antwww.baidu.jp

www.baidu.jp  时间:2021-05-24  阅读:()
PFP:ParallelFP-GrowthforQueryRecommendationHaoyuanLiGoogleBeijingResearch,Beijing,100084,ChinaYiWangGoogleBeijingResearch,Beijing,100084,ChinaDongZhangGoogleBeijingResearch,Beijing,100084,ChinaMingZhangDept.
ComputerScience,PekingUniversity,Beijing,100071,ChinaEdwardChangGoogleResearch,MountainView,CA94043,USAABSTRACTFrequentitemsetmining(FIM)isausefultoolfordiscov-eringfrequentlyco-occurrentitems.
Sinceitsinception,anumberofsignicantFIMalgorithmshavebeendevelopedtospeedupminingperformance.
Unfortunately,whenthedatasetsizeishuge,boththememoryuseandcomputa-tionalcostcanstillbeprohibitivelyexpensive.
Inthiswork,weproposetoparallelizetheFP-Growthalgorithm(wecallourparallelalgorithmPFP)ondistributedmachines.
PFPpartitionscomputationinsuchawaythateachmachineexecutesanindependentgroupofminingtasks.
Suchparti-tioningeliminatescomputationaldependenciesbetweenma-chines,andtherebycommunicationbetweenthem.
Throughempiricalstudyonalargedatasetof802,939Webpagesand1,021,107tags,wedemonstratethatPFPcanachievevirtu-allylinearspeedup.
Besidesscalability,theempiricalstudydemonstratesthatPFPtobepromisingforsupportingqueryrecommendationforsearchengines.
CategoriesandSubjectDescriptorsH.
3[InformationStorageandRetrieval];H.
4[InformationSystemsApplications]GeneralTermsAlgorithms,Experimentation,HumanFactors,PerformanceKeywordsParallelFP-Growth,DataMining,FrequentItemsetMining1.
INTRODUCTIONInthispaper,weattacktwoproblems.
First,wepar-allelizefrequentitemsetmining(FIM)soastodealwithlarge-scaledata-miningproblems.
Second,weapplyourde-Permissiontomakedigitalorhardcopiesofallorpartofthisworkforpersonalorclassroomuseisgrantedwithoutfeeprovidedthatcopiesarenotmadeordistributedforprotorcommercialadvantageandthatcopiesbearthisnoticeandthefullcitationontherstpage.
Tocopyotherwise,torepublish,topostonserversortoredistributetolists,requirespriorspecicpermissionand/orafee.
ACMRSCopyright200XACMX-XXXXX-XX-X/XX/XX.
.
.
$5.
00.
velopedparallelalgorithmonWebdatatosupportqueryrecommendation(orrelatedsearch).
FIMisausefultoolfordiscoveringfrequentlyco-occurrentitems.
ExistingFIMalgorithmssuchasApriori[9]andFP-Growth[6]canberesourceintensivewhenamineddatasetishuge.
Parallelalgorithmsweredevelopedforreducingmem-oryuseandcomputationalcostoneachmachine.
Earlyeorts(relatedworkispresentedingreaterdetailinSec-tion1.
1)focusedonspeedinguptheApriorialgorithm.
SincetheFP-GrowthalgorithmhasbeenshowntorunmuchfasterthantheApriori,itislogicaltoparallelizetheFP-Growthalgorithmtoenjoyevenfasterspeedup.
RecentworkinparallelizingFP-Growth[10,8]suersfromhighcommuni-cationcost,andhenceconstrainsthepercentageofcompu-tationthatcanbeparallelized.
Inthispaper,weproposeaMapReduceapproach[4]ofparallelFP-Growthalgorithm(wecallourproposedalgorithmPFP),whichintelligentlyshardsalarge-scaleminingtaskintoindependentcompu-tationaltasksandmapsthemontoMapReducejobs.
PFPcanachievenear-linearspeedupwithcapabilityofrestartingfromcomputerfailures.
Theresourceproblemoflarge-scaleFIMcouldbeworkedaroundinaclassicmarket-basketsettingbypruningoutitemsoflowsupport.
