匹配图像放大

图像放大  时间:2021-05-23  阅读:()
2008年5月第34卷第5期北京航空航天大学学报JournalofBeijingUniversityofAeronauticsandAstronauticsMay2008Vol.
34No.
5收稿日期:2007-05-08基金项目:北京市教育委员会共建项目(BHBJZD-1-5)作者简介:张少辉(1982-),男,山东青岛人,硕士生,zhanahohui-3@163.
com.
一种基于图像特征点提取及匹配的方法张少辉沈晓蓉范耀祖(北京航空航天大学自动化科学与电气工程学院,北京100083)摘要:针对图像特征提取与匹配的适应性和准确性的问题,将尺度不变特征变换(SIFT,ScaleInvariantFeatureTransform)算法应用到图像匹配领域.
首先从原理上对SIFT算法的特性进行了分析,并以visualstudio2005为开发平台对SIFT算法分步骤进行了实现;最后以基于欧氏距离的最近邻准则作为特征的相似度量将SIFT算法提取的特征应用于图像特征匹配,并对不同的近邻比进行比较,给出了建议值.
通过3组实验图像的匹配结果表明,SIFT算法提取的特征对图像缩放、旋转、亮度变化的匹配正确率都等于或接近100%,证明了SIFT算法提取的特征点有很好的适应性和准确性,可以进一步应用到图像识别以及图像重建等领域.
关键词:特征提取;特征匹配;尺度不变特征变换;尺度空间中图分类号:TP391文献标识码:A文章编号:1001-5965(2008)05-0516-04Methodinimage'sfeatureextractionandmatchingZhangShaohuiShenXiaorongFanYaozu(SchoolofAutomationScienceandElectricalEngineering,BeijingUniversityofAeronauticsandAstronautics,Beijing100083,China)Abstract:Tosolvetheproblemofadaptabilityandaccuracyinthefieldofimagefeatureextrac-tionandfeaturematching,themethodofscaleinvariantfeaturetransform(SIFT)wasintroduced.
FirstlythecharacteristicsoftheSIFTmethodwereanalyzedbytheory,andtheSIFTmethodwasim-plementedstepbysteponthevisualstudio2005platform;ThenthefeaturesextractedbySIFTmeth-odwereappliedtomatchimagesonthecriterionofnearestneighborbasedonEuclideandistance.
Asuggestionvalueboundwasgivenbycomparingthematchingresultofdifferentnearestratio.
AtlasttheeffectoftheSIFTmethodwasvalidatedbythematchingresultofthreedifferentgroupsofima-ges.
ThematchingresultshowsthatthefeaturesextractedbySIFTmethodareinvarianttoimagescale,rotationandilluminationchange,andthematchingaccuraciesareallequalorcloseto100%.
TheseresultsprovethatthefeaturesextractedbySIFTmethodhaveexcellentadaptiveandaccuratecharacteristics,whichareusefulforthefieldsofimagerecognition,imagereconstruction,etc.
Keywords:featureextraction;featurematching;scaleinvariantfeaturetransform;scalespace在图像特征提取与匹配领域中,如何提取稳定的特征,提高匹配的准确度是一个关键的问题.
尺度不变特征变换(SIFT,ScaleInvariantFea-tureTransform)方法[1],主要思想是利用多尺度变换在尺度空间中寻找极值点,提取特征点位置和方向,使其对图像缩放、旋转、光线变化甚至仿射变换保持不变.
本文将SIFT算法提取的特征用于图像匹配,并对匹配结果进行了实验验证.
1SIFT算法1.
1SIFT算法分析1)多尺度空间和降采样方法为了模拟人类在不同距离观察事物的过程,形成了多尺度空间方法[2-3].
经研究发现高斯函数是唯一的尺度空间内核函数[4-6].
SIFT算法定义图像尺度空间函数为L(x,y,σ),输入图像用I(x,y)表示,利用高斯内核函数对输入图像进行卷积操作,则有L(x,y,σ)=G(x,y,σ)I(x,y)(1)其中,G(x,y,σ)为尺度可变高斯函数,其元素的计算公式如下:g(x,y,σ)=12πσ2e-(x2+y2)/2σ2(2)其中,(x,y)为空间坐标;σ为尺度坐标.
采用不同的σ对图像进行高斯卷积,得到高斯图像金字塔,从而增强SIFT算法对于图形缩放的适应能力.
2)求高斯差分空间极值高斯差分(DOG,DifferenceofGaussian)函数为D(x,y,σ)=(G(x,y,kσ)-G(x,y,σ))I(x,y)=L(x,y,kσ)-L(x,y,σ)(3)其中k为常数.
Mikolajczyk通过实验发现相对于其他的特征提取函数,通过求高斯拉普拉斯函数σ2Δ2G的最大和最小值能得到最稳定的图像特征点[7],并且由于G(x,y,kσ)-G(x,y,σ)≈(k-1)σ2Δ2G(4)所以用DOG函数也可以得到最稳定的图像特征点.
每一个采样点要和它所有的相邻像素点进行比较,看是否为其所在图像域和尺度域的检测邻域中的极值点.
从而SIFT算法能够获取稳定的图像特征点.
3)去除低对比度点和边缘响应点DOG空间极值有对噪声敏感的低对比度点和对边缘响应敏感的边缘响应点.
低对比度点去除:将尺度空间函数D(x,y,σ)泰勒展开,求其导数并将其值设为0,可以得到极值处的X^.
X^=-2D-1X2DX(5)X^加到其样本点上从而得到在极值位置处的插值估计值D(X^)=D+12DTXX^(6)将D(X^)小于某一阈值的点视为低对比度点去除.
边缘响应点去除:一个定义不好的高斯差分算子的极值在横跨边缘的地方有较大的主曲率,而在垂直边缘的方向有较小的主曲率.
由于D的主曲率和Hessian矩阵H的特征值成正比,为了检测主曲率是否在某域值γ(γ为H阵最大特征值与最小特征值的比值)下,只需检测(trH)2detH图像放大了1.
5倍和缩小为原图的1/2,匹配图如图1、图2,匹配结果见表1.
a放大图与原图匹配结果b原图与缩小图匹配结果图1τ=0.
6缩放匹配结果a放大图与原图匹配结果b原图与缩小图匹配结果图2τ=0.
