pieceumax

umax  时间:2021-01-10  阅读:()
HALId:inria-00001255https://hal.
inria.
fr/inria-00001255Submittedon14Apr2006HALisamulti-disciplinaryopenaccessarchiveforthedepositanddisseminationofsci-entificresearchdocuments,whethertheyarepub-lishedornot.
ThedocumentsmaycomefromteachingandresearchinstitutionsinFranceorabroad,orfrompublicorprivateresearchcenters.
L'archiveouvertepluridisciplinaireHAL,estdestinéeaudéptetàladiffusiondedocumentsscientifiquesdeniveaurecherche,publiésounon,émanantdesétablissementsd'enseignementetderecherchefranaisouétrangers,deslaboratoirespublicsouprivés.
DisparityMapEstimationUsingATotalVariationBoundWidedMiled,Jean-ChristophePesquet,MichelParentTocitethisversion:WidedMiled,Jean-ChristophePesquet,MichelParent.
DisparityMapEstimationUsingATotalVariationBound.
ThirdCanadianConferenceonComputerandRobotVision,Jun2006,Quebec.
inria-00001255DisparityMapEstimationUsingATotalVariationBoundWidedMiled1,2,JeanChristophePesquet2andMichelParent11INRIA,IMARAProjectDomainedeVoluceau78150Lechesnay,CedexFranceemail:{wided.
miled,michel.
parent}@inria.
fr2InstitutGaspardMonge/UMR-CNRS8049UniversitéMarne-la-Vallée77454Champs-sur-Marne,Francee-mail:pesquet@univ-mlv.
frAbstractThispaperdescribesanewvariationalmethodforesti-matingdisparityfromstereoimages.
Thestereomatchingproblemisformulatedasaconvexprogrammingprobleminwhichanobjectivefunctionisminimizedundervariousconstraintsmodellingpriorknowledgeandobservedinfor-mation.
Thealgorithmproposedtosolvethisproblemhasablock-iterativestructurewhichallowsawiderangeofcon-straintstobeeasilyincorporated,possiblytakingadvan-tageofparallelcomputingarchitectures.
Inthiswork,weuseaTotalVariationboundasaregularizationconstraint,whichisshowntobewell-suitedtodisparitymaps.
Experi-mentalresultsforstandarddatasetsarepresentedtoillus-tratethecapabilitiesoftheproposeddisparityestimationtechnique.
1.
IntroductionStereovisionsystemsdeterminedepthinformationfromapairofleftandrightimageswhicharetakenatthesametime,butfromslightlydifferentviewpoints.
Themostim-portantprobleminstereoimageprocessingistondcorre-spondingpixelsfrombothimages,leadingtotheso-calleddisparityestimation.
Anumberofstudieshavebeenre-portedonthedisparityestimationproblemsincethe1970's[1]includingfeature-based,area-basedandenergy-basedapproaches.
Thefeature-basedapproachextractsfeaturesfromimagepairs(e.
g.
,edges,lines,corners)andthenestab-lishescorrespondencebetweenthesefeatures.
Theyyieldaccurateinformationbutthemaindrawbackofthemethodisthesparsenessoftherecovereddepthmap.
Thearea-basedapproachndscorrespondingpointsbymeasuringsimilaritybasedonwindowcorrelation.
Thisapproachat-temptstodeterminethecorrespondenceforeverypixel,whichresultsinadensedepthmap,buttendstofailatdepthdiscontinuitiesandlowtexturedareas.
Manyattemptshavebeenmadetoremedythisseriousproblembymak-ingthesizeandshapeofthematchingwindowadaptivetothelocalvariationofdisparitycharacteristics[2],[3],[4].
Energy-basedapproachesattempttoovercomethisproblembyminimizingvariationalformulations,whereadatatermandasmoothnesstermarepenalized.
Anexcellentsurveyondensestereomethodscanbefoundin[5].
Variationalapproacheswereintroducedinimagepro-cessingforrestorationanddenoisingproblemsandhavesubsequentlyattractedmuchinterestinthecomputervisioncommunitywheretheywererstdevisedforthepurposeofestimatingopticalowfromasequenceofimages.
Numer-icalstudiesonopticalowviavariationaltechniqueshavebeenperformedinthelastdecade.
Forareview,thereadercanreferto[6].
