analysisse52se.com

se52se.com  时间:2021-04-09  阅读:()
[Typetext][Typetext][Typetext]2014TradeScienceInc.
ISSN:0974-7435Volume10Issue22BioTechnologyAnIndianJournalFULLPAPERBTAIJ,10(22),2014[13887-13893]FrosthardinessaccuracyassessmentbyelectricalimpedancespectroscopyinCatalpaspp.
duringfrosthardeningBaoDi1,JiQian1,YuMeng2,GangZhang1*,Di-YingXiang1,MingGuo31CollegeofHorticulture,AgriculturalUniversityofHebei,Baoding,Hebei071001,(CHINA)2CollegeofLandscapeandTravel,AgriculturalUniversityofHebei,Baoding,Hebei071001,(CHINA)3CatalpaBungeiResearchInstituteofZhoukou,Zhoukou466000,(CHINA)E-mail:zhanggang1201@126.
comABSTRACTThreespeciesofCatalpaspp.
wereusedtomeasuresolublesugarcontentandmembranepermeabilityaswellaselectricalimpedancespectroscopy(EIS)ofstemsduringfrosthardening.
TherelationsbetweenparametersoftheEISandcorrespondingsolublesugarcontentandmembranepermeabilitywereanalyzedrespectively.
ThecomparativelysatisfyingcorrelatedEISparameterswereselectedforestimatingfrosthardinessofstems.
AlsotheconventionalconductivitymethodwasappliedtoestimatefrosthardinessofsteminthreespeciesofCatalpaspp.
.
ThemostoutstandingparameteroftheEISwaschosenbycomparisonofthesetwoestimationfrosthardinessmethods,forthepurposeoftestingtheaccuracyoffrosthardinessassessedbymeansoftheEISmethod.
Thosestudyresultsreveal:1)Duringfrosthardening,solublesugarcontentandmembranepermeabilityincreased;2)ShapesofimpedancespectrawerechangedindifferentspeciesofCatalpaspp.
stem;3)TheEISparametersofspecificlow-frequencyresistancer1andspecificextracellularresistancerehadsignificantpositivecorrelationswithsolublesugarcontentaswellasmembranepermeability.
Amongthemr1rankonthetopforfrosthardinessofstemwithestimationaccuracyof81.
83%.
Inconclusion,theEISdatacanbeusedtoassessfrosthardinessofsteminthreespeciesofCatalpaspp.
withgreaterreliability.
KEYWORDSCatalpaspp.
;Frosthardiness;Accuracy;Electricalimpedancespectroscopy;Solublesugar;Membranepermeability.
13888FrosthardinessaccuracyassessmentbyelectricalimpedancespectroscopyinCatalpaspp.
duringfrosthardeningBTAIJ,10(22)2014INTRODUCTIONCatalpaspp.
isaprecioushigh-qualitytimberspeciesandfamousornamentaltreespeciesbecauseoftheexcellentmaterialqualityandbeautifultreeform[1,2].
Itiscultivatedinsubtropicalregionsofhemispherewithwarmtemperature.
Catalpaspp.
growthandbreedingarelimitedbylowtemperaturemainlyduringwinter,sometimesinearlyspringandlaterfall.
Theselowtemperaturesarecommoninnorthernhemisphere.
InordertoselectthepremiumfrosthardyresourceofCatalpaspp.
,itisnecessarytoestablishfastandobjectivemethodstoevaluatefrosthardiness(FH).
Thereareseveralphysiological,biochemicalandbiophysicalchangesincellsandtissuesduringfrosthardening,aswellasthechangesofFHoftheplants[3-5].
ThecurrentFHassessmentmethodistime-consumingwhichrequiresexpensiveequipment,andaconsiderableamountofmaterial.
TheEISisconsideredasanewfastandeffectivetechniqueforstudyingthestructureoforganicandinorganicmaterial,whichcangetthechangedinformationofphysicochemicalpropertiesofcellswithoutdestroyingit.
