Chargencp

ncp  时间:2021-01-11  阅读:()
SemiconductorComponentsIndustries,LLC,2000June,2000–Rev.
01PublicationOrderNumber:NCP7662/DNCP7662InductorlessVoltageConverterTheNCP7662isapin–compatibleupgradetotheindustrystandardTC7660chargepumpvoltageconverter.
Itconvertsa+1.
5Vto+15Vinputtoacorresponding–1.
5to–15Voutputusingonlytwolow–costcapacitors,eliminatinginductorsandtheirassociatedcost,sizeandEMI.
Theon–boardoscillatoroperatesatanominalfrequencyof10kHz.
Frequencyisincreasedto35kHzwhenpin1isconnectedtoV+,allowingtheuseofsmallerexternalcapacitors.
Operationbelow10kHz(forlowersupplycurrentapplications)isalsopossiblebyconnectinganexternalcapacitorfromOSCtoground(withpin1open).
TheNCP7662isavailableinboth8–pinDIPand8–pinsmalloutline(SO)packagesincommercialandextendedtemperatureranges.
FeaturesWideOperatingVoltageRange:1.
5Vto15VBoostPin(Pin1)forHigherSwitchingFrequencyHighPowerEfficiencyis96%EasytoUse–RequiresOnly2ExternalNon–CriticalPassiveComponentsImprovedDirectReplacementforIndustryStandardICL7660andOtherSecondSourceDevicesApplicationsSimpleConversionof+5Vto"5VSuppliesVoltageMultiplicationVOUT="nVINNegativeSuppliesforDataAcquisitionSystemsandInstrumentationRS232PowerSuppliesSupplySplitter,VOUT="VS/2DevicePackageShippingORDERINGINFORMATIONNCP7662DR2SO–82500Tape&ReelNCP7662Phttp://onsemi.
com50Units/RailSO–8DSUFFIXCASE75118MARKINGDIAGRAMSPINCONNECTIONSBOOSTV+CAP+GNDCAP–OSCLOWVOLTAGE(LV)VOUTPDIP–84NCP7662NCP7662YWWXZ18PDIP–8PSUFFIXCASE62618NCP7662YYWWXZCO181235876YY,Y=YearWW=WorkWeekX=AssemblyIDCodeZ=SubcontractorIDCodeCO=CountryofOrginNCP7662http://onsemi.
com2FunctionalBlockDiagramBOOSTNCP7662RCOSCILLATORINTERNALVOLTAGEREGULATORVOLTAGELEVELTRANSLATOROSCLVVOUTCAPLOGICNETWORK–12345678GNDB2V+CAP+ABSOLUTEMAXIMUMRATINGSRatingSymbolValueUnitSupplyVoltage+16.
5VLV,BoostandOSCInputsVoltage(Note1.
)V+t5.
5Vu5.
5V–0.
3Vto(V++0.
3V)(V+–5.
5V)to(V++0.
3V)VCurrentintoLV(Note1.
)V+u3.
5V20AOutputShortDuration(VSUPPLYv5.
5V)ContinuousVPowerDissipation(Note2.
)PlasticDIPSO730470mWOperatingTemperatureRange–40to+85°CStorageTemperatureRange–65to+150°CLeadTemperature(Soldering,10sec)+300°CStatic–sensitivedevice.
Unuseddevicesmustbestoredinconductivematerial.
Protectdevicesfromstaticdischargeandstaticfields.
Stressesabovethoselistedunder"AbsoluteMaximumRatings''maycausepermanentdamagetothedevice.
Thesearestressratingsonlyandfunctionaloperationofthedeviceattheseoranyotherconditionsabovethoseindicatedintheoperationsectionsofthespecificationsisnotimplied.
Exposuretoabsolutemaximumratingconditionsforextendedperiodsmayaffectdevicereliability.
1.
ConnectinganyterminaltovoltagesgreaterthanV+orlessthanGNDmaycausedestructivelatch–up.
Itisrecommendedthatnoinputsfromsourcesoperatingfromexternalsuppliesbeappliedpriorto"powerup''oftheNCP7662.