Thesestudiesshowedthatthevariationalopticalowmethodsareamongthemostpowerfultech-niques,whichnaturallymotivatestheirextensionfordis-paritymapestimation[7],[8].
VariationalmethodsarebasedontheminimizationofanenergyfunctionalE(u)whichconsistsofadatatermandaregularizationtermE(u)=Edata(u)+λEsmooth(u),(1)whereudenotestheeldtobeestimatedandλisapositivecoefcientthatweightsthesmoothnesstermrelativelytotherstdataterm.
Thisfunctionalisoftenminimizedviaaniterativeprocedurederivedfromtheassociatednon-linearEuler-Lagrangeequations.
Thisallowstoprove,inmanycases,theexistenceanduniquenessoftheoptimalsolutionbutrequirestheimplementationofsophisticatednumericalschemes[7].
Moreover,thediscretizationofthePDEisadelicateproblemandthechoiceoftheLagrangeparameterλisadifculttask.
Thelatterproblembecomesevenmoreinvolvedwhenasumofregularizationtermshastobecon-sideredtoaddressmultipleconstraintswhichmayariseintheproblem.
Theaimofthisstudyistoproposeanovelvariationalmethodfordisparitymapestimationbasedonthesettheo-reticapproach.
Thisapproachusesacriterionoffeasibilityratherthanapenalizedoptimalitycriterion.
Then,asolu-tionisacceptableifitisconsistentwithallavailableinfor-mationarisingfromthepriorknowledgeandtheobserveddata.
Eachpieceofinformationisrepresentedbyaconvexsetandthefeasibilityset,thatistheintersectionofthesesets,representsallacceptablesolutions.
Oneoftheadvan-tagesofthisapproachisthatitisofteneasiertodenetheconstraintsetsthantochoosetheoptimalvaluesoftheLa-grangeparametersinaregularizationmethod.
ThemostpopularmethodthatinvolvesthesettheoreticformulationistheProjectionOntoConvexSets(POCS).
Typically,thisiterativemethodsuccessivelyprojectspartialsolutionsontopropertysets.
POCSisoneofthemostpreva-lenttoolforsolvingrecoveryproblemsinimageprocessingandithasalsobeenusedfortherestorationoftheopticalow[9].
However,thismethodpresentsseveralshortcom-ings,includingitsslowconvergenceandthefactthatitisnotwellsuitedforanimplementationonparallelproces-sors.
Numerousapproacheshavebeendevelopedinordertoovercometheabovelimitations.
Thereaderisreferredto[10]forareviewofexistingprojectiontechniques.
Thebasicprincipleoftheapproachproposedinthisworkistoformulatethematchingproblemasaconvexpro-grammingproblem.
Moreprecisely,aquadraticobjectivefunctionisminimizedundercertainconstraintsandthere-sultingoptimizationproblemissolvedviaablock-iterativeparalleldecompositionmethod.
Thismethodallowsawiderangeofconstraintstobeeasilyincorporated,thusleadingtoimprovedresults.
WeproposeinthisworktousetheTo-talVariationasaregularizingconstraint.
Asshownintheseminalworkof[11],themainadvantageofthisregular-itymeasureisthatitpreservestheedgesintheimagewhilesmoothingthehomogeneousareas.
Itisthereforeappropri-atefordisparitymapsthatoftencontainlargehomogeneousregions.
Ourpaperisorganizedasfollows.
Section2describesthebinocularvisionsystemanddenesourstereomodel.
InSection3,weintroducethemathematicalbackgroundandnecessarynotationsforthemethodproposedinthispaper.
ThenwepresentthesettheoreticdisparitymapestimationanddescribetheconstraintsweincorporateintheprobleminSection4.
ExperimentresultsarepresentedinSection5,followedbyaconclusioninSection6.
2.
ProblemstatementInthissection,weformulatethematchingproblemanddescribeourstereomodel.
2.
1.
StereovisionsystemTheconsideredstereovisionsystemconsistsoftwocam-eraspositionedsidebysideinordertoobtainleftandrightimages.
ThecamerasareseparatedbyaxeddistanceT,calledbaseline,andshouldhavethesamefocallengthf.
Foreachpixelintheleftimage,acorrespondingpixelismatchedintherightimage.
Thecamerageometrycansig-nicantlyaffecttheamountofprocessingrequiredbythematchingstrategy.
