originatingpagerank

pagerank  时间:2021-04-19  阅读:()
ACautiousSurferforPageRankLanNieBaoningWuBrianD.
DavisonDepartmentofComputerScience&EngineeringLehighUniversityBethlehem,PA18015USA{lan2,baw4,davison}@cse.
lehigh.
eduABSTRACTThisworkproposesanovelcautioussurfertoincorporatetrustintotheprocessofcalculatingauthorityforwebpages.
Weeval-uateatotalofsixtyqueriesovertwolarge,real-worlddatasetstodemonstratethatincorporatingtrustcanimprovePageRank'sper-formance.
CategoriesandSubjectDescriptorsH.
3.
3[InformationStorageandRetrieval]:InformationSearchandRetrievalGeneralTermsAlgorithms,PerformanceKeywordsWebsearchengine,authority,trust,spam,rankingperformance1.
INTRODUCTIONTraditionallinkanalysisapproacheslikePageRank[5]generallyassesstheimportanceofapagebasedonthenumberandqualityofpageslinkingtoit.
However,theyassumethatthecontentandlinksofapagecanbetrusted.
Notonlyarethepagestrusted,buttheyaretrustedequally.
Unfortunately,thisassumptiondoesnotalwaysholdgiventheadversarialnatureoftoday'sweb.
Tocompensate,TrustRank[3]wasintroducedtopropagatetrustintheWebfromapre-labeledsetoftrustedpages,buildingontheassumptionthatgoodsitesseldompointtobadsites.
TrustRank'sPageRank-basedpropagationowstrusttopagesconnectedtotheseedset,whilespamsitesarelikelytogetlittletrust,andarethusdemotedinrank.
Unlikeexistingworkthatusestrusttoidentifyordemotespampages,wedescribeanovelapproachtoutilizetrustestimatesashintstoguideawebsurfer'sbehavior,anddemonstrateimprove-mentsinrankedretrieval.
Thetrustestimatescouldcomefromanysource,butforthisworkwefocusontheuseofTrustRanktogen-eratetrustscores.
2.
DIRECTTRUST-BASEDRANKINGSOnemightwonder"whynotuseTrustRankscoresdirectlytorepresentauthority"AsshownbyGy¨ongyietal.
[3]andotherworkofours[6],trust-basedalgorithmscandemotespam.
Utiliz-ingsuchapproachesforretrievalrankingmaysometimesimproveCopyrightisheldbytheauthor/owner(s).
WWW2007,May8–12,2007,Banff,Alberta,Canada.
ACM978-1-59593-654-7/07/0005.
searchperformance,especiallyforthose"spam-specic"querieswhoseresultswouldotherwisebeoverwhelmedbyspam.
However,thegoalofasearchengineistondgoodqualityre-sults;"spam-free"isanecessarybutnotsufcientconditionforhighquality.
Ifweuseatrust-basedalgorithmalonetosimplyre-placePageRankforrankingpurposes,somegoodqualitypageswillbeunfairlydemotedandreplaced,forexample,bypageswithinthetrustedseedsets,eventhoughtheymaybemuchlessauthoritative.
Consideredfromanotherangle,suchtrust-basedalgorithmsprop-agatetrustthroughpathsoriginatingfromtheseedset;asaresult,somegoodqualitypagesmaygetlowvalueiftheyarenotwell-connectedtothoseseeds.
Inconclusion,trustcannotbeequatedtoauthority;however,trustinformationcanassistusincalculatingauthorityinasaferwaybyreducingcontaminationfromspam.
InsteadofusingTrustRank(oranyothertrustestimate)alonetocalculateauthority,wein-corporateitintoPageRanksothatspampagesarepenalizedwhilehighlyauthoritativepages(thatarenototherwiseknowntobetrust-worthy)remainunharmed.
3.
THECAUTIOUSSURFERInthissection,wedescribehowtodirectthewebsurfer'sbe-haviorbyutilizingtrustinformation.
Unliketherandomsurferde-scribedinthePageRankmodel,thiscautioussurfercarefullyat-temptstonotletuntrustworthypagesinuenceitsbehavior.
Imagineawanderingwebsurfer,consideringwhatnextpagetovisit.
Ifthecurrentpageistrustworthy,thesurferismorelikelytofollowanoutgoinglink.
