pieceumax

umax  时间:2021-01-10  阅读:()
HALId:inria-00001255https://hal.
inria.
fr/inria-00001255Submittedon14Apr2006HALisamulti-disciplinaryopenaccessarchiveforthedepositanddisseminationofsci-entificresearchdocuments,whethertheyarepub-lishedornot.
ThedocumentsmaycomefromteachingandresearchinstitutionsinFranceorabroad,orfrompublicorprivateresearchcenters.
L'archiveouvertepluridisciplinaireHAL,estdestinéeaudéptetàladiffusiondedocumentsscientifiquesdeniveaurecherche,publiésounon,émanantdesétablissementsd'enseignementetderecherchefranaisouétrangers,deslaboratoirespublicsouprivés.
DisparityMapEstimationUsingATotalVariationBoundWidedMiled,Jean-ChristophePesquet,MichelParentTocitethisversion:WidedMiled,Jean-ChristophePesquet,MichelParent.
DisparityMapEstimationUsingATotalVariationBound.
ThirdCanadianConferenceonComputerandRobotVision,Jun2006,Quebec.
inria-00001255DisparityMapEstimationUsingATotalVariationBoundWidedMiled1,2,JeanChristophePesquet2andMichelParent11INRIA,IMARAProjectDomainedeVoluceau78150Lechesnay,CedexFranceemail:{wided.
miled,michel.
parent}@inria.
fr2InstitutGaspardMonge/UMR-CNRS8049UniversitéMarne-la-Vallée77454Champs-sur-Marne,Francee-mail:pesquet@univ-mlv.
frAbstractThispaperdescribesanewvariationalmethodforesti-matingdisparityfromstereoimages.
Thestereomatchingproblemisformulatedasaconvexprogrammingprobleminwhichanobjectivefunctionisminimizedundervariousconstraintsmodellingpriorknowledgeandobservedinfor-mation.
Thealgorithmproposedtosolvethisproblemhasablock-iterativestructurewhichallowsawiderangeofcon-straintstobeeasilyincorporated,possiblytakingadvan-tageofparallelcomputingarchitectures.
Inthiswork,weuseaTotalVariationboundasaregularizationconstraint,whichisshowntobewell-suitedtodisparitymaps.
Experi-mentalresultsforstandarddatasetsarepresentedtoillus-tratethecapabilitiesoftheproposeddisparityestimationtechnique.
1.
IntroductionStereovisionsystemsdeterminedepthinformationfromapairofleftandrightimageswhicharetakenatthesametime,butfromslightlydifferentviewpoints.
Themostim-portantprobleminstereoimageprocessingistondcorre-spondingpixelsfrombothimages,leadingtotheso-calleddisparityestimation.
Anumberofstudieshavebeenre-portedonthedisparityestimationproblemsincethe1970's[1]includingfeature-based,area-basedandenergy-basedapproaches.
Thefeature-basedapproachextractsfeaturesfromimagepairs(e.
g.
,edges,lines,corners)andthenestab-lishescorrespondencebetweenthesefeatures.
Theyyieldaccurateinformationbutthemaindrawbackofthemethodisthesparsenessoftherecovereddepthmap.
Thearea-basedapproachndscorrespondingpointsbymeasuringsimilaritybasedonwindowcorrelation.
Thisapproachat-temptstodeterminethecorrespondenceforeverypixel,whichresultsinadensedepthmap,buttendstofailatdepthdiscontinuitiesandlowtexturedareas.
Manyattemptshavebeenmadetoremedythisseriousproblembymak-ingthesizeandshapeofthematchingwindowadaptivetothelocalvariationofdisparitycharacteristics[2],[3],[4].
Energy-basedapproachesattempttoovercomethisproblembyminimizingvariationalformulations,whereadatatermandasmoothnesstermarepenalized.
Anexcellentsurveyondensestereomethodscanbefoundin[5].
Variationalapproacheswereintroducedinimagepro-cessingforrestorationanddenoisingproblemsandhavesubsequentlyattractedmuchinterestinthecomputervisioncommunitywheretheywererstdevisedforthepurposeofestimatingopticalowfromasequenceofimages.
Numer-icalstudiesonopticalowviavariationaltechniqueshavebeenperformedinthelastdecade.