Weconsidertheparallelcameracon-guration,sothatbothcamerasarelocatedonahorizontalplaneandhaveparallelopticalaxes.
Aconstraintthatisoftenconsideredinstereovisionsys-temsistheepipolargeometryconstraint.
Thisconstraintinvolvesthatanypointlyingonanepipolarlineinoneim-agenecessarilycorrespondstoapointlyingonthehomol-ogousepipolarlineintheotherimage.
Whenthecamerasareparallel,aswehaveassumedhere,theepipolarlinesarehorizontalasshowninFigure1.
Althoughsometimescon-vergentcamerasareused,suitablealgorithms,suchastheonedescribedin[12],canbeappliedtorectifytheimages.
Consequently,whetherthecamerasareparallelorrectica-tionisapplied,theverticalcomponentofthedisparityvec-torvanishes,sothatonlyascalarvaluehastobeestimated.
Figure1.
Epipolargeometrywithinaparallelcameraconguration.
LetIlandIrbetheleftandrightviewsofastereopair,respectively.
Twopointspl=(xl,yl)andpr=(xr,yr)intheimagesIlandIraresaidtobematchedifandonlyiftheyaretheprojectionofthesame3-Dpointonthetwoimageplanes.
Inthiscase,thedisparityupointingfrompltoprisgivenbyu=xlxr.
2.
2.
StereomodelAdisparityvalueforeachpixelofanimageisestimatedbysearchingacorrespondingpointintheotherimage.
Eachpossiblecorrespondingpoint,designatedasacandidate,isevaluatedusingacostfunction.
Thesumofsquaredinten-sitydifferences(SSD)iscommonlyusedasthesimilaritymeasureduetoitssimplicity:J(u)=(x,y)∈D[Il(x,y)Ir(xu,y)]2,(2)whereDN2istheimagesupport.
Inordertosimplifythenotations,wehavenotmadeexplicitthatuisafunctionof(x,y)intheaboveexpression.
GivenasetAofadmissiblecandidatedisparityvectors,anoptimaldisparityelduisgivenbyu=argminu∈AJ(u).
(3)Assumingthataninitialdisparityestimateuofuisavailable,forexamplefromapreviousestimation(possiblywithinaniterativeprocess)andthatthemagnitudediffer-enceoftheeldsuanduisrelativelysmall,wecanap-proximatethewarpedrightimagearoundubyaTaylorex-pansionasfollows:Ir(xu,y)Ir(xu,y)Ixr(xu,y)(uu),(4)whereIxr(xu,y)isthehorizontalgradientofthewarpedrightimage.
Introducingthenotations:L(x,y)=Ixr(xu,y),(5)andr(x,y)=Il(x,y)+Ir(xu,y)+uL(x,y),(6)weendupwiththefollowingquadraticcriterion,relatedtothelinearizedmodel(4):J(u)=(x,y)∈D[L(x,y)ur(x,y)]2.
(7)Now,ourpurposeistorecoverthetruedisparityimageufromtheobservedeldsLandr.
Thisproblemisill-posedanditmustthereforeberegularizedbyaddingsomeconstraintstothesolution.
Appropriateconvexconstraintswillbesubsequentlydenedsoastoformulatetheproblemwithintheframeworkwhichisdescribedinthenextsection.
3.
Convexsettheoreticframework3.
1.
FormulationofinverseproblemsManyproblemsinimageprocessinghavebeensuccess-fullyaddressedfromasettheoreticformulation.
Intheex-istingworks,themainconcernistondsolutionsthatareconsistentwithallinformationarisingfrompriorknowl-edgeandtheobserveddata.
Everyknownpropertyisrepre-sentedbyasetinthesolutionspaceandtheintersectionofthesesetsconstitutesthefamilyofacceptablesolutions.
Inmanyproblems,theaimistondanacceptablesolutionuminimizingacertaincostfunction[10].
Ageneralformula-tionofthisprobleminaHilbertimagespaceHisminu∈HJ(u)subjecttoconstraints(Ψi)1≤i≤m,(8)whereJ:Hrepresentstheobjectivefunc-tiontobeminimizedandtheconstraints(Ψi)1≤i≤marisefromtheavailableinformation.
