TemperatureFieldAnalysisandExperimentalTestofCNCLathePrecisionSpindleSystemwithoutLoadLixiuZhang1,a,QinghuaShi2,bandYuhouWu3,cShenyangJianzhuUniversity,Shenyang110168,Chinaa851617088@qq.
com,b474891749@qq.
comKeywords:mechanicalspindle;thermalanalysis;temperaturefield;thermalbalancetime.
Abstract:ThearticleisbasedonprecisionCNClathespindlesystemofthe170CP06astheresearchobject.
Thesteadyandtransienttemperaturefieldmodelofthemechanicalspindleisestablishedbyusingthefiniteelementanalysismethod.
Astheheatratefortheloadandtheconvectiveheattransfercoefficientfortheboundaryconditionsforthermalanalysis,thetemperaturefieldofspindlesystemisinvestigatedtogetthesteadystatetemperaturefielddistributionandthermalbalancetimeofthespindlesystem.
Inordertoverifythecorrectnessofthemodel,thethermalexperimentswithoutloadareexecutedtothekeypartsofthetemperatureofthespindlesystematdifferentspeeds.
Comparedwiththesimulationresults,ithasaverygoodagreementwiththereliabilityofthemodel.
Anditprovidesatheoreticalbasisforcontrollingthetemperatureriseofthespindlesystem.
IntroductionWiththerapiddevelopmentofmodernmachinerymanufacturingtechnology,therequirementsofmachine'saccuracyarealsobecominghigherandhigher.
Inthehigh-speedandprecisionmachinetools,theproblemofmachiningerrorcausedbythermaldeformationalsohasbecomeincreasinglyserious.
Alargenumberofexperimentalstudiesshowthethermalerroristhelargesterrorsourceofmachinetoolsaccountingfor40%to70%inthetotalerrorofthemachine[1].
Thespindleisoneoftheimportantcomponentsofthemachine,anditsperformanceaffectstheoveralllevelofthemachinedirectly.
Whenthemechanicalspindleisworking,theinternalheatsourceofthespindlecomesformtheheatgeneratedbythefrictionofhigh-speedrotation'sbearing.
Whenthetemperaturehasrisen,therelativespatialpositionandsizeofthespindleandotherpartsofthemachinewillbedifferentfromtheprevioustemperature.
Itwillformadifferenttemperaturefieldandproducedifferentdegreesofthermaldeformation[2].
Therefore,thethermalcharacteristicsofresearchandanalysisonthespindlesystemiscrucialtoensuretheaccuracyofthemachine.
Itisoneofthekeytechnologiestobeconsideredinhighprecisionmachinetools.
Thethermalcharacteristicsanalysisofthespindlesystemistostudythedistributionofthetemperaturefield.
Atpresent,therearemanyscholarswhostudythethermalcharacteristicsofmachinetoolspindlesystemathomeandabroad.
Forexample,JinKyungChoiofSouthKoreastudiedthermalcharacteristicsforthespindleandbearingsystemwiththefiniteelementmethod[3].
M.
H.
AttiafromCanadaanalyzedthewholetemperaturefieldofthemachineusingthefiniteelementmethod[4].
CeGuoandQinghongSunfromSoutheastUniversityhavealreadyestablishedafiniteelementmodelofthehigh-speedprecisionlathespindlecomponents'temperaturefield[5].
YouweiHongestablishedthefiniteelementmodelofthegantrymachiningcenterandsimulatedthetemperaturefielddistributionandvariation[6].
ThearticleisbasedonCNClatheprecisionspindlesystemofthe170CP06astheresearchobject.
Thetemperaturefieldmodelofthemechanicalspindleisestablishedanditisconductedthesteady-stateandtransientthermalanalysisofthespindlesystem.
Thetemperaturefieldofspindlesystemisinvestigatedtogetthetemperaturefielddistributionandthermalbalancetimeofthespindlesystem.
Thethermalexperimentswithoutloadarecarriedoutinordertoverifythereliabilityofthemodel.
CalculationofthethermalparametersTheheatsourceisthefoundationofthespindletemperaturefieldresearch.
Theheatsourceofthespindlesystemincludescuttingheatandbearingfrictionheat.
Thecuttingheatinthemachiningprocessistakenawaybycoolantliquidandswarf.
Therefore,theheatsourceofthespindlemaybemainlythebearingfrictionalheat.
