matrixpagerank
pagerank 时间:2021-04-19 阅读:(
)
1/20RandomWalks,PageRank,andComputerScienceSiuOnChanDepartmentofComputerScienceandEngineeringTheChineseUniversityofHongKongJuly30,20152/20Yahooin1996:Human-editeddirectory3/20Only5directoryentriesfor"LinearAlgebra"4/20Googletoday~10,000,000LinearAlgebrapages,rankedmostlybyimportance5/20PartI:PageRankandRandomwalk6/20PageRankAlgorithmNamedafterLarryPage,GooglecofounderandcurrentCEODetermineswebpages'importanceonlybylinkstructureofthedirectedgraphofwebpages6/20PageRankAlgorithmNamedafterLarryPage,GooglecofounderandcurrentCEODetermineswebpages'importanceonlybylinkstructureofthedirectedgraphofwebpagesBasedonstationarydistributionofarandomwalk6/20PageRankAlgorithmNamedafterLarryPage,GooglecofounderandcurrentCEODetermineswebpages'importanceonlybylinkstructureofthedirectedgraphofwebpagesBasedonstationarydistributionofarandomwalkSpectralgraphtheory!
Forsimplicity,focusonundirected,regulargraphsinthistalk7/20RandomWalkStochasticprogressonagraph(undirectedfornow)7/20RandomWalkStochasticprogressonagraph(undirectedfornow)Startsfromavertex,ateachtimesteptmovestoauniformlyrandomneighbourofthecurrentvertex8/20DistributionptProbabilitytransitionmatrixKRowvectorpt:distributionattimetpt+1=ptKpt=p0KtDoesptconvergeastincreases9/20StationarydistributionIfptconverges,thelimitingdistributionp∞mustbestationaryp∞K=p∞uniformdistributionalwaysastationarydistribution(foranundirected,regulargraph)10/20Limitingdistribution:unique10/20Limitingdistribution:uniqueNotuniqueondisconnectedgraphs(Somevertexnotreachablefromsomeothervertexviaintermediatevertices)10/20Limitingdistribution:uniqueNotuniqueondisconnectedgraphs(Somevertexnotreachablefromsomeothervertexviaintermediatevertices)Notuniqueonbipartitegraphs(CanpartitionallverticesintotwosubsetsV1,V2sothatalledgesonlygobetweenV1andV2)11/20UniquelimitingdistributionTheorem(Uniqueness)Anundirected,regular,connected,non-bipartitegraphhasauniquestationarydistributionp.
Further,givenanyinitialdistributionp0,limt→∞pt=p.
12/20Eigenvaluesandeigenvectorsλ∈Risaneigenvalueandq∈RnisaneigenvectorofKifqK=λqFact:TransitionmatrixKofanundirectedgraphisrealsymmetricLemma(SpectralTheorem)Anyn*nrealsymmetricmatrixKhasneigenvalue-eigenvectorpairsq(1)K=λ1q(1).
.
.
q(n)K=λnq(n)suchthat{q(1)q(n)}isanorthogonalbasis13/20ProofTheorem(Uniqueness)Anundirected,regular,connected,non-bipartitegraphhasauniquestationarydistributionp.
Further,givenanyinitialdistributionp0,limt→∞pt=p.
Proof.
Byspectraltheorem,{q(1)q(n)}formsabasis.
Expandp0=ni=1αiq(i).
pt=p0Kt=ni=1αiq(i)Kt.
14/20Proof(continued)pt=p0Kt=ni=1αiq(i)KtSinceq(i)Kt=λiq(i)Kt1=λi2q(i)Kt2λitq(i),thetopequationbecomespt=ni=1αiλitq(i).
15/20GraphspectrumAssumeeigenvaluesaresortedλ1λ2.
.
.
λn15/20GraphspectrumAssumeeigenvaluesaresortedλ1λ2.
.
.
λnOnecanshow1λ1andλn1Recall:λ1=1,uniformdistributionasaneigenvector15/20GraphspectrumAssumeeigenvaluesaresortedλ1λ2.
.
.
λnOnecanshow1λ1andλn1Recall:λ1=1,uniformdistributionasaneigenvectorPropositionλ2=1ifandonlyifdisconnectedgraph15/20GraphspectrumAssumeeigenvaluesaresortedλ1λ2.
.
.
λnOnecanshow1λ1andλn1Recall:λ1=1,uniformdistributionasaneigenvectorPropositionλ2=1ifandonlyifdisconnectedgraphPropositionλn=1ifandonlyifbipartitegraph16/20Proof(finalbits)pt=ni=1αiλitq(i).
Forregular,connected,bipartitegraph,|λ2|PageRankTheorem(Uniqueness)Anundirected,regular,connected,non-bipartitegraphhasauniquestationarydistributionp.
Further,givenanyinitialdistributionp0,limt→∞pt=p.