2.
Deratelinearlyabove50°Cby5.
5mW/°C.
NCP7662http://onsemi.
com3ELECTRICALCHARACTERISTICS(V+=5V,TA=+25°C,OSC=Freerunning,TestCircuitFigure2,unlessotherwisespecified.
)CharacteristicsTestConditionsSymbolMinTypMaxUnitSupplyCurrent(Note3.
)(BoostPinOPENorGND)RL=∞,+25°C0°CvTAv+70°C–40°CvTAv+85°CI+–––80––160180180ASupplyCurrent(BoostPin=V+)0°CvTAv+70°C–40°CvTAv+85°CI+––––300350ASupplyVoltageRange,High(Note4.
)RL=10k,LVOpen,TMINvTAvTMAXV+H3.
0–15VSupplyVoltageRange,LowRL=10k,LVtoGND,TMINvTAvTMAXV+L1.
5–3.
5VOutputSourceResistanceIOUT=20mA,0°CvTAv+70°CROUT–65100IOUT=20mA,–40°CvTAv+85°C––120IOUT=3mA,V+=2V,LVtoGND,0°CvTAv+70°C––250IOUT=3mA,V+=2V,LVtoGND,–40°CvTAv+85°C––300OscillatorFrequencyCOSC=0,Pin1OpenorGNDPin1=V+fOSC5.
0–1035––kHzPowerEfficiencyRL=5k,TMINvTAvTMAXPEff96959697––%VoltageConversionEfficiencyRL=∞VOUTEff9999.
9–%OscillatorImpedanceV+=2VV+=5VZOSC––1.
0100––Mk3.
Inthetestcircuit,thereisnoexternalcapacitorappliedtopin7.
However,whenthedeviceispluggedintoatestsocket,thereisusuallyaverysmallbutfinitestraycapacitancepresent,oftheorderof5pF.
4.
TheNCP7662canoperatewithoutanexternaldiodeoverthefulltemperatureandvoltagerange.
Thisdevicewillfunctioninexistingdesignswhichincorporateanexternaldiodewithnodegradationinoverallcircuitperformance.
NCP7662http://onsemi.
com4DETAILEDDESCRIPTIONTheNCP7662containsallthenecessarycircuitrytocompleteanegativevoltageconverter,withtheexceptionoftwoexternalcapacitorswhichmaybeinexpensive1Fpolarizedelectrolytictypes.
ThemodeofoperationofthedevicemaybebestunderstoodbyconsideringFigure2,whichshowsanidealizednegativevoltageconverter.
CapacitorC1ischargedtoavoltageV+forthehalfcyclewhenswitchesS1andS3areclosed.
(Note:SwitchesS2andS4areopenduringthishalfcycle.
)Duringthesecondhalfcycleofoperation,switchesS2andS4areclosed,withS1andS3open,therebyshiftingcapacitorC1negativelybyV+volts.
ChargeisthentransferredfromC1toC2suchthatthevoltageonC2isexactlyV+,assumingidealswitchesandnoloadonC2.
TheNCP7662approachesthisidealsituationmorecloselythanexistingnon–mechanicalcircuits.
IntheNCP7662thefourswitchesofFigure2areMOSpowerswitches;S1isaP–channeldeviceandS2,S3andS4areN–channeldevices.
Themaindifficultywiththisapproachisthatinintegratingtheswitches,thesubstratesofS3andS4mustalwaysremainreversebiasedwithrespecttotheirsources,butnotsomuchastodegradetheir"ON''resistances.
Inaddition,atcircuitstartup,andunderoutputshortcircuitconditions(VOUT=V+),theoutputvoltagemustbesensedandthesubstratebiasadjustedaccordingly.
Failuretoaccomplishthiswouldresultinhighpowerlossesandprobabledevicelatchup.
TheproblemiseliminatedintheNCP7662byalogicnetworkwhichsensestheoutputvoltage(VOUT)togetherwiththeleveltranslators,andswitchesthesubstratesofS3andS4tothecorrectleveltomaintainnecessaryreversebias.
