9OptimizationofFoundationofBridgeonSoftGroundY.
Demura*andM.
Matsuo***DepartmentofCivilEngineering,IshikawaNationalCollegeofTechnology,Japan**DepartmentofGeotechnicalandEnvironmentalEngineering,NagoyaUniversity,JapanAbstractPresentedisaprocedureofoptimizingthedesignofbridge-pierfoundationsconstructedonsoftgroundwhichislikelytoexperiencethelong-timedeformationduetotheweightofthebridge.
Thewholestructureofabridgeconsistingofthesuperstructureandthefoundationsshouldbedesignedasawholeinsuchawaythatthetotalexpectedcostofthewholestructurebecomeminimum.
Thisprocedureistotallydifferentfromthecurrentdesignmethodinwhichthesuperstructureandthefoundationsaretreatedasasetofseparatesystemsratherthanasatotalsystemconsistingofsubsystems,i.
e.
,thesuperstructureandthefoundations.
Inevaluatingthetotalexpectedcostofabridge,theconstructioncostbothofthesuperstructureandthefoundationsaswellasthedamageoccurrenceprobabilityshouldbetakenintoaccount.
Keywords:FoundationofBridge,SoftGround,OptimumDesign,SystemReliability,Bayes'Theorem1.
INTRODUCTIONFigure1showsasketchofabridgeplacedonpile-supportedpiersrestingonthebearingstratumoverlainbythesoftclaylayer.
Thepierwillsettlebyamountofsduetotheconsolidationoftheground.
Thesettlementisinducedbythepenetrationofthepile-tipintothebearingstratum.
Thepilesaredrawndownbythenegativefrictioncausedbytheconsolidationoftheclaylayerloadedbytheweightoftheembankment.
Thepurposeofthisstudyistoproposethemethodologyofoptimizingthefoundationofstructureonsoftground.
SupposewehavetwobridgesAandB,oneofwhich,bridgeAisdesignedwithrelativelylowsafetyfactoroffoundationagainstthesettlement,whiletheother,bridgeBisdesignedwithrelativelyhighsafetyfactoroffoundation.
ThefoundationofbridgeR.
Rackwitzetal.
(eds.
),ReliabilityandOptimizationofStructuralSystemsSpringerScience+BusinessMediaDordrecht1995jpiles;Optimizationoffoundationofbridgeonsoftgroundbearingstratum1negativeskin11frictionFigure1BridgeConstructedonSoftGround113Aisinexpensive,butlikelytosufferfromtheunfavorablesettlementwithhighprobability.
Thesettlementoffoundationresultsintheadditionalstressesinthemaingirder,i.
e.
,themaingirderwillhavehighprobabilityoffailure.
Hence,themaintenancecostofmaingirderisexpensive.
Themaintenancecostincludestherepairworkstobeneededduetothefuturesettlement.
InthecaseoftheotherbridgeB,theconstructioncostoffoundationisexpensive,butthemaintenancecostofmaingirderisinexpensive.
ThecomparisonofthebridgesAandBindicatestheexistenceofthesafetyfactoragainstthesettlementwhichcorrespondstotheminimumsummationoftheconstructioncostandthemaintenancecost.
Figure2showstherelationshipbetweenthesafetyfactoroffoundationGsubandthecostsofthemaingirderandfoundation.
Itshouldberecognizedthatthemaintenancecostofmaingirdervariesasafunctionofthesafetyfactorofmaingirder.
Intheproceduredescribedinthispaper,(i)weconsiderthewholestructureasasystemconsistingoftwosubsystems,i.
e.
,thesuperstructure(maingirder)andsubstructure(foundation),and(ii)wechoosetheoptirnumdesignsoastorealizetheminimumofthetotalexpectedcost,i.
e.
,thesummationoftheconstructioncostandtheexpectedlossofthewholesystem.