Forareview,thereadercanreferto[6].
Thesestudiesshowedthatthevariationalopticalowmethodsareamongthemostpowerfultech-niques,whichnaturallymotivatestheirextensionfordis-paritymapestimation[7],[8].
VariationalmethodsarebasedontheminimizationofanenergyfunctionalE(u)whichconsistsofadatatermandaregularizationtermE(u)=Edata(u)+λEsmooth(u),(1)whereudenotestheeldtobeestimatedandλisapositivecoefcientthatweightsthesmoothnesstermrelativelytotherstdataterm.
Thisfunctionalisoftenminimizedviaaniterativeprocedurederivedfromtheassociatednon-linearEuler-Lagrangeequations.
Thisallowstoprove,inmanycases,theexistenceanduniquenessoftheoptimalsolutionbutrequirestheimplementationofsophisticatednumericalschemes[7].
Moreover,thediscretizationofthePDEisadelicateproblemandthechoiceoftheLagrangeparameterλisadifculttask.
Thelatterproblembecomesevenmoreinvolvedwhenasumofregularizationtermshastobecon-sideredtoaddressmultipleconstraintswhichmayariseintheproblem.
Theaimofthisstudyistoproposeanovelvariationalmethodfordisparitymapestimationbasedonthesettheo-reticapproach.
Thisapproachusesacriterionoffeasibilityratherthanapenalizedoptimalitycriterion.
Then,asolu-tionisacceptableifitisconsistentwithallavailableinfor-mationarisingfromthepriorknowledgeandtheobserveddata.
Eachpieceofinformationisrepresentedbyaconvexsetandthefeasibilityset,thatistheintersectionofthesesets,representsallacceptablesolutions.
Oneoftheadvan-tagesofthisapproachisthatitisofteneasiertodenetheconstraintsetsthantochoosetheoptimalvaluesoftheLa-grangeparametersinaregularizationmethod.
ThemostpopularmethodthatinvolvesthesettheoreticformulationistheProjectionOntoConvexSets(POCS).
Typically,thisiterativemethodsuccessivelyprojectspartialsolutionsontopropertysets.
POCSisoneofthemostpreva-lenttoolforsolvingrecoveryproblemsinimageprocessingandithasalsobeenusedfortherestorationoftheopticalow[9].
However,thismethodpresentsseveralshortcom-ings,includingitsslowconvergenceandthefactthatitisnotwellsuitedforanimplementationonparallelproces-sors.
Numerousapproacheshavebeendevelopedinordertoovercometheabovelimitations.
Thereaderisreferredto[10]forareviewofexistingprojectiontechniques.
Thebasicprincipleoftheapproachproposedinthisworkistoformulatethematchingproblemasaconvexpro-grammingproblem.
Moreprecisely,aquadraticobjectivefunctionisminimizedundercertainconstraintsandthere-sultingoptimizationproblemissolvedviaablock-iterativeparalleldecompositionmethod.
Thismethodallowsawiderangeofconstraintstobeeasilyincorporated,thusleadingtoimprovedresults.
WeproposeinthisworktousetheTo-talVariationasaregularizingconstraint.
Asshownintheseminalworkof[11],themainadvantageofthisregular-itymeasureisthatitpreservestheedgesintheimagewhilesmoothingthehomogeneousareas.
Itisthereforeappropri-atefordisparitymapsthatoftencontainlargehomogeneousregions.
Ourpaperisorganizedasfollows.
Section2describesthebinocularvisionsystemanddenesourstereomodel.
InSection3,weintroducethemathematicalbackgroundandnecessarynotationsforthemethodproposedinthispaper.
ThenwepresentthesettheoreticdisparitymapestimationanddescribetheconstraintsweincorporateintheprobleminSection4.
ExperimentresultsarepresentedinSection5,followedbyaconclusioninSection6.
2.
ProblemstatementInthissection,weformulatethematchingproblemanddescribeourstereomodel.
2.
1.
StereovisionsystemTheconsideredstereovisionsystemconsistsoftwocam-eraspositionedsidebysideinordertoobtainleftandrightimages.
ThecamerasareseparatedbyaxeddistanceT,calledbaseline,andshouldhavethesamefocallengthf.
Foreachpixelintheleftimage,acorrespondingpixelismatchedintherightimage.