CalculationofthecalorificvalueTherollingbearing'sheatismainlygeneratedbythebearingfrictionaltorque.
Theformulais41.
04710fHnM=*(1)Intheformula,Hfisthecalorificvalueofthebearing;nisthespindlespeed;M0isthebearingfrictionaltorque.
Thebearingfrictionaltorqueisthesumofthebearingrollingfriction,slidingfrictionandlubricantfrictionwhichhavegeneratedtoblockthebearingrunningtorque.
Palmgren[7]deducedtheempiricalformulawhichcalculatesthebearingfrictiontorque.
Thebearingfrictionaltorqueiscalculatedas01MMM=+(2)Intheformula,M0isrelatedtotheviscosityofthelubricant.
M1isrelatedtotheloadofthebearingregardlessofspeed.
ItonlyconsidersM0withoutload.
Palmgrenconfirmedtheexpressionusingempiricalmethods:72/3300=10()mMfnDν2000nν≥(3)730016010mMfD=*2000nν<(4)Intheformula,νisthekinematicviscosityofthelubricantinthebearingoperatingtemperature,mm2/s;0fisthecoefficientrelatedtothebearingtypesandlubrication,mDistheaveragediameterofthebearing,mm,0.
5()mDDd=+.
Whenthespindlesystemisanalyzed,thethermalloadisloadedbythewayofbearingtheheatrate.
Theformulais[9]3(/)fHqWmV=(5)Intheformula,Visthevolumeoftheheatsource;22)2/(bmDDVπ=,andDbisthediameteroftherollingelements.
Calculatedbytheequation(1)to(5),whenthespindlespeedis2000r/min,wecangettheheatratesoftheforeandrearbearingtobe342704.
4W/m3and348161.
76W/m3.
CalculationoftheheattransfercoefficientAccordingtotheheattransfertheory[10],wecanknowtheheattransferwayaretheheatconduction,theconvectionandthethermalradiation,thelossoftheradiationheatislessforthespindlesystem.
Whenweareanalyzingthetemperaturefieldofthespindlesystemonlytoconsiderthethermalconductionandtheconvectionheattransfer.
Thethermalconductivitydependsonthethermalconductivityofthecomponentsinthespindlesystem.
Theconvectiveheattransferistheconvectionofthespindlesurfaceandtheair.
Theconvectiveheattransferisformedbydrivingtherotationofthespindlearoundtheairbetweenthecaseandthespindle.
ThecoefficientoftheheattransferdependsonthecriterionofNusselt[12].
/cchNlλ=(6)Intheformula,chisthecoefficientoftheheattransfer;λisthethermalconductivityoftheair;NisthecoefficientofNusselt;clisthefeaturesize.
TheNusseltformulaoftheforcedconvectionis23130.
133RePrN=5Re4.
3100.
7Pr670)<*<<(,(7)AccordingtoReynoldsCriterion,wecanknowRe=/cculν(8)Intheformula,ReistheReynoldsnumber;PristhePrandtlnumberofthefluid;cuistheaveragevelocityoftheair;νisthecoefficientoftheair'smotionviscosity.
Whenthespindlerotatesbyhighspeed,theaveragevelocityoftheairis[13]=/60cudnπ(9)1122=nndldldldl++(10)12nllll11)Intheformula,distheaveragediameterofthespindle;nisthespeedofthespindle.
Calculatedbytheequation(6)to(11),whenthespindlespeedis2000r/min,wegeteachheattransfercoefficientswhichare26.
62/()Wmk,35.
632/()Wmk,38.
32/()Wmk,32.
52/()Wmk,35.
22/()Wmk.
FiniteelementmodelofthespindlesystemTheprecisionspindlesystemofthe170CP06ismainlycomposedofthespindle,case,beltpulley,bearingcoverandtheangularcontactballbearings,etc.
Themotordrivesbyabeltpulleymountedontheshafttoprovideadrivingforceforthespindle.
Themainparametersofthespindleis:ItsmaterialisalloySteel.
Thetotallengthis497mm.
Themaximumdiameterofthespindleismm100φ.
Theratedspeedofthespindlesystemis4500r/min.
Themaximumpoweris35kWandthemaximumtorqueis180N.
m.
Fig.
1isthestructurediagramforspindlesystem.
1—Bignut2—Beltpulley3—Leftcover4—Case5—Rightcover6—Spindle7—Forebearing8—RearbearingFig.