RecentlytheEIShasbeendevelopedinmanyfields[6-8].
ThestudiesshowedthattheEISparameterscannotonlyassesstheFHofplanteffectively,butalsocorrelatesignificantlywithFH[9,10].
Intheendoffrosthardening,however,theFHisunderestimatedbytheEISthanbytheothermethods[11,12].
MoststudiesfocusonthecorrelationbetweentheEISparametersandtheFHassessedbyelectrolyteleakage(EL).
However,dataisstillscarceintheaccuracyofFH.
TheaimofthepresentresearchwastostudytheaccuracyofFHassessedbymeansoftheEISmethod.
WeselectthebettercorrelatedEISparametersthroughtheverificationofaccuracy,whichcancomplementandimprovetheEISmethodtoassessFHofplant.
MATERIALSANDMETHODSPlantmaterialThecurrent-yearshootsweresampledinaone-yearprovenancefieldtrialwiththreeCatalpaspp.
atAgriculturalUniversityofHebeiinHebeiprovince(N3850′,E11526′,elevation25m,China).
ThosethreeCatalpaspp.
wereCatalpafargesiif.
duclorxiiofYunnan(N9851′,E2501′,elevation1640m,China),CatalpafargesiiofGansu(N10788′,E3603′,elevation1026m,China)andCatalpaovataofHenan(N11402′,E3283′,elevation88m,China).
Ineachofthethreeprovenances,10graftingplantswereselectedwiththesametreatmentofcontainerandsoil.
Measurementsofthecurrent-yearshootswerecarriedoutfrom20October,2009to20January,2010.
Samplesfrom10graftingplantsofeachprovenanceweretakenatone-monthintervals.
Atotaloffourmeasurementswereused.
Impedanceanalysisofnon-frost-exposedshootsTheelectricalimpedancespectraofthe8shootsfromeachprovenanceateachsamplingdateweremeasuredinlaboratoryimmediatelyaftersampling.
A15-mmsectionwascutfromthemiddleoftheshootsamples.
TheimpedancespectraweremeasuredasdescribedbyRepoetal[9].
ThesampleplacedindirectcontactwiththeelectrodepasteandtheAg/AgClelectrodes(RC1,WPILtd,Sarasota,USA)wassetincontactwiththepaste.
Theimpedancespectrumwasmeasuredat42frequenciesbetween80Hzand1MHz(HP4284ALCRmeter,AgilentTechnologies,USA).
Theinputvoltagelevelofthesinesignalwas100mV(r.
m.
s.
).
Theparametersofthedistributedcircuitmodel(single-DCE)wereestimatedbymeansofacomplexnon-linearleastsquares(CNLS)fittingprogram,whichusesCole-Colemodel.
TheparameterswerefetchedasdescribedbyZhangetal.
[8],whichincludedspecifichigh-frequencyresistancer,specificlow-frequencyresistancerl,specificextracellularresistancere,specificintracellularresistanceri,relaxationtimeanddistributioncoefficientofrelaxationtime.
DeterminationofmemeranepermeabilityA10-mmsectionwascutfromthemiddleoftheshootsamples.
Electrolyteleakage(EL)wasmeasuredasdescribedbyZhangetal.
[8].
Thesampleswereshakenatroomtemperaturefor24hbeforethefirstconductivitymeasurement(C1).
Theconductivitymeasurementofcontrol(deionizedwateronly)wasC01.
Thesampleswerekilledat100℃for20minandshakenforanother24hbeforethesecondconductivitymeasurement(C2),andtheconductivitymeasurementofcontrolisC02.
TherelativeELwasdefinedasequation1:EL=%100022011CCCC(1)DeterminationofsolublesugarconcentrationSolublesugarconcentrationwasdeterminedwithanthronecolorimetricassay.
Determinationofeachtreatmentwasrepeatedfourtimes[13].