Thecamerageometrycansig-nicantlyaffecttheamountofprocessingrequiredbythematchingstrategy.
Weconsidertheparallelcameracon-guration,sothatbothcamerasarelocatedonahorizontalplaneandhaveparallelopticalaxes.
Aconstraintthatisoftenconsideredinstereovisionsys-temsistheepipolargeometryconstraint.
Thisconstraintinvolvesthatanypointlyingonanepipolarlineinoneim-agenecessarilycorrespondstoapointlyingonthehomol-ogousepipolarlineintheotherimage.
Whenthecamerasareparallel,aswehaveassumedhere,theepipolarlinesarehorizontalasshowninFigure1.
Althoughsometimescon-vergentcamerasareused,suitablealgorithms,suchastheonedescribedin[12],canbeappliedtorectifytheimages.
Consequently,whetherthecamerasareparallelorrectica-tionisapplied,theverticalcomponentofthedisparityvec-torvanishes,sothatonlyascalarvaluehastobeestimated.
Figure1.
Epipolargeometrywithinaparallelcameraconguration.
LetIlandIrbetheleftandrightviewsofastereopair,respectively.
Twopointspl=(xl,yl)andpr=(xr,yr)intheimagesIlandIraresaidtobematchedifandonlyiftheyaretheprojectionofthesame3-Dpointonthetwoimageplanes.
Inthiscase,thedisparityupointingfrompltoprisgivenbyu=xlxr.
2.
2.
StereomodelAdisparityvalueforeachpixelofanimageisestimatedbysearchingacorrespondingpointintheotherimage.
Eachpossiblecorrespondingpoint,designatedasacandidate,isevaluatedusingacostfunction.
Thesumofsquaredinten-sitydifferences(SSD)iscommonlyusedasthesimilaritymeasureduetoitssimplicity:J(u)=(x,y)∈D[Il(x,y)Ir(xu,y)]2,(2)whereDN2istheimagesupport.
Inordertosimplifythenotations,wehavenotmadeexplicitthatuisafunctionof(x,y)intheaboveexpression.
GivenasetAofadmissiblecandidatedisparityvectors,anoptimaldisparityelduisgivenbyu=argminu∈AJ(u).
(3)Assumingthataninitialdisparityestimateuofuisavailable,forexamplefromapreviousestimation(possiblywithinaniterativeprocess)andthatthemagnitudediffer-enceoftheeldsuanduisrelativelysmall,wecanap-proximatethewarpedrightimagearoundubyaTaylorex-pansionasfollows:Ir(xu,y)Ir(xu,y)Ixr(xu,y)(uu),(4)whereIxr(xu,y)isthehorizontalgradientofthewarpedrightimage.
Introducingthenotations:L(x,y)=Ixr(xu,y),(5)andr(x,y)=Il(x,y)+Ir(xu,y)+uL(x,y),(6)weendupwiththefollowingquadraticcriterion,relatedtothelinearizedmodel(4):J(u)=(x,y)∈D[L(x,y)ur(x,y)]2.
(7)Now,ourpurposeistorecoverthetruedisparityimageufromtheobservedeldsLandr.
Thisproblemisill-posedanditmustthereforeberegularizedbyaddingsomeconstraintstothesolution.
Appropriateconvexconstraintswillbesubsequentlydenedsoastoformulatetheproblemwithintheframeworkwhichisdescribedinthenextsection.
3.
Convexsettheoreticframework3.
1.
FormulationofinverseproblemsManyproblemsinimageprocessinghavebeensuccess-fullyaddressedfromasettheoreticformulation.
Intheex-istingworks,themainconcernistondsolutionsthatareconsistentwithallinformationarisingfrompriorknowl-edgeandtheobserveddata.
Everyknownpropertyisrepre-sentedbyasetinthesolutionspaceandtheintersectionofthesesetsconstitutesthefamilyofacceptablesolutions.
Inmanyproblems,theaimistondanacceptablesolutionuminimizingacertaincostfunction[10].
Ageneralformula-tionofthisprobleminaHilbertimagespaceHisminu∈HJ(u)subjecttoconstraints(Ψi)1≤i≤m,(8)whereJ:Hrepresentstheobjectivefunc-tiontobeminimizedandtheconstraints(Ψi)1≤i≤marisefromtheavailableinformation.
