precision17roco.com
17roco.com 时间:2021-04-11 阅读:(
)
37Biomimetics:BiomimeticsinNanotechnologyIlleC.
GebeshuberandManfredDrackINTRODUCTIONThischapterdealswiththebiomimeticmethodinnanosci-enceandnanotechnology.
Predictabilityonthebasisofsci-entificunderstandingisapreconditionfortechnology.
Theaimsofsciencearetoexplainandunderstandandtoorganizeknowledge.
Withasolidscientificbasis,itshallbepossibletomakepredictions,forexample,aboutthemovementofplanetsorasteroids,molecules,waterflowaroundpillars,oremer-gentpropertiessuchasbirdflockflyingpatternsandswarmintelligenceinants.
Toachievethis,varioustechniquesandmethodsareapplied.
Nanoscienceandnanotechnologytoolsandtechniqueshaverapidlydevelopedsincethe1980s.
Currenttoolsandtechniquesforcharacterization,manipulation,andfabri-cationofmatteratthenanoscalearemanifold.
Thefourmajorgroupsofnanoscaleprobingtoolsarescanningprobemicroscopy,(includingscanningtunnelingmicros-copy,atomicforcemicroscopy(AFM),andscanningnearfieldopticalmicroscopy),aswellaselectronmicroscopy,x-raymethods,andopticaltechniques(Bhushan2010).
Thecoretool,theAFM,wasinventedin1986(Binnigetal.
1986).
Thislenselessmicroscopehassubnanometerreso-lution,canbeusedforimagingaswellasmanipulationdowntothesingleatomlevel,andworksinvariousenvi-ronmentssuchasvacuum,air,water,buffersolutions,andoil(Haugstad2012).
Thismakesitsointerestingforappli-cationsregardingtheinvestigationofbiologicalsamples(Parotetal.
2007).
Evenlivecells(Henderson1994)orprotein–proteininteractionsonthesingleproteinlevelcanbeimagedwiththisdeviceinrealtimeatunprecedentedresolution(Vianietal.
2000).
Nanotechnologicalproductsandprocessescanbedevel-opedonthegroundsofnanofabrication(labscale),molec-ularmanufacturing(manufactureofcomplexnanoscalestructuresbymeansofnonbiologicalmechanosynthesisandsubsequentassembly),andnanomanufacturing(indus-trialscale)(Bhushan2010).
Insuchproductsandprocesses,nanotechnologycanbeembeddedinnumerousaspectsofthemanufacturingprocesses.
Whilethephysicsitselfisthesameacrossalllengthscales,materialsandstructureshaveuniquesize-dependentproperties(thatmaybeverydifferentfromthepropertiesofbulkmaterial).
Also,thesmallerthesize,themorerelevantthestructureofthematerialbecomes.
Singleatoms,moleculesandnanostructuresexhibitunusualphysi-cal,chemical,andbiologicalpropertieswhencomparedtothebulkmaterial.
Gold,forexample,hasgoldencolorationatthemacroscaleandisknownasahighlyinertmaterial;nano-goldcolloids,however,exhibitdifferentcolorsatdifferentsizesandconcentrations,andtheyarenotbio-inert(Brownetal.
2008).
Theideasfornewnanotechnologicalproductsandpro-cessesareoftenrootedinphysicsorinorganicchemistry.
Thereis,however,alsoaconsiderableandexpandingbodyofknowledgeatthenanoscaleinbiology.
Suchknowledgeaboutmaterials,structuresandfunctionsinlivingnaturecanbeappliedindifferentways.
Onepossibilityistousemacromoleculesororganismsdirectly,likeinbiotechnol-ogy.
Anotherwayistostrivefortheunderstandingofprin-ciplesbehindparticularphenomenaandtoapplythemindistinctareas,likeinbiomimetics.
Thefollowingfocusesonbiomimetics.
Whatwedescribehereisperhapsasmallbutprobablysig-nificantmethodfornanotechnology,becausetherolemodelsCONTENTSIntroduction37CommonGroundofBiomimeticsandNanotechnology38WhatIsBiomimetics38WhatIsNanotechnology39FieldsofCommonPotential40TechnologyPull41BiologyPush41ReverseBiomimetics41MetascientificConsiderations41ConclusionsandOutlook43Acknowledgments44References4438Biomimetics:BiomimeticsinNanotechnologythatcanbefoundinlivingnaturehavebeentestedinevolu-tionsincebillionsofyears.
COMMONGROUNDOFBIOMIMETICSANDNANOTECHNOLOGYMostoftenbiologyandengineeringdonottouchoneachother(Figure30).
Thereis,however,anintersectionofbothfields.
Differentdisciplinesarefoundinthisintersection,suchasthetwodistinctfieldsofbiotechnologyandbiomimetics.
Biotechnologyisnotourconcernhere;weonlydealwithbiomimetics.
Theintersectionitselfcanbeslicedintopiecesaccordingtotheirscale.
Bydoingso,thefielddiscussedinthischaptercanbeillustratedlikeinFigure30.
Inthefollowing,thefieldsofbiomimeticsandnanotech-nologyarecharacterizedinordertoinvestigatehowthefor-mercancontributetothelatter.
WhatIsBiomimeticsBiomimeticsisabouttransferringprinciplesfrombiologytoengineeringtoenhanceandbringupnewproductsandpro-cessesforhumanneeds.
Althoughthenameandthescientificfieldwereonlyestablishedinthelastdecades,themethodisanoldone.
LeonardodaVinciandhisstudiesofbirdflight,forexample,eventuallyhaveledtoairplanes.
Attheendofthetwentiethcentury,thefieldofbiomimeticsbecameestab-lishedbothmethodicallyandinstitutionally,leadingtoanever-increasingnumberofapplications.
Inthisrecentdefinition,themainaspectsarecovered:"Biomimeticscombinesthedisciplinesofbiologyandtech-nologywiththegoalofsolvingtechnicalproblemsthroughtheabstraction,transfer,andapplicationofknowledgegainedfrombiologicalmodels"(VDI62202012).
Atthecore,biomimeticsisaboutunderstandingfunc-tionaloroperationalprinciplesthatareatworkinbiologyandresultsintheabstractionsoftheminordertofindoutiftheymightalsoworkinengineering.
Thisprocedureisdifferentfrombiotechnology,whichisnotnecessarilyabouttransfer-ringprinciples.
Biomimeticsworksbecausebiologicalandengineeringentitiesarepartofthesameworldandthereforeunderliethesamenaturallaws.
Hence,principlesinlivingorganismscanalsoworkintechnicalapplications.
Nevertheless,therearelargedifferencesbetweenentitiesfromtherespectivefields.
Onedifferenceisthedevelopmentthroughoutwhichafertilizedeggturnsintoanembryoandeventuallyintoamatureorganism.
Thisiscompletelydifferentfromproduc-tiondevicesormachinesinengineering.
Anotherdifferenceisthateverymachinehasitsengineerwhobuildsit,whereasorganismsdonot.