AfamilyofpropertysetsofHcanbeconstructedasfollowsi∈{1,m},Si={u∈H|usatisesΨi}.
(9)ThusSiisthesetofallestimatesthatareconsistentwiththeconstraintΨi.
ThesolutionsetconsistingofsolutionsthatareconsistentwithallavailableinformationisthefeasibilitysetS=mi=1Si.
(10)Restrictingourstudytoconvexfeasibilityproblems,agen-eralformulationisthereforeFindu∈S=mi=1SisuchthatJ(u)=infJ(S),(11)wheretheobjectiveJisaconvexfunctionandthecon-straintssets(Si)1≤i≤mareclosedconvexsubsetsofH.
Itismoreconvenienttomodeltheconstraintsets(Si)1≤i≤maslevelsets:i∈{1,.
.
.
,m},Si={u∈H|fi(u)≤ψi},(12)where(fi)1≤i≤marecontinuousconvexfunctionsand(ψi)1≤i≤marerealparameters.
Weassumethattheprob-lemisconsistent,i.
e.
S=.
3.
2.
SubgradientprojectionsHere,webrieyrecallthebasicfactsonsubgradientpro-jectionswhicharenecessaryforourproblem.
Moredetailscanbefoundin[13].
TheimagespaceisarealHilbertspaceHwithscalarproduct.
|.
andnorm.
.
Avec-tort∈Hisasubgradientofacontinuousconvexfunctionf:H→Ratu∈Hifv∈H,vu|t+f(u)≤f(v).
(13)(Asfiscontinuous,italwayspossessesatleastonesubgra-dientateachpointu.
)Thesetofallsubgradientsoffatuisthesubdifferentialoffatuandisdenotedbyf(u).
Iffisdifferentiableatu,thenf(u)={f(u)}.
Letψ∈RandC={v∈H|f(v)≤ψ}beanonemptyclosedandconvexsubsetofH.
Fixu∈Handasubgradi-entt∈f(u),thesubgradientprojectionPCuofuontoCisgivenby:PCu=uf(u)ψt2t,iff(u)>ψ;u,iff(u)≤ψ.
(14)WenotethatcomputingPCuisoftenamucheasiertaskthancomputingtheexactprojectionontoC,asthelat-teramountstosolvingaconstrainedminimizationproblem[13].
However,whentheprojectioniseasytocompute,onecanuseitasasubgradientprojection.
3.
3.
AnecientalgorithmWenowproceedtothedescriptionofthequadraticprogrammingalgorithmdevelopedin[13]tosolvethequadraticconvexproblem(11)whichisequivalenttomini-mizingu→uu0,R(uu0)(15)overS,whenRisaself-adjointdenitepositiveoperatorandu0∈H.
3.
3.
1Algorithm1.
Fixε∈]0,1/m[andsetn=0.
2.
TakeanonemptyindexsetIn{1,.
.
.
,m}.
3.
Foreveryi∈In,setai,n=Pi,nunwherePi,nisasubgradientprojectionofunontoSiasin(14).
4.
Chooseweights{ξi,n}i∈In]ε,1]suchthati∈Inξi,n=1.
Setvn=i∈Inξi,nai,nandLn=i∈Inξi,nai,n2.
5.
IfLn=0,exititeration.
Otherwise,setbn=u0un,cn=Rbn,dn=R1vnandLn=Ln/dn,vn.
6.
Chooseλn∈[εLn,Ln]andsetdn=λndn.
7.
Setπn=cn,dn,n=bn,cn,νn=λndn,vnandρn=nνnπ2n.
8.
Setun+1=un+dn,ifρn=0,πn≥0;u0+(1+πnνn)dn,ifρn>0,πnνn≥ρn;un+νnρn(πnbn+ndn),ifρn>0,πnνnumax,ontheamountofalloweddisparity.
ThesetassociatedwiththisinformationisS2={u∈H|umin≤u≤umax}.
(20)Wenotethatinpracticeuminandumaxareoftenavailable.
Finally,weuseanotherconstraintinspiredfromtheworkin[7]thatusesaregularizationterm(u)D(Il)(u)basedontheNagel-Enkelmannoperator[17].
ThemainideaofthisconstraintisthatdiscontinuitiesinthedisparitymaparepreservedaccordinglytotheedgesoftheleftimageIl.