1StructurediagramforspindlesystemThemodelofthespindlesystemisestablishedbyusingthethree-dimensionalmappingsoftware—SoildWorks.
Anditsimplifiesappropriatelythestructurethatinfluencesanalysisresultsless.
Accordingtothespindleoftheboundaryconditionsandheattransfercharacteristics,Simplifiedsolidmodelisintroducedtothefiniteelementanalysissoftwaretobemeshingofthegrid[12].
Fig.
2isasimplifiedandmeshingmodelofthespindlesystem.
Theentiremodelhas128,143unitsand232,855nodes.
Fig.
2MeshingofthespindlesystemSimulationanalysisofthespindlesystem'stemperaturefieldThethermalanalysisisestablishedinthesoftwareoffiniteelementanalysis.
Thematerialofthespindleandbearingaredefinedasalloysteel.
Theambienttemperatureis26C°.
Accordingtotheboundaryconditionsofthespindleandthecharacteristicsoftheheattransfer,theheatgenerationrateoftheforeandrearbearingsis342704.
4W/m3and348161.
76W/m3whichareappliedtotheforeandrearbearings.
Thecoefficientsoftheheattransferconvectionareaddedtotherespectivemembersurfacespindlesystemasboundaryconditions.
Itisconductedthesteady-stateandtransientthermalanalysisofthespindlesystem.
TheanalysisofthesteadytemperaturefieldWhenthespindlespeedis2000r/min,wecangetthesimulationofthesteady-statetemperaturefieldresultinginthesteady-statetemperaturefieldcontourofthespindlesystem.
AsisshowninFig.
3.
Fig.
3Steady-statetemperaturedistributionofspindlesystemFig.
3showsthatthemaximumtemperatureofthespindlesystemappearsattheinnerringoftherearbearing.
Itstemperatureis38.
5C°.
Themaximumtemperatureriseis12.
5C°.
Theheatoftherearbearingislargerthantheforebearing.
Anditiscausedbythepoorcoolingconditionoftheinnerring.
TheanalysisofthetransienttemperaturefieldWhenthespindlesystemistheanalysisofthetransienttemperaturefieldtogetthebearingtemperaturecurveandthethermalequilibriumtimebysettingtheoperatingtimeof65min.
Fig.
4arethecontoursofthetemperaturefieldatdifferenttimepoints.
1600s2400s3200s3600sFig.
4ContoursofthetemperaturefieldatdifferenttimepointsThespindlesystemhasreachedthethermalequilibriumafterrunning60min.
Thehighesttemperaturesoftheforebearingandrearbearingare34.
19C°and35.
9C°.
ExperimentaltestTheautomatictestsystemofmechanicalspindlecharacteristicisusedforthetemperaturerisetestwhichisinthestatusoftheofmechanicalspindletorqueoutput,theloadandwithoutloadateachspeed.
Thetestsystemconsistsofthemachinebase,torqueandspeedsensors,industrialcomputer,ervomotor,multi-channeltemperaturecontrolinstrumentandsoon.
Thetestprincipleisthatthespindleconnectsthearresterdetentviacouplings,torqueandspeedsensorandthemotordrivesbyabeltdrivetomakethespindlerotatebychangingthebrakeexcitationcurrentmethodtotheloadcontrolforthespindlesystem.
Fig.
5istheoperatingprincipleoftheexperimentplatform.
Fig.
6istheexperimentdeviceofmechanicalspindlesystem.
Fig.
5OperatingprincipleoftheexperimentplatformFig.
6TheexperimentdeviceofmechanicalspindlesystemThetemperaturesensorsaredisposedwithintheouterringoftheforeandrearbearings,therearendsurfaceoftherearbearingandandoutersurfaceofthecase.
Fig.
7isthedistributionoftestpoints.
Atthespeedof2000r/minand4500r/min,thespindlesystemistestingtemperaturerisethewithoutload.
Whenthespindlesystemhasreachedtheequilibrium,wecanmeasurethetemperatureofeachofthekeyparts.
Wewilltaketestpoint2andtestpoint8forexampleandcanseethechangesinthebearingtemperaturewithtime.
Fig.
8isthetemperaturerisecurvefortestpoint2and8atthespeedof2000r/minand4500r/min.
123456789111210Fig.
7Thedistributionoftestpoints05101520253035404550556065202224262830323436T/°Ct/minSimulationvalueExperimentalvalue05101520253035404550556065202224262830323436T/°Ct/minSimulationvalueExperimentalvaluea.