Butthisparadigmisslowlychanging,withthedevelopmentofengineeredself-replicatingmachines(see,e.
g.
,Griffithetal.
2005).
Basically,twowaysofworkinginbiomimeticscanbedis-tinguished.
Theyarereferredtoastechnologypull(alsocalledtop-downbiomimeticsandbiomimeticsbyanalogy)andbiol-ogypush(alsocalledbottom-upbiomimeticsandbiomimeticsbyinduction)(see,e.
g.
,GebeshuberandDrack2008).
Technologypullbiomimeticsisproblembased:itstartswithaprobleminengineering.
Thenextstepistoseeifsimilar"problems"occurinlivingnature.
Dragreduction,forinstance,isaproblemforshipbuildersandsimilarlyforfish.
Aftersuchequalproblemsarefound,thebiologicalrolemodelsareinvestigatedwiththetoolsandmethodsofengi-neering.
Theterm"technicalbiology"(TechnischeBiologie)wasintroducedbyNachtigalltonamethismethodicalpartofbiomimetics(cf.
Nachtigall1998).
Inthedragreductioncase,forexample,theengineerwouldmeasurerelevantparam-etersofthefishandlookatthesurface,shape,andsoon.
Indoingso,theresearchermightfindinterestingfeatures,sofarnotthoughtaboutinengineering.
Theprocessoffindingoutmoreabouttheprinciplesstartswiththepotentialresultofanabstractionthatcanbetransferredandappliedinhuman-builtdevicesormachines.
Biologypushbiomimeticsstartswithbasicresearchinbiology,withouthavinganapplicationinmind.
Duringoraftersuchwork,itmightturnoutthatthefoundresultsarealsousefulforengineering(solution-basedbiomimetics).
Thefoundprinciplesarethentransferredandapplied.
Technologypull,ingeneral,hasalargepotentialforfind-ingwithinashorttimeprinciplesthatareusefulforparticularproblems.
Utilizationofsuchprinciplesisusuallyrestrictedtoasmallareaofapplication.
Incontrast,biologypushbiomi-meticshasalowerpotentialforimmediateapplications,butthechanceforfindingrevolutionaryorgenericprinciplesismuchhigher.
Whetheraproductortechnologyistheresultofbiomimet-icsornotfollowsfromthedescriptionofthemethod.
Threenecessaryconditionshavetobefulfilled(i.
e.
,answeredwithyes)tolegitimatelyspeakaboutbiomimetics(Freyetal.
2011,VDI62202012):1.
Rolemodelfrombiology:Didtheinspirationcomefromlivingnature(biology)2.
Abstractionfrombiologicalrolemodel:Wasthereanabstraction(ofaprinciple)ofthenaturalroleBiomimeticsatthenanoscaleEngineeringBiologyMilliBiomimeticsNanoMicroFIGURE30Biomimeticsandbiotechnologyaresomeofthefewareasattheintersectionofengineeringandbiology.
Biomimeticsatthenanoscaleisasmallbutprobablysignificantmethodinnanotechnology.
39Biomimetics:BiomimeticsinNanotechnologymodelWasthebiologicalknowledgeanalyzedandabstractedstepbystep(withanunderstandingoftheprinciple)3.
Transfertotechnicalapplication:WastheprincipleappliedinengineeringThescopeofbiomimeticsisbroad.
Mostoftheestablishedknowledgetransferwasdoneinthefieldofconstructions.
However,processesinlivingnaturearealsoofinter-est,forexample,photosynthesis.
Furthermore,informa-tionprocessinglikeinneuronalnetworksoroptimizationwithgeneticalgorithmscanbereferredtoasbiomimetics(Gruberetal.
2011).
Aswehaveseen,researchinbiomimeticscanleadtoapplicationsinengineering.
Additionally,theprocessofdoingbiomimeticscanalsorevealnewinsightsforbiol-ogy,besidesthoseaccomplishedwithtechnicalbiology.
Thiscanbetermedasreversebiomimetics(cf.
Masselteretal.
2012,p.
380).
Oneexampleistheevolutionarystrat-egyofRechenberg(1994).
Heintroducedalgorithmsforoptimizationinengineeringbasedontheconceptsofmuta-tion,selection,andrecombinationfromevolutionarybiologyandachievedgoodresultsinengineering.
Analyzingthosealgorithmsinturnwasofinterestforevolutionarybiology(cf.
WagnerandAltenberg1996).
WhatIsNanotechnologyAccordingtoISOdefinitionISO/TS80004-1:2010,nanotech-nologyisthe"applicationofscientificknowledgetomanipu-lateandcontrolmatterinthenanoscale[…]inordertomakeuseofsize-andstructure-dependentpropertiesandphenom-ena,asdistinctfromthoseassociatedwithindividualatomsormoleculesorwithbulkmaterials.
"Inanotetothisentry,ISOstatesthatmanipulationandcontrolincludesmaterialsynthesis.
Nanotechnologyhasfunctionalpartsintherangeofnanometerstosomehundredsofnanometers.
Theriseofnanotechnologybeganwhenwewereablenotjusttoimagebutalsotomanipulatematteronthenanometerscale.
Thesepossibilitiesweregreatlyenhancedwiththeincreasingavail-abilityofscanningprobemicroscopesforthescientificcom-munity(Meyeretal.
2004/2012).
OneoftheearlyexamplesofnanotechnologicalmanipulationisthespellingofthecompanynameIBMbyDonEiglerandcoworkersfromIBMAlmadenwithjust35xenonatomsonasingle-crystalnickelsurface(EiglerandSchweizer1990).
Thegrouptherebydem-onstratedtailoredmanipulationofsingleatoms.
Thetwomajorapproachesforobtainingnanotechno-logicalproductsandprocessesaretermedtopdownandbottomup(nottobeconfusedwiththetermsasusedinbiomimetics).
Intop-downapproaches,nanoobjectsareconstructedfromlargerentitieswithoutatomic-levelcontrol.
Top-downapproachescompriselithography,deposition,andetching.
Inbottom-upapproaches,materialsanddevicesarebuiltfrommolecularcomponentsthatassemblethemselveschemicallybyprinciplesofmolecularrecognition.
Bottom-upmethodsinclude(self-)assemblyofatomicandmolecularbuildingblockstoformnanostructures.
Thismethodiswidelyusedinsol-gelandchemicalvapordeposition.
Innature,self-assemblyhasexistedforbillionsofyears,fromsimplebiomoleculestocompleteorganisms.
Gebeshuberetal.
(2010)Thehistoryofnanomaterialscanbedatedbacktopre-Columbiantimes:Thefirstpermanentorganicbluepigment,MayaBlue,isaresultofancient"nanotechnology"(Chiarietal.
2008).
FurtherexamplesofhistoricalnanomaterialsaretheLycurgusCupintheBritishMuseum,datingbacktothelateRomanEmpire,andstainedglassesinMedievalEurope(Francis2010).
Propertiesofnanomaterialsareresponsiblefortherespectiveeffectsdescribedinthispara-graph.