ThevoltageregulatorportionoftheNCP7662isanintegralpartoftheanti–latchupcircuitry;however,itsinherentvoltagedropcandegradeoperationatlowvoltages.
Therefore,toimprovelowvoltageoperation,the"LV''pinshouldbeconnectedtoGND,disablingtheregulator.
Forsupplyvoltagesgreaterthan3.
5volts,theLVterminalmustbeleftopentoinsurelatchupproofoperationandpreventdevicedamage.
(+5V)41238765NCP7662++VOISRLILC210FV+C110FV+Figure1.
TestCircuitTHEORETICALPOWEREFFICIENCYCONSIDERATIONSIntheory,avoltageconvertercanapproach100%efficiencyifcertainconditionsaremet:A.
Thedrivecircuitryconsumesminimalpower.
B.
TheoutputswitcheshaveextremelylowONresistanceandvirtuallynooffset.
C.
Theimpedancesofthepumpandreservoircapacitorsarenegligibleatthepumpfrequency.
TheNCP7662approachestheseconditionsfornegativevoltageconversioniflargevaluesofC1andC2areused.
Energyislostonlyinthetransferofchargebetweencapacitorsifachangeinvoltageoccurs.
Theenergylostisdefinedby:E=1/2C1(V12–V22)whereV1andV2arethevoltagesonC1duringthepumpandtransfercycles.
IftheimpedancesofC1andC2arerelativelyhighatthepumpfrequency(refertoFigure2)comparedtothevalueofRL,therewillbeasubstantialdifferenceinvoltagesV1andV2.
Therefore,itisdesirablenotonlytomakeC2aslargeaspossibletoeliminateoutputvoltageripple,butalsotoemployacorrespondinglylargevalueforC1inordertoachievemaximumefficiencyofoperation.
DosandDon'ts1.
Donotexceedmaximumsupplyvoltages.
2.
DonotconnecttheLVterminaltoGNDforsupplyvoltagesgreaterthan3.
5volts.
3.
DonotshortcircuittheoutputtoV+supplyforvoltagesabove5.
5voltsforextendedperiods;however,transientconditionsincludingstart–upareokay.
4.
Whenusingpolarizedcapacitorsintheinvertingmode,the+terminalofC1mustbeconnectedtopin2oftheNCP7662andthe–terminalofC2mustbeconnectedtoGND.
5.
IfthevoltagesupplydrivingtheNCP7662hasalargesourceimpedance(25–30ohms),thena2.
2Fcapacitorfrompin8togroundmayberequiredtolimittherateofriseoftheinputvoltagetolessthan2V/s.
Figure2.
IdealizedNegativeVoltageCapacitorVIN=–VINVOUTC1C2S1S2S3S4NCP7662http://onsemi.
com5TYPICALAPPLICATIONSSimpleNegativeVoltageConverterThemajorityofapplicationswillundoubtedlyutilizetheNCP7662forgenerationofnegativesupplyvoltages.
Figure3showstypicalconnectionstoprovideanegativesupplywhereapositivesupplyof+1.
5Vto+15Visavailable.
Keepinmindthatpin6(LV)istiedtothesupplynegative(GND)forsupplyvoltagesbelow3.
5volts.
Figure3.
SimpleNegativeConverteranditsOutputEquivalent10F10F41238765NCP7662+VOUTROV++––=–V+V++–VOUT(a)(b)TheoutputcharacteristicsofthecircuitinFigure3canbeapproximatedbyanidealvoltagesourceinserieswitharesistanceasshowninFigure3b.
Thevoltagesourcehasavalueof–(V+).
Theoutputimpedance(RO)isafunctionoftheONresistanceoftheinternalMOSswitches(showninFigure2),theswitchingfrequency,thevalueofC1andC2,andtheESR(equivalentseriesresistance)ofC1andC2.
