TemperatureFieldAnalysisandExperimentalTestofCNCLathePrecisionSpindleSystemwithoutLoadLixiuZhang1,a,QinghuaShi2,bandYuhouWu3,cShenyangJianzhuUniversity,Shenyang110168,Chinaa851617088@qq.
com,b474891749@qq.
comKeywords:mechanicalspindle;thermalanalysis;temperaturefield;thermalbalancetime.
Abstract:ThearticleisbasedonprecisionCNClathespindlesystemofthe170CP06astheresearchobject.
Thesteadyandtransienttemperaturefieldmodelofthemechanicalspindleisestablishedbyusingthefiniteelementanalysismethod.
Astheheatratefortheloadandtheconvectiveheattransfercoefficientfortheboundaryconditionsforthermalanalysis,thetemperaturefieldofspindlesystemisinvestigatedtogetthesteadystatetemperaturefielddistributionandthermalbalancetimeofthespindlesystem.
Inordertoverifythecorrectnessofthemodel,thethermalexperimentswithoutloadareexecutedtothekeypartsofthetemperatureofthespindlesystematdifferentspeeds.
Comparedwiththesimulationresults,ithasaverygoodagreementwiththereliabilityofthemodel.
Anditprovidesatheoreticalbasisforcontrollingthetemperatureriseofthespindlesystem.
IntroductionWiththerapiddevelopmentofmodernmachinerymanufacturingtechnology,therequirementsofmachine'saccuracyarealsobecominghigherandhigher.
Inthehigh-speedandprecisionmachinetools,theproblemofmachiningerrorcausedbythermaldeformationalsohasbecomeincreasinglyserious.
Alargenumberofexperimentalstudiesshowthethermalerroristhelargesterrorsourceofmachinetoolsaccountingfor40%to70%inthetotalerrorofthemachine[1].
Thespindleisoneoftheimportantcomponentsofthemachine,anditsperformanceaffectstheoveralllevelofthemachinedirectly.
Whenthemechanicalspindleisworking,theinternalheatsourceofthespindlecomesformtheheatgeneratedbythefrictionofhigh-speedrotation'sbearing.
Whenthetemperaturehasrisen,therelativespatialpositionandsizeofthespindleandotherpartsofthemachinewillbedifferentfromtheprevioustemperature.
Itwillformadifferenttemperaturefieldandproducedifferentdegreesofthermaldeformation[2].
Therefore,thethermalcharacteristicsofresearchandanalysisonthespindlesystemiscrucialtoensuretheaccuracyofthemachine.
Itisoneofthekeytechnologiestobeconsideredinhighprecisionmachinetools.
Thethermalcharacteristicsanalysisofthespindlesystemistostudythedistributionofthetemperaturefield.
Atpresent,therearemanyscholarswhostudythethermalcharacteristicsofmachinetoolspindlesystemathomeandabroad.
Forexample,JinKyungChoiofSouthKoreastudiedthermalcharacteristicsforthespindleandbearingsystemwiththefiniteelementmethod[3].
M.
H.
AttiafromCanadaanalyzedthewholetemperaturefieldofthemachineusingthefiniteelementmethod[4].
CeGuoandQinghongSunfromSoutheastUniversityhavealreadyestablishedafiniteelementmodelofthehigh-speedprecisionlathespindlecomponents'temperaturefield[5].
YouweiHongestablishedthefiniteelementmodelofthegantrymachiningcenterandsimulatedthetemperaturefielddistributionandvariation[6].
ThearticleisbasedonCNClatheprecisionspindlesystemofthe170CP06astheresearchobject.
Thetemperaturefieldmodelofthemechanicalspindleisestablishedanditisconductedthesteady-stateandtransientthermalanalysisofthespindlesystem.
Thetemperaturefieldofspindlesystemisinvestigatedtogetthetemperaturefielddistributionandthermalbalancetimeofthespindlesystem.
Thethermalexperimentswithoutloadarecarriedoutinordertoverifythereliabilityofthemodel.
CalculationofthethermalparametersTheheatsourceisthefoundationofthespindletemperaturefieldresearch.
Theheatsourceofthespindlesystemincludescuttingheatandbearingfrictionheat.
Thecuttingheatinthemachiningprocessistakenawaybycoolantliquidandswarf.
Therefore,theheatsourceofthespindlemaybemainlythebearingfrictionalheat.
CalculationofthecalorificvalueTherollingbearing'sheatismainlygeneratedbythebearingfrictionaltorque.
