matrixpagerank

pagerank  时间:2021-04-19  阅读:()
1/20RandomWalks,PageRank,andComputerScienceSiuOnChanDepartmentofComputerScienceandEngineeringTheChineseUniversityofHongKongJuly30,20152/20Yahooin1996:Human-editeddirectory3/20Only5directoryentriesfor"LinearAlgebra"4/20Googletoday~10,000,000LinearAlgebrapages,rankedmostlybyimportance5/20PartI:PageRankandRandomwalk6/20PageRankAlgorithmNamedafterLarryPage,GooglecofounderandcurrentCEODetermineswebpages'importanceonlybylinkstructureofthedirectedgraphofwebpages6/20PageRankAlgorithmNamedafterLarryPage,GooglecofounderandcurrentCEODetermineswebpages'importanceonlybylinkstructureofthedirectedgraphofwebpagesBasedonstationarydistributionofarandomwalk6/20PageRankAlgorithmNamedafterLarryPage,GooglecofounderandcurrentCEODetermineswebpages'importanceonlybylinkstructureofthedirectedgraphofwebpagesBasedonstationarydistributionofarandomwalkSpectralgraphtheory!
Forsimplicity,focusonundirected,regulargraphsinthistalk7/20RandomWalkStochasticprogressonagraph(undirectedfornow)7/20RandomWalkStochasticprogressonagraph(undirectedfornow)Startsfromavertex,ateachtimesteptmovestoauniformlyrandomneighbourofthecurrentvertex8/20DistributionptProbabilitytransitionmatrixKRowvectorpt:distributionattimetpt+1=ptKpt=p0KtDoesptconvergeastincreases9/20StationarydistributionIfptconverges,thelimitingdistributionp∞mustbestationaryp∞K=p∞uniformdistributionalwaysastationarydistribution(foranundirected,regulargraph)10/20Limitingdistribution:unique10/20Limitingdistribution:uniqueNotuniqueondisconnectedgraphs(Somevertexnotreachablefromsomeothervertexviaintermediatevertices)10/20Limitingdistribution:uniqueNotuniqueondisconnectedgraphs(Somevertexnotreachablefromsomeothervertexviaintermediatevertices)Notuniqueonbipartitegraphs(CanpartitionallverticesintotwosubsetsV1,V2sothatalledgesonlygobetweenV1andV2)11/20UniquelimitingdistributionTheorem(Uniqueness)Anundirected,regular,connected,non-bipartitegraphhasauniquestationarydistributionp.
Further,givenanyinitialdistributionp0,limt→∞pt=p.
12/20Eigenvaluesandeigenvectorsλ∈Risaneigenvalueandq∈RnisaneigenvectorofKifqK=λqFact:TransitionmatrixKofanundirectedgraphisrealsymmetricLemma(SpectralTheorem)Anyn*nrealsymmetricmatrixKhasneigenvalue-eigenvectorpairsq(1)K=λ1q(1).
.
.
q(n)K=λnq(n)suchthat{q(1)q(n)}isanorthogonalbasis13/20ProofTheorem(Uniqueness)Anundirected,regular,connected,non-bipartitegraphhasauniquestationarydistributionp.
Further,givenanyinitialdistributionp0,limt→∞pt=p.
Proof.
Byspectraltheorem,{q(1)q(n)}formsabasis.
Expandp0=ni=1αiq(i).
pt=p0Kt=ni=1αiq(i)Kt.
14/20Proof(continued)pt=p0Kt=ni=1αiq(i)KtSinceq(i)Kt=λiq(i)Kt1=λi2q(i)Kt2λitq(i),thetopequationbecomespt=ni=1αiλitq(i).
15/20GraphspectrumAssumeeigenvaluesaresortedλ1λ2.
.
.
λn15/20GraphspectrumAssumeeigenvaluesaresortedλ1λ2.
.
.
λnOnecanshow1λ1andλn1Recall:λ1=1,uniformdistributionasaneigenvector15/20GraphspectrumAssumeeigenvaluesaresortedλ1λ2.
.
.
λnOnecanshow1λ1andλn1Recall:λ1=1,uniformdistributionasaneigenvectorPropositionλ2=1ifandonlyifdisconnectedgraph15/20GraphspectrumAssumeeigenvaluesaresortedλ1λ2.
.
.
λnOnecanshow1λ1andλn1Recall:λ1=1,uniformdistributionasaneigenvectorPropositionλ2=1ifandonlyifdisconnectedgraphPropositionλn=1ifandonlyifbipartitegraph16/20Proof(finalbits)pt=ni=1αiλitq(i).
Forregular,connected,bipartitegraph,|λ2|PageRankTheorem(Uniqueness)Anundirected,regular,connected,non-bipartitegraphhasauniquestationarydistributionp.
Further,givenanyinitialdistributionp0,limt→∞pt=p.
Asimilartheorem(suitablymodified)holdsfordirected,non-regulargraphs:Perron–FrobeniustheoremLimitingdistributionpnotnecessarilyuniformPageRankiterativelycomputesthedistributionpt=p0Ktfromanarbitraryinitialdistributionp018/20PartII:ConnectionstoTheoreticalComputerScience19/20SpectralgraphtheoryandexpandersSpectralgraphtheory:studyofgrapheigenvaluesλ1,…,λnandgraphproperties19/20SpectralgraphtheoryandexpandersSpectralgraphtheory:studyofgrapheigenvaluesλ1,…,λnandgraphpropertiesGraphswithλ2muchsmallerthanλ1=1arecalledexpandersValuabletocomputerscience19/20SpectralgraphtheoryandexpandersSpectralgraphtheory:studyofgrapheigenvaluesλ1,…,λnandgraphpropertiesGraphswithλ2muchsmallerthanλ1=1arecalledexpandersValuabletocomputerscienceFord-regulargraphs,howsmallcanλ2beRecentbreakthrough:Yaletheoreticalcomputerscientists(Marcus,Spielman,andSrivastava)constructedbipartitegraphsforanydegreedwithmax{|λ2|,|λn1|}2√d1/d.
Smallestpossible(Alon–Boppana)19/20SpectralgraphtheoryandexpandersSpectralgraphtheory:studyofgrapheigenvaluesλ1,…,λnandgraphpropertiesGraphswithλ2muchsmallerthanλ1=1arecalledexpandersValuabletocomputerscienceFord-regulargraphs,howsmallcanλ2beRecentbreakthrough:Yaletheoreticalcomputerscientists(Marcus,Spielman,andSrivastava)constructedbipartitegraphsforanydegreedwithmax{|λ2|,|λn1|}2√d1/d.
Smallestpossible(Alon–Boppana)Theirnoveltechniquesalsoresolve54-year-oldKadison–SingerprobleminMathematicsandengineering20/20MatrixmultiplicationandcomputationalcomplexityGiventwomatricesAandBofsizen,computeABRecall(AB)ij=kAikBkjStraightforwardalgorithmrequiresroughlyn3elementaryoperations20/20MatrixmultiplicationandcomputationalcomplexityGiventwomatricesAandBofsizen,computeABRecall(AB)ij=kAikBkjStraightforwardalgorithmrequiresroughlyn3elementaryoperationsStrassenalgorithm:roughlynlog27≈n2.
807elementaryoperationsLeGallalgorithm(currentbest):roughlyn2.
373elementaryoperations20/20MatrixmultiplicationandcomputationalcomplexityGiventwomatricesAandBofsizen,computeABRecall(AB)ij=kAikBkjStraightforwardalgorithmrequiresroughlyn3elementaryoperationsStrassenalgorithm:roughlynlog27≈n2.
807elementaryoperationsLeGallalgorithm(currentbest):roughlyn2.
373elementaryoperationsIsn2possibleIfso,potentiallyveryusefulIfnot,whynot

