
Ouraimistoworktowardsanall-Sithermalgeneratorbydesigningthermally(ReceivedJune12,2015;acceptedOctober22,2015;publishedonlineNovember24,2015)JournalofELECTRONICMATERIALS,Vol.
45,No.
3,2016DOI:10.
1007/s11664-015-4168-82015TheAuthor(s).
ThisarticleispublishedwithopenaccessatSpringerlink.
com1689efcientsiliconmicroplatformssuitableforthesubsequentmonolithicintegrationofbottom-upSiNWsasthermoelectricactivematerial.
DESIGNANDFABRICATIONTheplanarcongurationproposedforthesilicon-basedthermoelectricmicrogeneratorusesasilicononinsulator(SOI)substrateandsiliconmicroma-chiningtechniquestodeneathermallyisolatedsuspendedSiplatformsurroundedbyabulkSirim.
BothpartsaresubsequentlylinkedbymeansofSiNWarraysthataregrownonaCVDreactorusingabottom-upvapour–liquid–solid(VLS)process.
9Inourpreviouswork,thesuspendedplatformwaslinkedtothebulkSirimbymeansofbulkSibridges,inadditiontotheSiNWarrays,actingasmechanicalsupportandasaholderfortheelectricalconnections.
9–11However,thiskindofsupportse-verelyreducestheplatformthermalisolationduetothehighthermalconductivityofthebulkSi,limit-ingthedeviceabilitytogetalargetemperaturegradientfromawasteheatsource.
Hence,longbridgesupportsareneededtodeveloplargethermalgradientsandsignicantdeviceareaiswastedgivingrisetopoorpowerdensities.
Inthiswork,anewtechnologicalroutehasbeenset-uptoincreasetheplatformthermalisolationbyreplacingsuchsiliconbridgesbythindielectricmembranes,withamuchlowerthermalconductivity,whichareusedtosupportthemetallicelectricalconnections.
Apar-ticulargeometricaldesignisproposedtoetchtheSiunderthemembraneareausingashortwetbulkmicromachiningprocess,whichisenoughtoshapethesesuspendedlowthermalconductancethinmembranesand,atthesametime,improvethesurfacequalityoftheh111iverticalwallswheretheSiNWswillbegrown.
AsketchofbothdesignsisshowninFig.
1.
Theyconsistofasuspendedsiliconplatform(S1)thatwillbelaterconnectedtoabulksiliconrim(S2)withSiNWsarrays.
Informerdesigns,theelectri-calconnectionswereplacedontopofbulksiliconbridgeswhileinthenewdesignproposedasanalternativetheyarelayingonathindielectricmembrane.
TheSiNWswillbegrownperpendiculartotheh111iwallsthathavebeenusedtodenethedifferentSipartsontheSOIdevicelayer.
Thetemperaturedifferenceattainableacrosssuchde-viceswhenoperatedinharvestingmode(placedontopofaheatsource)willessentiallydependonthelengthofthethermoelectricmaterialconnectingthehigh-andlow-temperatureareas,whichistechno-logicallylimitedbythetaperingeffectduringNWsgrowth.
12–15TrenchesforthesuccessivelinkageofmultipleSiNWarrayshavebeendevelopedinordertoovercomethisproblem,providinglargereffectiveSiNWlengths.
AdetailedschematicoftheintendednalstructureisshowninFig.
2.
ThefabricationisperformedonSOIwafers,withthicknessesoftheSidevicelayer,buriedoxidelayerandhandleSiwaferof15lm,0.
5lm,and500lm,respectively.
DuetothepeculiarityofSiNWsgrowth,whichtakesplacepredominantlyalongtheh111idirection,a(110)surfaceorientationisselectedfortheSOIdevicelayersurface,sothath111iplanescanbeexposedonverticallyetchedtrenches.
Incontrast,theorienta-tionoftheSOIsiliconhandlewaferdoesnotplayanyroleandastandard(100)orientationisused.
Thefabricationprocessstartswiththedepositionofa300nmthickLPCVDSi3N4layer,tobeusedasmechanicalsupportforthemetals.
Afterpatterningthisnitridelayerusingphotolithographyandadryetchprocess,themetallizationusedtosimultane-ouslyobtaintheelectricalconnectionswiththesili-condevicelayerandabuilt-inheaterelement(electricallyisolatedfromthesiliconbythenitridelm)wasperformedusinga30nmthicktita-nium/tungsten(Ti/W)(10/90%)adhesionlayeranda200nmthickWlayerdepositedbysputtering.
