最速下降steepest descent是什么意思

最速下降  时间:2021-06-18  阅读:()

2、牛顿法和最速下降法只能求解无约束优化,有约束的非线性规划有哪些求解方法?

Data Mining 无约束最优化方法 梯度的方向与等值面垂直,并且指向函数值提升的方向。

二次收敛是指一个算法用于具有正定二次型函数时,在有限步可达到它的极小点。

二次收敛与二阶收敛没有尽然联系,更不是一回事,二次收敛往往具有超线性以上的收敛性。

一阶收敛不一定是线性收敛。

解释一下什么叫正定二次型函数: n阶实对称矩阵Q,对于任意的非0向量X,如果有XTQX>0,则称Q是正定矩阵。

对称矩阵Q为正定的充要条件是:Q的特征值全为正。

二次函数,若Q是正定的,则称f(X)为正定二次函数。

黄金分割法 黄金分割法适用于任何单峰函数求极小值问题。

求函数在[a,b]上的极小点,我们在[a,b]内取两点c,d,使得a<c<d<b。

并且有 1)如果f(c)<f(d),则最小点出现在[a,d]上,因此[a,d]成为下一次的搜索区间。

2)如果f(c)>f(d),则[c,b]成为下一次的搜索区间。

假如确定了[a,d]是新的搜索区间,我们并不希望在[a,d]上重新找两个新的点使之满足(1)式,而是利用已经抗找到有c点,再找一个e点,使满足: 可以解得r=0.382,而黄金分割点是0.618。

练习:求函数f(x)=x*x-10*x+36在[1,10]上的极小值。

+ View Code 最速下降法 泰勒级数告诉我们: 其中Δx可正可负,但必须充分接近于0。

X沿D方向移动步长a后,变为X+aD。

由泰勒展开式: 目标函数: a确定的情况下即最小化: 向量的内积何时最小?当然是两向量方向相反时。

所以X移动的方向应该和梯度的方向相反。

接下来的问题是步长a应该怎么定才能使迭代的次数最少? 若f(X)具有二阶连续偏导,由泰勒展开式可得: H是f(X)的Hesse矩阵。

可得最优步长: g是f(X)的梯度矩阵。

此时: 可见最速下降法中最优步长不仅与梯度有关,而且与Hesse矩阵有关。

练习:求函数f(x1,x2)=x1*x1+4*x2*x2在极小点,以初始点X0=(1,1)T。

+ View Code 梯度下降法开始的几步搜索,目标函数下降较快,但接近极值点时,收敛速度就比较慢了,特别是当椭圆比较扁平时,收敛速度就更慢了。

另外最速下降法是以函数的一次近似提出的,如果要考虑二次近似,就有牛顿迭代法。

牛顿迭代法 在点Xk处对目标函数按Taylar展开: 令 得 即 可见X的搜索方向是,函数值要在此方向上下降,就需要它与梯度的方向相反,即。

所以要求在每一个迭代点上Hesse矩阵必须是正定的。

练习:求的极小点,初始点取X=(0,3)。

+ View Code 牛顿法是二次收敛的,并且收敛阶数是2。

一般目标函数在最优点附近呈现为二次函数,于是可以想像最优点附近用牛顿迭代法收敛是比较快的。

而在开始搜索的几步,我们用梯度下降法收敛是比较快的。

将两个方法融合起来可以达到满意的效果。

收敛快是牛顿迭代法最大的优点,但也有致命的缺点:Hesse矩阵及其逆的求解计算量大,更何况在某个迭代点Xk处Hesse矩阵的逆可能根本就不存在(即Hesse矩阵奇异),这样无法求得Xk+1。

拟牛顿法 Hesse矩阵在拟牛顿法中是不计算的,拟牛顿法是构造与Hesse矩阵相似的正定矩阵,这个构造方法,使用了目标函数的梯度(一阶导数)信息和两个点的“位移”(Xk-Xk-1)来实现。

有人会说,是不是用Hesse矩阵的近似矩阵来代替Hesse矩阵,会导致求解效果变差呢?事实上,效果反而通常会变好。

拟牛顿法与牛顿法的迭代过程一样,仅仅是各个Hesse矩阵的求解方法不一样。

在远离极小值点处,Hesse矩阵一般不能保证正定,使得目标函数值不降反升。

而拟牛顿法可以使目标函数值沿下降方向走下去,并且到了最后,在极小值点附近,可使构造出来的矩阵与Hesse矩阵“很像”了,这样,拟牛顿法也会具有牛顿法的二阶收敛性。

对目标函数f(X)做二阶泰勒展开: 两边对X求导 当X=Xi时,有 这里我们用Hi来代表在点Xi处的Hesse矩阵的逆,则 (5)式就是拟牛顿方程。

下面给出拟牛顿法中的一种--DFP法。

令 我们希望Hi+1在Hi的基础上加一个修正来得到: 给定Ei的一种形式: m和n均为实数,v和w均为N维向量。

(6)(7)联合起来代入(5)可得: 下面再给一种拟牛顿法--BFGS算法。

(8)式中黑色的部分就是DFP算法,红色部分是BFGS比DFP多出来的部分。

BFGS算法不仅具有二次收敛性,而且只有初始矩阵对称正定,则BFGS修正公式所产生的矩阵Hk也是对称正定的,且Hk不易变为奇异,因此BFGS比DFP具有更好的数值稳定性。