Itremainstobediscussedifitisjustifiedtocallsuchancientapproaches"nanotechnology,"sincethepeoplebackthendidnotknowthereasonfortherespectivematerialproperties.
Ingeneral,nanosciencedealswithresearchonmaterials,structures,andprocessesonthenanometerscale,andnano-technologydealswiththedevelopmentofmaterials,struc-tures,andprocesseswherethefunctionalunitsareinthenanometerrange(generallyfromafewnanometerstosomehundredsofnanometers).
Nanoscienceandnanotechnologycanratherbeassociatedwithtools,techniques,andmethodsthanwithestablishedresearchfields.
Mostresearchinthesefieldsisratherinterdisciplinaryandtouchesuponpureandappliedmathematics,physics,chemistry,materialsscience,engineering,andlifesciences.
Themethods,concepts,andgoalsoftherespectivefieldsconverge.
Thisinherentinter-disciplinarityofnanotechnologyposesachallengeandoffersanenormouspotentialforfruitfulcross-fertilizationamongspecialistareas.
Thepropertiesofmanymaterialschangewhentheyexistasnanosizedparticles.
Besidesthechemistry,surfacephysicsbecomesincreasinglyimportant,andnotjustthematerialitselfbutalsoitsstructureisofrelevanceforitsmechanical,electrical,catalytic,optical,andtoxicproperties.
Furthermore,quantumeffectssuchasthetunnelingeffect,confinementproperties,spineffects,andquantumcoherenceareimportant.
Thescopeofnanotechnologyistoindividuallyaddress,control,andmodifystructures,materials,anddeviceswithnanometerprecisionandtosynthesizesuchstructuresintosystemsofmicro-andmacroscopicdimensionssuchasmicroelectromechanicalsystems-baseddevices.
Forthis,weneedtoestablishathoroughunderstandingofthefundamen-talphysics,chemistry,biology,toxicologyandtechnologyofnanoscaleobjects(nanomaterials,nanoparticles,nanostruc-tures),therespectivefabrication,diagnosticsandanalyticsandofhowsuchobjectscanbeusedinareassuchascom-putation,cosmetics,engineering,medicine,nanobiotechnol-ogy,nanostructuredmaterials,optics,resourcesustainability,science,sensors,textiles,andmanymore.
40Biomimetics:BiomimeticsinNanotechnologyFIELDSOFCOMMONPOTENTIALPhenomenaoflifeoccurondifferenthierarchicallevels,downtothenanoscale.
Themicro-andnanoscaleareofspecificimportanceinlivingsystems.
Singlemolecules,theirinter-actions,andemergentpropertiesonlargerlengthscalesaretheveryconstituentsoflife.
Thecomplexityofasinglecellinthehumanbodybyfarexceedsanycurrentengineereddevice.
Acell'sactivitiessuchassensing,actuation,energyconversion,orinformationstoragearecarriedoutwiththecontributionofbiomolecules,suchasproteins.
Proteinsizesrangefromabout1toabout20nm;therearemillionsofdifferentproteins.
Biologicalmaterialsareamazing:therearetoughmaterials,"smart"materials,adaptivematerials,functionalmaterials,materialswithmolecularprecision,hierarchicalmaterials,andmultifunctionalmaterials.
Manyfunctionalitiesonthemacroscalearebasedonfunctionalitiesonthenanoscale.
Themoreweunderstandandabstractdeepprinciplesofbiologyontheselengthscales,themoresuccess-fulcanthebiomimeticmethodtransferknowledgefrommate-rials,structures,andprocessesinlivingnaturetoengineering,forindependenttechnologicalapplicationsanddevices.
Withincreasinglypowerfulmicroscopes,researchershavestartedtoseeamazingorder,structure,andfunctionalitiesofbiologicalmaterials,downtoverysmallscales.
Biomolecular"machines"suchastheribosome,builtwithatomicprecision(Yusupovetal.
2001),powerfulcompositessuchastheAbaloneshell(Smithetal.
1999)orthecrystaleyesofbrittlestars(Aizenbergetal.
2001),biomineralizedbeautifullystructuredlittlegemssuchasdiatoms(GebeshuberandCrawford2006,Roundetal.
1990/2007),optimizedbiotribologicalproperties,forexample,decreasingthefrictioncoefficienttonumberssolowthatlubricationengineersareamazed(Gebeshuber2007)andfunctionalsurfaceswithnanoscalepropertiesresponsibleforexcitingtrickssuchasincreasedantireflectiveproperties(Stavengaetal.
2006)oriridescentcolorationinplantsandmicroorganismsbasedonnanostructures(GebeshuberandLee2012)arejustsomeexamplesforthepropertiesoforgan-ismsthatarealsointerestingforengineering.
Currently,mergingofnanoscienceandnanotechnologywiththelifesciences,especiallybiology,biotechnology,bio-mimetics,nanomedicine,geneticengineering,andsyntheticbiology,canberecognized(see,e.
g.
,Bainbridge2007,ChenandHo2006,Ulvick2010).
Thisnewandemergingfieldwithenormouscreativepotentialiscallednanobioconvergence.
AndreasLymberisfromtheEuropeanCommission,InformationSocietyandMediaDirectorate-General,describesconvergingmicro-andnanobiotechnologiestowardintegratedbiomedicalsystemsasresearchanddevelopmentattheconvergenceofmicroelec-tronics,nano-materials,biochemistry,measurementtechnol-ogyandinformationtechnologythatisleadingtoanewclassofbiomedicalsystemsandapplications,e.
g.
,molecularimag-ing,pointofcaretesting,genetherapyandbionics(includingonandinsidethebodysensorsandotherminiaturisedsmartsystems)whichareexpectedtorevolutionisethehealthcareprovisionandqualityoflife.
Inparticulartheyareexpectedtoidentifydiseasesattheearliestpossiblestage,intervenebeforesymptomaticdiseasebecomesapparentandmonitorboththeprogressofthediseasesandtheeffectofinterventionandtherapeuticprocedures.
Lymberis(2008)Nanobioconvergenceisanemergingfield,andnorigiddefini-tionhasbeenestablishedyet.
Onepotentialdefinitionisthefollowing:"Nanobioconvergencedenotesthemergingoflifesciences,especiallybiologyandbiotechnology,withnanosci-enceandnanotechnology,focusingonthetechnicaloutputfromtheconnectionsoftheseparticularfieldsaswellasontheunifiedopportunitiesandchallengestheypresenttohumannatureandourvalues"(Gebeshuberetal.
2013).
Biotechnology(geneticengineering,engineeringofproteins,etc.
),bionano-science(focusingonmolecularbuildingblocksoflivingcells),andbiomimeticsformimportantconstituentsofnanobiocon-vergence.
Biomimeticscanbedoneonmanylengthscales,butbecauseofthehierarchicalorganizationoforganisms,withmanypropertiesbasedonfunctionalitiesoriginatingfromthenanoscale,biomimeticsisespeciallyrewardingwhentakingintoaccountnanoscalepropertiesoflife.