Thus,theconstrainthasanisotropicbehaviorwithinuni-formareas,butatobjectedgesitintroducesananisotropicsmoothing.
Detailsgivenin[7]aboutthisorientedsmooth-nessconstraintcanhelpforgivinganapproximationκofthisregularizationtermleadingtothefollowingconvexsetS3={u∈H|(u)D(Il)(u)≤κ}.
(21)WeremarkthattheexactprojectionontoS2isstraightfor-wardlyobtainedwhereasasubgradientprojectionontoS3canbeeasilycalculated.
Insummary,weformulatethecorrespondingproblemastheminimizationof(16)onS=∩3i=1Si,wherethesets(Si)1≤i≤3aregivenbyequations(19),(20)and(21).
5.
ExperimentalresultsInthissection,weevaluatethebenetswhichcanbedrawnfromourapproachusingfourstandarddatasetsfromtheMiddleburydatabase[5],namedTsukuba,Sawtooth,VenusandMap.
Forallexperiments,theparameterαinequation(16)wassetto50,whichensuresagoodtrade-offbetweenconvergencespeedandestimationaccuracy.
Wenotethatvaluesrangingfrom10to100alsoleadtoreliableresults.
Avalueof104forthetotalvariationboundτwasfoundtobeappropriatefortheconsidereddatasetoftestimages.
TheevaluationmeasureistheAverageAbsoluteDispar-ityError(AADE)betweenestimatedueandgroundtruthdisparitiesut:AADE=1N*M(x,y)|ut(x,y)ue(x,y)|,(22)whereN*Misthetotalnumberofpixels.
Theerrorcriterionismeasuredtroughdifferentareasintheimage,classiedasuntextured(Buntex),discontinuous(Bdisc)andtheentireimage(Ball).
Followingtheevaluationprocedurein[5],onlynon-occludedpixelsareconsideredinallthreecases.
ThequantitativeresultsinTable1andtheextracteddis-paritymapsinFigure3demonstratethehighqualityper-formanceofourapproach.
Theobservedimprovementsdemonstratetheabilityofthealgorithmtocomputesmoothdisparitymapswithaccuratedepthdiscontinuitiesinawidevarietyofsituations.
ThisisaconsequenceofusingtheTotalVariationconstraint.
Furthermore,Figure2showsthecomparisonofrecoveredocclusionmapswithgroundtruthones.
Ourresultsareveryclosetothegroundtruthoc-clusionmapswhichprovesthatourmethodcanefcientlyhandletheuniquenessandorderingconstraintsforaboutallvisiblepixels.
Forcomparisonpurposes,theresultsobtainedfromotherdensestereoalgorithms,availableathttp://www.
middelbury.
edu/stereoandhavingthetoprankintheonlineevaluationonthesamewebsite,arealsoincludedinTable1.
Thiscompari-sonshowsthatourapproachisquitecompetitivewithstate-of-the-artmethods.
Inaddition,Table2reportstheerrorvalues,onallnon-occludedimagepixels,obtainedwhenoneoftheconstraints(eitherS1orS3)ismissing.
Thisconrmsthatitisusefultoincorporatemultipleconstraints.
6.
ConclusionInthispaper,wehaveintroducedaconvexsettheoreticformulationfortheestimationofthedisparitymapfromastereopair.
Theresultingoptimizationproblemissolvedviaablockiterativeparalleldecompositionmethod.
ThisefcientalgorithmallowedustocombineaTotalVaria-tionconstraintwithadditionalconvexconstraintssoastosmoothhomogeneousregionswhilepreservingdiscontinu-ities.
Experimentsonvariousdatasetsdemonstratethattheperformanceoftheproposedapproachiscomparablewithstate-of-the-artmethods.
Inourfuturework,wewillcon-tinuetoinvestigatethesettheoreticframeworkthatprovidesanewperspectiveformatchingproblemswhileleadingtoefcientnumericalsolutions.
Figure2.
OcclusionmapsfortheMiddleburystereodata.
Leftcolumn:ourresults.
Rightcolumn:groundtruth.
References[1]D.
MarrandT.
Poggio.
Cooperativecomputationalofstereodisparity.
Science,194:209–236,1976.
TechniqueTsukubaSawtoothVenusMapBallBuntexBdiscBallBuntexBdiscBallBuntexBdiscBallBdiscSegm.