AgoodfirstorderapproximationforROis:RO^2(RSW1)RSW3)ESRC1))2(RSW2)RSW4)ESRC1))1fPUMPC1)ESRC2(fPUMP+fOSC2,RSWX+MOSFETswitchresistance)CombiningthefourRSWXtermsasRSW,weseethat:RO^2RSW)1fPUMPC1)4ESRC1)ESRC2RSW,thetotalswitchresistance,isafunctionofsupplyvoltageandtemperature(seetheOutputSourceResistancegraphs),typically23at+25°Cand5V.
CarefulselectionofC1andC2willreducetheremainingterms,minimizingtheoutputimpedance.
Highvaluecapacitorswillreducethe1/(fPUMPC1)component,andlowESRcapacitorswilllowertheESRterm.
Increasingtheoscillatorfrequencywillreducethe1/(fPUMPC1)term,butmayhavethesideeffectofanetincreaseinoutputimpedancewhenC1u10Fandthereisnotenoughtimetofullychargethecapacitorseverycycle.
InatypicalapplicationwhenfOSC=10kHzandC=C1=C2=10F:RO^223)151031010–6))4ESRC1)ESRC2RO^(46)20)5ESRC)SincetheESRsofthecapacitorsarereflectedintheoutputimpedancemultipliedbyafactorof5,ahighvaluecouldpotentiallyswampoutalow1/(fPUMPC1)term,renderinganincreaseinswitchingfrequencyorfiltercapacitanceineffective.
TypicalelectrolyticcapacitorsmayhaveESRsashighas10.
OutputRippleESRalsoaffectstheripplevoltageseenattheoutput.
Thetotalrippleisdeterminedby2voltages,AandB,asshowninFigure4.
SegmentAisthevoltagedropacrosstheESRofC2attheinstantitgoesfrombeingchargedbyC1(currentflowingintoC2)tobeingdischargedthroughtheload(currentflowingoutofC2).
Themagnitudeofthiscurrentchangeis2IOUT,hencethetotaldropis2IOUTESRC2volts.
SegmentBisthevoltagechangeacrossC2duringtimet2,thehalfofthecyclewhenC2suppliescurrenttotheload.
ThedropatBisIOUTt2/C2volts.
Thepeak–to–peakripplevoltageisthesumofthesevoltagedrops:VRIPPLE^ǒ12fPUMPC2)ESRC2IOUTFigure4.
OutputRipple0–(V+)BAt2t1VParallelingDevicesAnynumberofNCP7662voltageconvertersmaybeparalleledtoreduceoutputresistance(Figure5).
Thereservoircapacitor,C2,servesalldevices,whileeachdevicerequiresitsownpumpcapacitor,C1.
Theresultantoutputresistancewouldbeapproximately:ROUT+ROUT(ofNCP7662)n(numberofdevices)NCP7662http://onsemi.
com6Figure5.
ParallelingDevices41238765NCP7662C1+–41238765NCP7662C1+–+C2RLV+CascadingDevicesTheNCP7662maybecascadedasshowntoproducelargernegativemultiplicationoftheinitialsupplyvoltage.
However,duetothefiniteefficiencyofeachdevice,thepracticallimitis10devicesforlightloads.
Theoutputvoltageisdefinedby:VOUT+*n(VIN)wherenisanintegerrepresentingthenumberofdevicescascaded.
TheresultingoutputresistancewouldbeapproximatelytheweightedsumoftheindividualNCP7662ROUTvalues.
Figure6.
CascadingDevicesforIncreasedOutputVoltage10F41238765NCP7662V*OUT+41238765NCP7662++10F10F*VOUT=–nV+"n""1"10FV+ChangingtheNCP7662OscillatorFrequencyItmaybedesirableinsomeapplications(duetonoiseorotherconsiderations)toincreasetheoscillatorfrequency.
Thisisachievedbyoneofseveralmethodsdescribedbelow:ByconnectingtheBoostPin(Pin1)toV+,theoscillatorchargeanddischargecurrentisincreasedand,hencetheoscillatorfrequencyisincreasedbyapproximately3–1/2times.
Theresultisadecreaseintheoutputimpedanceandripple.
Thisisofmajorimportanceforsurfacemountapplicationswherecapacitorsizeandcostarecritical.
Smallercapacitors,e.
g.
,0.