Thisisbecauselow-supportitemsetsareusuallyoflittlepracticalvalue,e.
g.
,amerchandisewithlowsupport(oflowconsumerinterest)cannothelpdriveuprevenue.
However,intheWebsearchsetting,thehugenumberoflow-supportqueries,orlong-tailqueries[2],eachmustbemaintainedwithhighsearchquality.
Theimpor-tanceoflow-supportfrequentitemsetsinsearchapplicationsrequiresFIMtoconfrontitsresourcebottleneckshead-on.
Inparticular,thispapershowsthatapost-searchrecom-mendationtoolcalledrelatedsearchcanbenetagreatdealfromourscalableFIMsolution.
Relatedsearchprovidesrelatedqueriestotheuserafteraninitialsearchhasbeencompleted.
Forinstance,aqueryof'apple'maysuggest'orange','iPod'and'iPhone'asalternatequeries.
Relatedsearchcanalsosuggestrelatedsitesofagivensite(seeex-ampleinSection3.
2).
1.
1RelatedWorkSomepreviouseorts[10][7]parallelizedtheFP-Growthalgorithmacrossmultiplethreadsbutwithsharedmemory.
However,toourproblemofprocessinghugedatabases,theseapproachesdonotaddressthebottleneckofhugememoryrequirement.
Figure1:AsimpleexampleofdistributedFP-Growth.
Todistributebothdataandcomputationacrossmultiplecomputers,Pramudionoetal[8]designedadistributedvari-antoftheFP-growthalgorithm,whichrunsoveraclusterofcomputers.
Someveryrecentwork[5][1][3]proposedsolutionstomoredetailedissues,includingcommunicationcost,cacheconsciousness,memory&I/Outilization,anddataplacementstrategies.
TheseapproachesachievegoodscalabilityondozenstohundredsofcomputersusingtheMPIprogrammingmodel.
However,tofurtherimprovethescalabilitytothousandsorevenmorecomputers,wehavetofurtherreducecom-municationoverheadsbetweencomputersandsupportau-tomaticfaultrecovery.
Inparticular,faultrecoverybecomesacriticalprobleminamassivecomputingenvironment,be-causetheprobabilitythatnoneofthethousandsofcomput-erscrashesduringexecutionofataskisclosetozero.
Thedemandsofsustainablespeedupandfaulttolerancerequirehighlyconstrainedandecientcommunicationprotocols.
Inthispaper,weshowthatourproposedsolutionisabletoaddresstheissuesofmemoryuse,faulttolerance,inadditiontomoreeectivelyparallelizingcomputation.
1.
2ContributionSummaryInsummary,thecontributionsofthispaperareasfollows:1.
WeproposePFP,whichshardsalarge-scaleminingtaskintoindependent,paralleltasks.
PPFthenusestheMapReducemodeltotakeadvantageofitsrecov-erymodel.
EmpiricalstudyshowsthatPFPachievesnear-linearspeedup.
2.
Withthescalabilityofouralgorithm,weareabletomineatag/Webpageatlasfromdel.
icio.
us,aWeb2.
0applicationthatallowsuserstaggingWebpagestheyhavebrowsed.
Ittakes2,500computersonly24minutestominetheatlasconsistingof46,000,000patternsfromasetof802,939URLsand1,021,107tags.
TheminedtagitemsetsandWebpageitemsetsarereadilytosupportqueryrecommendationorrelatedsearch.
2.
PFP:PARALLELFP-GROWTHTomakethispaperself-contained,werstrestatetheproblemofFIM.
WethendeneparametersusedinPF-Growth,anddepictthealgorithm.
StartinginSection2.
2,wepresentourparallelFP-Growthalgorithm,orPFP.
LetI={a1,a2,am}beasetofitems,andatrans-actiondatabaseDBisasetofsubsetsofI,denotedbyDB={T1,T2,Tn},whereeachTiI(1≤i≤n)issaidatransaction.
ThesupportofapatternAI,denotedbysupp(A),isthenumberoftransactionscontainingAinDB.
