matrixpagerank

pagerank  时间:2021-04-19  阅读:()
1/20RandomWalks,PageRank,andComputerScienceSiuOnChanDepartmentofComputerScienceandEngineeringTheChineseUniversityofHongKongJuly30,20152/20Yahooin1996:Human-editeddirectory3/20Only5directoryentriesfor"LinearAlgebra"4/20Googletoday~10,000,000LinearAlgebrapages,rankedmostlybyimportance5/20PartI:PageRankandRandomwalk6/20PageRankAlgorithmNamedafterLarryPage,GooglecofounderandcurrentCEODetermineswebpages'importanceonlybylinkstructureofthedirectedgraphofwebpages6/20PageRankAlgorithmNamedafterLarryPage,GooglecofounderandcurrentCEODetermineswebpages'importanceonlybylinkstructureofthedirectedgraphofwebpagesBasedonstationarydistributionofarandomwalk6/20PageRankAlgorithmNamedafterLarryPage,GooglecofounderandcurrentCEODetermineswebpages'importanceonlybylinkstructureofthedirectedgraphofwebpagesBasedonstationarydistributionofarandomwalkSpectralgraphtheory!
Forsimplicity,focusonundirected,regulargraphsinthistalk7/20RandomWalkStochasticprogressonagraph(undirectedfornow)7/20RandomWalkStochasticprogressonagraph(undirectedfornow)Startsfromavertex,ateachtimesteptmovestoauniformlyrandomneighbourofthecurrentvertex8/20DistributionptProbabilitytransitionmatrixKRowvectorpt:distributionattimetpt+1=ptKpt=p0KtDoesptconvergeastincreases9/20StationarydistributionIfptconverges,thelimitingdistributionp∞mustbestationaryp∞K=p∞uniformdistributionalwaysastationarydistribution(foranundirected,regulargraph)10/20Limitingdistribution:unique10/20Limitingdistribution:uniqueNotuniqueondisconnectedgraphs(Somevertexnotreachablefromsomeothervertexviaintermediatevertices)10/20Limitingdistribution:uniqueNotuniqueondisconnectedgraphs(Somevertexnotreachablefromsomeothervertexviaintermediatevertices)Notuniqueonbipartitegraphs(CanpartitionallverticesintotwosubsetsV1,V2sothatalledgesonlygobetweenV1andV2)11/20UniquelimitingdistributionTheorem(Uniqueness)Anundirected,regular,connected,non-bipartitegraphhasauniquestationarydistributionp.
Further,givenanyinitialdistributionp0,limt→∞pt=p.
12/20Eigenvaluesandeigenvectorsλ∈Risaneigenvalueandq∈RnisaneigenvectorofKifqK=λqFact:TransitionmatrixKofanundirectedgraphisrealsymmetricLemma(SpectralTheorem)Anyn*nrealsymmetricmatrixKhasneigenvalue-eigenvectorpairsq(1)K=λ1q(1).
.
.
q(n)K=λnq(n)suchthat{q(1)q(n)}isanorthogonalbasis13/20ProofTheorem(Uniqueness)Anundirected,regular,connected,non-bipartitegraphhasauniquestationarydistributionp.
Further,givenanyinitialdistributionp0,limt→∞pt=p.
Proof.
Byspectraltheorem,{q(1)q(n)}formsabasis.
Expandp0=ni=1αiq(i).
pt=p0Kt=ni=1αiq(i)Kt.
14/20Proof(continued)pt=p0Kt=ni=1αiq(i)KtSinceq(i)Kt=λiq(i)Kt1=λi2q(i)Kt2λitq(i),thetopequationbecomespt=ni=1αiλitq(i).
15/20GraphspectrumAssumeeigenvaluesaresortedλ1λ2.
.
.
λn15/20GraphspectrumAssumeeigenvaluesaresortedλ1λ2.
.
.
λnOnecanshow1λ1andλn1Recall:λ1=1,uniformdistributionasaneigenvector15/20GraphspectrumAssumeeigenvaluesaresortedλ1λ2.
.
.
λnOnecanshow1λ1andλn1Recall:λ1=1,uniformdistributionasaneigenvectorPropositionλ2=1ifandonlyifdisconnectedgraph15/20GraphspectrumAssumeeigenvaluesaresortedλ1λ2.
.
.
λnOnecanshow1λ1andλn1Recall:λ1=1,uniformdistributionasaneigenvectorPropositionλ2=1ifandonlyifdisconnectedgraphPropositionλn=1ifandonlyifbipartitegraph16/20Proof(finalbits)pt=ni=1αiλitq(i).
Forregular,connected,bipartitegraph,|λ2|PageRankTheorem(Uniqueness)Anundirected,regular,connected,non-bipartitegraphhasauniquestationarydistributionp.
Further,givenanyinitialdistributionp0,limt→∞pt=p.
Asimilartheorem(suitablymodified)holdsfordirected,non-regulargraphs:Perron–FrobeniustheoremLimitingdistributionpnotnecessarilyuniformPageRankiterativelycomputesthedistributionpt=p0Ktfromanarbitraryinitialdistributionp018/20PartII:ConnectionstoTheoreticalComputerScience19/20SpectralgraphtheoryandexpandersSpectralgraphtheory:studyofgrapheigenvaluesλ1,…,λnandgraphproperties19/20SpectralgraphtheoryandexpandersSpectralgraphtheory:studyofgrapheigenvaluesλ1,…,λnandgraphpropertiesGraphswithλ2muchsmallerthanλ1=1arecalledexpandersValuabletocomputerscience19/20SpectralgraphtheoryandexpandersSpectralgraphtheory:studyofgrapheigenvaluesλ1,…,λnandgraphpropertiesGraphswithλ2muchsmallerthanλ1=1arecalledexpandersValuabletocomputerscienceFord-regulargraphs,howsmallcanλ2beRecentbreakthrough:Yaletheoreticalcomputerscientists(Marcus,Spielman,andSrivastava)constructedbipartitegraphsforanydegreedwithmax{|λ2|,|λn1|}2√d1/d.
Smallestpossible(Alon–Boppana)19/20SpectralgraphtheoryandexpandersSpectralgraphtheory:studyofgrapheigenvaluesλ1,…,λnandgraphpropertiesGraphswithλ2muchsmallerthanλ1=1arecalledexpandersValuabletocomputerscienceFord-regulargraphs,howsmallcanλ2beRecentbreakthrough:Yaletheoreticalcomputerscientists(Marcus,Spielman,andSrivastava)constructedbipartitegraphsforanydegreedwithmax{|λ2|,|λn1|}2√d1/d.
Smallestpossible(Alon–Boppana)Theirnoveltechniquesalsoresolve54-year-oldKadison–SingerprobleminMathematicsandengineering20/20MatrixmultiplicationandcomputationalcomplexityGiventwomatricesAandBofsizen,computeABRecall(AB)ij=kAikBkjStraightforwardalgorithmrequiresroughlyn3elementaryoperations20/20MatrixmultiplicationandcomputationalcomplexityGiventwomatricesAandBofsizen,computeABRecall(AB)ij=kAikBkjStraightforwardalgorithmrequiresroughlyn3elementaryoperationsStrassenalgorithm:roughlynlog27≈n2.
807elementaryoperationsLeGallalgorithm(currentbest):roughlyn2.
373elementaryoperations20/20MatrixmultiplicationandcomputationalcomplexityGiventwomatricesAandBofsizen,computeABRecall(AB)ij=kAikBkjStraightforwardalgorithmrequiresroughlyn3elementaryoperationsStrassenalgorithm:roughlynlog27≈n2.
807elementaryoperationsLeGallalgorithm(currentbest):roughlyn2.
373elementaryoperationsIsn2possibleIfso,potentiallyveryusefulIfnot,whynot