Asecondphotolithographyandawetetchwereusedtopatternthemetal.
Oncethedifferentmetalstruc-turesarepatternedthesurfaceisprotectedwitha1lmthickSiO2layerdepositedbyPECVD.
ThelaststepontheSOIdevicelayeristodenethesiliconstructures,i.
e.
theisolatedplatformandthetren-chesthatwillenclosetheSiNWs.
ThisisdonewithaphotolithographicstepandadryetchprocessthatsequentiallyremovestheSiO2andthesilicondevicelayer,untiltheburiedoxidelayerisreached.
Next,ashort(150s)KOHetchstepwasperformedonthewafertopsidetoreleasethenitridebridge.
Thisnewstepiscritical,asitmustremovetheexposedSiFig.
1.
Illustrationofthemicrogeneratordesigns,classic(a)andproposedalternative(b).
Theisolatedsiliconmass(S1)islinkedtobulkSi(S2)bymeansofaSibridge(a)oralternativelybyathindielectricmembrane(b)withlowerthermalconductance.
Forbothdesigns,theareaofthesuspendedplatformis1mm91mm.
Bridgeandmembranelengthsare200lmand100lm,respectively.
Fig.
2.
DetaileddeviceillustrationshowingtheintegrationoftheSiNWsontheSOIbasedstructure.
Thefeaturedareaisamagni-cationofthe[supportmembrane-platform-rim]regiononFig.
1(right).
ThelengthoftheSiNWsis10lm.
Calaza,Fonseca,Salleras,Donmez,Tarancon,Morata,Santos,andGadea1690devicelayeronlyunderthenitride/metal/oxidebridge,whilepreservingtheotherdevicefunctionalparts.
Inviewofthat,themembranestructureandtheetchholeshavebeendesignedwithaspecicangletoallowafastSiunder-etch,whilepermanentSipartsarepreservedasverticalwallshavebeenalignedwithh111iplanes,whichpresentamuchsloweretchratewhenexposedtoKOH.
TheSEMimageofthebridgeinFig.
3clearlyshowsthatonlysmallSiislands,whichareisolatedfromeachother,remainunderthebridgeafterthisshortKOHstep.
Thiswetetchprocessplaysandadditionalrole,asithelpstorestorethesurfacequalityoftheh111iver-ticalwallswhereSiNWswillbegrown,removingthescallopingeffectofthepreviousRIEetch(Boschprocess).
Devicesarecompletedbyprocessingthebackside,usinga1lmthickpatternedaluminumlayerthatactsasahardmaskforaDRIEprocessthatetchesthehandlewaferandtheburiedoxidelayer.
Thisprocesssequenceisintendedtobuildthedifferentpartsofthethermoelectricgenerator,maintainingallmetalsandsiliconsurfacescoveredbySiO2,excepttheSiverticalwallsthatexposetheh111iplanesforthesiliconnanowiregrowth.
RESULTSANDDISCUSSIONAsetofdifferentdeviceshasbeenproducedusingthedescribedfabricationroute.
Inaddition,deviceswiththeformerbulkSibridgesupportshavebeenproduced(Fig.
4)tobeusedasreferencetoevaluatetheimprovementattainedinthethermalisolationofthesuspendedplatforms.
Deviceswithtwodif-ferentbridgelengths(100lmand200lm)andwithdifferentnumberoftrenches(1–4)havebeenfab-ricatedusingthenewmembrane-likesupports.
Figure5showsadetailofthemultipletrenchesusedtoincreasetheeffectiveNWlength.
Eachtrenchis10lmwideandmidwaysiliconbars(3lmwide)areusedtodeneconsecutivetrenches.
Con-gurationsfortestpurposeshavebeencreatedincludingabuilt-inheater(isolatedfromSibytheSi3N4layer)tocharacterizethethermalisolationbyforcingacontrolledthermalgradientbyJouleheating.
Thethermalisolationachievedwiththedifferentdesignshasbeenassessedbymeasuringthetotalthermalconductancebetweenthebulksiliconandtheisolatedplatform,whichaccountsforthether-malconductivityofthedifferentheatpathsthatconnectbothelements,i.
e.
thesupport(Sibridgeordielectricmembrane),theSibarsthatdenetheSiNWtrenchesandthesurroundingair.