Aisafrequentpatternifandonlysupp(A)≥ξ,whereξisapredenedminimumsupportthreshold.
GivenDBandξ,theproblemofndingthecompletesetoffrequentpatternsiscalledthefrequentitemsetminingproblem.
2.
1FP-GrowthAlgorithmFP-Growthworksinadivideandconquerway.
Itrequirestwoscansonthedatabase.
FP-Growthrstcomputesalistoffrequentitemssortedbyfrequencyindescendingorder(F-List)duringitsrstdatabasescan.
Initssecondscan,thedatabaseiscompressedintoaFP-tree.
ThenFP-GrowthstartstominetheFP-treeforeachitemwhosesupportislargerthanξbyrecursivelybuildingitsconditionalFP-tree.
ThealgorithmperformsminingrecursivelyonFP-tree.
Theproblemofndingfrequentitemsetsisconvertedtosearch-ingandconstructingtreesrecursively.
Figure1showsasimpleexample.
TheexampleDBhasvetransactionscomposedoflower-casealphabets.
TherststepthatFP-Growthperformsistosortitemsintransac-tionswithinfrequentitemsremoved.
Inthisexample,wesetξ=3andhencekeepalphabetsf,c,a,b,m,p.
Afterthisstep,forexample,T1(therstrowinthegure)isprunedfrom{f,a,c,d,g,i,m,p}to{f,c,a,m,p}.
FP-Growththencompressesthese"pruned"transactionsintoaprextree,whichrootisthemostfrequentitemf.
Eachpathonthetreerepresentsasetoftransactionsthatsharethesameprex;eachnodecorrespondstooneitem.
Eachlevelofthetreecorrespondstooneitem,andanitemlistisformedtolinkalltransactionsthatpossessthatitem.
TheFP-treeisaProcedure:FPGrowth(DB,ξ)DeneandclearF-List:F[];foreachTransactionTiinDBdoforeachItemajinTidoF[ai]++;endendSortF[];DeneandcleartherootofFP-tree:r;foreachTransactionTiinDBdoMakeTiorderedaccordingtoF;CallConstructTree(Ti,r);endforeachitemaiinIdoCallGrowth(r,ai,ξ);endAlgorithm1:FP-GrowthAlgorithmcompressedrepresentationofthetransactions,anditalsoal-lowsquickaccesstoalltransactionsthatshareagivenitem.
Oncethetreehasbeenconstructed,thesubsequentpatternminingcanbeperformed.
However,acompactrepresenta-tiondoesnotreducethepotentialcombinatorialnumberofcandidatepatterns,whichisthebottleneckofFP-Growth.
Algorithm1presentsthepseudocodeofFP-Growth[6].
WecanestimatethetimecomplexityofcomputingF-ListtobeO(DBSize)usingahashingscheme.
However,thecomputationalcostofprocedureGrowth()(thedetailisshowninAlgorithm2)isatleastpolynomial.
TheprocedureFPGrowth()callstherecursiveprocedureGrowth(),wheremultipleconditionalFP-treesaremaintainedinmemoryandhencethebottleneckoftheFP-Growthalgorithm.
FP-Growthfacesthefollowingresourcechallenges:1.
Storage.
ForhugeDB's,thecorrespondingFP-treeisalsohugeandcannottinmainmemory(orevendisks).
ItisthusnecessarytogeneratesomesmallDBstorepresentthecompleteone.
Asaresult,eachnewsmallDBcantintomemoryandgenerateitslocalFP-tree.
2.
Computationdistribution.
AllstepsofFP-Growthcanbeparallelized,andespeciallytherecursivecallstoGrowth().
3.
Costlycommunication.
PreviousparallelFP-GrowthalgorithmspartitionDBintogroupsofsuccessivetrans-actions.
DistributedFP-treescanbeinter-dependent,andhencecanincurfrequentsynchronizationbetweenparallelthreadsofexecution.
4.
Supportvalue.
ThesupportthresholdvalueξplaysanimportantroleinFP-Growth.