AfamilyofpropertysetsofHcanbeconstructedasfollowsi∈{1,m},Si={u∈H|usatisesΨi}.
(9)ThusSiisthesetofallestimatesthatareconsistentwiththeconstraintΨi.
ThesolutionsetconsistingofsolutionsthatareconsistentwithallavailableinformationisthefeasibilitysetS=mi=1Si.
(10)Restrictingourstudytoconvexfeasibilityproblems,agen-eralformulationisthereforeFindu∈S=mi=1SisuchthatJ(u)=infJ(S),(11)wheretheobjectiveJisaconvexfunctionandthecon-straintssets(Si)1≤i≤mareclosedconvexsubsetsofH.
Itismoreconvenienttomodeltheconstraintsets(Si)1≤i≤maslevelsets:i∈{1,.
.
.
,m},Si={u∈H|fi(u)≤ψi},(12)where(fi)1≤i≤marecontinuousconvexfunctionsand(ψi)1≤i≤marerealparameters.
Weassumethattheprob-lemisconsistent,i.
e.
S=.
3.
2.
SubgradientprojectionsHere,webrieyrecallthebasicfactsonsubgradientpro-jectionswhicharenecessaryforourproblem.
Moredetailscanbefoundin[13].
TheimagespaceisarealHilbertspaceHwithscalarproduct.
|.
andnorm.
.
Avec-tort∈Hisasubgradientofacontinuousconvexfunctionf:H→Ratu∈Hifv∈H,vu|t+f(u)≤f(v).
(13)(Asfiscontinuous,italwayspossessesatleastonesubgra-dientateachpointu.
)Thesetofallsubgradientsoffatuisthesubdifferentialoffatuandisdenotedbyf(u).
Iffisdifferentiableatu,thenf(u)={f(u)}.
Letψ∈RandC={v∈H|f(v)≤ψ}beanonemptyclosedandconvexsubsetofH.
Fixu∈Handasubgradi-entt∈f(u),thesubgradientprojectionPCuofuontoCisgivenby:PCu=uf(u)ψt2t,iff(u)>ψ;u,iff(u)≤ψ.
(14)WenotethatcomputingPCuisoftenamucheasiertaskthancomputingtheexactprojectionontoC,asthelat-teramountstosolvingaconstrainedminimizationproblem[13].
However,whentheprojectioniseasytocompute,onecanuseitasasubgradientprojection.
3.
3.
AnecientalgorithmWenowproceedtothedescriptionofthequadraticprogrammingalgorithmdevelopedin[13]tosolvethequadraticconvexproblem(11)whichisequivalenttomini-mizingu→uu0,R(uu0)(15)overS,whenRisaself-adjointdenitepositiveoperatorandu0∈H.
3.
3.
1Algorithm1.
Fixε∈]0,1/m[andsetn=0.
2.
TakeanonemptyindexsetIn{1,.
.
.
,m}.
3.
Foreveryi∈In,setai,n=Pi,nunwherePi,nisasubgradientprojectionofunontoSiasin(14).
4.
Chooseweights{ξi,n}i∈In]ε,1]suchthati∈Inξi,n=1.
Setvn=i∈Inξi,nai,nandLn=i∈Inξi,nai,n2.
5.
IfLn=0,exititeration.
Otherwise,setbn=u0un,cn=Rbn,dn=R1vnandLn=Ln/dn,vn.
6.
Chooseλn∈[εLn,Ln]andsetdn=λndn.
7.
Setπn=cn,dn,n=bn,cn,νn=λndn,vnandρn=nνnπ2n.
8.
Setun+1=un+dn,ifρn=0,πn≥0;u0+(1+πnνn)dn,ifρn>0,πnνn≥ρn;un+νnρn(πnbn+ndn),ifρn>0,πnνnumax,ontheamountofalloweddisparity.
ThesetassociatedwiththisinformationisS2={u∈H|umin≤u≤umax}.
(20)Wenotethatinpracticeuminandumaxareoftenavailable.
Finally,weuseanotherconstraintinspiredfromtheworkin[7]thatusesaregularizationterm(u)D(Il)(u)basedontheNagel-Enkelmannoperator[17].