Thermalconductancehasbeenobtainedusingtheintegratedheatertodissipateaknownpowerontheisolatedplatformandtosimultaneouslymeasurethedevel-opedtemperaturegradient.
Forthispurpose,thetemperaturecoefcientoftheresistance(TCR)waspreviouslymeasuredfortheheatermaterial(1950±25ppm/°C)tocalibratetheheaterasathermometer.
Firstofall,theperformanceofthenewsupportswascomparedwiththatofformerbulkSibridges.
Aclassicdesignusingtwo200lmlongbridgeshasbeencomparedwithanewdesignusingashorter100lmlongdielectricmembrane,withasingletrench(T1)forbothdevices.
Figure6showsthetemperaturereachedintheisolatedplatformasafunctionofthepowerdissipatedintheheaterele-ment.
Despitethereducedlength,themembraneoutperformsthebridgesupportsintermsofthermalisolation.
Thermalconductanceisalmosthalved,from1.
82mW/Kto1.
03mW/K,pointingoutthatbridgeconductancewasthemaincontributiontototalthermalconductanceinolddesigns,turningintoalimitingfactorforthermoelectricperfor-mance.
Next,theinuenceofthedistancebetweentheisolatedplatformandthebulksiliconrimintheactivearea(theeffectiveNWlength)hasbeenanalyzedusingasetoffourdevicesfeaturinga100lmlongdielectricmembranesupportandthefourdifferenttrenchdesigns(T1–T4).
Figure7showsthetemperaturereachedintheisolatedplatformasafunctionofthepowerdissipatedintheheaterelement.
Asanticipated,thenumberoftrencheshasasignicanteffectonthermalisolationsincethermalconductanceisreducedfrom1.
03mW/KforT1to0.
68mW/KforT4,themorenumerousthetrenches,thebetterthethermaliso-lation.
Theobservedtrendandvaluespointoutthattheconductanceofthesebarsisthemaincontri-butiontototalthermalconductanceinthenewmembrancedesigns.
However,thethermalconduc-tanceofthesetrenchesoncelledwithNWsinrealthermoelectricgeneratorswilldependalsoontheparametersusedforNWgrowth,whichdetermineNWsizeanddensity.
AcompleteoptimizationwillbenecessarytondaNWdistributionandanum-Fig.
3.
SEMimageofthesupportingmembraneaftertheKOHetch.
Metalconnectionsaresandwichedinathindielectricmembrane,whichisreleasedbythesiliconunder-etch.
OnlysmallisolatedSiislandsremain.
ThermalTestofanImprovedPlatformforSiliconNanowireBasedThermoelectricMicro-generators1691Fig.
4.
SEMimagesshowingthemicrofabricatedplatforms,withbulkSi(a)orthindielectric(b)supports.
Botharesingletrenchdevicesandincludeaheaterelementforcharacterizationpurposes.
Fig.
5.
SEMimagesofthesiliconstructuresusedtoincreasetheeffectivenanowirelength,from10lm(T1)to40lm(T4),withsuccessivetrenchestobelledwithSiNWs.
Theimagesareamagnicationofthebottom-rightregionoftheplatform-rimareafeaturedinFig.
4.
Calaza,Fonseca,Salleras,Donmez,Tarancon,Morata,Santos,andGadea1692beroftrenchesenhancingthethermoelectricper-formance,whichshowsanoppositedependencyonthermalandelectricalconductions.
Finally,theinuenceonthermalconductanceofthelengthofthemembranesupporthasbeenana-lyzedusingasetoftwodeviceswith100lmand200lmlongdielectricmembranes(B1,B2),andthefourtrenchesdesign(T4).
Figure8showsthetem-peraturereachedintheisolatedplatformasafunctionofthepowerdissipatedintheheaterele-ment.
Thesmallchangeobservedintotalthermalconductance,from0.
68mW/KforB1to0.
65mW/KforB2,afterhavinghalvedthecontributioncomingfromthemembranesupport,conrmsthatmaincontributiontothermalconductanceinnewdesignsislinkedtothesiliconbarsusedtodenethetrenchestobelledwithSiNWs,asanticipatedinthepreviousmeasurement.
Inthelightofabovementionedimprovementinthermalconductance,thenewplatformdesignsareexpectedtogeneratehigherpowerdensitiesthancurrentdevicesusingbulkSibridges,whichgen-eratedamaximumpowerdensityof9lW/cm2forDT=27°C.