Theformulais41.
04710fHnM=*(1)Intheformula,Hfisthecalorificvalueofthebearing;nisthespindlespeed;M0isthebearingfrictionaltorque.
Thebearingfrictionaltorqueisthesumofthebearingrollingfriction,slidingfrictionandlubricantfrictionwhichhavegeneratedtoblockthebearingrunningtorque.
Palmgren[7]deducedtheempiricalformulawhichcalculatesthebearingfrictiontorque.
Thebearingfrictionaltorqueiscalculatedas01MMM=+(2)Intheformula,M0isrelatedtotheviscosityofthelubricant.
M1isrelatedtotheloadofthebearingregardlessofspeed.
ItonlyconsidersM0withoutload.
Palmgrenconfirmedtheexpressionusingempiricalmethods:72/3300=10()mMfnDν2000nν≥(3)730016010mMfD=*2000nν<(4)Intheformula,νisthekinematicviscosityofthelubricantinthebearingoperatingtemperature,mm2/s;0fisthecoefficientrelatedtothebearingtypesandlubrication,mDistheaveragediameterofthebearing,mm,0.
5()mDDd=+.
Whenthespindlesystemisanalyzed,thethermalloadisloadedbythewayofbearingtheheatrate.
Theformulais[9]3(/)fHqWmV=(5)Intheformula,Visthevolumeoftheheatsource;22)2/(bmDDVπ=,andDbisthediameteroftherollingelements.
Calculatedbytheequation(1)to(5),whenthespindlespeedis2000r/min,wecangettheheatratesoftheforeandrearbearingtobe342704.
4W/m3and348161.
76W/m3.
CalculationoftheheattransfercoefficientAccordingtotheheattransfertheory[10],wecanknowtheheattransferwayaretheheatconduction,theconvectionandthethermalradiation,thelossoftheradiationheatislessforthespindlesystem.
Whenweareanalyzingthetemperaturefieldofthespindlesystemonlytoconsiderthethermalconductionandtheconvectionheattransfer.
Thethermalconductivitydependsonthethermalconductivityofthecomponentsinthespindlesystem.
Theconvectiveheattransferistheconvectionofthespindlesurfaceandtheair.
Theconvectiveheattransferisformedbydrivingtherotationofthespindlearoundtheairbetweenthecaseandthespindle.
ThecoefficientoftheheattransferdependsonthecriterionofNusselt[12].
/cchNlλ=(6)Intheformula,chisthecoefficientoftheheattransfer;λisthethermalconductivityoftheair;NisthecoefficientofNusselt;clisthefeaturesize.
TheNusseltformulaoftheforcedconvectionis23130.
133RePrN=5Re4.
3100.
7Pr670)<*<<(,(7)AccordingtoReynoldsCriterion,wecanknowRe=/cculν(8)Intheformula,ReistheReynoldsnumber;PristhePrandtlnumberofthefluid;cuistheaveragevelocityoftheair;νisthecoefficientoftheair'smotionviscosity.
Whenthespindlerotatesbyhighspeed,theaveragevelocityoftheairis[13]=/60cudnπ(9)1122=nndldldldl++(10)12nllll11)Intheformula,distheaveragediameterofthespindle;nisthespeedofthespindle.
Calculatedbytheequation(6)to(11),whenthespindlespeedis2000r/min,wegeteachheattransfercoefficientswhichare26.
62/()Wmk,35.
632/()Wmk,38.
32/()Wmk,32.
52/()Wmk,35.
22/()Wmk.
FiniteelementmodelofthespindlesystemTheprecisionspindlesystemofthe170CP06ismainlycomposedofthespindle,case,beltpulley,bearingcoverandtheangularcontactballbearings,etc.
Themotordrivesbyabeltpulleymountedontheshafttoprovideadrivingforceforthespindle.
Themainparametersofthespindleis:ItsmaterialisalloySteel.
Thetotallengthis497mm.
Themaximumdiameterofthespindleismm100φ.
Theratedspeedofthespindlesystemis4500r/min.
Themaximumpoweris35kWandthemaximumtorqueis180N.
m.
Fig.
1isthestructurediagramforspindlesystem.
1—Bignut2—Beltpulley3—Leftcover4—Case5—Rightcover6—Spindle7—Forebearing8—RearbearingFig.
1StructurediagramforspindlesystemThemodelofthespindlesystemisestablishedbyusingthethree-dimensionalmappingsoftware—SoildWorks.