ThemainideaofthisconstraintisthatdiscontinuitiesinthedisparitymaparepreservedaccordinglytotheedgesoftheleftimageIl.
Thus,theconstrainthasanisotropicbehaviorwithinuni-formareas,butatobjectedgesitintroducesananisotropicsmoothing.
Detailsgivenin[7]aboutthisorientedsmooth-nessconstraintcanhelpforgivinganapproximationκofthisregularizationtermleadingtothefollowingconvexsetS3={u∈H|(u)D(Il)(u)≤κ}.
(21)WeremarkthattheexactprojectionontoS2isstraightfor-wardlyobtainedwhereasasubgradientprojectionontoS3canbeeasilycalculated.
Insummary,weformulatethecorrespondingproblemastheminimizationof(16)onS=∩3i=1Si,wherethesets(Si)1≤i≤3aregivenbyequations(19),(20)and(21).
5.
ExperimentalresultsInthissection,weevaluatethebenetswhichcanbedrawnfromourapproachusingfourstandarddatasetsfromtheMiddleburydatabase[5],namedTsukuba,Sawtooth,VenusandMap.
Forallexperiments,theparameterαinequation(16)wassetto50,whichensuresagoodtrade-offbetweenconvergencespeedandestimationaccuracy.
Wenotethatvaluesrangingfrom10to100alsoleadtoreliableresults.
Avalueof104forthetotalvariationboundτwasfoundtobeappropriatefortheconsidereddatasetoftestimages.
TheevaluationmeasureistheAverageAbsoluteDispar-ityError(AADE)betweenestimatedueandgroundtruthdisparitiesut:AADE=1N*M(x,y)|ut(x,y)ue(x,y)|,(22)whereN*Misthetotalnumberofpixels.
Theerrorcriterionismeasuredtroughdifferentareasintheimage,classiedasuntextured(Buntex),discontinuous(Bdisc)andtheentireimage(Ball).
Followingtheevaluationprocedurein[5],onlynon-occludedpixelsareconsideredinallthreecases.
ThequantitativeresultsinTable1andtheextracteddis-paritymapsinFigure3demonstratethehighqualityper-formanceofourapproach.
Theobservedimprovementsdemonstratetheabilityofthealgorithmtocomputesmoothdisparitymapswithaccuratedepthdiscontinuitiesinawidevarietyofsituations.
ThisisaconsequenceofusingtheTotalVariationconstraint.
Furthermore,Figure2showsthecomparisonofrecoveredocclusionmapswithgroundtruthones.
Ourresultsareveryclosetothegroundtruthoc-clusionmapswhichprovesthatourmethodcanefcientlyhandletheuniquenessandorderingconstraintsforaboutallvisiblepixels.
Forcomparisonpurposes,theresultsobtainedfromotherdensestereoalgorithms,availableathttp://www.
middelbury.
edu/stereoandhavingthetoprankintheonlineevaluationonthesamewebsite,arealsoincludedinTable1.
Thiscompari-sonshowsthatourapproachisquitecompetitivewithstate-of-the-artmethods.
Inaddition,Table2reportstheerrorvalues,onallnon-occludedimagepixels,obtainedwhenoneoftheconstraints(eitherS1orS3)ismissing.
Thisconrmsthatitisusefultoincorporatemultipleconstraints.
6.
ConclusionInthispaper,wehaveintroducedaconvexsettheoreticformulationfortheestimationofthedisparitymapfromastereopair.
Theresultingoptimizationproblemissolvedviaablockiterativeparalleldecompositionmethod.
ThisefcientalgorithmallowedustocombineaTotalVaria-tionconstraintwithadditionalconvexconstraintssoastosmoothhomogeneousregionswhilepreservingdiscontinu-ities.
Experimentsonvariousdatasetsdemonstratethattheperformanceoftheproposedapproachiscomparablewithstate-of-the-artmethods.
Inourfuturework,wewillcon-tinuetoinvestigatethesettheoreticframeworkthatprovidesanewperspectiveformatchingproblemswhileleadingtoefcientnumericalsolutions.
Figure2.
OcclusionmapsfortheMiddleburystereodata.
Leftcolumn:ourresults.
Rightcolumn:groundtruth.
References[1]D.
MarrandT.
Poggio.
Cooperativecomputationalofstereodisparity.
Science,194:209–236,1976.