MeasurementofFHControlledfreezingtestsTheshootsoffourfreezingtestswererinsedthreetimesbytapwaterandthreetimesbydeionizedwatertoremovesurfacepollutants.
EveryplasticbagwasputintosixbranchesofsamplewithalittledeionizedwaterinordertoavoidBTAIJ,10(22)2014excessivesupercooling.
Onesamplebagoffreezingtemperaturesincludedtemperaturescoolingwas6℃·h-1.
Thesampleswerekept24h.
Immediatelyafterthefreezingtest,themethod,respectively.
TABLE1:ThetemperatureDate20Oct.
20Nov.
20Dec.
20Jan.
FHassessedbyEISandELEIS:Afterfreezingtest,eightshootsfrosthardiness,theEISparameterwasmodeledtemperature:whereyisoneofEISparameters,andAandDdeterminetheasymptotesoftheEL:Afterfreezingtreatment,fourELtest.
Toobtainthefrosthardiness,therelativewithrespecttothetreatmenttemperature:wheredefineasymptotesofthefunction,andBistheSolublesugarconcentrationandmembranepermeabilityThesolublesugarconcentrationoffargesiif.
duclorxiiinJan.
,anddifferedsignificantly(Figure1A).
SugarconcentrationofCatalpafargesiif.
duclorxiiinJan.
Therewereno(P>0.
05).
ThemembranepermeabilityofstemsconcentrationofstemsexceptthatsignificantofCatalpafargesiif.
duclorxiidifferedsignificantlysignificantdifferencebetweenthreespeciesFigure1:Thevariationofsolublesugar(A)andfrosthardening;Catalpafargesiif.
duclorxiiGangZhangetal.
ofeachprovenancewasexposedineachofseventemperaturestemperaturesthatkilledthesamplesandtemperaturesthatcausedkeptatthetargettemperaturefor4handthenmovedinto4thedegreeoffrostdamageintheshootswasquantifiedtemperaturesusedfordeterminingFHinfourcontrolledfreezingtestsTemperature/℃4-3-6-10-15-20-304-6-13-20-25-35-454-8-14-22-30-38-464-8-16-24-34-46-72shootswereusedineachprovenanceandeachfreezingtemperature.
modeledbyalogisticsigmoidfunction(inequation2)withparameters,xistreatmenttemperature,Bisslopeatinflectionpointthefunction.
shootsfromeachfreezingtemperatureforeachprovenancerelativeconductivitywasmodeledbyalogisticsigmoidwhereyandxrefertotheELandtheexposuretemperature,theslopeattheinflectionpointC.
RESULTSmembranepermeabilityofstemsofstemsofCatalpaspp.
wasincreasingduringfrosthardeningsignificantlyamongthreespeciesofCatalpaspp.
betweenCatalpafargesiidifferedsignificantlyfromCatalpaovatainnosignificantdifferencebetweenthreespeciesofCatalpastemsofthreespeciesofCatalpaspp.
followedasimilarsignificantdifferencewasfoundinJan.
(P<0.
05)(Figure1B).
ThesignificantlyfromCatalpaovataandCatalpafargesiiinspeciesofCatalpaspp.
inOct.
,Nov.
andDec.
.
solublesugar(A)andmembranepermeability(B)ofdifferentCatalpaduclorxiiCatalpafargesiiCatalpaovata13889temperatures(TABLE1).
Thenodamage.
Therateof4℃tothawgraduallyforquantifiedbytheEISandtheELsusedfordeterminingFHinfourcontrolledfreezingteststemperature.
Toobtainthewithrespecttothetreatment(2)pointC,Cisfrosthardinessprovenancewereselectedforthefunction(inequation2)temperature,respectively,AandDhardeningexceptCatalpabetweenJan.
andOct.
(P<0.
05)inOct.
andfromCatalpaatalpaspp.
inNov.
andDec.
patternassolublesugarhemembranepermeabilityJan.
