matrixpagerank
pagerank 时间:2021-04-19 阅读:(
)
1/20RandomWalks,PageRank,andComputerScienceSiuOnChanDepartmentofComputerScienceandEngineeringTheChineseUniversityofHongKongJuly30,20152/20Yahooin1996:Human-editeddirectory3/20Only5directoryentriesfor"LinearAlgebra"4/20Googletoday~10,000,000LinearAlgebrapages,rankedmostlybyimportance5/20PartI:PageRankandRandomwalk6/20PageRankAlgorithmNamedafterLarryPage,GooglecofounderandcurrentCEODetermineswebpages'importanceonlybylinkstructureofthedirectedgraphofwebpages6/20PageRankAlgorithmNamedafterLarryPage,GooglecofounderandcurrentCEODetermineswebpages'importanceonlybylinkstructureofthedirectedgraphofwebpagesBasedonstationarydistributionofarandomwalk6/20PageRankAlgorithmNamedafterLarryPage,GooglecofounderandcurrentCEODetermineswebpages'importanceonlybylinkstructureofthedirectedgraphofwebpagesBasedonstationarydistributionofarandomwalkSpectralgraphtheory!
Forsimplicity,focusonundirected,regulargraphsinthistalk7/20RandomWalkStochasticprogressonagraph(undirectedfornow)7/20RandomWalkStochasticprogressonagraph(undirectedfornow)Startsfromavertex,ateachtimesteptmovestoauniformlyrandomneighbourofthecurrentvertex8/20DistributionptProbabilitytransitionmatrixKRowvectorpt:distributionattimetpt+1=ptKpt=p0KtDoesptconvergeastincreases9/20StationarydistributionIfptconverges,thelimitingdistributionp∞mustbestationaryp∞K=p∞uniformdistributionalwaysastationarydistribution(foranundirected,regulargraph)10/20Limitingdistribution:unique10/20Limitingdistribution:uniqueNotuniqueondisconnectedgraphs(Somevertexnotreachablefromsomeothervertexviaintermediatevertices)10/20Limitingdistribution:uniqueNotuniqueondisconnectedgraphs(Somevertexnotreachablefromsomeothervertexviaintermediatevertices)Notuniqueonbipartitegraphs(CanpartitionallverticesintotwosubsetsV1,V2sothatalledgesonlygobetweenV1andV2)11/20UniquelimitingdistributionTheorem(Uniqueness)Anundirected,regular,connected,non-bipartitegraphhasauniquestationarydistributionp.
Further,givenanyinitialdistributionp0,limt→∞pt=p.
12/20Eigenvaluesandeigenvectorsλ∈Risaneigenvalueandq∈RnisaneigenvectorofKifqK=λqFact:TransitionmatrixKofanundirectedgraphisrealsymmetricLemma(SpectralTheorem)Anyn*nrealsymmetricmatrixKhasneigenvalue-eigenvectorpairsq(1)K=λ1q(1).
.
.
q(n)K=λnq(n)suchthat{q(1)q(n)}isanorthogonalbasis13/20ProofTheorem(Uniqueness)Anundirected,regular,connected,non-bipartitegraphhasauniquestationarydistributionp.
Further,givenanyinitialdistributionp0,limt→∞pt=p.
Proof.
Byspectraltheorem,{q(1)q(n)}formsabasis.
Expandp0=ni=1αiq(i).
pt=p0Kt=ni=1αiq(i)Kt.
14/20Proof(continued)pt=p0Kt=ni=1αiq(i)KtSinceq(i)Kt=λiq(i)Kt1=λi2q(i)Kt2λitq(i),thetopequationbecomespt=ni=1αiλitq(i).
15/20GraphspectrumAssumeeigenvaluesaresortedλ1λ2.
.
.
λn15/20GraphspectrumAssumeeigenvaluesaresortedλ1λ2.
.
.
λnOnecanshow1λ1andλn1Recall:λ1=1,uniformdistributionasaneigenvector15/20GraphspectrumAssumeeigenvaluesaresortedλ1λ2.
.
.
λnOnecanshow1λ1andλn1Recall:λ1=1,uniformdistributionasaneigenvectorPropositionλ2=1ifandonlyifdisconnectedgraph15/20GraphspectrumAssumeeigenvaluesaresortedλ1λ2.
.
.
λnOnecanshow1λ1andλn1Recall:λ1=1,uniformdistributionasaneigenvectorPropositionλ2=1ifandonlyifdisconnectedgraphPropositionλn=1ifandonlyifbipartitegraph16/20Proof(finalbits)pt=ni=1αiλitq(i).
Forregular,connected,bipartitegraph,|λ2|PageRankTheorem(Uniqueness)Anundirected,regular,connected,non-bipartitegraphhasauniquestationarydistributionp.
Further,givenanyinitialdistributionp0,limt→∞pt=p.