Thelargertheξ,thefewerresultpatternsarereturnedandthelowerthecostofcomputationandstorage.
Usually,foralargescaleDB,ξhastobesetlargeenough,ortheFP-treewouldoverowthestorage.
ForWebminingtasks,wetypicallysetξtobeverylowtoobtainlong-tailitemsets.
Thislowsettingmayrequireunacceptablecomputationaltime.
Procedure:Growth(r,a,ξ)ifrcontainsasinglepathZthenforeachcombination(denotedasγ)ofthenodesinZdoGeneratepatternβ=γ∪awithsupport=minimumsupportofnodesinγ;ifβ.
support>ξthenCallOutput(β);endendelseforeachbiinrdoGeneratepatternβ=bi∪awithsupport=bi.
support;ifβ.
support>ξthenCallOutput(β);endConstructβsconditionaldatabase;ConstructβsconditionalFP-treeTreeβ;ifTreeβ=φthenCallGrowth(Treeβ,β,ξ);endendendAlgorithm2:TheFP-GrowthAlgorithm.
Figure2:TheoverallPFPframework,showingvestagesofcomputation.
2.
2PFPOutlineGivenatransactiondatabaseDB,PFPusesthreeMapRe-duce[4]phasestoparallelizePF-Growth.
Figure2depictsthevestepsofPFP.
Step1:Sharding:DividingDBintosuccessivepartsandstoringthepartsonPdierentcomputers.
Suchdi-visionanddistributionofdataiscalledsharding,andeachpartiscalledashard1.
Step2:ParallelCounting(Section2.
3):DoingaMapRe-ducepasstocountthesupportvaluesofallitemsthatappearinDB.
EachmapperinputsoneshardofDB.
Thisstepimplicitlydiscoverstheitems'vocabularyI,whichisusuallyunknownforahugeDB.
TheresultisstoredinF-list.
Step3:GroupingItems:Dividingallthe|I|itemsonF-ListintoQgroups.
Thelistofgroupsiscalledgrouplist(G-list),whereeachgroupisgivenauniquegroup-id(gid).
AsF-listandG-listarebothsmallandthetimecomplexityisO(|I|),thisstepcancompleteonasinglecomputerinfewseconds.
Step4:ParallelFP-Growth(Section2.
4):ThekeystepofPFP.
ThissteptakesoneMapReducepass,wherethemapstageandreducestageperformdierentimpor-tantfunctions:Mapper–Generatinggroup-dependenttransactions:EachmapperinstanceisfedwithashardofDBgeneratedinStep1.
Beforeitprocessestransactionsintheshardonebyone,itreadstheG-list.
Withthemapperalgo-rithmdetailedinSection2.
4,itoutputsoneormorekey-valuepairs,whereeachkeyisagroup-idanditscorrespondingvalueisageneratedgroup-dependenttransaction.
Reducer–FP-Growthongroup-dependentshards:Whenallmapperinstanceshavenishedtheirwork,foreachgroup-id,theMapReduceinfrastructureautomaticallygroupsallcorrespondinggroup-dependenttransactionsintoashardofgroup-dependenttransactions.
Eachreducerinstanceisassignedtoprocessoneormoregroup-dependentshardonebyone.
Foreachshard,thereducerinstancebuildsalocalFP-treeandgrowthitsconditionalFP-treesrecursively.
Duringtherecursiveprocess,itmayoutputdiscoveredpatterns.
Step5:Aggregating(Section2.
5):AggregatingtheresultsgeneratedinStep4asournalresult.
AlgorithmsofthemapperandreduceraredescribedindetailinSection2.
5.
2.
3ParallelCountingCountingisaclassicalapplicationofMapReduce.
Be-causethemapperisfedwithshardsofDB,itsinputkey-valuepairwouldbelikekey,value=Ti,whereTiDBisatransaction.
Foreachitem,sayaj∈Ti,themapperoutputsakey-valuepairkey=aj,value=1.
Afterallmapperinstanceshavenished,foreachkeygeneratedbythemappers,theMapReduceinfrastructurecollectsthesetofcorrespondingvalues(hereitisasetof1MapReduceprovidesconvenientsoftwaretoolsforshard-ing.