Incontrast,ifthecurrentpageisuntrust-worthy,itsrecommendationwillalsobevaluelessorsuspicious;asaresult,thesurferismorelikelytoleavethecurrentpageandjumptoarandompageontheweb.
Inaddition,linksmayleadtotargetswithdifferenttrustworthiness.
WebiasourCautiousSurfertofavormoretrustworthypageswhenrandomlyjumpingtoapage.
TheCautiousSurferneedsatrustestimateforeachpage.
Weassumethatanestimateofapage'strustworthinesshasbeenpro-vided,e.
g.
,fromTrustRank.
Tosmooththetrustdistribution,weusetherankorderinsteadofthetrustvalue:t(j)=1rank(Trust(j))/NwhereTrust(j)representstheprovidedtrustworthinessestimateofpagej,Nisthetotalnumberofpagesandrank(Trust(j))istherankofpagejamongallNpageswhenorderedbydecreasingtrustscore.
Inthisway,agivenpagej'sauthorityinourCautiousSurfermodel(CS(j))canbecalculatedasCS(j)=t(j)0@Xk:k→jCS(k)t(k)Pi:k→it(i)+Xm∈N(1t(m))CS(m)t(m)1ALabelBM2500PageRankTrustRankCautiousSurferspam16.
67%13.
83%12.
13%12.
42%normal36.
74%44.
37%50.
25%49.
30%undecided3.
15%2.
96%2.
61%2.
67%unknown43.
44%38.
84%35.
01%35.
61%Table1:Distributionoflabelsintop10resultsacross157queriesintheUK-2006dataset.
4.
EXPERIMENTALRESULTSHerewereporttheperformanceofourCautiousSurfer(CS),PageRank(PR),andTrustRank(TR)ontwolargescaledatasets.
ExperimentsonUK-2006.
Thisdatasetisacrawlofthe.
ukdo-main[7]downloadedinMay2006byUniversit`adegliStudidiM-ilano.
Thereare77Mpagesinthiscrawlfrom11,392differenthosts.
Alabeledhostlistisalsoprovided[1].
Withinthelist,767hostsaremarkedasspambyhumanjudges,7,472hostsasnormal,and176hostsmarkedasundecided(notclearlyspamornormal).
Theremaining2977hostsaremarkedasunknown(notjudged).
TheTRandCSapproachesrequirepreselectedseedsets;wereporttheaverageofvetrialsinwhichwerandomlysample10%ofthelabelednormalsitestoformthetrustedseedset.
Sincethelabelsareprovidedatthehostlevel,wecomputeauthorityinthehostgraph.
Toevaluatequery-specicretrievalperformance,weuseasampleof3.
4Mwebpages(therst400crawledpagesforeachsiteincrawlorder)fromthefulldataset.
ThesepagesinherittheirauthorityscorefromtheirhostswhichisthencombinedwiththeBM2500IRscoreforthenalranking.
Thecombinationisorder-based,inwhichrankingpositionsbasedonauthorityscore(weightedby.
2)andIRscore(weightedby.
8)aresummedtogether.
Wechoosetofocuson"hot"queries—thosemorelikelytobeofinteresttosearchenginespammers.
Weselectedpopularqueriesfroma1999Excitequerylogthatcontainatleastonepopularterm(top200)withinthemeta-keywordeldfromallpageswithinspamsites.
Thisresultedin157hotqueries.
SincetheUK-2006datasetislabeled,wecanusethedistribu-tionoflabeledsitesasameasurementofrankingalgorithmper-formance,asshowninTable1.
Sincethisisanautomaticpro-cesswithouttheconstraintsofhumanevaluation,wecheckthetop10resultsforall157hotqueries.
BothTrustRankandtheCau-tiousSurferareabletonoticeablyimproveupontheBM2500andPageRankdistributions.
ThesimilardistributionsfoundbetweenTrustRankandtheCautiousSurfer(basedonTrustRankcalcula-tionsoftrust)suggestthattheCautiousSurferisabletoincorporatethespamremovalvalueprovidedbythetrustranking.
Weconsiderwhethertherankingsareusefulforretrievalnext.
Werandomlyselected30ofthe157queriesforourrelevanceevaluation.
FourmembersofourlabwereeachgivenqueriesandURLs(blindtothesourcerankingalgorithm).
ForeachqueryandURLpair,theevaluatordecidedtherelevanceusingavelevelscalewhichweretranslatedintointegervaluesfrom2to-2.
Weusethemeanofallvaluesofpairsgeneratedbyarankingalgorithmasscore@10.