Anditsimplifiesappropriatelythestructurethatinfluencesanalysisresultsless.
Accordingtothespindleoftheboundaryconditionsandheattransfercharacteristics,Simplifiedsolidmodelisintroducedtothefiniteelementanalysissoftwaretobemeshingofthegrid[12].
Fig.
2isasimplifiedandmeshingmodelofthespindlesystem.
Theentiremodelhas128,143unitsand232,855nodes.
Fig.
2MeshingofthespindlesystemSimulationanalysisofthespindlesystem'stemperaturefieldThethermalanalysisisestablishedinthesoftwareoffiniteelementanalysis.
Thematerialofthespindleandbearingaredefinedasalloysteel.
Theambienttemperatureis26C°.
Accordingtotheboundaryconditionsofthespindleandthecharacteristicsoftheheattransfer,theheatgenerationrateoftheforeandrearbearingsis342704.
4W/m3and348161.
76W/m3whichareappliedtotheforeandrearbearings.
Thecoefficientsoftheheattransferconvectionareaddedtotherespectivemembersurfacespindlesystemasboundaryconditions.
Itisconductedthesteady-stateandtransientthermalanalysisofthespindlesystem.
TheanalysisofthesteadytemperaturefieldWhenthespindlespeedis2000r/min,wecangetthesimulationofthesteady-statetemperaturefieldresultinginthesteady-statetemperaturefieldcontourofthespindlesystem.
AsisshowninFig.
3.
Fig.
3Steady-statetemperaturedistributionofspindlesystemFig.
3showsthatthemaximumtemperatureofthespindlesystemappearsattheinnerringoftherearbearing.
Itstemperatureis38.
5C°.
Themaximumtemperatureriseis12.
5C°.
Theheatoftherearbearingislargerthantheforebearing.
Anditiscausedbythepoorcoolingconditionoftheinnerring.
TheanalysisofthetransienttemperaturefieldWhenthespindlesystemistheanalysisofthetransienttemperaturefieldtogetthebearingtemperaturecurveandthethermalequilibriumtimebysettingtheoperatingtimeof65min.
Fig.
4arethecontoursofthetemperaturefieldatdifferenttimepoints.
1600s2400s3200s3600sFig.
4ContoursofthetemperaturefieldatdifferenttimepointsThespindlesystemhasreachedthethermalequilibriumafterrunning60min.
Thehighesttemperaturesoftheforebearingandrearbearingare34.
19C°and35.
9C°.
ExperimentaltestTheautomatictestsystemofmechanicalspindlecharacteristicisusedforthetemperaturerisetestwhichisinthestatusoftheofmechanicalspindletorqueoutput,theloadandwithoutloadateachspeed.
Thetestsystemconsistsofthemachinebase,torqueandspeedsensors,industrialcomputer,ervomotor,multi-channeltemperaturecontrolinstrumentandsoon.
Thetestprincipleisthatthespindleconnectsthearresterdetentviacouplings,torqueandspeedsensorandthemotordrivesbyabeltdrivetomakethespindlerotatebychangingthebrakeexcitationcurrentmethodtotheloadcontrolforthespindlesystem.
Fig.
5istheoperatingprincipleoftheexperimentplatform.
Fig.
6istheexperimentdeviceofmechanicalspindlesystem.
Fig.
5OperatingprincipleoftheexperimentplatformFig.
6TheexperimentdeviceofmechanicalspindlesystemThetemperaturesensorsaredisposedwithintheouterringoftheforeandrearbearings,therearendsurfaceoftherearbearingandandoutersurfaceofthecase.
Fig.
7isthedistributionoftestpoints.
Atthespeedof2000r/minand4500r/min,thespindlesystemistestingtemperaturerisethewithoutload.
Whenthespindlesystemhasreachedtheequilibrium,wecanmeasurethetemperatureofeachofthekeyparts.
Wewilltaketestpoint2andtestpoint8forexampleandcanseethechangesinthebearingtemperaturewithtime.
Fig.
8isthetemperaturerisecurvefortestpoint2and8atthespeedof2000r/minand4500r/min.
123456789111210Fig.
7Thedistributionoftestpoints05101520253035404550556065202224262830323436T/°Ct/minSimulationvalueExperimentalvalue05101520253035404550556065202224262830323436T/°Ct/minSimulationvalueExperimentalvaluea.