9Fig.
6.
Temperatureincreaseintheplatformasafunctionofdissipatedpowerfortwodeviceswithasingletrench,onewith200lmlongbulkSisupports(black)andotherwitha100lmlongSi3N4membrane(red)(Colorgureonline).
Fig.
7.
Temperatureincreaseintheplatformasafunctionofdissipatedpowerfordeviceswitha100lmlongSi3N4membraneanddifferentnumbersofconsecutivetrenches(T1–T4)(black,red,blue,green)(Colorgureonline).
ThermalTestofanImprovedPlatformforSiliconNanowireBasedThermoelectricMicro-generators1693CONCLUSIONSANDFUTUREWORKAnewtechnologicalroutehasbeenproposedtointegratelowthermalconductancesupportswiththesiliconmicromachinedsuspendedplatformsusedtobuildall-Sithermoelectricmicrogenerators.
Asetofdevicesbasedonthisprocesshavebeensuccessfullyfabricatedandthermalmeasurementshaverevealedthatasignicantthermalconductancereductionisattainedwiththismembrane-likesupports,eventhoughshorterlengthsareused.
Thisresultpavesaroutetofurtherimprovethepowerdensityattainedwiththeall-SimicrogeneratorsbasedonSiNWs.
ThecompatibilityofthesupportswiththeSiNWsgrowthprocesshastobeconrmed,andthethermalcon-ductanceofthesupportshastobecontrastedwiththatoftheNWsarraysinordertoestablishtheoptimumlengthforthisnewtypeofsupport(i.
e.
,theattainablesupportareareduction).
ACKNOWLEDGEMENTSThisworkhasbeensupportedbytheEUFP7-NMP-2013-SMALL-7,SiNERGY(SiliconFriendlyMaterialsandDeviceSolutionsforMicroenergyApplications),undercontractn.
604169,theSpan-ishMinistryofEconomyandCompetitiveness(TEC-2010-20844)andthe''GeneralitatdeCatalu-nya''(AdvancedMaterialsforEnergyNetwork(XaRMAE),2009-SGR-440).
C.
CalazaandA.
Tar-anconwouldliketothankthenancialsupportoftheRamonyCajalpostdoctoralprogramoftheSpanishMinistryofEconomyandCompetitiveness.
OPENACCESSThisarticleisdistributedunderthetermsoftheCreativeCommonsAttribution4.
0InternationalLicense(http://creativecommons.
org/licenses/by/4.
0/),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreativeCommonslicense,andindicateifchangesweremade.
REFERENCES1.
R.
F.
Service,Science306,806(2004).
2.
J.
-F.
Li,W.
-S.
Liu,L.
-D.
Zhao,andM.
Zhou,NPGAsiaMater.
2,152(2010).
3.
B.
Poudel,Q.
Hao,Y.
Ma,Y.
Lan,A.
Minnich,B.
Yu,X.
Yan,D.
Wang,A.
Muto,D.
Vashaee,X.
Chen,J.
Liu,M.
S.
Dresselhaus,G.
Chen,andZ.
Ren,Science320,634(2008).
4.
B.
C.
Sales,D.
Mandrus,andR.
K.
Williams,Science272,1325(1996).
5.
H.
Wang,J.
-F.
Li,C.
-W.
Nan,M.
Zhou,W.
Liu,B.
-P.
Zhang,andT.
Kita,Appl.
Phys.
Lett.
88,092104(2006).
6.
W.
Xie,A.
Weidenkaff,X.
Tang,Q.
Zhang,J.
Poon,andT.
M.
Tritt,Nanomaterials2,379(2012).
7.
A.
I.
Hochbaum,R.
Chen,R.
D.
Delgado,W.
Liang,E.
C.
Garnett,M.
Najarian,A.
Majumdar,andP.
Yang,Nature451,163(2008).
8.
A.
I.
Boukai,Y.
Bunimovich,J.
Tahir-Kheli,J.
-K.
Yu,W.
A.
Goddard,andJ.
R.
Heath,Nature451,168(2008).
9.
D.
Davila,A.
Tarancon,C.
Calaza,M.
Salleras,M.
Fer-nandez-Regulez,A.
SanPaulo,andL.
Fonseca,Nanoenergy1,812(2012).
10.
D.
Davila,A.
Tarancon,D.
Kendig,M.