Anaccuratepredictionofthesettlementofthepiersisunavoidablyneededinsuchatotalconstructioncost~offoundation8/maintenancecostofmaingirderFigure2RelationshipbetweenSafetyFactorandCost114PartTwoTechnicalContributionsprocedure.
Themodelproposedinthispaperincludestheprobabilisticsettlementpredictionmethoddevelopedbycollectinganumberofcaserecordsofthesettlementofbridgepiers.
2.
OPTIMIZATIONPROCEDURETheobjectivefunctionofthesystemtobeoptimizedisinprinciplegivenas(1}inwhichE[CT]denotesthetotalexpectedcost,Asubthedesignvariableofthesubstructure,Asupthedesignvariableofsuperstructure,Ce.
subtheconstructioncostofsubstructure,Ce.
suptheconstructioncostofthesuperstructure,andDKdenotesthecombinationofthedamagesdonetothesuperstructureandtothesubstructure.
Thesettlement-causeddamagestothesuperstructureareassumedtobedependentfromthesettlement-causeddamagestothesubstructure.
DKshouldbeevaluatedbytakingthemechanicalandfunctionalinteractionsbetweenthesuperstructureandsubstructureintoaccount.
Anexamplewillbepresentedlater.
P(~)istheoccurrenceprobabilityofDK,andL':CF(DK)P(DK;AA.
ub)istheexpectedlossproducedbyDK.
Theoptimumdesignchoiceisgivenby(2}.
.
inwhichAupandAubaretheoptimumdesignvariablesofthesuperstructureandthesubstructureselectedoutofmanydesignaltematives,AupandA.
ub.
3.
OCCURRENCEPROBABILITYOFSETTLEMENTSupposeabridgeshowninFigure3.
Thedifferential(uneven)settlementoisloadPQi1~S;#.
.
0njs;-H(i)thpierr-L-i+1)thpiersoft'piledgroundfoundationoN,+-'·M,.
.
.
.
,.
,.
.
,.
ocdenotestheexpectedlossforthecase@,P(Dsuh.
1)denotestheoccurrenceprobabilityofthedifferentialsettlementDsub.
1,P(Dsup,21Dsub.
1)denotes17.
4*(a)Gsub=l.
l3r~19(b)*~Gsup=l86=218Gsub=O.
1.
6'"-1GsubGsupFigure1OOptimumSolutionsOptimizationoffoundationofbridgeonsoftground119theprobabilityoffailureofthemaingirdersubjectedtotheadditionalstresses.
EachcaseshowninFig.
9ishandledinthesamefashion.
Thesummationoftheexpectedlossesforalithecasesplusconstructioncostistheobjectivefunctionwhichwetrytominimizebyproperlychoosingthedesignaltematives,AsupandAsubFigure1Oshowthefmalresultsoftheabovementionedoptimizationprocedure.
TheabscissaofFigure1O(a)isthesafetyfactorGsubagainstthedifferentialsettlementofthefoundation,whiletheordinateisthetotalexpectedcostE[Gr]plottedagainstGsubwiththesafetyfactorGsupofthemaingirderasaparameter.
TheabscissaofFigure1O(b)isthesafetyfactorGsupofthemaingirderandtheparameteristhesafetyfactoroffoundation.
ThesafetyfactorsatwhichthetotalexpectedcostbecomesminimizedareGsup=1.
86andGsub=1.
13.
Thesetwovaluesaretheoptimumcombinationoftwosafetyfactorsforthesuperandsubstructure.
Itmaybeinterestingtocomparetothesetwovalueswiththesafetyfactorsrequiredbythecurrentconventionaldesigncodes,i.
e.
,Gsup=l.
7andGsub=l.
4.
Thesafetyfactoroffoundationintheoptimumdesignissmallerthanthesafetyfactorinthecurrentdesigncode.
Thesafetyfactorofmaingirderintheoptimumdesignislargerthanthesafetyfactorinthecurrentdesigncode.