Asimilartheorem(suitablymodified)holdsfordirected,non-regulargraphs:Perron–FrobeniustheoremLimitingdistributionpnotnecessarilyuniformPageRankiterativelycomputesthedistributionpt=p0Ktfromanarbitraryinitialdistributionp018/20PartII:ConnectionstoTheoreticalComputerScience19/20SpectralgraphtheoryandexpandersSpectralgraphtheory:studyofgrapheigenvaluesλ1,…,λnandgraphproperties19/20SpectralgraphtheoryandexpandersSpectralgraphtheory:studyofgrapheigenvaluesλ1,…,λnandgraphpropertiesGraphswithλ2muchsmallerthanλ1=1arecalledexpandersValuabletocomputerscience19/20SpectralgraphtheoryandexpandersSpectralgraphtheory:studyofgrapheigenvaluesλ1,…,λnandgraphpropertiesGraphswithλ2muchsmallerthanλ1=1arecalledexpandersValuabletocomputerscienceFord-regulargraphs,howsmallcanλ2beRecentbreakthrough:Yaletheoreticalcomputerscientists(Marcus,Spielman,andSrivastava)constructedbipartitegraphsforanydegreedwithmax{|λ2|,|λn1|}2√d1/d.
Smallestpossible(Alon–Boppana)19/20SpectralgraphtheoryandexpandersSpectralgraphtheory:studyofgrapheigenvaluesλ1,…,λnandgraphpropertiesGraphswithλ2muchsmallerthanλ1=1arecalledexpandersValuabletocomputerscienceFord-regulargraphs,howsmallcanλ2beRecentbreakthrough:Yaletheoreticalcomputerscientists(Marcus,Spielman,andSrivastava)constructedbipartitegraphsforanydegreedwithmax{|λ2|,|λn1|}2√d1/d.
Smallestpossible(Alon–Boppana)Theirnoveltechniquesalsoresolve54-year-oldKadison–SingerprobleminMathematicsandengineering20/20MatrixmultiplicationandcomputationalcomplexityGiventwomatricesAandBofsizen,computeABRecall(AB)ij=kAikBkjStraightforwardalgorithmrequiresroughlyn3elementaryoperations20/20MatrixmultiplicationandcomputationalcomplexityGiventwomatricesAandBofsizen,computeABRecall(AB)ij=kAikBkjStraightforwardalgorithmrequiresroughlyn3elementaryoperationsStrassenalgorithm:roughlynlog27≈n2.
807elementaryoperationsLeGallalgorithm(currentbest):roughlyn2.
373elementaryoperations20/20MatrixmultiplicationandcomputationalcomplexityGiventwomatricesAandBofsizen,computeABRecall(AB)ij=kAikBkjStraightforwardalgorithmrequiresroughlyn3elementaryoperationsStrassenalgorithm:roughlynlog27≈n2.
807elementaryoperationsLeGallalgorithm(currentbest):roughlyn2.
373elementaryoperationsIsn2possibleIfso,potentiallyveryusefulIfnot,whynot
melbicom从2015年就开始运作了,在国内也是有一定的粉丝群,站长最早是从2017年开始介绍melbicom。上一次测评melbicom是在2018年,由于期间有不少人持续关注这个品牌,而且站长貌似也听说过路由什么的有变动的迹象。为此,今天重新对莫斯科数据中心的VPS进行一次简单测评,数据仅供参考。官方网站: https://melbicom.net比特币、信用卡、PayPal、支付宝、银联...
酷锐云是一家2019年开业的国人主机商家,商家为企业运营,主要销售主VPS服务器,提供挂机宝和云服务器,机房有美国CERA、中国香港安畅和电信,CERA为CN2 GIA线路,提供单机10G+天机盾防御,提供美国原生IP,支持媒体流解锁,商家的套餐价格非常美丽,CERA机房月付20元起,香港安畅机房10M带宽月付25元,有需要的朋友可以入手试试。酷锐云自开业以来一直有着良好的产品稳定性及服务态度,支...
提速啦的来历提速啦是 网站 本着“良心 便宜 稳定”的初衷 为小白用户避免被坑 由赣州王成璟网络科技有限公司旗下赣州提速啦网络科技有限公司运营 投资1000万人民币 在美国Cera 香港CTG 香港Cera 国内 杭州 宿迁 浙江 赣州 南昌 大连 辽宁 扬州 等地区建立数据中心 正规持有IDC ISP CDN 云牌照 公司。公司购买产品支持3天内退款 超过3天步退款政策。提速啦的市场定位提速啦主...
pagerank为你推荐
支持ipad中国企业信息网哪个查询企业信息的网站收录的企业信息最多cuteftp什么是 CuteFtp Flashfxp Leapftp FlashGet支付宝账户是什么好评返现 要支付宝帐号 支付宝帐号是什么啊netshwinsockreset电脑开机老是出现wwbizsrv.exe 应用程序错误 怎么处理的是cuteftp开心001开心001与开心网怎么不一样,哪个是真的?可信网站可信网站 是自己去注册的还是由做网站 的人帮弄的?网络u盘有没有网络U盘 5G的 就像真的U盘一样的?就像下载到真U盘一样的 到自己电脑直接复制就可以拉的啊400电话查询400电话号码可以查询归属地吗?办理400电话是不是很贵?
虚拟主机评测网 域名解析文件 香港加速器 20g硬盘 realvnc ssh帐号 免费个人空间申请 免费mysql 免费申请网站 万网空间购买 沈阳主机托管 vul lamp是什么意思 空间服务器 supercache 大化网 广州服务器托管 开心online winserver2008 机柜尺寸 更多