1F,canbeusedinconjunctionwiththeBoostPininordertoachievesimilaroutputcurrentscomparedtothedevicefreerunningwithC1=C2=1For10F.
(RefertographofOutputSourceResistanceasaFunctionofOscillatorFrequency).
IncreasingtheoscillatorfrequencycanalsobeachievedbyoverdrivingtheoscillatorfromanexternalclockasshowninFigure7.
Inordertopreventdevicelatchup,a1kresistormustbeusedinserieswiththeclockoutput.
InasituationwherethedesignerhasgeneratedtheexternalclockfrequencyusingTTLlogic,theadditionofa10kpullupresistortoV+supplyisrequired.
Notethatthepumpfrequencywithexternalclocking,aswithinternalclocking,willbe1/2oftheclockfrequency.
Outputtransitionsoccuronthepositive–goingedgeoftheclock.
Figure7.
ExternalClocking10F41238765NCP7662VOUT++10FCMOSGATE1kV+V+ItisalsopossibletoincreasetheconversionefficiencyoftheNCP7662atlowloadlevelsbyloweringtheoscillatorfrequency.
Thisreducestheswitchinglosses,andisshowninFigure8.
However,loweringtheoscillatorfrequencywillcauseanundesirableincreaseintheimpedanceofthepump(C1)andreservoir(C2)capacitors;thisisovercomebyincreasingthevaluesofC1andC2bythesamefactorthatthefrequencyhasbeenreduced.
Forexample,theadditionofa100pFcapacitorbetweenpin7(Osc)andV+willlowertheoscillatorfrequencyto1kHzfromitsnominalfrequencyof10kHz(multipleof10),andtherebynecessitateacorrespondingincreaseinthevalueofC1andC2(from10Fto100F).
Figure8.
LoweringOscillatorFrequency41238765NCP7662VOUT++COSCC1C2V+PositiveVoltageDoublingTheNCP7662maybeemployedtoachievepositivevoltagedoublingusingthecircuitshowninFigure9.
Inthisapplication,thepumpinverterswitchesoftheNCP7662areusedtochargeC1toavoltagelevelofV+–VF(whereV+isthesupplyvoltageandVFistheforwardvoltageonC1plusthesupplyvoltage(V+)appliedthroughdiodeD2tocapacitorC2).
ThevoltagethuscreatedonC2becomes(2V+)–(2VF),ortwicethesupplyvoltageminusthecombinedforwardvoltagedropsofdiodesD1andD2.
Thesourceimpedanceoftheoutput(VOUT)willdependontheoutputcurrent,butforV+=5Vandanoutputcurrentof10mA,itwillbeapproximately60.
NCP7662http://onsemi.
com7Figure9.
PositiveVoltageMultiplier41238765NCP7662D1V++C2+D2VOUT=(2V+)–(2VF)C1CombinedNegativeVoltageConversionandPositiveSupplyMultiplicationFigure10combinesthefunctionsshowninFigures3and9toprovidenegativevoltageconversionandpositivevoltagedoublingsimultaneously.
Thisapproachwouldbe,forexample,suitableforgenerating+9Vand–5Vfromanexisting+5Vsupply.
Inthisinstance,capacitorsC1andC3performthepumpandreservoirfunctions,respectively,forthegenerationofthenegativevoltage,whilecapacitorsC2andC4arepumpandreservoir,respectively,forthedoubledpositivevoltage.
Thereisapenaltyinthisconfigurationwhichcombinesbothfunctions,however,inthatthesourceimpedancesofthegeneratedsupplieswillbesomewhathigherduetothefiniteimpedanceofthecommonchargepumpdriveratpin2ofthedevice.
Figure10.
CombinedNegativeConverterandPositiveDoublerNCP7662D1+C2+D241238765+C3+C4C1VOUT=(2V+)–(2VF)V+VOUT=–(V+)–(VF)VoltageSplittingThebidirectionalcharacteristicscanalsobeusedtosplitahighersupplyinhalf,asshowninFigure11.
ThecombinedloadwillbeevenlysharedbetweenthetwosidesandahighvalueresistortotheLVpinensuresstart–up.