TechniqueTsukubaSawtoothVenusMapBallBuntexBdiscBallBuntexBdiscBallBuntexBdiscBallBdiscSegm.
+glob.
vis.
[18]0.
180.
170.
470.
240.
190.
400.
310.
310.
520.
673.
45Graph+segm.
[19]0.
150.
090.
490.
240.
190.
380.
260.
270.
370.
814.
42-passDP[20]0.
280.
340.
570.
250.
200.
530.
300.
330.
530.
372.
81Patch-based[21]0.
120.
120.
320.
230.
180.
430.
270.
290.
350.
391.
15Proposed0.
290.
240.
510.
230.
190.
410.
240.
260.
390.
351.
27Table1.
PerformancecomparisonofstereoalgorithmsusingtheAADEmeasure.
Figure3.
ResultsonMiddleburydataset.
Fromtoptobottom:Tsukuba,Sawtooth,Venus,Map.
Fromlefttoright:Referenceimages,extracteddisparitymapsandgroundtruthdisparitymaps.
TechniqueTsukubaSawtoothVenusMapProp.
Meth.
(∩3i=1Si)0.
290.
230.
240.
35Prop.
Meth.
(S2∩S3)0.
460.
310.
450.
49Prop.
Meth.
(S1∩S2)0.
370.
270.
280.
43Table2.
AADEcomparisonofourresultsonMiddleburydatabase.
[2]A.
Fusiello,V.
Roberto,andE.
Trucco.
Sym-metricstereowithmultiplewindowing.
Int.
Jour-nalofPatternRecognitionandArticialIntelligence,14(8):1053–1066,2000.
[3]C.
L.
ZitnickandT.
Kanade.
Acooperativealgorithmforstereomatchingandocclusiondetection.
IEEETrans.
PatternAnal.
MachineIntell.
,22(7):675–684,July2000.
[4]M.
AgrawalandL.
Davis.
Window-based,disconti-nuitypreservingstereo.
Proc.
IEEEComputerVisionandPatternRecognition(CVPR),2004.
[5]D.
ScharsteinandR.
Szeliski.
Ataxonomyandevalu-ationofdensetwo-framestereocorrespondencealgo-rithms.
Int.
JournalofComputervision,47(1):7–42,2002.
[6]G.
Aubert,R.
Deriche,andP.
Kornprobst.
Computingopticalowviavariationaltechniques.
SIAMJournalonNumericalAnalysis,pages156–182,1999.
[7]L.
Alvarez,R.
Deriche,J.
Sanchez,andJ.
Weickert.
Densedisparitymapestimationrespectingimagedis-continuities:Apdeandscale-spacebasedapproach.
JournalofVisualCommunicationandImageRepre-sentation,13:3–21,2002.
[8]N.
Slesareva,A.
Bruhn,andJ.
Weickert.
Opticowgoesstereo:Avariationalmethodforestimatingdiscontinuity-preservingdensedisparitymaps.
Pat-ternRecognition,pages33–40,2005.
[9]P.
Y.
SimardandG.
E.
Mailloux.
Vectoreldrestora-tionbythemethodofconvexprojections.
ComputerVision,Graphics,andImageProcessing,June2000.
[10]P.
L.
Combettes.
Theconvexfeasibiliyprobleminimagerecovery.
AdvancesinImagingandElectronPhysics,95:155–270,1996.
[11]L.
I.
Rudin,S.
Osher,andE.
Fatemi.
Nonlineartotalvariationbasednoiseremovalalgorithms.
PhysicaD,60:259–268,1992.
[12]A.
Fusiello,E.
Trucco,andA.
Verri.
Acompactalgo-rithmforrecticationofstereopairs.
MachineVisionandApplications,12(1):16–22,2000.
[13]P.
L.
Combettes.
Ablockiterativesurrogateconstraintsplittingmethodforquadraticsignalrecovery.
IEEETrans.
SignalProc.
,51(7):1771–1782,July1997.
[14]E.
GeoffreyandP.
W.
Richard.
Detectingbinocularhalf-occlusions:Empiricalcomparaisonsofveap-proaches.
IEEETrans.
PatternAnal.
MachineIntell.
,42(8):1127–1133,August2002.
[15]S.
OsherandN.
Paragios.