Sinceallthesefieldsarecurrentlyemerging,thereisstillalotofdefiningandcategorizinggoingon.
Whatonesetofresearcherswouldplaceinbiotechnology,otherscategorizeasbiomimetics.
Researchtowardproducingspidersilkisacaseinpoint.
Thecategoriescanalsochangewithtime.
Sarikayaandcoworkers,forexample,wroteintheir2003paper"Molecularbiomimetics:nanotechnologythroughbiology"(Sarikayaetal.
2003):"Molecularbiomimeticsisanemergingfieldinwhichhybridtechnologiesaredevelopedbyusingthetoolsofmolecu-larbiologyandnanotechnology.
Takinglessonsfrombiology,polypeptidescannowbegeneticallyengineeredtospecifi-callybindtoselectedinorganiccompoundsforapplicationsinnano-andbiotechnology.
"Eightyearslater,thegroupreportsthefabricationofhierarchicalhybridstructuresusingbioen-abledlayer-by-layerself-assembly,functionalhybridnanoma-terialswithwell-definedhierarchicalandspatialorganization(Hnilovaetal.
2012)—somethingonewouldnowadaysrathercallbiotechnologythanbiomimetics.
Biomimetictechniquesappliedtonanotechnologycom-prisetechnologypullandbiologypush.
Examplesforbio-mimeticsinnanotechnologyareprinciplesofself-assembly(Valéryetal.
2003),self-repairingmaterials(dynamicbreak-ingandrepairof"sacrificial"bonds)(Fantneretal.
2005),bioinspiredsensors(Barthetal.
2012),massproductionofnanostructures(GuozhongandYing2011),andartificialpho-tosynthesis(Razeghifard2013).
Onamoreabstractlevel,WernerNachtigall,thedoyenofbiomimeticsinGermany,identified10generalprinciplesofbio-mimeticsthatcanbeappliedbyeverybodyworkinginthefield,evenbypeoplewhoarenot(orwhodonotwanttobe)involvedinbiologyatall(Nachtigall2009).
Theseprinciplesareasfollows:1.
Integrationinsteadofadditiveconstruction2.
Optimizationofthewholeinsteadofmaximizationofasinglecomponentfeature41Biomimetics:BiomimeticsinNanotechnology3.
Multifunctionalityinsteadofmonofunctionality4.
Fine-tuningregardingtheenvironment5.
Energyefficiency6.
Directandindirectusageofsolarenergy7.
Limitationintimeinsteadofunnecessarydurability8.
Fullrecyclinginsteadofpilingwaste9.
Interconnectednessasopposedtolinearity10.
Developmentviatrial-and-errorprocessesNachtigall'sgeneralprinciplesareofhighrelevanceforbiomimeticsthatdrawsitsinspirationfromnanoscalepropertiesoflivingmatter.
Oneexamplefor"fine-tuningregardingtheenvironment"isnavigationinhoneybees.
Theseanimalsorientthemselveswiththehelpofthepolarizationoftheskylight.
Abstractionofthedeepprin-ciplesofpolarizedskylight-basednavigationleadstothedevelopmentoftechnicalnavigationsystems(producedwithmicro-andnanofabricationtechniques)thatarecom-pletelyindependentfromthenormallyusedGPSsystems(reviewedinKarmanetal.
2012).
Biomimeticsatthenanoscalehasasintegralpartsabstrac-tionoftheprinciplesoftheinvestigatednanomaterials,nano-structures,andnanoprocesses,followedbyprincipletransfertonanotechnology.
Intheremainderofthissection,weillus-trateintwoexamplesthetechnologypullandbiologypushmethodsofbiomimeticnanotechnology.
TechnologyPullTheCarinthiaUniversityofAppliedSciencesinAustriaofferstheMSccourse"BiomimeticsinEnergySystems.
"Oneoftheauthorsofthischapter(ICG)supervisedtheMScthesis"Biomimeticpotentialofspongespicules"byEhret(2012).
Theworkperformedinthisthesisshallnowserveasanexamplefor"technologypull.
"Bioinspiredimprove-mentofdaylight-guidancesystemsinbuildingswastheprobleminengineeringonwhichthethesisisbased.
Glasssponges(animals)wereselectedasmodelorganismswithsimilar"problems"inlivingnature.
Thesilicaspiculesofglassspongesserveaslightguides,providinglighttothephotosynthesizingmicroorganismsandalgaethatliveincloseassociationwiththe"glassfiber"intheinteriorfromthesponge.
Detaileddescriptionofinvestigationsofthebiologicalrolemodel,theglasssponges,withtoolsandmethodsfromengineering,includingdynamicalmechani-calanalysis,lighttransmissionstudies,andthepropagationofultrashortlaserpulses,leadtothefollowingabstractionsthatcansubsequentlybetransferredtoengineering:self-assemblyofmetaloxidesonfunctionalizedsurfaces,themanufacturingoflayeredorganic-inorganiccompositeswithenhancedmechanicalproperties,andthetuningofopticalandmechanicalpropertiesbymeansofnanostructuringandhierarchicalarchitecture.
Applicationoftheseabstractionsinconstructionofdaylight-guidancesystemsshallyieldmoreconvenientlyilluminatedworkspacesinofficesproof(Figure31).
BiologyPushOneexampleforsuccessful"biologypush"isnanoscalestruc-turesonmotheyes(Figure32).
Theeyesofcertainmothsarecoveredwithnipple-likearrays,whichbasicbiologicalresearchrevealedtobeantireflective(VukusicandSambles2003).
Thenipplearraygraduallymatchestheopticalimped-anceofonemediumwiththatofitsneighboracrosstheinter-face.
Suchapropertyisofparamountinterestinengineeringapplications,forexample,forlenssurfacesofcameraandphotographicequipment.
Principletransfertoengineeringisstraightforward,sincethepropertyinquestionisdepen-dentonthestructureratherthanonthematerial.
Man-madesimilarnanofabricatedstructures(ReflexiteTM)yieldamazingantireflectivepropertiesinawidebandwidth,from400to700nm(BodenandBagnall2006,Figure32).
ReverseBiomimeticsProminentexamplesforreversebiomimeticsatthenanoscaleremaintobeseen.
Nevertheless,thereisaconsiderablepoten-tialforsuchexamples.
Thoughnotintherealmofreversebiomimetics,thediscoveryofthemechanismofATPproduc-tioninmitochondriacanserveasanillustration.
ATPisauniversalcarriermoleculeofenergyinorganisms.
PeterD.
MitchellproposedthechemiosmotictheorytoexplainhowATPproductioncouldwork,forwhichhereceivedtheNobelPrize.
FortheproductionofATP,anelectrochemical(proton)gradientacrossthemembraneofthemitochondrionwaspro-posed.
ExperimentstosupportthistheorywereperformedbyRackerandStoeckenius(1974).
Theyartificially"built"vesiclesthatcontainedATPase(theenzymethatcatalyzethedecompositionofATPintoADPandafreephosphateion)intheirmembranesandthroughsomeothermeanstheyprovidedforaprotongradient.