Thetemperatureoftestpoint2(Speedof2000r/min)b.
Thetemperatureoftestpoint8(Speedof2000r/min)051015202530354045505560652022242628303234363840424446T/℃t/minSimulationvalueExperimentalvalue0510152025303540455055606520222426283032343638404244T/℃t/minSimulationvalueExperimentalvaluec.
Thetemperatureoftestpoint2(Speedof4500r/min)d.
Thetemperatureoftestpoint8(Speedof4500r/min)Fig.
8Temperaturerisecurvefortestpoint2and8(Speedof2000r/minand4500r/min)AscanbeseenfromFig.
8,wecanseethattherearesomeerrorscomparedwithexperimentaldataandsimulationdata.
Butthereisthesameupwardtrendbasicallythatexplainsthemodelisreliable.
Whenthespindlespeedis2000r/minandthesystemhasbeenrunningfor60mins,thesystemhasreachedsteadystatetemperature.
Andthehighesttemperaturesoftestpoint2and8are34.
19C°and35.
9C°.
Therearemoreobviouschangesofthetemperaturerisewhenthespindlesystemisrunningatthebeginning.
Thetemperaturerisechangessmallerafter55minandreachessteadystateabout57.
5min.
Whenthespindlespeedis4500r/min,thespindlesystemrisesfasterbefore52.
5minandreachesequilibriumabout55min.
Next,wewilltestthetemperaturerisewhenthespindlespeedare1000r/min,1500r/min,2500r/min,3000r/min,3500r/minand4000r/min.
Asthekeypartsofthetestpoints2and8forexample,WecanobtainthemaximumtemperatureofeachtestpointunderdifferentspeedsasshowninFig.
9.
05001000150020002500300035004000450026283032343638404244T/℃Speed(r/min)Testpoint2Testpoint8Fig.
9SpindletemperatureatdifferentspeedsAscanbeseenfromFig.
9,asthespindlespeedincreases,thetemperatureriseofthebearingsismoreandmorehigher.
Andthetestpoint2isslightlyhigherthanthetestpoint8.
Whenthespindlespeedchanges1000to3000r/min,thebearingtemperaturechangesmoreobviously.
Thechangeofthetemperatureisflatrelativelywhenthespindlespeedchanges3000to4500r/min.
ConclusionInthispaper,itisconductedthethermalanalysisofthespindlesystemcombiningthemethodofthefiniteelementanalysiswithexperimentalverificationandresultinginthefollowingconclusions:(1)Theaboveanalysisshowsthatthesimulationmodelofthemachinespindleisreliable.
Theresultoferrorsislessthan3%comparedthesimulationdatawiththeexperimentaldata.
(2)Whenthespindlespeedischanging1000to3000r/min,thetemperatureofbearingshavechangedmoreobviously.
Thechangeofthetemperatureisflatrelativelywhenspindlespeedischanging3000to4500r/min.
Itindicatesthatthespeedimpactsthetemperaturegreaterunderlowspeeds.
Andforthehighspeed,thetemperatureisimpacttothespeedrelativelysmall.
Forthespindle,whichistheratedspeedof4500r/min,thetemperaturechangesrapidlyunderitstwo-thirds'ratedspeed.
Whilethespeedismorethantwo-thirds'ratedspeed,thetemperaturechangesslowly.
(3)Thespindlesystemhasreachedthedifferentthermalequilibriumtimeatdifferentspindlespeeds.
Thehigherthespeedis,theshorterthespindlehasreachedthermalequilibriumtime.
(4)Theprecisionspindleof170CP06hasreachedthethermalequilibriumatratedspeedfor55min.
Thehighesttemperatureis45.
2C°thatoccurstothebearbearing.
References[1]D.
A.
Krulewich,Temperatureintegrationmodelandmeasurementpointselectionforthermallyinducedmachinetoolerrors,Mechantronics,1998,8:395~412.
[2]ZhenZhu,PenghaoHu,YiTao.
Theanalysisofthree-dimensionalspindletemperaturefieldandthermaldeformation[J].
Tooltechnology,2008(4):66-68.
[3]Choijin-Kyung,LeeDai-Gil.
Thermal-characteristicsofthespindlebearingsystemwithagearlocatedonthebearing[J].
[4]M.
H.
Attia,L.
Kops,ComputersimulationofnonlinearthermoPlastiebehaviorofajointinmaehinetoolstructureanditseffeetonthermaldeformation,TransaetionsoftheASME,JournalofEnginneringforIndustry,101(1979)355-361.