Procedure:Mapper(key,value=Ti)foreachitemaiinTidoCallOutput(ai,1);endProcedure:Reducer(key=ai,value=S(ai))C←0;foreachitem1inTidoC←C+1;endCallOutput(null,ai+C);Algorithm3:TheParallelCountingAlgorithm1's),sayS(key),andfeedthereducerswithkey-valuepairskey,S(key).
Thereducerthussimplyoutputskey=null,value=key+sum(S(key)).
Itisnotdiculttoseethatkeyisanitemandvalueissupp(key).
Algorithm3presentsthepseudocodeofthersttwosteps:shardingandparallelcounting.
ThespacecomplexityofthisalgorithmisO(DBSize/P)andthetimecomplexityisO(DBSize/P).
2.
4ParallelFP-GrowthThisstepisthekeyinourPFPalgorithm.
OursolutionistoconverttransactionsinDBintosomenewdatabasesofgroup-dependenttransactionssothatlocalFP-treesbuiltfromdierentgroup-dependenttransactionsareindependentduringtherecursiveconditionalFP-treeconstructingpro-cess.
WedividethisstepintoMapperpartandReducerpartindetails.
Algorithm4presentsthepseudocodeofstep4,Paral-lelFP-Growth.
ThespacecomplexityofthisalgorithmisO(Max(NewDBSize))foreachmachine.
2.
4.
1GeneratingTransactionsforGroup-dependentDatabasesWheneachmapperinstancestarts,itloadstheG-listgen-eratedinStep3.
NotethatG-listisusuallysmallandcanbeheldinmemory.
Inparticular,themapperreadsandorganizesG-listasahashmap,whichmapseachitemontoitscorrespondinggroup-id.
Becauseinthisstep,amapperinstanceisalsofedwithashardofDB,theinputpairshouldbeintheformofkey,value=Ti.
ForeachTi,themapperperformsthefollowingtwosteps:1.
Foreachitemaj∈Ti,substituteajbycorrespondinggroup-id.
2.
Foreachgroup-id,saygid,ifitappearsinTi,locateitsright-mostappearance,sayL,andoutputakey-valuepairkey=gid,value={Ti[1].
.
.
Ti[L]}.
Afterallmapperinstanceshavecompleted,foreachdis-tinctvalueofkey,theMapReduceinfrastructurecollectscorrespondinggroup-dependenttransactionsasvaluevalue,andfeedreducersbykey-valuepairkey=key,value.
Herevalueisagroupofgroup-dependenttransactionscor-respondingtothesamegroup-id,andissaidagroup-dependentshard.
Notably,thisalgorithmmakesuseofaconceptintroducedin[6],patternendingat.
.
.
,toensurethatifagroup,forexample{a,c}or{b,e},isapattern,thissupportofthisProcedure:Mapper(key,value=Ti)LoadG-List;GenerateHashTableHfromG-List;a[]←Split(Ti);forj=|Ti|1to0doHashNum←getHashNum(H,a[j]);ifHashNum=NullthenDeleteallpairswhichhashvalueisHashNuminH;CallOutput(HashNum,a[0]+a[1]a[j]);endendProcedure:Reducer(key=gid,value=DBgid)LoadG-List;nowGroup←G-Listgid;LocalFPtree←clear;foreachTiinDB(gid)doCallinsertbuildfptree(LocalFPtree,Ti);endforeachaiinnowGroupdoDeneandclearasizeKmaxheap:HP;CallTopKFPGrowth(LocalFPtree,ai,HP);foreachviinHPdoCallOutput(null,vi+supp(vi));endendAlgorithm4:TheParallelFP-GrowthAlgorithmpatterncanbecountedonlywithinthegroup-dependentshardwithkey=gid,butdoesnotrelyonanyothershards.
2.
4.
2FP-GrowthonGroup-dependentShardsInthisstep,eachreducerinstancereadsandprocessespairsintheformofkey=gid,value=DB(gid)onebyone,whereeachDB(gid)isagroup-dependentshard.