Iftheaveragescoreforapairismorethan0.
5,itisUK2006WebBaseMethodScore@10P@10Score@10P@10PageRank0.
14830.
7%0.
66855.
7%TrustRank0.
17131.
4%0.
74759.
3%CautiousSurfer0.
18032.
4%0.
79861.
3%Table2:Rankingperformancecomparison.
markedasrelevant.
TheaveragenumberofrelevantURLswithinthetoptenresultsforthe30queriesisdenedasprecision@10.
TheoverallretrievalperformancecomparisonsareshownintheleftcolumnsofTable4.
CautiousSurferoutperformstheotherap-proachesonbothprecisionandqualityfortop-10results.
Thus,weseethatbyincorporatingestimatesoftrust,theCautiousSurferisabletogenerateusefulrankingsforretrieval,andnotjustrankingswithlessspam.
ExperimentsonWebBase.
Theseconddatasetisa2005crawlfromtheStanfordWebBase[2].
Itcontains58Mpagesandap-proximately900Mlinks,butnolabels.
Tocompensate,welabelasgoodallpagesinthisdatasetthatalsoappearwithinthelistofURLsreferencedbythedmozOpenDirectoryProject.
Notethattheselabelsarepage-based,sowecancomputeauthorityinthepagelevelgraphdirectly.
Wechose30queriesfromthepopularquerylistforevaluationofwebpagesintheWebBasedataset.
Bytestingonaseconddataset,wegetabetterunderstandingofexpectedperformanceonfuturedatasets.
TheWebBasedatasetisofparticularinterestasitisamoretypicalgraphofwebpages(ascomparedtowebhosts),andusesamuchsmallerseedsetofgoodpages(just.
17%ofallpagesinthedataset).
TheperformanceisshownintherightcolumnsofTable4.
Again,theCautiousSurfernoticeablyoutperformsbothPageRankandTrustRank,demonstratingthattheapproachretainsitslevelofperformanceinbothpage-levelandsite-levelwebgraphs.
5.
CONCLUSIONInthispaperwehavedescribedamethodologyforincorporatingtrustintothecalculationofPageRank-basedauthority.
Additionaldetailsareavailableelsewhere[4].
Theresultsontwolargereal-worlddatasetsshowthatourCautiousSurfermodelcanimprovesearchengines'rankingqualityanddemotewebspamaswell.
Acknowledgments.
ThisworkwassupportedinpartbyagrantfromMicrosoftLiveLabs("AcceleratingSearch")andtheNa-tionalScienceFoundationunderCAREERawardIIS-0545875.
WethanktheLaboratoryofWebAlgorithmics,Universit`adegliStudidiMilanoandYahoo!
ResearchBarcelonaformakingtheUK-2006datasetandlabelsavailableandStanfordUniversityforaccesstotheirWebBasecollections.
6.
REFERENCES[1]C.
Castillo,D.
Donato,L.
Becchetti,P.
Boldi,M.
Santini,andS.
Vigna.
Areferencecollectionforwebspam.
ACMSIGIRForum,40(2),Dec.
2006.
[2]J.
Cho,H.
Garcia-Molina,T.
Haveliwala,W.
Lam,A.
Paepcke,S.
RaghavanandG.
Wesley.
StanfordWebBasecomponentsandapplications.
ACMTransactionsonInternetTechnology,6(2):153–186,2006.
[3]Z.
Gy¨ongyi,H.
Garcia-Molina,andJ.
Pedersen.
CombatingwebspamwithTrustRank.
InProc.
ofthe30thInt'lConf.
onVeryLargeDataBases(VLDB),pages271–279,Toronto,Canada,Sept.
2004.
[4]L.
Nie,B.
Wu,andB.
D.
Davison.
Incorporatingtrustintowebsearch.
AvailableasTechnicalReportLU-CSE-07-002,Dept.
ofComputerScienceandEngineering,LehighUniversity,2007.
[5]L.
Page,S.
Brin,R.
Motwani,andT.
Winograd.
ThePageRankcitationranking:BringingordertotheWeb.
Unpublisheddraft,1998.
[6]B.
Wu,V.
Goel,andB.
D.
Davison.
Propagatingtrustanddistrusttodemotewebspam.
InProc.
ofModelsofTrustfortheWebworkshopatthe15thInt'lWorldWideWebConf.
,Edinburgh,Scotland,May2006.
[7]Yahoo!
Research.
WebcollectionUK-2006.
http://research.
yahoo.
com/.
CrawledbytheLaboratoryofWebAlgorithmics,UniversityofMilan,http://law.
dsi.
unimi.
it/.
URLretrievedOct.
2006.