Thearrangementofthesecomponentsturnedouttobecausallysufficienttoexplaintheprocessesintheorganism(Weber2005).
Similarly,onecanthinkoffutureexampleswhere,bybuildingofbiomimeticnanoprod-ucts,knowledgecanbegainedinbiology.
METASCIENTIFICCONSIDERATIONSInthissection,wedealwithfurtherconsiderationsthataredeemedimportantwhendescribingbiomimeticsinnanotech-nology:thegoalandfutureofnanotechnology,ethical,legal,andsocialissues(leadingtogovernanceandriskresearch)andeducationalaswellasaccessibilityissuesinanageofconvergingtechnologies.
AccordingtotheForesightInstitute(PaloAlto,California),thegoalofnanotechnologyis"toimproveourcontroloverhowwebuildthings,sothatourproductscanbeofthehighestquality[…]whilecausingthelowestenvironmentalimpact.
"(ForesightInstitute2015).
However,itneedstobeensuredthatnanotechnologythatisintendedtocausethelowestenviron-mentalimpactisnotonlyupfront"green"withnegativesideeffectsonourselves,furtherorganisms,andtheenvironment.
Somehumanactionsandtechnologicaldevelopmentsmight42Biomimetics:BiomimeticsinNanotechnologyhaveshort-termbenefitsontheenvironment,butcomewithunforeseeablelong-termeffectsthatarehardandimpossibletopredictforthecomplexsystemweareallembeddedin.
Theprogressofnanoscienceandnanotechnologyisaccom-paniedbyimportantethical,health,environmental,andsocialissues.
Becauseofthehugeenvisagedimpactofscienceandtechnologyonsociety,increasinglyalsosocialscientistsandtechnologyassessmentspecialistsdealwithnanoscienceandnanotechnology.
Prospects,problems,andpotentialrisksrequirefocusedconsiderationbythirdpartiessuchasparliaments,NGOs,sociologists,philosophers,insurancecompanies,lawenforcementagencies,orscientificresearchersfromotherfields.
Technological,environmental,societal,health,andsafetyissuesmustbeaddressedinresearch,societalstudies,regulatorymea-sures,andgovernmentpolicies(Holsappleetal.
2005,HolsappleandLehman-McKeeman2005,Huber2010,Powersetal.
2006,ThomasandSayre2005,Thomasetal.
2006a,b,Tsujietal.
2006).
Societalimplicationsofnanoscienceandnanotechnol-ogyshouldbejudgedusingabalancedapproachbetweenthepotentialachievements(leadingtoenvisionedsocietalben-efits)andpotentialhazardousconsequences(whichcouldbeacombinationofunexpectedbenefitsandrisks)(Roco2003).
"Futures"intermsofvisions,expectations,scenarios,fears,andhopesincreasinglydominatescienceoutreachandthegps(a)(b)DiuserLowerpipeInsulationAttic(orplenum)spaceMiddlepipeRoofCollectorUpperpipeCeiling(c)FIGURE31(a)Amemberofthe1910–1913BritishArcticexpeditionwithaglasssponge.
Someglassspongeshavehydratedsilicaspiculesthatare3mlong.
Basedonfunctionalitiesonthenanoscale,suchspiculescanbeveryeffectivefracture-resistantlightguides.
(CopyrightPontingCollection,ScottPolarResearchInstitute,Cambridge,U.
K.
,http://www.
spri.
cam.
ac.
uk/.
)(b)Thelargestbiosilicastruc-tureonEarth:thegiantbasalspiculefromthedeep-seaglassspongeMonorhaphischuni.
(ReproducedfromWang,X.
etal.
,Evid.
BasedCompl.
Altern.
Med.
,540987,14,Copyright2011.
Withpermission.
)(c)Principleofdaylightguidinginbuildings.
(CopyrightDr.
AzizLaouadi,NationalResearchCouncilCanada,Ottawa,Ontario,Canada.
)43Biomimetics:BiomimeticsinNanotechnologydriveandmotivationofscientists(Grunwald2007).
Futuresaresociallyconstructed.
Especiallyconcerningnanoscienceandnanotechnologies,theongoingdebateisverymuchadebateaboutfutures.
Thevisionsforthefutureofnanotechnologyhaveawidebandwidth,rangingfrom"expectationsofsalvationandanticipationsofparadise"(Grunwald2010)totheannounce-mentofthe"ultimatecatastrophe"(Grunwald2010)—bothextremesbeingbasedonthesamefuturistictechnicalground.
Thehighdegreeofinterdisciplinarityinnanoscienceandnanotechnologyposesagrandchallengeaswellasprovidesgreatopportunitiestotoday'smainlyspecialistscientists.
Tofullyexploitthepotentialofbiomimeticsintheageofnanotechnology,scientistsandengineerswillhavetosubstan-tiallychangetheirwaysofthinking,especiallyontheleveloffundamentalresearchandeducation(CasertandDeboelpaep2006,GebeshuberandMajlis2010,Roco2002).
Still,manyresearchersusefortheirresearchonaspecificfieldinnanotech-nologyjusttheinstrumentstheyortheirclosecollaboratorshaveattheirdisposal,whicharenotalwaysthebest-suitedones.
Wehavetomovefromtool-basednanotechnologytounderstand-ing-basednanotechnology.
MartinReesfromTrinityCollegeinCambridgedescribesinhisforewordtoJamesLovelock's2010bookthecurrentwayofdoingscienceas"thespecial-izedquasi-industrialstyleinwhichmostresearchisconducted"(Rees2009).
Insuchaway,trueinterdisciplinaritycannotbeobtained.
Interdisciplinaryscientificprinciplesandconceptsthatallowspecialistscientiststounderstandcomplexphenom-enaneedtobedevelopedtowardaunificationofscience(RocoandBainbridge2002).
Toallowforproper,accessibleorganiza-tionofknowledge,thespecialistresultsthatcurrentlyappearinincreasinglyspecialistjournalsneedtoberearrangedandconnectedacrossfields(GebeshuberandMajlis2010).
CONCLUSIONSANDOUTLOOKOneoftheparamountadvantagesofthebiomimeticmethodasopposedtootherinnovationmethodsinnanotechnologyisthatwehavebiological"bestpractice"examplesandknowthatthey700600Wavelength(nm)Low-costARirditerationmotheyePMMAFirstiterationmotheyeWidebandAR500400(a)(A)(B)(B)(b)(A)5.
004.
003.
002.
001.
000.
00Reectance(%)2μmFIGURE32Antireflectivesurfacesonmotheyes(a)andtherespectiveengineeredbiomimeticantireflectivestructures(b).
(a):(A)SEMofamotheye,showingnipple-likestructures.
Inset:Moth.
Scalebar,1μm.
(B)Similarstructuresontransparentwingsofhawkmoths.
Scalebar,1μm.
Inset:Singlenipple.
Scalebar,100nm.