,andtherewerenoatalpaspp.
stemsduring13890FrosthardinessaccuracyassessmentbyelectricalimpedancespectroscopyinCatalpaspp.
duringfrosthardeningBTAIJ,10(22)2014EISandEISparameteranalysisofstemsShapesofEISofstemwerechangedindifferentspeciesofCatalpaspp.
anddifferentperiodduringthefrosthardening,whichcoulddemonstratechangingintissuestructureandphysiologicalandbiochemicalchangeincells.
ThespectraofthreespeciesofCatalpaspp.
wereclearlycharacterizedbysinglearc(Figure2).
ThearcofCatalpafargesiif.
duclorxiiwassmallerthanthatofCatalpafargesiiandCatalpaovataduringfrosthardening(Figure2A-D),however,thearcofCatalpafargesiiwasbiggerthanthatofCatalpaovatainNov.
andDec.
(Figure2BandC)andthearcofCatalpaovatawasbiggerthanthatofCatalpafargesiiinOct.
andJan.
(Figure2AandD).
WithfrosthardeningthearcofCatalpafargesiif.
duclorxiibecamebiggerinearlystageandthensmallerlater,themaximumvalueoftoparcwas-10.
24kinOct.
andtheminimumvalueoftoparcwas-18.
55kinJan.
.
Duringfrosthardening,thearcofCatalpafargesiibecamebigger,themaximumvalueoftoparcwas-25.
91kinOct.
andtheminimumvalueoftoparcwas-106.
08kinJan.
,whilethearcofCatalpaovatabecamesmallerinearlystageandthenbiggerlater,themaximumvalueoftoparcwas-29.
80kinNov.
andtheminimumvalueoftoparcwas-124.
76kinJan.
.
AlloftheparametersofCatalpaovataincreasedduringthefrosthardeningexceptdistributioncoefficientofrelaxationtime.
IthadasharpriseinJan.
(Figure3A-E).
InJan.
thevalueofCatalpaovatawashigherthanthatofCatalpafargesiiandCatalpaovatainr,ri,,and,butitwaslowerthanCatalpafargesiiinrlandre(Figure3BandC).
EISparametersvaluesinCatalpafargesiiandCatalpaovatawerehigherthanthoseofCatalpafargesiif.
duclorxiiinallparameters(Figure3A-F),anddifferedsignificantlyinrl,reandinJan.
(P<0.
05).
ThetrendofwassimilarforthreespeciesofCatalpaspp.
,whichwashigherforparametervaluesinNov.
andDec.
andlowerinOct.
andJan.
.
Figure2:ImpedancespectraofstemsofdifferentCatalpaspp.
duringfrosthardening;A:Thedateof20Otc.
,B:Thedateof20Nev.
,C:Thedateof20Dec.
,D:Thedateof20Jan.
);Thespectrawerethepooleddataofeachmonthandcomposedof42differentfrequenciesrangingfrom80Hzto1MHz(fromrighttoleft,respectively);Catalpafargesiif.
duclorxiiCatalpafargesiiCatalpaovataCorrelationbetweenEISparameterandsolublesugarconcentrationaswellasmembranepermeabilitySomeEISparametersandsolublesugarconcentrationaswellasmembranepermeabilityarecorrelated.
Theparametersofr1andrehadsignificantpositivecorrelationswithsolublesugaraswellasmembranepermeability.
Thecoefficientofdetermination(R2)betweenr1andsolublesugarconcentrationaswellasmembranepermeabilitywas0.
621and0.
823,respectively.
Thecoefficientofdetermination(R2)betweenreandsolublesugarconcentrationaswellasmembranepermeabilitywas0.
624and0.
828,respectively(TABLE2).
BTAIJ,10(22)2014GangZhangetal.