2缩放匹配结果表1第1组图像的匹配结果图像提取点数匹配点数匹配率/%误匹配正确率/%放大图(τ=0.
6)284158377.
3299.
4缩小图(τ=0.
6)15112482.
1596.
0放大图(τ=0.
2)284131641.
90100缩小图(τ=0.
2)1516543.
00100第2组图像用来检验算法对于旋转变化的适应能力.
分别将图像逆时针旋转了90°,顺时针旋转了30°,匹配图如图3、图4,匹配结果见表2.
第3组图像用来检验算法对于光照变化的适应能力.
分别将图像增加亮度40和减少亮度30,匹配图如图5,匹配结果见表3.
表2第2组图像的匹配结果a逆时针与原图匹配结果b顺时钟与原图匹配结果图3τ=0.
6旋转图匹配结果a逆时针与原图匹配结果b顺时钟与原图匹配结果图4τ=0.
2旋转图匹配结果图像提取点数匹配点数匹配率/%误匹配正确率/%逆时针(τ=0.
6)76074698.
90100顺时针(τ=0.
6)74530841.
3299.
4逆时针(τ=0.
2)76073497.
30100顺时针(τ=0.
2)74510413.
90100a加亮图与原图匹配结果b减亮图与原图匹配结果图5τ=0.
2亮度变化匹配结果表3第3组图像的匹配结果图像提取点数匹配点数匹配率/%误匹配正确率/%逆时针(τ=0.
6)75169993.
10100亮度减(τ=0.
6)7547541000100亮度加(τ=0.
2)75166288.
10100亮度减(τ=0.
2)7547541000100通过以上的图像匹配结果可以看出,在τ较小的时候,匹配成功点数与匹配率较小,但是保证了匹配的正确率;在τ较大的时候,匹配成功点数与匹配率较大,但是同时存在着误匹配;这些误匹配都是发生在一个特征点对应多个描述符的情况,并且对应该特征点的正确匹配也存在于匹配815北京航空航天大学学报2008年结果中,这一点更说明了SIFT算法的稳定性.
为了兼顾匹配率与匹配正确率,建议采用0.
3≤τ≤0.
4.
3结束语本文对基于图像特征点提取的SIFT算法进行了研究,针对图像缩放、图像旋转、图像亮度变化设计了实验并进行了匹配,从实验结果可以看出,SIFT算法能够提取数量相对较多的特征点,提取的特征点对图像的缩放、旋转以及亮度变化保持了很好的鲁棒性,将其应用于图像匹配,保持了很高的匹配正确率.
但是SIFT算法的速度比较慢,下一步将针对算法的实时性进行改进.
参考文献(References)[1]LoweDG.
Distinctiveimagefeaturesfromscale-invariantkeypoints[J].
InternationalJournalofComputerVision,2004,60(2):91-110[2]WitkinAP,BabaudJ,BaudinM.
UniquenessoftheGauss-iankernelforscale-spacefiltering[J].
IEEETransactionsonPatternAnalysisandMachineIntelligence,1986,8(1):26-33[3]WitkinAP.
Scalespacefiltering[C]//ProceedingsInterna-tionalJointConferenceArtificialIntelligence.
Karlsruhe,Germany:CA,1983:1019-1022[4]KoenderinkJJ.
Thestructureofimages[J].
BiologicalCy-bernetics,1984,50:363-396[5]LindebergT.
Detectingsalientblob-likeimagestructuresandtheirscaleswithascale-spaceprimalsketch:amethodforfocus-of-attention[J].
InternationalJournalofComputerVision,1993,11(3):283-318[6]LindebergT.
Scale-spacetheory:abasictoolforanalysingstructuresatdifferentscales[J].
JournalofAppliedStatis-tics,1994,21(2):224-270[7]MikolajczykK.
Detectionoflocalfeaturesinvarianttoaffinetransformations[D].
France:InstituteNationalPolytech-niquedeGrenoble,2002(责任编辑:娄嘉)(上接第515页)参考文献(References)[1]GiarratanoJ,RilayG.
Expertsystemsprinciplesandpro-gramming[M].
3rdEdition.
Boston:PWSPublishingCom-pany,1998[2]窦永金.
智能驾驶员辅助系统研究[D].
北京:北京航空航天大学自动化科学与电气工程学院,2004DouYongjing.
Researchonintelligentpilot'sassociate[D].
Beijing:SchoolofAutomationScienceandElectricalEngi-neering,BeijingUniversityofAeronauticsandAstronautic,2004(inChinese)[3]夏洁.
战术飞行管理系统关键技术研究[D].
北京:北京航空航天大学自动化科学与电气工程学院,2003XiaJie.
Researchoncoretechnologyfortacticalflightman-agementsystem[D].
Beijing:SchoolofAutomationScienceandElectricalEngineering,BeijingUniversityofAeronauticsandAstronautic,2003(inChinese)[4]廖沫,陈宗基.
基于满意决策的多机协同目标分配算法[J].
北京航空航天大学学报,2007,33(1):81-85LiaoMo,ChenZongji.
Coordinatedtargetassignmentinmulti-UAVbasedonsatisficingdecisiontheory[J].
JournalofBeijingUniversityofAeronauticsandAstronautics,2007,33(1):81-85(inChinese)[5]SongHan,ZhouRui.
Studyonpilot'sassistantsystembasedonexpertsystemforBVRAC[C]//ChenZongji.
Sys-temSimulationandScientificComputing.
Beijing:Interna-tionalAcademicPublishers/BeijingWorldPublishingCorpo-ration,2005:1185-1189(责任编辑:刘登敏)915第5期张少辉等:一种基于图像特征点提取及匹配的方法