+glob.
vis.
[18]0.
180.
170.
470.
240.
190.
400.
310.
310.
520.
673.
45Graph+segm.
[19]0.
150.
090.
490.
240.
190.
380.
260.
270.
370.
814.
42-passDP[20]0.
280.
340.
570.
250.
200.
530.
300.
330.
530.
372.
81Patch-based[21]0.
120.
120.
320.
230.
180.
430.
270.
290.
350.
391.
15Proposed0.
290.
240.
510.
230.
190.
410.
240.
260.
390.
351.
27Table1.
PerformancecomparisonofstereoalgorithmsusingtheAADEmeasure.
Figure3.
ResultsonMiddleburydataset.
Fromtoptobottom:Tsukuba,Sawtooth,Venus,Map.
Fromlefttoright:Referenceimages,extracteddisparitymapsandgroundtruthdisparitymaps.
TechniqueTsukubaSawtoothVenusMapProp.
Meth.
(∩3i=1Si)0.
290.
230.
240.
35Prop.
Meth.
(S2∩S3)0.
460.
310.
450.
49Prop.
Meth.
(S1∩S2)0.
370.
270.
280.
43Table2.
AADEcomparisonofourresultsonMiddleburydatabase.
[2]A.
Fusiello,V.
Roberto,andE.
Trucco.
Sym-metricstereowithmultiplewindowing.
Int.
Jour-nalofPatternRecognitionandArticialIntelligence,14(8):1053–1066,2000.
[3]C.
L.
ZitnickandT.
Kanade.
Acooperativealgorithmforstereomatchingandocclusiondetection.
IEEETrans.
PatternAnal.
MachineIntell.
,22(7):675–684,July2000.
[4]M.
AgrawalandL.
Davis.
Window-based,disconti-nuitypreservingstereo.
Proc.
IEEEComputerVisionandPatternRecognition(CVPR),2004.
[5]D.
ScharsteinandR.
Szeliski.
Ataxonomyandevalu-ationofdensetwo-framestereocorrespondencealgo-rithms.
Int.
JournalofComputervision,47(1):7–42,2002.
[6]G.
Aubert,R.
Deriche,andP.
Kornprobst.
Computingopticalowviavariationaltechniques.
SIAMJournalonNumericalAnalysis,pages156–182,1999.
[7]L.
Alvarez,R.
Deriche,J.
Sanchez,andJ.
Weickert.
Densedisparitymapestimationrespectingimagedis-continuities:Apdeandscale-spacebasedapproach.
JournalofVisualCommunicationandImageRepre-sentation,13:3–21,2002.
[8]N.
Slesareva,A.
Bruhn,andJ.
Weickert.
Opticowgoesstereo:Avariationalmethodforestimatingdiscontinuity-preservingdensedisparitymaps.
Pat-ternRecognition,pages33–40,2005.
[9]P.
Y.
SimardandG.
E.
Mailloux.
Vectoreldrestora-tionbythemethodofconvexprojections.
ComputerVision,Graphics,andImageProcessing,June2000.
[10]P.
L.
Combettes.
Theconvexfeasibiliyprobleminimagerecovery.
AdvancesinImagingandElectronPhysics,95:155–270,1996.
[11]L.
I.
Rudin,S.
Osher,andE.
Fatemi.
Nonlineartotalvariationbasednoiseremovalalgorithms.
PhysicaD,60:259–268,1992.
[12]A.
Fusiello,E.
Trucco,andA.
Verri.
Acompactalgo-rithmforrecticationofstereopairs.
MachineVisionandApplications,12(1):16–22,2000.
[13]P.
L.
Combettes.
Ablockiterativesurrogateconstraintsplittingmethodforquadraticsignalrecovery.
IEEETrans.
SignalProc.
,51(7):1771–1782,July1997.
[14]E.
GeoffreyandP.
W.
Richard.
Detectingbinocularhalf-occlusions:Empiricalcomparaisonsofveap-proaches.
IEEETrans.
PatternAnal.
MachineIntell.
,42(8):1127–1133,August2002.
[15]S.
OsherandN.
Paragios.
GeometricLevelSetMeth-odsinImaging,VisionandGraphics.
SpringerVerlag,2003.
[16]P.
L.
CombettesandJ.
C.
Pesquet.