13891Figure3:EISparametersofstemsindifferentCatalpaspp.
duringfrosthardening;Catalpafargesiif.
duclorxiiCatalpafargesiiCatalpaovataTABLE2:CorrelationbetweenEISparametersandsolublesugarconcentrationaswellasmembranepermeabilityinstemsofCatalpaspp.
duringfrosthardeningEISparametersSolublesugarconcentrationMembranepermeabilitySpecifichigh-frequencyresistancer0.
4350.
484Specificlow-frequencyresistancerl0.
621*0.
823*Specificextracellularresistancere0.
626*0.
828*Specificintracellularresistanceri0.
4390.
454Relaxationtime0.
3490.
566Distributioncoefficientofrelaxationtime0.
264-0.
105*meansthatcorrelationissignificantatthe0.
05level,andforstem,n=36.
FHassessedbyEISparametersThesugarconcentrationandmembranepermeabilitywerereliablephysicalsignstoassesstheFHofplants.
SoitismorereliableforEISparameterstoassessFHofCatalpaspp.
asaresultofsignificantcorrelationbetweenEISparametersofr1,reandsolublesugarconcentrationaswellasmembranepermeability.
TheFHofeachCatalpaspp.
assessedbyr1weresimilartothatassessedbyreduringfrosthardeningexceptJan.
(TABLE3).
TheFHofeachCatalpaspp.
wassignificantdifferentbetweentwomethodsinJan.
(P<0.
05).
13892FrosthardinessaccuracyassessmentbyelectricalimpedancespectroscopyinCatalpaspp.
duringfrosthardeningBTAIJ,10(22)2014TABLE3:ComparisonofFHinstemsofdifferentCatalpaspp.
assessedbyEISparametersDateCatalpafargesiiCatalpaovataCatalpafargesiif.
duclorxiirlrerlrerlreFH/℃FH/℃FH/℃FH/℃FH/℃FH/℃20Oct.
-10.
368a-10.
359a-11.
383a-12.
051a-9.
848a-9.
806a20Nov.
-19.
781a-19.
715a-22.
104a-22.
078a-31.
655a-34.
306a20Dec.
-22.
173a-22.
426a-38.
006a-38.
393a-21.
331a-21.
637a20Jan.
-24.
728a-12.
247b-28.
298a-16.
217b-27.
451a-29.
776bAccuracytestofFHassessedbyEISTheFHofthreespeciesofCatalpaspp.
assessedbyr1andrewastestedbyEL.
TheresultsshowedthatFHresultsofELcorrelatedwellwithFHresultsassessedbyr1andre.
Thecoefficientofdetermination(R2)ofthreespeciesCatalpaspp.
wasover0.
5,androotmeansquareerror(RMSE)andrelativeerror(RE)werelower.
Theparameterr1wasthebesttoassesstheFHwithR2=0.
80,RMSE=3.
815,RE=18.
17%,andtheassessedaccuracywas81.
83%(TABLE4).
TABLE4:ThefitevaluationindicatorsoftheFHmeasuredvaluesbytherelativeconductivity(x)andEISparameters(y)duringfrosthardeningEISparametersRegressionequationR2RMSERE(%)Specificlow-frequencyresistancerly=0.
9413x-0.
4790.
803.
81518.
17Specificextracellularresistancerey=0.
8473x-1.
14430.
556.
62926.
64DISCUSSIONEIScanprovideinformationforbasicphysicochemicalpropertiesofcells,tissuesandorgans[14].
Inthepresentstudy,duringfrosthardeningthesugarconcentrationandmembranepermeabilityareincreased.
TheEISandEISparametershavecorrespondingchanges,whichcanbeanindicationofchangesinphysicochemicalpropertiesofcells.
Thisisinaccordancewithpreviousstudies[9].
Themembranepermeabilityisincreasedbecauseoflowtemperature,whichleadstoincreaseofelectrolyteexosmoseandconcentrationsofintercellularsubstance.
TheCatalpaspp.
wouldincreasethesugarconcentrationthroughosmoregulationtoenhancetheconcentrationofcellsapandthecapacityofwaterinordertoimprovetheFH,thustheimpedanceoftissuesandorganshaschanged.