Linode 18周年庆典活动 不断改进产品结构和体验

今天早上相比很多网友和一样收到来自Linode的庆祝18周年的邮件信息。和往年一样,他们会回顾在过去一年中的成绩,以及在未来准备改进的地方。虽然目前Linode商家没有提供以前JP1优化线路的机房,但是人家一直跟随自己的脚步在走,确实在云服务器市场上有自己的立足之地。我们看看过去一年中Linode的成就:第一、承诺投入 100,000 美元来帮助具有社会意识的非营利组织,促进有价值的革新。第二、发...

白丝云-美国圣何塞4837/德国4837大带宽/美西9929,26元/月起

官方网站:点击访问白丝云官网活动方案:一、KVM虚拟化套餐A1核心 512MB内存 10G SSD硬盘 800G流量 2560Mbps带宽159.99一年 26一月套餐B1核心 512MB内存 10G SSD硬盘 2000G流量 2560Mbps带宽299.99一年 52一月套餐...

wordpress高级跨屏企业主题 wordpress绿色企业自适应主题

wordpress高级跨屏企业主题,通用响应式跨平台站点开发,自适应PC端+各移动端屏幕设备,高级可视化自定义设置模块+高效的企业站搜索优化。wordpress绿色企业自适应主题采用标准的HTML5+CSS3语言开发,兼容当下的各种主流浏览器: IE 6+(以及类似360、遨游等基于IE内核的)、Firefox、Google Chrome、Safari、Opera等;同时支持移动终端的常用浏览器应...

pagerank为你推荐
apple.com.cn苹果官网怎么序列号查询激活时间企业电子邮局求:什么是企业邮箱?(企业邮箱与普通个人邮箱的区别是什么?)dell服务器bios设置戴尔服务器主板怎么设置U盘启动支付宝账户是什么支付宝帐号,指的是什么帐号 是网营密码吗申请支付宝账户怎么申请支付宝的账号?滴滴估值500亿滴滴拉屎 App 为何能估值 100 亿美金?是怎么计算出来的加多宝和王老吉加多宝和王老吉什么关系 王老吉和加多宝哪个正宗刚刚网刚刚网上刷单被骗了5万多怎么办啊 报警有用吗curl扩展系统不支持CURL 怎么解决社区动力如何大力加强社区基层党组织建设
最好的虚拟主机 河南vps 二级域名申请 duniu 60g硬盘 免费smtp服务器 蜗牛魔方 新家坡 空间登陆首页 阿里云免费邮箱 免费个人主页 域名转入 阵亡将士纪念日 cx域名 服务器是什么 阿里云宕机故障 赵荣博客 100m空间多少钱 dell服务器论坛 电脑主机报价 更多