Becausetheswitchessharetheloadinparallel,theoutputimpedanceismuchlowerthaninthestandardcircuits,andhighercurrentscanbedrawnfromthedevice.
Byusingthiscircuit,andthenthecircuitofFigure6,+15Vcanbeconverted(via+7.
5Vand–7.
5V)toanominal–15V,thoughwithratherhighseriesresistance(X250).
Figure11.
SplittingaSupplyinHalf41238765NCP7662+RL1–+–+–RL250F50FV+V–50FVOUT=(V+)–(V–)2RegulatedNegativeVoltageSupplyInsomecases,theoutputimpedanceoftheNCP7662canbeaproblem,particularlyiftheloadcurrentvariessubstantially.
ThecircuitofFigure12canbeusedtoovercomethisbycontrollingtheinputvoltage,viatheMC33201opamp,insuchawayastomaintainanearlyconstantoutputvoltage.
Directfeedbackisadvisable,sincetheNCP7662'soutputdoesnotrespondinstantaneouslytochangeininput,butonlyaftertheswitchingdelay.
ThecircuitshownsuppliesenoughdelaytoaccommodatetheNCP7662,whilemaintainingadequatefeedback.
Anincreaseinpumpandstoragecapacitorsisdesirable,andthevaluesshownprovideanoutputimpedanceoflessthan5toaloadof10mA.
Figure12.
RegulatingtheOutputVoltage10FVOUTV+41238765NCP7662+–100k+–100–+50k+8V100F800k100F50k56k+8V250KVOLTAGEADJUSTMC33201NCP7662http://onsemi.
com8TEMPERATURE(°C)INPUTVOLTAGEVIN(V)TEMPERATURE(°C)TEMPERATURE(°C)OUTPUTCURRENT(mA)10008006004002000–40–20020406080100101.
0100.
5100.
099.
599.
098.
598.
0123456789101112100100705030101.
52.
53.
54.
55.
56.
57.
58.
59.
510.
511.
512SUPPLYVOLTAGE(V)806040200200–40–20020406080100–40–20020406080100017515012510075502500102030405060708090100–2–4–6–8–10–12VOLTAGECONVERSIONEFFICIENCY(%)OUTPUTSOURCERESISTANCE()SUPPLYCURRENTImADD()OUTPUTVOLTAGEVOUT(V)OUTPUTSOURCERESISTANCE()IDDmA()VIN=2.
5VVIN=5.
5VVIN=12.
5VVIN=5.
5VIOUT=20mATA=25°CVIN=12VVIN=5VWithoutLoad10KLoadFigure13.
SupplyCurrentvs.
Temperature(withBoostPin=VIN)Figure14.
VoltageConversionFigure15.
OutputSourceResistancevs.
SupplyVoltageFigure16.
OutputSourceResistancevs.
TemperatureFigure17.
OutputVoltagevs.
OutputCurrentFigure18.
SupplyCurrentvs.
TemperatureTA=25°CNCP7662http://onsemi.
com9–40–20020406080100–40–200204060801001210864206050403020100OSCILLATORFREQUENCY(kHz)OSCILLATORFREQUENCY(kHz)TEMPERATURE(°C)TEMPERATURE(°C)VIN=5VVIN=12VVIN=5VVIN=12VFigure19.
UnloadedOscillatorFrequencyvs.
TemperatureFigure20.
UnloadedOscillatorFrequencyvs.
TemperaturewithBoostPin=VINNCP7662http://onsemi.
com10PACKAGEDIMENSIONSPDIP–8PSUFFIXCASE626–05ISSUEKNOTES:1.
DIMENSIONLTOCENTEROFLEADWHENFORMEDPARALLEL.
2.
PACKAGECONTOUROPTIONAL(ROUNDORSQUARECORNERS).
3.
DIMENSIONINGANDTOLERANCINGPERANSIY14.
5M,1982.
1458FNOTE2–A––B––T–SEATINGPLANEHJGDKNCLMMAM0.
13(0.