(b):(A)Reflectancemeasurementsonengineeredantireflectivesurfacestructures.
Forthesurfacecalled"thirditerationmotheye,"reflectanceisbelow1%forthewholespectrumthatisvisibletohumans.
(B)Biomimeticstructure,machinedinsilico.
Scalebar,2μm.
(a:ReproducedbypermissionfromMacmillanPublishersLtd.
Nature,Vukusic,P.
andSambles,J.
R.
,Photonicstructuresinbiology,424,852–855,CorrigenduminNature,429,680,Copyright2003;b:Boden,S.
A.
andBagnall,D.
M.
,Biomimeticsubwavelengthsurfacesfornear-zeroreflectionsunrisetosunset,ProceedingsoftheFourthIEEEWorldConferenceonPhotovoltaicEnergyConversion,Waikoloa,HI,pp.
1358–1361,2006IEEE.
)44Biomimetics:BiomimeticsinNanotechnologywork.
However,duetotheintegratedmultifunctionalityofbio-logicalmaterials,structures,andprocesses,itmightsometimesbehardtoidentifytherespectiveprinciplesresponsibleforonesingletechnologicalaspectthatwewanttotransfertoresearchanddevelopment.
Inthebiomimeticmethodappliedtonanosci-enceandnanotechnology,wehavetheoptiontogoalongtworoads:eithertotakethetypicalWesternscienceapproachandtrytodissectthebestpracticemodelsinlivingnaturetovari-oussingle,unrelatedproperties,someofwhichmaybehighlyintriguingandsuccessfulforimmediateapplicationincommonproducts,butthatmightcomewithunintendedlong-termeffects,ortotakeamoreholisticapproachandappreciatethebestprac-ticemodelsasawhole,tryingtodevelopadeepunderstandingwhylifeasweknowithasdevelopedthewaywecurrentlyexpe-rienceitandtodevelopakindofengineeringandwayofmanag-ingresourcesthatisclosertothewaynaturedoesit—biomimeticnanotechnologywiththestriveforsustainability.
Organismsshowus,forexample,acompletelydifferentwayofresource"management"asopposedtotheonewecurrentlyhaveinengineeringandconstruction.
Theypredominantlyusewater-basedchemistry,aresubjecttolimitsandboundaries,andareinastateofdynamicnonequilibrium.
Theyarelocallyattunedandresponsive(theyharvestlocally,usecommonmaterials,etc.
),integratecyclicprocessesviafeedbackloops,cross-pollinateandmutate,andareresilient(diverse,decen-tralizedanddistributed,redundant)(Biomimicry3.
82014).
Biomimeticsisperhapsasmallbutprobablysignificantmethod,becausetherolemodelsthatcanbefoundinlivingnaturehavebeentestedinevolutionsincebillionsofyearsandpromisegreatnanoscienceandnanotechnology-basedinnovations.
Tosumup,biomimeticsinnanotechnologyhasgreatpotentialforexcitingnanoscienceandnanotechnology-basedinnovations.
ACKNOWLEDGMENTSPartofthisworkwasfundedbygrantUKM-AP-NBT-16-2010(UniversityKebangsaanMalaysia)andgrantFRGS/1/2013/TK02/UKM/01/1(GovernmentofMalaysia).
ResearchofMDwasfundedbytheAustrianScienceFund(FWF):P22955-G17.
PartofthisworkwasfundedbyDeutscheForschungsgemeinschaft(DFG)grantSFB-TRR141.
REFERENCESAizenbergJ.
,TkachenkoA.
,WeinerS.
,AddadiL.
,andHendlerG.
(2001)Calciticmicrolensesaspartofthephotoreceptorsys-teminbrittlestars,Nature412,819–822.
BainbridgeW.
S.
(2007)Nanoconvergence:TheUnityofNanoscience,Biotechnology,InformationTechnologyandCognitiveScience,PrenticeHall,UpperSaddleRiver,NJ.
BarthF.
G.
,HumphreyJ.
A.
C.
,andSrinivasanM.
V.
(Eds.
)(2012)FrontiersinSensing—FromBiologytoEngineering,Springer,Vienna,Austria.
BhushanB.
(Ed.
)(2010)SpringerHandbookofNanotechnology,3rdedn.
,Springer,Berlin,Germany.
BinnigG.
,QuateC.
F.
,andGerberC.
(1986)Atomicforcemicro-scope,Phys.
Rev.
Lett.
56(9),930–934.
Biomimicry3.
8(2014)Life'sprinciples.
http://biomimicry.
net/about/biomimicry/biomimicry-designlens/lifes-principles/(lastaccessedJuly21,2015)BodenS.
A.
andBagnallD.
M.
(2006)Biomimeticsubwavelengthsurfacesfornear-zeroreflectionsunrisetosunset,ProceedingsoftheFourthIEEEWorldConferenceonPhotovoltaicEnergyConversion,Waikoloa,HI,pp.
1358–1361.
BrownC.
L.
,WhitehouseM.
W.
,TiekinkE.
R.
T.
,andBushellG.
R.
(2008)Colloidalmetallicgoldisnotbio-inert,Inflammopharmacology16(3),133–137.
CasertR.
andDeboelpaepR.
(2006)Technologyassessmentonconvergingtechnologies:Finalreport,EuropeanTechnologyAssessmentGroup.
DeliverableoftheprojectTechnologyAssessmentonConvergingTechnologies,Brussels,Belgium.
ChenJ.
M.
andHoC.
-M.
(2006)Pathtobio-nano-informationfusion,Ann.
N.
Y.
Acad.
Sci.
1093(12),123–142.
ChiariG.
,GiustettoR.
,DruzikJ.
,DoehneE.
,andRicchiardiG.
(2008)Pre-columbiannanotechnology:Reconcilingthemys-teriesofthemayabluepigment,Appl.
Phys.
A90,3–7.
EhretS.
(2012)Biomimeticpotentialofspongespicules,MScthesis,CarinthiaUniversityofAppliedSciences,Carinthia,Austria,http://permalink.
obvsg.
at/fhk/AC09582941(lastaccessedJuly21,2015).
EiglerD.
M.
andSchweizerE.
K.
(1990)Positioningsingleatomswithascanningtunnellingmicroscope,Nature344,524–526.
FantnerG.
E.
,HassenkamT.
,KindtJ.
H.
etal.
(2005)Sacrificialbondsandhiddenlengthdissipateenergyasmineralizedfibrilsseparateduringbonefracture,Nat.
Mater.
4(8),612–616.
ForesightInstitute(2015)Frequentlyaskedquestions—nanotech-nology.
https://www.
foresight.
org/nano/whatisnano.
html(lastaccessedJuly21,2015).
FrancisS.
(2010)Historicalexamplesofnanomaterials,in:EncyclopediaofNano-ScienceandSociety,Vol.
1(Ed.
GustonD.
H.
),SagePublications,LosAngeles,CA,pp.
313–315.
FreyE.
,MasselterT.
,andSpeckT.