SoftShellWeb:台湾(台北)VPS年付49美元起,荷兰VPS年付24美元起

SoftShellWeb是一家2019年成立的国外主机商,商家在英格兰注册,提供的产品包括虚拟主机和VPS,其中VPS基于KVM架构,采用SSD硬盘,提供IPv4+IPv6,可选美国(圣何塞)、荷兰(阿姆斯特丹)和台湾(台北)等机房。商家近期推出台湾和荷兰年付特价VPS主机,其中台湾VPS最低年付49美元,荷兰VPS年付24美元起。台湾VPSCPU:1core内存:2GB硬盘:20GB SSD流量...

618云上Go:腾讯云秒杀云服务器95元/年起,1C2G5M三年仅288元起

进入6月,各大网络平台都开启了618促销,腾讯云目前也正在开展618云上Go活动,上海/北京/广州/成都/香港/新加坡/硅谷等多个地区云服务器及轻量服务器秒杀,最低年付95元起,参与活动的产品还包括短信包、CDN流量包、MySQL数据库、云存储(标准存储)、直播/点播流量包等等,本轮秒杀活动每天5场,一直持续到7月中旬,感兴趣的朋友可以关注本页。活动页面:https://cloud.tencent...

BuyVM新设立的迈阿密机房速度怎么样?简单的测评速度性能

BuyVM商家算是一家比较老牌的海外主机商,公司设立在加拿大,曾经是低价便宜VPS主机的代表,目前为止有提供纽约、拉斯维加斯、卢森堡机房,以及新增加的美国迈阿密机房。如果我们有需要选择BuyVM商家的机器需要注意的是注册信息的时候一定要规范,否则很容易出现欺诈订单,甚至你开通后都有可能被禁止账户,也是这个原因,曾经被很多人吐槽的。这里我们简单的对于BuyVM商家新增加的迈阿密机房进行简单的测评。如...

pagerank为你推荐
操作httpiproute网关怎么设置?"AcerMéxico.Listadeprecios-VigenteapartIrdel1deabrilde2011"360邮箱请问360邮箱怎么申请曲目iosdrupal教程drupal框架初学,请问开发流程是怎么样的,这个框架是对本体做修改,是不是说最后的成品就是这个d付款方式淘宝有哪几种付款方式?zencartzencart是什么?zencart有什么作用?系统错误系统错误该怎么办?长尾关键词什么是长尾关键词?
购买域名 域名查询工具 香港主机租用 河南vps linuxapache虚拟主机 arvixe 国内加速器 商家促销 中国智能物流骨干网 七夕快乐英文 nerds 微软服务器操作系统 西安主机 电信宽带测速软件 国内空间 江苏双线 黑科云 学生机 windowsserver2008 美国达拉斯 更多