005)BMTDIMMINMAXMINMAXINCHESMILLIMETERSA9.
4010.
160.
3700.
400B6.
106.
600.
2400.
260C3.
944.
450.
1550.
175D0.
380.
510.
0150.
020F1.
021.
780.
0400.
070G2.
54BSC0.
100BSCH0.
761.
270.
0300.
050J0.
200.
300.
0080.
012K2.
923.
430.
1150.
135L7.
62BSC0.
300BSCM–––10–––10N0.
761.
010.
0300.
040__SO–8DSUFFIXCASE751–06ISSUETSEATINGPLANE1458A0.
25MCBSS0.
25MBMhqCX45_LDIMMINMAXMILLIMETERSA1.
351.
75A10.
100.
25B0.
350.
49C0.
190.
25D4.
805.
00E1.
27BSCe3.
804.
00H5.
806.
20h07L0.
401.
25q0.
250.
50__NOTES:1.
DIMENSIONINGANDTOLERANCINGPERASMEY14.
5M,1994.
2.
DIMENSIONSAREINMILLIMETER.
3.
DIMENSIONDANDEDONOTINCLUDEMOLDPROTRUSION.
4.
MAXIMUMMOLDPROTRUSION0.
15PERSIDE.
5.
DIMENSIONBDOESNOTINCLUDEDAMBARPROTRUSION.
ALLOWABLEDAMBARPROTRUSIONSHALLBE0.
127TOTALINEXCESSOFTHEBDIMENSIONATMAXIMUMMATERIALCONDITION.
DEHABeBA1CA0.
10NCP7662http://onsemi.
com11NotesNCP7662http://onsemi.
com12ONSemiconductorandaretrademarksofSemiconductorComponentsIndustries,LLC(SCILLC).
SCILLCreservestherighttomakechangeswithoutfurthernoticetoanyproductsherein.
SCILLCmakesnowarranty,representationorguaranteeregardingthesuitabilityofitsproductsforanyparticularpurpose,nordoesSCILLCassumeanyliabilityarisingoutoftheapplicationoruseofanyproductorcircuit,andspecificallydisclaimsanyandallliability,includingwithoutlimitationspecial,consequentialorincidentaldamages.
"Typical"parameterswhichmaybeprovidedinSCILLCdatasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime.
Alloperatingparameters,including"Typicals"mustbevalidatedforeachcustomerapplicationbycustomer'stechnicalexperts.
SCILLCdoesnotconveyanylicenseunderitspatentrightsnortherightsofothers.
SCILLCproductsarenotdesigned,intended,orauthorizedforuseascomponentsinsystemsintendedforsurgicalimplantintothebody,orotherapplicationsintendedtosupportorsustainlife,orforanyotherapplicationinwhichthefailureoftheSCILLCproductcouldcreateasituationwherepersonalinjuryordeathmayoccur.
ShouldBuyerpurchaseoruseSCILLCproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdSCILLCanditsofficers,employees,subsidiaries,affiliates,anddistributorsharmlessagainstallclaims,costs,damages,andexpenses,andreasonableattorneyfeesarisingoutof,directlyorindirectly,anyclaimofpersonalinjuryordeathassociatedwithsuchunintendedorunauthorizeduse,evenifsuchclaimallegesthatSCILLCwasnegligentregardingthedesignormanufactureofthepart.
SCILLCisanEqualOpportunity/AffirmativeActionEmployer.
PUBLICATIONORDERINGINFORMATIONCENTRAL/SOUTHAMERICA:SpanishPhone:303–308–7143(Mon–Fri8:00amto5:00pmMST)Email:ONlit–spanish@hibbertco.
comASIA/PACIFIC:LDCforONSemiconductor–AsiaSupportPhone:303–675–2121(Tue–Fri9:00amto1:00pm,HongKongTime)TollFreefromHongKong&Singapore:001–800–4422–3781Email:ONlit–asia@hibbertco.
comJAPAN:ONSemiconductor,JapanCustomerFocusCenter4–32–1Nishi–Gotanda,Shinagawa–ku,Tokyo,Japan141–0031Phone:81–3–5740–2745Email:r14525@onsemi.
comONSemiconductorWebsite:http://onsemi.
comForadditionalinformation,pleasecontactyourlocalSalesRepresentative.