最优化Goldstein算法确定步长的最速下降法,matlab怎么编

1 无约束非线性最优化问题常用算法:梯度法(最速下降法)、共轭梯度法、变尺度法和步长加速法。

其中,前三个要用到函数的一阶导数或二阶导数,适用于函数表达式导数存在且求导简单的情况,而步长加速法则相反,适用于函数表达示复杂,甚至无解析表达式,或导数不存在情况。

2 约束非线性最优化问题常用算法:按照是否化成无约束问题可分为 可行方向法、制约函数法(外点法和内点法),其中内点法适用于目标函数在可行域外性质复杂情况,外点法则相反。

后者根据罚函数或障碍函数的构造不同,又有不同的变形。

最优化方法的基本定义

最低0.27元开通文库会员,查看完整内容> 原发布者:圣骑_allkilled 第2章最优化方法第7章最优化方法§1引言《计算e79fa5e98193e59b9ee7ad9431333433623764方法》§2一维搜索§3非线性最小二乘法§4最速下降法§5共轭斜量法§6变尺度方法§7单纯形方法第2章最优化方法§1引言《计算方法》1.1一元函数的极值1.定义设函数f(x)在点x0的某个邻域内有定义,在该邻域内,若满足f(x)>f(x0)(x≠x0),则称f(x)在点x0达到极小值,x0为f(x)的极小点;若满足f(x)<f(x0)(x≠x0),则称f(x)在点x0达到极大值,x0为f(x)的极大点。

第2章最优化方法如图7.1,f(x)在点x1达到极大值,在点x2达到极小值,x1、x2分别为f(x)的极大点和极小点。

极大值和极小值统称为极值。

《计算方法》图7.1第2章最优化方法2.极值的必要条件设函数f(x)在点x0可微,且在x0达到极值,则f′(x0)=0《计算方法》如图7.1,曲线f(x)在A点、B点的切线都平行于x轴,也即f′(x1)=0,f′(x2)=0。

这里的x0称为函数f(x)的驻点。

驻点不一定是极值点,例f(x)=x3,有f′(0)=0,但x=0不是f(x)=x3的极值点。

第2章最优化方法3.极值的充分条件第一种充分条件设函数f(x)在点x0的某个邻域内具有导数且f′(x0)=0,《计算方法》(1)若当x<x0时,f′(x)>0,当x>x0时,f′(x)<0,则函数f(x)在点x0处达到极大值;(2)若当x<x0时,f′(x)<0,当x>x0时,f′(x)>0,则函数f(x)在点x0处达到极小值;(3)当x取x0的左、右边附近的值时,f′(x)恒为正(或恒

steepest descent是什么意思

steepest descent 最速下降 双语对照 词典结果: steepest descent 最速下降; 很高兴为您解答 祝你生活愉快,学习进步 答题不易,您的采纳是我答题的动力 如果你对这个答案有什么疑问,请追问 如果满意记得采纳哦·~~

TTcloud(月$70)E3-1270V3 8GB内存 10Mbps带宽 ,日本独立服务器

关于TTCLOUD服务商在今年初的时候有介绍过一次,而且对于他们家的美国圣何塞服务器有过简单的测评,这个服务商主要是提供独立服务器业务的。目前托管硬件已经达到5000台服务器或节点,主要经营圣何塞,洛杉矶以及日本东京三个地区的数据中心业务。这次看到商家有推出了新上架的日本独立服务器促销活动,价格 $70/月起,季付送10Mbps带宽。也可以跟进客户的需求进行各种DIY定制。内存CPU硬盘流量带宽价...

HostYun全场9折,韩国VPS月付13.5元起,日本东京IIJ线路月付22.5元起

HostYun是一家成立于2008年的VPS主机品牌,原主机分享组织(hostshare.cn),商家以提供低端廉价VPS产品而广为人知,是小成本投入学习练手首选,主要提供基于XEN和KVM架构VPS主机,数据中心包括中国香港、日本、德国、韩国和美国的多个地区,大部分机房为国内直连或者CN2等优质线路。本月商家全场9折优惠码仍然有效,以KVM架构产品为例,优惠后韩国VPS月付13.5元起,日本东京...

星梦云:四川100G高防4H4G10M月付仅60元

星梦云怎么样?星梦云资质齐全,IDC/ISP均有,从星梦云这边租的服务器均可以备案,属于一手资源,高防机柜、大带宽、高防IP业务,一手整C IP段,四川电信,星梦云专注四川高防服务器,成都服务器,雅安服务器。星梦云目前夏日云服务器促销,四川100G高防4H4G10M月付仅60元;西南高防月付特价活动,续费同价,买到就是赚到!点击进入:星梦云官方网站地址1、成都电信年中活动机(成都电信优化线路,封锁...

最速下降为你推荐
dnf装备代码DNF代码,装备,不是EXae序列号ae序列号youtube创始人比特币创始人到底是谁ico监管BTCB是什么?listviewitemListView具有多种item布局sdfsdfsdfsdf世界上最大的一块金砖有多重?wow服务器状态我电脑上的魔兽服务器状态很好.但是还是玩不起来.请问可以玩了不?java程序员招聘为什么Java程序员工资都很高cursorlocation如何用ENVI把不同图像中的相同地点的某个像素点的值读出来。按时间把这个点的值连起来,。谢谢好人。腾讯合作伙伴大会腾讯的合作伙伴都有
哈尔滨域名注册 西安服务器 themeforest 789电视 免费高速空间 双12 cxz 服务器论坛 网站加速 杭州电信 网络速度 netvigator hdroad 石家庄服务器 腾讯云平台 cdn加速技术 asp简介 留言板 赵荣博客 主机配置 更多