Thetemperatureoftestpoint2(Speedof2000r/min)b.
Thetemperatureoftestpoint8(Speedof2000r/min)051015202530354045505560652022242628303234363840424446T/℃t/minSimulationvalueExperimentalvalue0510152025303540455055606520222426283032343638404244T/℃t/minSimulationvalueExperimentalvaluec.
Thetemperatureoftestpoint2(Speedof4500r/min)d.
Thetemperatureoftestpoint8(Speedof4500r/min)Fig.
8Temperaturerisecurvefortestpoint2and8(Speedof2000r/minand4500r/min)AscanbeseenfromFig.
8,wecanseethattherearesomeerrorscomparedwithexperimentaldataandsimulationdata.
Butthereisthesameupwardtrendbasicallythatexplainsthemodelisreliable.
Whenthespindlespeedis2000r/minandthesystemhasbeenrunningfor60mins,thesystemhasreachedsteadystatetemperature.
Andthehighesttemperaturesoftestpoint2and8are34.
19C°and35.
9C°.
Therearemoreobviouschangesofthetemperaturerisewhenthespindlesystemisrunningatthebeginning.
Thetemperaturerisechangessmallerafter55minandreachessteadystateabout57.
5min.
Whenthespindlespeedis4500r/min,thespindlesystemrisesfasterbefore52.
5minandreachesequilibriumabout55min.
Next,wewilltestthetemperaturerisewhenthespindlespeedare1000r/min,1500r/min,2500r/min,3000r/min,3500r/minand4000r/min.
Asthekeypartsofthetestpoints2and8forexample,WecanobtainthemaximumtemperatureofeachtestpointunderdifferentspeedsasshowninFig.
9.
05001000150020002500300035004000450026283032343638404244T/℃Speed(r/min)Testpoint2Testpoint8Fig.
9SpindletemperatureatdifferentspeedsAscanbeseenfromFig.
9,asthespindlespeedincreases,thetemperatureriseofthebearingsismoreandmorehigher.
Andthetestpoint2isslightlyhigherthanthetestpoint8.
Whenthespindlespeedchanges1000to3000r/min,thebearingtemperaturechangesmoreobviously.
Thechangeofthetemperatureisflatrelativelywhenthespindlespeedchanges3000to4500r/min.
ConclusionInthispaper,itisconductedthethermalanalysisofthespindlesystemcombiningthemethodofthefiniteelementanalysiswithexperimentalverificationandresultinginthefollowingconclusions:(1)Theaboveanalysisshowsthatthesimulationmodelofthemachinespindleisreliable.
Theresultoferrorsislessthan3%comparedthesimulationdatawiththeexperimentaldata.
(2)Whenthespindlespeedischanging1000to3000r/min,thetemperatureofbearingshavechangedmoreobviously.
Thechangeofthetemperatureisflatrelativelywhenspindlespeedischanging3000to4500r/min.
Itindicatesthatthespeedimpactsthetemperaturegreaterunderlowspeeds.
Andforthehighspeed,thetemperatureisimpacttothespeedrelativelysmall.
Forthespindle,whichistheratedspeedof4500r/min,thetemperaturechangesrapidlyunderitstwo-thirds'ratedspeed.
Whilethespeedismorethantwo-thirds'ratedspeed,thetemperaturechangesslowly.
(3)Thespindlesystemhasreachedthedifferentthermalequilibriumtimeatdifferentspindlespeeds.
Thehigherthespeedis,theshorterthespindlehasreachedthermalequilibriumtime.
(4)Theprecisionspindleof170CP06hasreachedthethermalequilibriumatratedspeedfor55min.
Thehighesttemperatureis45.
2C°thatoccurstothebearbearing.
References[1]D.
A.
Krulewich,Temperatureintegrationmodelandmeasurementpointselectionforthermallyinducedmachinetoolerrors,Mechantronics,1998,8:395~412.
[2]ZhenZhu,PenghaoHu,YiTao.
Theanalysisofthree-dimensionalspindletemperaturefieldandthermaldeformation[J].
Tooltechnology,2008(4):66-68.
[3]Choijin-Kyung,LeeDai-Gil.
Thermal-characteristicsofthespindlebearingsystemwithagearlocatedonthebearing[J].
[4]M.
H.
Attia,L.