阿里云秋季促销活动 轻量云服务器2G5M配置新购年60元

已经有一段时间没有分享阿里云服务商的促销活动,主要原因在于他们以前的促销都仅限新用户,而且我们大部分人都已经有过账户基本上促销活动和我们无缘。即便老用户可选新产品购买,也是比较配置较高的,所以就懒得分享。这不看到有阿里云金秋活动,有不错的促销活动可以允许产品新购。即便我们是老用户,但是比如你没有购买过他们轻量服务器,也是可以享受优惠活动的。这次轻量服务器在金秋活动中力度折扣比较大,2G5M配置年付...

hosthatch:14个数据中心15美元/年

hosthatch在做美国独立日促销,可能你会说这操作是不是晚了一个月?对,为了准备资源等,他们拖延到现在才有空,这次是针对自己全球14个数据中心的VPS。提前示警:各个数据中心的网络没有一个是针对中国直连的,都会绕道而且ping值比较高,想买的考虑清楚再说!官方网站:https://hosthatch.com所有VPS都基于KVM虚拟,支持PayPal在内的多种付款方式!芝加哥(大硬盘)VPS5...

HostNamaste$24 /年,美国独立日VPS优惠/1核1G/30GB/1Gbps不限流量/可选达拉斯和纽约机房/免费Windows系统/

HostNamaste是一家成立于2016年3月的印度IDC商家,目前有美国洛杉矶、达拉斯、杰克逊维尔、法国鲁贝、俄罗斯莫斯科、印度孟买、加拿大魁北克机房。其中洛杉矶是Quadranet也就是我们常说的QN机房(也有CC机房,可发工单让客服改机房);达拉斯是ColoCrossing也就是我们常说的CC机房;杰克逊维尔和法国鲁贝是OVH的高防机房。采用主流的OpenVZ和KVM架构,支持ipv6,免...

pagerank为你推荐
操作http支付宝蜻蜓发布想做支付宝蜻蜓刷脸支付的代理么?怎么做?新iphone也将禁售iPhone停用怎么解锁 三种处理方法详解搜狗360360影视大全怎样免费看大片企业信息查询系统官网怎么在网上查询企业营业执照是否存在?outlookexpressoutlook Express是什么啊?怎么用啊?360邮箱邮箱地址指的是什么?sns网站有哪些有哪些好的SNS商务社交类网站?补贴eset河南省全民健康信息平台建设指引(试行)
个人域名备案 如何注册中文域名 韩国加速器 紫田 l5520 20g硬盘 外国域名 国外免费空间 主机合租 架设服务器 刀片服务器是什么 免费私人服务器 web服务器搭建 畅行云 带宽测试 七牛云存储 网站防护 贵州电信 windowsserver2008r2 godaddy退款 更多