Fernandez-Regulez,N.
Sabate,M.
Salleras,C.
Calaza,C.
Cane,I.
Gracia,E.
Figueras,J.
Santander,A.
SanPaulo,A.
Shakouri,andL.
Fonseca,J.
Electron.
Mater.
40,851(2011).
11.
D.
Davila,A.
Tarancon,C.
Calaza,M.
Salleras,M.
Fer-nandez-Regulez,A.
SanPaulo,andL.
Fonseca,J.
Electron.
Mater.
42,1918(2013).
12.
V.
A.
NebolsinandA.
A.
Shchetinin,Inorg.
Mater.
39,899(2003).
13.
J.
B.
Hannon,S.
Kodambaka,F.
M.
Ross,andR.
M.
Tromp,Nature440,69(2006).
14.
Y.
Wang,V.
Schmidt,S.
Senz,andU.
Gosele,Nat.
Nan-otechnol.
1,186(2006).
15.
S.
Krylyuk,A.
V.
Davydov,andI.
Levin,ACSNano5,656(2011).
Fig.
8.
Temperatureincreaseintheplatformasafunctionofdissipatedpowerfortwodeviceswith100lm(B1,black)and200lm(B2,red)longSi3N4membraneandfourconsecutivetrenches(Colorgureonline).
Calaza,Fonseca,Salleras,Donmez,Tarancon,Morata,Santos,andGadea1694

特网云,美国独立物理服务器 Atom d525 4G 100M 40G防御 280元/月 香港站群 E3-1200V2 8G 10M 1500元/月

特网云为您提供高速、稳定、安全、弹性的云计算服务计算、存储、监控、安全,完善的云产品满足您的一切所需,深耕云计算领域10余年;我们拥有前沿的核心技术,始终致力于为政府机构、企业组织和个人开发者提供稳定、安全、可靠、高性价比的云计算产品与服务。公司名:珠海市特网科技有限公司官方网站:https://www.56dr.com特网云为您提供高速、稳定、安全、弹性的云计算服务 计算、存储、监控、安全,完善...

HostKvm四月优惠:VPS主机全场八折,香港/美国洛杉矶机房$5.2/月起

HostKvm是一家成立于2013年的国外主机服务商,主要提供基于KVM架构的VPS主机,可选数据中心包括日本、新加坡、韩国、美国、中国香港等多个地区机房,均为国内直连或优化线路,延迟较低,适合建站或者远程办公等。本月商家针对全场VPS主机提供8折优惠码,优惠后美国洛杉矶VPS月付5.2美元起。下面列出几款不同机房VPS主机产品配置信息。套餐:美国US-Plan0CPU:1cores内存:1GB硬...

BuyVM老牌商家新增迈阿密机房 不限流量 月付2美元

我们很多老用户对于BuyVM商家还是相当熟悉的,也有翻看BuyVM相关的文章可以追溯到2014年的时候有介绍过,不过那时候介绍这个商家并不是很多,主要是因为这个商家很是刁钻。比如我们注册账户的信息是否完整,以及我们使用是否规范,甚至有其他各种问题导致我们是不能购买他们家机器的。以前你嚣张是很多人没有办法购买到其他商家的机器,那时候其他商家的机器不多。而如今,我们可选的商家比较多,你再也嚣张不起来。...

nano5为你推荐
美国虚拟空间请问租用美国虚拟空间,需不需要遵守美国的法律?国外空间租用好用的国外空间网站服务器租用哪些网站适合租用独立服务器?个人虚拟主机个人建网站用哪一种虚拟主机???免备案虚拟空间虚拟免费空间网站怎么备案免费网站空间有没有免费的网站空间推荐东莞虚拟主机哪里的虚拟主机便宜 性价比高?深圳虚拟主机需要一个虚拟主机???很急!!美国虚拟主机购买我公司需要购买美国的虚拟主机。但是为什么有的海外主机很便宜!有的却很贵呢。 质量如何区分!有没办法去沈阳虚拟主机沈阳盘古网络技术有限公司的介绍
出租服务器 国外vps主机 重庆服务器托管 搜狗抢票助手 英文站群 亚洲小于500m 蜗牛魔方 国外代理服务器软件 免费申请网站 cdn加速是什么 厦门电信 cloudlink 789 智能dns解析 杭州电信宽带优惠 稳定空间 netvigator googlevoice privatetracker restart 更多