(2011)Wasistbionisch—EineAnalysedesIdeenflussesvonderBiologieindieTechnik,NaturwissenschaftlicheRundschau64,117–126.
GebeshuberI.
C.
(2007)Biotribologyinspiresnewtechnologies,NanoToday2(5),30–37.
GebeshuberI.
C.
andCrawfordR.
M.
(2006)Micromechanicsinbiogenichydratedsilica:Hingesandinterlockingdevicesindiatoms,Proc.
IMechEPartJ:J.
Eng.
Tribol.
220(J8),787–796.
GebeshuberI.
C.
andDrackM.
(2008)Anattempttorevealsynergiesbetweenbiologyandmechanicalengineering,Proc.
IMechEPartC:J.
Mech.
Eng.
Sci.
222(7),1281–1287.
GebeshuberI.
C.
andLeeD.
W.
(2012)Nanostructuresforcoloration(organismsotherthananimals),in:SpringerEncyclopediaofNanotechnology(Ed.
BhushanB.
),Springer,Dortrecht,theNetherlands,pp.
1790–1803.
GebeshuberI.
C.
,MacqueenM.
O.
,MajlisB.
Y.
,andDrackM.
(2013)Nanobioconvergence,in:NanotechnologyintheEdgeofConvergence,(Eds.
MajlisB.
Y.
,KostadinovK.
G.
andBhattiA.
S.
),COMSATS&NAMS&TCentre,NewDehli,India,pp.
123–139.
GebeshuberI.
C.
andMajlisB.
Y.
(2010)Newwaysofscientificpub-lishingandaccessinghumanknowledgeinspiredbytrans-disciplinaryapproaches,Tribol.
Mater.
Surf.
Interfaces4(3),143–151.
GebeshuberI.
C.
,YunasJ.
,andDeeC.
F.
(2010)Nanomanufacturing,in:EncyclopediaofNanoscienceandSociety,Vol.
1(Ed.
GustonD.
H.
),SagePublications,LosAngeles,CA,pp.
494–498.
GriffithS.
,GoldwaterD.
,andJacobsonJ.
M.
(2005)Self-replicationfromrandomparts,Nature437,636.
45Biomimetics:BiomimeticsinNanotechnologyGruberP.
,BrucknerD.
,HellmichC.
,SchmiedmayerH.
-B.
,StachelbergerH.
,andGebeshuberI.
C.
(Eds.
,2011)Biomimetics—Materials,StructuresandProcesses.
Examples,IdeasandCaseStudies,Springer,Heidelberg,Germany.
GrunwaldA.
(2007)Convergingtechnologies:Visions,increasedcontingenciesoftheconditiohumana,andsearchfororienta-tion,Futures39(4),380–392.
GrunwaldA.
(2010)Future,in:EncyclopediaofNanoscienceandSociety,Vol.
1(Ed.
GustonD.
H.
),SagePublications,LosAngeles,CA,pp.
265–267.
GuozhongC.
andYingW.
(2011)NanostructuresandNanomaterials:Synthesis,Properties,andApplications,2ndedn.
,WorldScientificPublishingCompany,Singapore.
HaugstadG.
(2012)AtomicForceMicroscopy:UnderstandingBasicModesandAdvancedApplications,Wiley,Hoboken,NJ.
HendersonE.
(1994)Imagingoflivingcellsbyatomicforcemicros-copy,Progr.
Surf.
Sci.
46(1),39–60.
HnilovaM.
,KaracaB.
T.
,ParkJ.
etal.
(2012)Fabricationofhierar-chicalhybridstructuresusingbio-enabledlayer-by-layerself-assembly,Biotechnol.
Bioeng.
109(5),1120–1130.
HolsappleM.
P.
,FarlandW.
H.
,LandryT.
D.
etal.
(2005)Researchstrategiesforsafetyevaluationofnanomaterials,PartII:Toxicologicalandsafetyevaluationofnanomaterials,currentchallengesanddataneeds,Toxicol.
Sci.
88(1),12–17.
HolsappleM.
P.
andLehman-McKeemanL.
D.
(2005)Forumseries:Researchstrategiesforsafetyevaluationofnanomaterials,Toxicol.
Sci.
87(2),315.
HuberH.
(2010)Governance,in:EncyclopediaofNanoscienceandSociety,Vol.
1,GustonD.
H.
,Ed.
,SagePublications,LosAngeles,CA,pp.
291–296.
KarmanS.
B.
,DiahS.
Z.
M.
,andGebeshuberI.
C.
(2012)Bio-inspiredpolarizedskylight-basednavigationsensors:Areview,Sensors12(11),14232–14261.
LymberisA.
(2008)Convergingmicro-nano-biotechnologiestowardsintegratedbiomedicalsystems:StateoftheartandfutureperspectivesundertheEU-informationandcom-municationtechnologiesprogram,ConferenceProceedingsoftheIEEEEngineeringinMedicineandBiologySociety,Vancouver,BritishColumbia,Canada,pp.
6–8.
MasselterT.
,BauerG.
,GallenmüllerF.
etal.
(2012)Biomimeticproducts,in:Biomimetics:Nature-BasedInnovation(Ed.
Bar-CohenY.
),CRCPress,BocaRaton,FL,pp.
377–429.
MeyerE.
,HugH.
J.
,andBennewitzR.
(2004/2012)ScanningProbeMicroscopy:TheLabonaTip,AdvancedTextsinPhysics.
PaperbackEdn.
ofthe2004Edn.
,Springer,Berlin,Germany.
NachtigallW.
(1998)Bionik,2ndedn.
,Springer,Berlin,Germany.
NachtigallW.
(2009)VorbildNatur:Bionik-Designfürfunktio-nellesGestalten,Springer,Berlin,Germany.
ParotP.
,DufreneY.
F.
,HinterdorferP.
etal.
(2007)Past,presentandfutureofatomicforcemicroscopyinlifesciencesandmedi-cine,J.
Mol.
Recognit.
20(6),418–431.
PowersK.
W.
,BrownS.
C.
,KrishnaV.
B.
etal.
(2006)Researchstrategiesforsafetyevaluationofnanomaterials.
PartVI.
Characterizationofnanoscaleparticlesfortoxicologicaleval-uation,Toxicol.
Sci.
90(2),296–303.
RackerE.
andStoeckeniusW.
(1974)Reconstitutionofpurplemembranevesiclescatalyzinglight-drivenprotonuptakeandadenosinetriphosphateformation,J.
Biol.
Chem.
249(2),662–663.
RazeghifardR.
(2013)NaturalandArtificialPhotosynthesis:SolarPowerasanEnergySource,Wiley,Hoboken,NJ.
RechenbergI.
(1994)Evolutionsstrategie'94,Frommann,Stuttgart,Germany.
ReesM.
(2009)ForewordtoLovelockJ.
,TheVanishingFaceofGaia–AFinalWarning,AllenLane,London,U.
K.
,p.
xii.
RocoM.
C.
(2002)NanoscalescienceandengineeringeducationalactivitiesintheUS,J.