Theseresultsareduetothesettlementoffoundationattheoptimumdesignwhichislargerthanthesettlementallowableinthecurrentdesigncode.
5.
CONCLUSIONSTheoptimizationprocedureforthebridgedesignisbrieflyoutlinedandanexampleoftheapplicationoftheoptimizationprocedureispresented.
Astheconclusions,followingsshouldbenoted.
(1)Theuseoftheobjectivefunctionderivedforthetotalsystemincludingboththesuperstructureandthesubstructureleadstotheoptimumdesignmorerationalthanthedesignoptimizedseparatelyforthesuperstructureandsubstructure.
(2)Theexamplepresentedinthispaperresultedthesafetyfactorsforthesuperstructureandsubstructurewhichhappenedtobefairlyclosetothesafetyfactorsrequiredbytheconventionaldesigncodes.
(3)Theproposedmethodseemstobeusefulinseekingthebridgedesignswithmuchharmonyinthewholesystemofthesuperstructureandsubstructure.
REFERENCES1.
M.
MatsuoandY.
Demura,Proc.
ofJapanSocietyofCivilEngrg.
Vol.
340/ill-4,pp.
129-138,1984.
12(inJapanese).
2.
M.
MatsuoandY.
Demura,Proc.
ofJapanSocietyofCivilEngrg.
Vol.
364/ill-4,pp.
215-224,1985.
12(inJapanese).
青果网络QG.NET定位为高效多云管理服务商,已拥有工信部颁发的全网云计算/CDN/IDC/ISP/IP-VPN等多项资质,是CNNIC/APNIC联盟的成员之一,2019年荣获国家高薪技术企业、福建省省级高新技术企业双项荣誉。那么青果网络作为国内主流的IDC厂商之一,那么其旗下美国洛杉矶CN2 GIA线路云服务器到底怎么样?官方网站:https://www.qg.net/CPU内存系统盘流量宽带...
久久网云怎么样?久久网云好不好?久久网云是一家成立于2017年的主机服务商,致力于为用户提供高性价比稳定快速的主机托管服务,久久网云目前提供有美国免费主机、香港主机、韩国服务器、香港服务器、美国云服务器,香港荃湾CN2弹性云服务器。专注为个人开发者用户,中小型,大型企业用户提供一站式核心网络云端服务部署,促使用户云端部署化简为零,轻松快捷运用云计算!多年云计算领域服务经验,遍布亚太地区的海量节点为...
RAKsmart怎么样?RAKsmart发布了2021年中促销,促销时间,7月1日~7月31日!,具体促销优惠整理如下:1)美国西海岸的圣何塞、洛杉矶独立物理服务器低至$30/月(续费不涨价)!2)中国香港大带宽物理机,新品热卖!!!,$269.23 美元/月,3)站群服务器、香港站群、日本站群、美国站群,低至177美元/月,4)美国圣何塞,洛杉矶10G口服务器,不限流量,惊爆价:$999.00,...
japanese50m咸熟为你推荐
虚拟主机价格谁知道虚拟主机的价格?独立ip空间如何给网站申请独立的IP空间虚拟主机服务器虚拟主机与独立服务器区别网站域名怎么知道一个网站域名是什么啊!ip代理地址ip代理有什么用?网站空间购买网站空间购买注意事项北京网站空间自己弄一个简单的网站,大概需要办理什么,大概需要多少钱?虚拟主机管理系统大家都用的是什么虚拟主机管理系统?分享一下虚拟主机系统什么是虚拟主机?深圳虚拟主机深圳鼎峰网络科技 虚拟主机空间怎么样
域名管理 过期备案域名查询 俄罗斯vps vps侦探 汉邦高科域名申请 5折 加勒比群岛 美元争夺战 京东云擎 促正网秒杀 有益网络 hostker 免费美国空间 vip购优惠 微软服务器操作系统 in域名 免费ftp 工信部网站备案查询 电信宽带测速软件 杭州电信宽带 更多