ForeachDB(gid),thereducerconstructsthelocalFP-treeandrecursivelybuildsitsconditionalsub-treessimilartothetraditionalFP-Growthalgorithm.
Duringthisrecursiveprocess,itoutputsfoundpatterns.
TheonlydierencefromtraditionalFP-Growthalgorithmisthat,thepatternsarenotoutputdirectly,butintoamax-heapindexedbythesupportvalueofthefoundpattern.
So,foreachDB(gid),thereducermaintainsKmostlysupportedpatterns,whereKisthesizeofthemax-heapHP.
AfterthelocalrecursiveFP-Growthprocess,thereduceroutputseverypattern,v,inthemax-heapaspairsintheformofkey=null,value=v+supp(v)2.
5AggregatingTheaggregatingstepreadsfromtheoutputfromStep4.
Foreachitem,itoutputscorrespondingtop-Kmostlysup-portedpatterns.
Inparticular,themapperisfedwithpairsintheformofkey=null,value=v+supp(v).
Foreachaj∈v,itoutputsapairkey=aj,value=v+supp(v).
BecauseoftheautomaticcollectionfunctionoftheMapRe-duceinfrastructure,thereducerisfedwithpairsintheformofkey=aj,value=V(aj),whereV(aj)denotesthesetoftransitionsincludingitemaj.
ThereducerjustselectsfromS(aj)thetop-Kmostlysupportedpatternsandout-putsthem.
Procedure:Mapper(key,value=v+supp(v))foreachitemaiinvdoCallOutput(ai,v+supp(v));endProcedure:Reducer(key=ai,value=S(v+supp(v)))DeneandclearasizeKmaxheap:HP;foreachpatternvinv+supp(v)doif|HP|www.
baidu.
jp,andwww.
namaan.
net)arerelatedtoWebsearchenginesusedinJapan.
Figure7:Java-basedMiningUIdistributedenvironment.
InICPADS,2006.
[6]JiaweiHan,JianPei,andYiwenYin.
Miningfrequentpatternswithoutcandidategeneration.
InSIGMOD,2000.
[7]LiLiu,EricLi,YiminZhang,andZhizhongTang.
Optimizationoffrequentitemsetminingonmultiple-coreprocessor.
InVLDB,2007.
[8]IkoPramudionoandMasaruKitsuregawa.
Parallelfp-growthonpccluster.
InPAKDD,2003.
[9]AgrawalRakeshandRamakrishnanSrikant.
Fastalgorithmsforminingassociationrules.
InProc.
20thInt.
Conf.
VeryLargeDataBases,VLDB,1994.
[10]OsmarR.
Za¨ane,MohammadEl-Hajj,andPaulLu.
Fastparallelassociationruleminingwithoutcandidacygeneration.
InICDM,2001.
WebpagesDescriptionSupportwww.
openmoko.
orgCellphonesoftware2607www.
grandcentral.
comdownloadrelatedwebwww.
zyb.
comsites.
www.
simpy.
comFoursocial242www.
furl.
netbookmarkingserviceswww.
connotea.
orgwebsites,includingdel.
icio.
usdel.
ici.
os.
Thelastwww.
masternewmedia.
org/neoneisanarticleitws/2006/12/01/socialbookmdiscussthis.
arkingservicesandtools.
htmwww.
troovy.
comFiveonlinemaps.
240www.
agr.
comhttp://outside.
inwww.
wayfaring.
comhttp://ickrvision.
commail.
google.
com/mailWebsitesrelatedto204www.
google.
com/igGMailservice.
gdisk.
sourceforge.
netwww.
netvibes.
comwww.
trovando.
itSixfancysearch151www.
kartoo.
comengines.
www.
snap.
comwww.
clusty.
comwww.
aldaily.
comwww.
quintura.
comwwwl.
meebo.
comIntegratedinstant112www.
ebuddy.
commessagesoftwarewww.
plugoo.
comwebsites.
www.
easyhotel.
comTravelingagencyweb109www.
hostelz.
comsites.
www.
couchsurng.
comwww.
tripadvisor.
comwww.
kayak.
comwww.
easyjet.
com/it/prenotaItaliantraveling98www.
ryanair.
com/site/ITagencywebsites.
www.
edreams.
itwww.
expedia.
itwww.
volagratis.
com/vg1www.
skyscanner.
netwww.
google.
com/codesearchThreecodesearchweb98www.
koders.
comsitesandtwoarticleswww.
bigbold.
com/snippetstalkingaboutcodewww.
gotapi.
comsearch.