GeometricLevelSetMeth-odsinImaging,VisionandGraphics.
SpringerVerlag,2003.
[16]P.
L.
CombettesandJ.
C.
Pesquet.
Imagerestorationsubjecttoatotalvariationconstraint.
IEEETrans.
Im-ageProc.
,13(9):1213–1222,2004.
[17]H.
H.
NagelandW.
Enkelmann.
Aninvestigationofsmoothnessconstraintsfortheestimationofdisplace-mentvectoreldsfromimagesequences.
IEEETrans.
onPatternAnal.
Mach.
Intell.
,8:565–593,1986.
[18]M.
BleyerandM.
Gelautz.
Alayeredstereoalgorithmusingimagesegmentationandglobalvisibilitycon-straints.
Int.
Conf.
ImageProc.
,pages2997–3000,2004.
[19]M.
BleyerandM.
Gelautz.
Graph-basedsurfacere-constructionfromstereopairsusingimagesegmenta-tion.
VideometricsVIII,SPIE–5665:288–299,2005.
[20]C.
Kim,K.
M.
Lee,B.
T.
Choi,andS.
U.
Lee.
Adensestereomatchingusingtwo-passdynamicprogram-mingwithgeneralizedgroundcontrolpoints.
Com-puterVisionandPatternRecognition,2:1075–1082,2005.
[21]Y.
Deng,Q.
Yang,X.
Lin,andX.
Tang.
Asymmetricpatch-basedcorrespondencemodelforocclusionhan-dling.
Int.
ConfonComputerVision,2:1316–1322,2005.

数脉科技8月促销,新客减400港币,BGP、CN2+BGP、阿里云线路低至350元

数脉科技(shuhost)8月促销:香港独立服务器,自营BGP、CN2+BGP、阿里云线路,新客立减400港币/月,老用户按照优惠码减免!香港服务器带宽可选10Mbps、30Mbps、50Mbps、100Mbps带宽,支持中文本Windows、Linux等系统。官方网站:https://www.shuhost.com* 更大带宽可在选购时选择同样享受优惠。* 目前仅提供HKBGP、阿里云产品,香港...

易探云(QQ音乐绿钻)北京/深圳云服务器8核8G10M带宽低至1332.07元/年起

易探云怎么样?易探云香港云服务器比较有优势,他家香港BGP+CN2口碑不错,速度也很稳定。尤其是今年他们动作很大,推出的香港云服务器有4个可用区价格低至18元起,试用过一个月的用户基本会续费,如果年付的话还可以享受8.5折或秒杀价格。今天,云服务器网(yuntue.com)小编推荐一下易探云国内云服务器优惠活动,北京和深圳这二个机房的云服务器2核2G5M带宽低至330.66元/年,还有高配云服务器...

LiCloud:香港CMI/香港CN2+BGP服务器,30Mbps,$39.99/月;香港KVM VPS仅$6.99/月

licloud怎么样?licloud目前提供香港cmi服务器及香港CN2+BGP服务器/E3-1230v2/16GB内存/240GB SSD硬盘/不限流量/30Mbps带宽,$39.99/月。licloud 成立於2021年,是香港LiCloud Limited(CR No.3013909)旗下的品牌,主要提供香港kvm vps,分为精简网络和高级网络A、高级网络B,现在精简网络和高级网络A。现在...

umax为你推荐
域名注册网网站域名申请,在那备案?美国vps租用如何选择国外vps服务器?域名申请申请域名需要哪些流程具体点 谢谢免费网站空间申请哪里有永久免费的域名空间可以申请免备案虚拟主机请问哪里好一点的免备案的虚拟主机?韩国虚拟主机香港虚拟主机和韩国虚拟主机比较,哪个更好?成都虚拟主机成都唯度科技有限公司怎么样?双线虚拟主机双线虚拟主机说是比单线的好是吧?顶级域名什么是顶级域名备案域名购买现在备案一个域名要多少钱?我想备案域名
zpanel 安云加速器 themeforest wdcp sub-process 360抢票助手 光棍节日志 远程登陆工具 商家促销 大容量存储 卡巴斯基官方免费版 有奖调查 合租空间 已备案删除域名 me空间社区 速度云 129邮箱 阿里校园 isp服务商 酷番云 更多