NCP7662/DNORTHAMERICALiteratureFulfillment:LiteratureDistributionCenterforONSemiconductorP.
O.
Box5163,Denver,Colorado80217USAPhone:303–675–2175or800–344–3860TollFreeUSA/CanadaFax:303–675–2176or800–344–3867TollFreeUSA/CanadaEmail:ONlit@hibbertco.
comFaxResponseLine:303–675–2167or800–344–3810TollFreeUSA/CanadaN.
AmericanTechnicalSupport:800–282–9855TollFreeUSA/CanadaEUROPE:LDCforONSemiconductor–EuropeanSupportGermanPhone:(+1)303–308–7140(M–F1:00pmto5:00pmMunichTime)Email:ONlit–german@hibbertco.
comFrenchPhone:(+1)303–308–7141(M–F1:00pmto5:00pmToulouseTime)Email:ONlit–french@hibbertco.
comEnglishPhone:(+1)303–308–7142(M–F12:00pmto5:00pmUKTime)Email:ONlit@hibbertco.
comEUROPEANTOLL–FREEACCESS*:00–800–4422–3781*AvailablefromGermany,France,Italy,England,Ireland

PIGYun中秋特惠:香港/韩国VPS月付14元起

PIGYun发布了九月份及中秋节特惠活动,提供8折优惠码,本月商家主推中国香港和韩国机房,优惠后最低韩国每月14元/中国香港每月19元起。这是一家成立于2019年的国人商家,提供中国香港、韩国和美国等地区机房VPS主机,基于KVM架构,采用SSD硬盘,CN2+BGP线路(美国为CUVIP-AS9929、GIA等)。下面列出两款主机配置信息。机房:中国香港CPU:1core内存:1GB硬盘:10GB...

RAKsmart推出7.59美元/月,云服务器产品Cloud Server,KVM架构1核1G内存40G硬盘1M带宽基础配置

近期RAKsmart上线云服务器Cloud Server产品,KVM架构1核1G内存40G硬盘1M带宽基础配置7.59美元/月!RAKsmart云服务器Cloud Server位于美国硅谷机房,下单可选DIY各项配置,VPC网络/经典网络,大陆优化/精品网线路,1-1000Mbps带宽,支持Linux或者Windows操作系统,提供Snap和Backup。RAKsmart机房是一家成立于2012年...

弘速云香港VPSVPS线路有CN2+BGP、CN2 GIA,KVM虚拟化架构,裸金属月付564元

弘速云怎么样?弘速云是创建于2021年的品牌,运营该品牌的公司HOSU LIMITED(中文名称弘速科技有限公司)公司成立于2021年国内公司注册于2019年。HOSU LIMITED主要从事出售香港vps、美国VPS、香港独立服务器、香港站群服务器等,目前在售VPS线路有CN2+BGP、CN2 GIA,该公司旗下产品均采用KVM虚拟化架构。可联系商家代安装iso系统。点击进入:弘速云官方网站地址...

ncp为你推荐
虚机虚拟主机一个一年多少钱vps主机vps主机是什么?代理主机什么叫做代理服务器?有什么用途?美国服务器托管美国服务器租用时要注意什么?免费域名空间求1个免费空间送域名那种香港虚拟空间最稳定香港虚拟主机空间在哪里?香港虚拟空间香港虚拟空间哪家好?网站空间购买不用备案的网站空间,哪里可以有这样的网站空间购买?免费网站空间申请哪里有永久免费的域名空间可以申请合肥虚拟主机虚拟主机哪里买好一些?
三级域名网站 bluehost 免费主机 海外服务器 sockscap 美国十次啦服务器 169邮箱 最好的qq空间 域名dns 申请网站 空间登录首页 东莞服务器托管 国外的代理服务器 石家庄服务器托管 独立主机 万网主机 服务器防御 汤博乐 免费获得q币 godaddyssl 更多