NanoparticleRes.
4(3),271–274.
RocoM.
C.
(2003)Perspectives:Broadersocietalissuesofnanotech-nology,J.
Nanopart.
Res.
5,181–189.
RocoM.
C.
andBainbridgeW.
S.
(2002)Convergingtechnologiesforimprovinghumanperformance.
Nanotechnology,biotech-nology,informationtechnologyandcognitivescience,NSF/DOC-sponsoredreport,Arlington,TX.
RoundF.
E.
,CrawfordR.
M.
,andMannD.
G.
(1990/2007)Diatoms:BiologyandMorphologyoftheGenera,CambridgeUniversityPress,Cambridge,U.
K.
(paperbackreprint2007).
SarikayaM.
,TamerlerC.
,JenA.
Y.
,SchultenK.
,andBaneyxF.
(2003)Molecularbiomimetics:Nanotechnologythroughbiol-ogy,Nat.
Mater.
2,577–585.
SmithB.
L.
,SchfferT.
E.
,VianiM.
etal.
(1999)Molecularmecha-nisticoriginofthetoughnessofnaturaladhesives,fibresandcomposites,Nature399,761–763.
StavengaD.
G.
,FolettiS.
,PalasantzasG.
,andArikawaK.
(2006)Lightonthemoth-eyecornealnipplearrayofbutterflies,Proc.
R.
Soc.
BBiol.
Sci.
273(1587),661–667.
ThomasK.
,AguarP.
,KawasakiH.
,MorrisJ.
,Nakanishi,J.
,andSavageN.
(2006a)Researchstrategiesforsafetyevaluationofnanomate-rials,PartVIII:Internationaleffortstodeveloprisk-basedsafetyevaluationsfornanomaterials,Toxicol.
Sci.
92(1),23–32.
ThomasK.
andSayreP.
(2005)Researchstrategiesforsafetyevalu-ationofnanomaterials,PartI:Evaluatingthehumanhealthimplicationsofexposuretonanoscalematerials,Toxicol.
Sci.
87(2),316–321.
ThomasT.
,ThomasK.
,SadriehN.
,SavageN.
,AdairP.
,andBronaughR.
(2006b)Researchstrategiesforsafetyevaluationofnanomaterials,PartVII:Evaluatingconsumerexposuretonanoscalematerials,Toxicol.
Sci.
91(1),14–19.
TsujiJ.
S.
,MaynardA.
D.
,HowardP.
C.
etal.
(2006)Researchstrat-egiesforsafetyevaluationofnanomaterials,PartIV:Riskassessmentofnanoparticles,Toxicol.
Sci.
89(1),42–50.
UlvickS.
(2010)Onourradar:Nano-bioconvergence,IQTQuart.
1(2),2–3.
ValéryC.
,PaternostreM.
,RobertB.
etal.
(2003)Biomimeticorganiza-tion:Octapeptideself-assemblyintonanotubesofviralcapsid-likedimension,Proc.
Natl.
Acad.
Sci.
100(18),10258–10262.
VDI6220.
(2012).
Biomimetics,ConceptionandStrategy,DifferencesbetweenBiomimeticsandConventional,Methods/Products,VDI-Richtlinien,Beuth,Berlin,Germany.
VianiM.
B.
,PietrasantaL.
I.
,ThompsonJ.
B.
etal.
(2000)Probingprotein-proteininteractionsinrealtime,Nat.
Struct.
Biol.
7(8),644–647.
VukusicP.
andSamblesJ.
R.
(2003)Photonicstructuresinbiology,Nature424,852–855.
CorrigenduminNature429,680.
WagnerG.
P.
andAltenbergL.
(1996)Complexadaptationsandtheevolutionofevolvability,Evolution50,967–976.
WangX.
,GanL.
,JochumK.
P.
,SchrderH.
C.
,andMüllerW.
E.
G.
(2011)Thelargestbio-silicastructureonEarth:Thegiantbasalspiculefromthedeep-seaglassspongeMonorhaphischuni,Evid.
BasedCompl.
Altern.
Med.
540987,14.
doi:10.
1155/2011/540987.
WeberM.
(2005)PhilosophiedesbiologischenExperiments,in:PhilosophiederBiologie(Eds.
KrohsU.
andToepferG.
)FrankfurtamMain,Suhrkamp,Germany,pp.
359–378.
YusupovM.
M.
,YusupovaG.
Z.
,BaucomA.
etal.
(2001)Crystalstructureoftheribosomeat5.
5resolution,Science292(5518),883–896.
我们在选择虚拟主机和云服务器的时候,是不是经常有看到有的线路是BGP线路,比如前几天有看到服务商有国际BGP线路和国内BGP线路。这个BGP线路和其他服务线路有什么不同呢?所谓的BGP线路机房,就是在不同的运营商之间通过技术手段时间各个网络的兼容速度最佳,但是IP地址还是一个。正常情况下,我们看到的某个服务商提供的IP地址,在电信和联通移动速度是不同的,有的电信速度不错,有的是移动速度好。但是如果...
恒创科技也有暑期的活动,其中香港服务器也有一定折扣,当然是针对新用户的,如果我们还没有注册过或者可以有办法注册到新用户的,可以买他们家的香港服务器活动价格,2M带宽香港云服务器317元。对于一般用途还是够用的。 活动链接:恒创暑期活动爆款活动均是针对新用户的。1、云服务器仅限首次购买恒创科技产品的新用户。1 核 1G 实例规格,单个账户限购 1台;其他活动机型,单个账户限购 3 台(必须在一个订单...
华为云怎么样?华为云用在线的方式将华为30多年在ICT基础设施领域的技术积累和产品解决方案开放给客户,致力于提供稳定可靠、安全可信、可持续创新的云服务,做智能世界的“黑土地”,推进实现“用得起、用得好、用得放心”的普惠AI。华为云作为底座,为华为全栈全场景AI战略提供强大的算力平台和更易用的开发平台。本次年终聚惠618活动相当给力,1核2G内存1m云耀云服务器仅88元/年起,送主机安全基础版套餐,...
17roco.com为你推荐
access数据库ACCESS数据库有什么用刘祚天你们知道21世纪的DJ分为几种类型吗?(答对者重赏)同ip站点查询如何查看几个站是不是同IPwww.55125.cnwww95599cn余额查询www.299pp.com免费PP电影哪个网站可以看啊dadi.tv电视机如何从iptv转换成tv?hao.rising.cn电脑每次开机的时候,都会弹出“http://hao.rising.cn/?b=34” 但是这个时dpscycle痛苦术士PVE输出宏www.zzzcn.com哪里有免费看书的网站彪言彪语( )言( )语
php主机空间 网站域名备案 域名备案网站 加勒比群岛 edis 美国主机网 视频存储服务器 evssl证书 国外空间 typecho 200g硬盘 泉州电信 卡巴斯基试用版 傲盾官网 百度云1t 美国堪萨斯 空间技术网 in域名 最漂亮的qq空间 云服务器比较 更多