DiyVM独立服务器:香港沙田服务器,5M带宽CN2线路,L5630*2/16G内存/120G SSD硬盘,499元/月

diyvm怎么样?diyvm商家VPS主机均2GB内存起步,三个地区机房可选,使用优惠码后每月69元起;DiyVM独立服务器开设在香港沙田电信机房,CN2线路,5M带宽,自动化开通上架,最低499元/月,配置是L5630*2/16G内存/120G SSD硬盘。DiyVM是一家成立于2009年的国人主机商,提供的产品包括VPS主机、独立服务器租用等,产品数据中心包括中国香港、日本大阪和美国洛杉矶等,...

HostRound:美国达拉斯/洛杉矶/纽约/荷兰大硬盘服务器,1TB NVMe+4TB HDD,$179/月

hostround怎么样?大硬盘服务器,高防服务器。hostround,美国商家,2017年成立,正规注册公司(Company File #6180543),提供虚拟主机、VPS云主机、美国服务器、荷兰服务器租用等。现在有1款特价大硬盘独服,位于达拉斯,配置还不错,本月订购时包括免费 500Gbps DDoS 保护,有兴趣的可以关注一下。点击直达:hostround官方网站地址美国\荷兰独立服务器...

SugarHosts新增Windows云服务器sugarhosts六折无限流量云服务器六折优惠

SugarHosts糖果主机商我们较早的站长们肯定是熟悉的,早年是提供虚拟主机起家的,如今一直还在提供虚拟主机,后来也有增加云服务器、独立服务器等。数据中心涵盖美国、德国、香港等。我们要知道大部分的海外主机商都只提供Linux系统云服务器。今天,糖果主机有新增SugarHosts夏季六折的优惠,以及新品Windows云服务器/云VPS上线。SugarHosts Windows系统云服务器有区分限制...

图像放大为你推荐
Holidaydiv建筑业127支持ipad支持ipad支持ipad支持ipadoutput_buffering飞飞的官方网站是啥平台操作使用手册ipad如何上网ipad怎么设置网络?iexplore.exe应用程序错误iexplore.exe应用程序错误
虚拟主机服务器 org域名 国际域名抢注 免费com域名申请 唯品秀 wordpress技巧 wdcp typecho 免费网络电视 150邮箱 建立邮箱 web服务器的架设 cdn加速原理 cn3 常州联通宽带 登陆空间 西安服务器托管 lick 德隆中文网 学生服务器 更多