[5]CeGuo,QinghongSun.
Thethermal-characteristics'analysisofthehigh-speedandhigh-precisionCNClathespindlesystemandthermaldeformation.
JournalofSoutheastUniversity,2005,35(2).
[6]WenPeng,YouweiHong.
Thethermal-characteristicsnumericalanalysisoffive-axisgantrymachiningcenter'sspindlesystem[J].
ModularMachineTool&AutomaticManufacturingTechnique.
2005(08).
[7]XingjuanYing,HaolinLi.
ThefiniteelementanalysisofCNCmachinetoolspindle'ssystemthermalcharacteristics[J]tooltechnology,2010,4(1):38-40.
[8]DatongQin.
Bearing.
Beijing:ChemicalIndustryPress.
2013.
3(5).
[9]XinshengLiBobaoZhao,Yaping.
Thethermalsimulationanalysisofhigh-speedspindle[J]tooltechnology,2012(4):64-32.
[10]F.
P.
Incropera,D.
P.
DeWitt,T.
L.
Bergman.
FundamentalsofHeatandMassTransfer[M].
2012.
[11]ChongzhiGuo,LeXiao.
Asequencecouplingmethodfornumericalsimulationoftemperature[J].
ChemicalIndustryandEngineeringProgress.
2010(09).
[12]ShimingYang,WenquanTao,HeatTransfer[M]Beijing:HigherEducationPress,1998.
[13]XiangqianKong.
Thefiniteelementmethodinheattransfer.
Beijing:SciencePress,1986.
[14]CanZhou,YuhuiHe,GuilingDeng.
Thetransienttemperaturefieldanalysisandtestingofhigh-speedspindle[J].
ComputerSimulation,2012,29(2):372-377.
racknerd当前对美国犹他州数据中心的大硬盘服务器(存储服务器)进行低价促销,价格跌破眼镜啊。提供AMD和Intel两个选择,默认32G内存,120G SSD系统盘,12个16T HDD做数据盘,接入1Gbps带宽,每个月默认给100T流量,5个IPv4... 官方网站:https://www.racknerd.com 加密数字货币、信用卡、PayPal、支付宝、银联(卡),可以付款! ...
2021年各大云服务商竞争尤为激烈,因为云服务商家的竞争我们可以选择更加便宜的VPS或云服务器,这样成本更低,选择空间更大。但是,如果我们是建站用途或者是稳定项目的,不要太过于追求便宜VPS或便宜云服务器,更需要追求稳定和服务。不同的商家有不同的特点,而且任何商家和线路不可能一直稳定,我们需要做的就是定期观察和数据定期备份。下面,请跟云服务器网(yuntue.com)小编来看一下2021年国内/国...
Megalayer是新晋崛起的国外服务器商,成立于2019年,一直都处于稳定发展的状态,机房目前有美国机房,香港机房,菲律宾机房。其中圣何塞包括CN2或者国际线路,Megalayer商家提供了一些VPS特价套餐,譬如15M带宽CN2线路主机最低每月48元起,基于KVM架构,支持windows或者Linux操作系统。。Megalayer技术团队行业经验丰富,分别来自于蓝汛、IBM等知名企业。Mega...
qq空间电脑版特别关心为你推荐
德国iphone禁售令苹果手机禁售了 我想问问 这两天刚买的8p现在禁售了 我是赔手里了还是没啥事 是幸运的还是倒霉的cisco2960配置cisco4506与2960的vlan配置波音737起飞爆胎为什么客机每次起飞都要先跑一段距离人人视频总部基地落户重庆重庆总部城的项目简介申请支付宝账户怎么申请支付宝的账号?解析cuteftp大飞资讯新闻资讯包括什么内容?爱优网为什么优酷土豆等视频网站那么多人上传视频2828商机网28商机网适合年轻人做的项目??drupal教程drupal框架初学,请问开发流程是怎么样的,这个框架是对本体做修改,是不是说最后的成品就是这个d
域名价格 国内最好的虚拟主机 主机域名 郑州服务器租用 备案域名出售 免费动态域名 东莞电信局 win8.1企业版升级win10 好看的桌面背景图 一点优惠网 主机合租 嘉洲服务器 gg广告 52测评网 台湾谷歌地址 炎黄盛世 电信虚拟主机 万网空间购买 优酷黄金会员账号共享 美国凤凰城 更多