Imagerestorationsubjecttoatotalvariationconstraint.
IEEETrans.
Im-ageProc.
,13(9):1213–1222,2004.
[17]H.
H.
NagelandW.
Enkelmann.
Aninvestigationofsmoothnessconstraintsfortheestimationofdisplace-mentvectoreldsfromimagesequences.
IEEETrans.
onPatternAnal.
Mach.
Intell.
,8:565–593,1986.
[18]M.
BleyerandM.
Gelautz.
Alayeredstereoalgorithmusingimagesegmentationandglobalvisibilitycon-straints.
Int.
Conf.
ImageProc.
,pages2997–3000,2004.
[19]M.
BleyerandM.
Gelautz.
Graph-basedsurfacere-constructionfromstereopairsusingimagesegmenta-tion.
VideometricsVIII,SPIE–5665:288–299,2005.
[20]C.
Kim,K.
M.
Lee,B.
T.
Choi,andS.
U.
Lee.
Adensestereomatchingusingtwo-passdynamicprogram-mingwithgeneralizedgroundcontrolpoints.
Com-puterVisionandPatternRecognition,2:1075–1082,2005.
[21]Y.
Deng,Q.
Yang,X.
Lin,andX.
Tang.
Asymmetricpatch-basedcorrespondencemodelforocclusionhan-dling.
Int.
ConfonComputerVision,2:1316–1322,2005.

lcloud零云:沪港IPLC,70元/月/200Mbps端口/共享IPv4/KVM;成都/德阳/雅安独立服务器低至400元/月起

lcloud怎么样?lcloud零云,UOVZ新开的子站,现在沪港iplc KVM VPS有端午节优惠,年付双倍流量,200Mbps带宽,性价比高。100Mbps带宽,500GB月流量,10个,512MB内存,优惠后月付70元,年付700元。另有国内独立服务器租用,泉州、佛山、成都、德阳、雅安独立服务器低至400元/月起!点击进入:lcloud官方网站地址lcloud零云优惠码:优惠码:bMVbR...

Gigsgigscloud($9.8)联通用户优选日本软银VPS

gigsgigsCloud日本东京软银VPS的大带宽配置有100Mbps、150Mbps和200Mbps三种,三网都走软银直连,售价最低9.8美元/月、年付98美元。gigsgigscloud带宽较大延迟低,联通用户的好选择!Gigsgigscloud 日本软银(BBTEC, SoftBank)线路,在速度/延迟/价格方面,是目前联通用户海外VPS的最佳选择,与美国VPS想比,日本软银VPS延迟更...

RepriseHosting:$27.97/月-L5640,16G内存,1TB硬盘,10TB月流量,西雅图机房

RepriseHosting是成立于2012年的国外主机商,提供独立服务器租用和VPS主机等产品,数据中心在美国西雅图和拉斯维加斯机房。商家提供的独立服务器以较低的价格为主,目前针对西雅图机房部分独立服务器提供的优惠仍然有效,除了价格折扣外,还免费升级内存和带宽,商家支持使用支付宝或者PayPal、信用卡等付款方式。配置一 $27.97/月CPU:Intel Xeon L5640内存:16GB(原...

umax为你推荐
域名备案查询如何查询自己域名是否备案,怎么查询备案号?网站空间商网站备案为什么是空间商备案?求解虚拟主机管理系统什么虚拟主机管理系统支持W和linux操作系统虚拟主机服务商现在市场上那家服务商的虚拟主机性价比最高?台湾虚拟主机我公司要购买一台香港虚拟主机,用于存放网站,目前是在万网购买了一年的虚拟主机。。。长沙虚拟主机长沙双线虚拟主机湖南稳定双线虚拟主机湖南双线主机租用推荐一个?四川虚拟主机哪些网站适合租用独立服务器?中文域名英文域名和中文域名是什么意思?域名邮箱域名邮箱帐号,密码是那些?备案域名域名一共有几种?哪些域名需要备案?
虚拟主机推荐 虚拟主机试用30天 河北服务器租用 如何申请免费域名 亚洲大于500m themeforest realvnc 免费静态空间 网通ip 警告本网站美国保护 促正网秒杀 帽子云 网络空间租赁 网游服务器 腾讯网盘 黑科云 存储服务器 美国主机 cloudflare 服务器是什么 更多