0xcc.
net/blog/archives/000043.
htmlwww.
google.
co.
jpFourJapaneseweb36www.
livedoor.
comsearchengines.
www.
baidu.
jpwww.
namaan.
netwww.
operator11.
comTV,mediastreaming34www.
joost.
comrelatedwebsites.
www.
keepvid.
comwww.
getdemocracy.
comwww.
masternewmedia.
orgwww.
technorati.
comFromthesewebsites,17www.
listible.
comyoucangetrelevantwww.
popurls.
comresourcequickly.
www.
trobar.
org/prosodyAllwebsitesare9librarianchick.
pbwiki.
comaboutliterature.
www.
quotationspage.
comwww.
visuwords.
comFigure5:Examplesofminingtag-tagsandwebpage-webpagesrelationships.

wordpress投资主题模版 白银黄金贵金属金融投资网站主题

wordpress投资主题模版是一套适合白银、黄金、贵金属投资网站主题模板,绿色大气金融投资类网站主题,专业高级自适应多设备企业CMS建站主题 完善的外贸企业建站功能模块 + 高效通用的后台自定义设置,简洁大气的网站风格设计 + 更利于SEO搜索优化和站点收录排名!点击进入:wordpress投资主题模版安装环境:运行环境:PHP 7.0+, MYSQL 5.6 ( 最低主机需求 )最新兼容:完美...

数脉科技:阿里云香港CN2线路服务器;E3-1230v2/16G/240G SSD/10Mbps/3IP,月付374元

数脉科技怎么样?昨天看到数脉科技发布了7月优惠,如果你想购买香港服务器,可以看看他家的产品,性价比还是非常高的。数脉科技对香港自营机房的香港服务器进行超低价促销,可选择10M、30M的优质bgp网络。目前商家有优质BGP、CN2、阿里云线路,国内用户用来做站非常不错,目前E3/16GB阿里云CN2线路的套餐有一个立减400元的优惠,有需要的朋友可以看看。点击进入:数脉科技商家官方网站香港特价阿里云...

ZJI(月付480元),香港阿里云专线服务器

ZJI是成立于2011年原Wordpress圈知名主机商—维翔主机,2018年9月更名为ZJI,主要提供香港、日本、美国独立服务器(自营/数据中心直营)租用及VDS、虚拟主机空间、域名注册业务。本月商家针对香港阿里云线路独立服务器提供月付立减270-400元优惠码,优惠后香港独立服务器(阿里云专线)E3或者E5 CPU,SSD硬盘,最低每月仅480元起。阿里一型CPU:Intel E5-2630L...

www.baidu.jp为你推荐
ToolgraphIOJsios8支持ipad三星苹果5xp如何关闭445端口请大家帮帮忙,怎样关闭135和445端口?ipad连不上wifiipad显示无互联网连接怎么回事?canvas2七尾奈留除了DC canvas2 sola EF 快乐小兔幸运草 以外改编成动画的作品有哪些?win7如何关闭445端口如何关闭WIN7自动配置 IPV4 地址 169.254重庆电信宽带管家重庆电信宽带多少钱一个月谷歌sbSb是什么意思?
budgetvm 仿牌空间 photonvps 加勒比群岛 美国翻墙 godaddy 好看的桌面背景大图 qingyun 河南移动邮件系统 jsp空间 网站cdn加速 工信部icp备案号 国外视频网站有哪些 免费mysql数据库 美国独立日 腾讯总部在哪 免费个人主页 注册阿里云邮箱 九零网络 美国asp空间 更多