Asimilartheorem(suitablymodified)holdsfordirected,non-regulargraphs:Perron–FrobeniustheoremLimitingdistributionpnotnecessarilyuniformPageRankiterativelycomputesthedistributionpt=p0Ktfromanarbitraryinitialdistributionp018/20PartII:ConnectionstoTheoreticalComputerScience19/20SpectralgraphtheoryandexpandersSpectralgraphtheory:studyofgrapheigenvaluesλ1,…,λnandgraphproperties19/20SpectralgraphtheoryandexpandersSpectralgraphtheory:studyofgrapheigenvaluesλ1,…,λnandgraphpropertiesGraphswithλ2muchsmallerthanλ1=1arecalledexpandersValuabletocomputerscience19/20SpectralgraphtheoryandexpandersSpectralgraphtheory:studyofgrapheigenvaluesλ1,…,λnandgraphpropertiesGraphswithλ2muchsmallerthanλ1=1arecalledexpandersValuabletocomputerscienceFord-regulargraphs,howsmallcanλ2beRecentbreakthrough:Yaletheoreticalcomputerscientists(Marcus,Spielman,andSrivastava)constructedbipartitegraphsforanydegreedwithmax{|λ2|,|λn1|}2√d1/d.
Smallestpossible(Alon–Boppana)19/20SpectralgraphtheoryandexpandersSpectralgraphtheory:studyofgrapheigenvaluesλ1,…,λnandgraphpropertiesGraphswithλ2muchsmallerthanλ1=1arecalledexpandersValuabletocomputerscienceFord-regulargraphs,howsmallcanλ2beRecentbreakthrough:Yaletheoreticalcomputerscientists(Marcus,Spielman,andSrivastava)constructedbipartitegraphsforanydegreedwithmax{|λ2|,|λn1|}2√d1/d.
Smallestpossible(Alon–Boppana)Theirnoveltechniquesalsoresolve54-year-oldKadison–SingerprobleminMathematicsandengineering20/20MatrixmultiplicationandcomputationalcomplexityGiventwomatricesAandBofsizen,computeABRecall(AB)ij=kAikBkjStraightforwardalgorithmrequiresroughlyn3elementaryoperations20/20MatrixmultiplicationandcomputationalcomplexityGiventwomatricesAandBofsizen,computeABRecall(AB)ij=kAikBkjStraightforwardalgorithmrequiresroughlyn3elementaryoperationsStrassenalgorithm:roughlynlog27≈n2.
807elementaryoperationsLeGallalgorithm(currentbest):roughlyn2.
373elementaryoperations20/20MatrixmultiplicationandcomputationalcomplexityGiventwomatricesAandBofsizen,computeABRecall(AB)ij=kAikBkjStraightforwardalgorithmrequiresroughlyn3elementaryoperationsStrassenalgorithm:roughlynlog27≈n2.
807elementaryoperationsLeGallalgorithm(currentbest):roughlyn2.
373elementaryoperationsIsn2possibleIfso,potentiallyveryusefulIfnot,whynot
日前,国内知名主机服务商阿里云与国外资深服务器面板Plesk强强联合,推出 阿里云域名注册与备案、服务器ECS购买与登录使用 前言云服务器(Elastic 只需要确定cpu内存与带宽基本上就可以了,对于新手用户来说,我们在购买阿里云服务申请服务器与域名许多云服务商的云服务器配置是弹性的 三周学会小程序第三讲:服务 不过这个国外服务器有点慢,可以考虑国内的ngrokcc。 ngrokcc...
主机参考最新消息:JustHost怎么样?JustHost服务器好不好?JustHost好不好?JustHost是一家成立于2006年的俄罗斯服务器提供商,支持支付宝付款,服务器价格便宜,200Mbps大带宽不限流量,支持免费更换5次IP,支持控制面板自由切换机房,目前JustHost有俄罗斯5个机房可以自由切换选择,最重要的还是价格真的特别便宜,最低只需要87卢布/月,约8.5元/月起!just...
目前云服务器市场竞争是相当的大的,比如我们在年中活动中看到各大服务商都找准这个噱头的活动发布各种活动,有的甚至就是平时的活动价格,只是换一个说法而已。可见这个行业确实竞争很大,当然我们也可以看到很多主机商几个月就消失,也有看到很多个人商家捣鼓几个品牌然后忽悠一圈跑路的。当然,个人建议在选择服务商的时候尽量选择老牌商家,这样性能更为稳定一些。近期可能会准备重新整理Vultr商家的一些信息和教程。以前...
pagerank为你推荐
lanchuangsns空间文章qq空间日志文章,要求经典建企业网站怎么建企业网站cuteftpCuteFTP 和FlashFXP是什么软件,有什么功能,怎样使用?什么是支付宝支付宝是什么flashftp下载《蔓蔓青萝(全)》.TXT_微盘下载文档下载请问手机版wps如何把云文档下载到手机上的本地文档?开心001开心001与开心网怎么不一样,哪个是真的?抢米网怎么用小米商城可以快速抢到手机!大侠们 帮帮忙!joomla模板为什么joomla模板安装后跟模板演示的不一样
域名注册服务 百度域名 万网域名空间 187邮箱 东莞电信局 awardspace info域名 京东云擎 win8.1企业版升级win10 hkg 免费dns解析 吉林铁通 腾讯总部在哪 我的世界服务器ip 徐州电信 服务器防御 密钥索引 石家庄服务器 cx域名 phpwind论坛 更多