Kops,ComputersimulationofnonlinearthermoPlastiebehaviorofajointinmaehinetoolstructureanditseffeetonthermaldeformation,TransaetionsoftheASME,JournalofEnginneringforIndustry,101(1979)355-361.
[5]CeGuo,QinghongSun.
Thethermal-characteristics'analysisofthehigh-speedandhigh-precisionCNClathespindlesystemandthermaldeformation.
JournalofSoutheastUniversity,2005,35(2).
[6]WenPeng,YouweiHong.
Thethermal-characteristicsnumericalanalysisoffive-axisgantrymachiningcenter'sspindlesystem[J].
ModularMachineTool&AutomaticManufacturingTechnique.
2005(08).
[7]XingjuanYing,HaolinLi.
ThefiniteelementanalysisofCNCmachinetoolspindle'ssystemthermalcharacteristics[J]tooltechnology,2010,4(1):38-40.
[8]DatongQin.
Bearing.
Beijing:ChemicalIndustryPress.
2013.
3(5).
[9]XinshengLiBobaoZhao,Yaping.
Thethermalsimulationanalysisofhigh-speedspindle[J]tooltechnology,2012(4):64-32.
[10]F.
P.
Incropera,D.
P.
DeWitt,T.
L.
Bergman.
FundamentalsofHeatandMassTransfer[M].
2012.
[11]ChongzhiGuo,LeXiao.
Asequencecouplingmethodfornumericalsimulationoftemperature[J].
ChemicalIndustryandEngineeringProgress.
2010(09).
[12]ShimingYang,WenquanTao,HeatTransfer[M]Beijing:HigherEducationPress,1998.
[13]XiangqianKong.
Thefiniteelementmethodinheattransfer.
Beijing:SciencePress,1986.
[14]CanZhou,YuhuiHe,GuilingDeng.
Thetransienttemperaturefieldanalysisandtestingofhigh-speedspindle[J].
ComputerSimulation,2012,29(2):372-377.
RepriseHosting是成立于2012年的国外主机商,提供独立服务器租用和VPS主机等产品,数据中心在美国西雅图和拉斯维加斯机房。商家提供的独立服务器以较低的价格为主,目前针对西雅图机房部分独立服务器提供的优惠仍然有效,除了价格折扣外,还免费升级内存和带宽,商家支持使用支付宝或者PayPal、信用卡等付款方式。配置一 $27.97/月CPU:Intel Xeon L5640内存:16GB(原...
官方网站:点击访问华纳云活动官网活动方案:一、香港云服务器此次推出八种配置的香港云服务器,满足不同行业不同业务规模的客户需求,同时每种配置的云服务都有不同的带宽选择,灵活性更高,可用性更强,性价比更优质。配置带宽月付6折季付5.5折半年付5折年付4.5折2年付4折3年付3折购买1H1G2M/99180324576648直达购买5M/17331556710081134直达购买2H2G2M892444...
大硬盘服务器、存储服务器、Chia矿机。RackNerd,2019年末成立的商家,主要提供各类KVM VPS主机、独立服务器和站群服务器等。当前RackNerd正在促销旗下几款美国大硬盘服务器,位于洛杉矶multacom数据中心,亚洲优化线路,非常适合存储、数据备份等应用场景,双路e5-2640v2,64G内存,56G SSD系统盘,160T SAS数据盘,流量是每月200T,1Gbps带宽,配5...
qq空间电脑版特别关心为你推荐
腾讯社交广告平台运营手册企业推广最常见的推广方式有哪些支付宝注册网站在哪里注册支付宝账号易名网诚询,易名网注册的域名怎么转到喜欢的网页上啊?科创板首批名单江苏北人的机器人在同行中的评价怎么样?泉州商标注册泉州本地商标注册要怎么注册?具体流程是什么?申请400电话电话是什么电话啊?怎么申请400电话400呢?具体收费价格是什么?什么是seoseo标题和seo关键词是什么意思joomla安装巡更怎么安装ie假死我的ie浏览器偶尔出现假死的情况 即打开浏览器时无法显示网页 点了关闭窗口也没反应,请问这是怎么回事啊
美国虚拟主机购买 域名查询工具 pccw 哈喽图床 表格样式 名片模板psd 主机合租 国内php空间 免费ftp站点 嘟牛 softbank邮箱 老左来了 yundun 空间租赁 秒杀品 新加坡空间 后门 广州服务器托管 数据湾 新疆服务器 更多