Electricpotentialdifferencecanbekeptbyeffectivetransportsystemandalternativeinfiltrationcharacteristicswouldcreatewhencurrentthroughthecellmembrane.
Thus,theEIScharacteristicscanshowthechangeofimpedanceofextracellularresistanceandintracellularresistancebecauseofchangeoftheconcentrationofcellsapandmembranepermeability.
ThesolublesugarconcentrationhadsignificantpositivecorrelationswithFH[15].
TheidentificationofFHbymembranepermeabilityaccordedwiththatoffieldperformance[16,17],sothesolublesugarconcentrationandmembranepermeabilityareoftenusedasidentifyingsignalofFHofplants.
InagreementwithRyyppetal.
[12],thesolublesugarconcentrationandmembranepermeabilityarecloselyrelatedwithFH,andthoseofstemsofCatalpaspp.
aresignificantpositivecorrelationwithr1aswellasre.
ThechangesofEISparametersreflectchangesofthesolublesugarconcentrationandmembranepermeabilityandcanalsoassesstheFHofCatalpaspp.
.
Thesestudiesshowther1isthebestEISparameterforassessmentofFHandhavethebetteraccuracycomparedtootherparameters.
TheFHassessedbyr1isreliabletobeusedinCatalpaspp.
.
Inconclusion,EISisanewapproachtoassesstheFHofplantsandtofiltertheplantresourcewithhighFH.
ThestudyconfirmedtheruleofchangeofthesolublesugarconcentrationaswellasmembranepermeabilityofthreespeciesofCatalpaspp.
andthebestEISparameteronassessmentofFH.
AllofthesestudieswillimprovetheapplicationofEIStechnologyonassessingFH.
REFERENCES[1]Qiao,Yong-Jin,XiaoYang,LiangHui-Min,ShiShao-Jun,XieZhao-Ying,WangXiao-Fang,RenFei;BiologicalandecologicalcharacteristicsandprospectsofCatalpaspp.
.
ProtectionForestScienceandTechnology,4,23-24(2003).
[2]Yang,Yu-Zhen,WangShun-Cai,PengFang-Ren;TreeresearchandexploitationstrategyofCatalpaspp.
.
ForestryScienceandTechnolog,20(3),4-7(2006).
[3]P.
L.
Steponkus;Roleoftheplasmamembraneinfreezinginjuryandcoldacclimation.
AnnualReviewofPlantPhysiology,35,543-584(1984).
[4]C.
J.
Weiser;Coldresistanceandinjuryinwoodyplants.
Science.
169,1269-1278(1979).
[5]XuYan,XueLi,QuMing;Physiologicalandecologicalmechanismsofplantadaptationtolowtemperature.
ScientiaBTAIJ,10(22)2014GangZhangetal.
13893SilvaeSinicae.
43(4),88-94(2007).
[6]RepoTapani,E.
Oksanen,ElinaVapaavuori;Effectsofelevatedconcentrationsofozoneandcarbondioxideontheelecticalimpedanceofleavesofsilverbirch(Betulapendula)clones.
TreePhysiology,24,833-843(2004).
[7]ZhangGang,AijaRyypp,TapaniRepo;TheelectricalimpedancespectroscopyofScotspineneedlesduringcoldacclimation.
PhysiologyPlant,115,385-392(2002).
[8]ZhangGang,AijaRyypp,ElinaVapaavuori,TapaniRepo;QuantificationofadditiveresponseandstationarityoffrosthardinessbyphotoperiodandtemperatureinScotspine.
CanadianJournalofForestResearch,33,1772-1784(2003).
[9]RepoTapani,GangZhang,AijaRyypp,R.
Rikala;TheelectricalimpedancespectroscopyofScotspine(PinussylvestrisL.
)shootsinrelationtocoldacclimation.
JournalofExperimentalBotany,51(353),2095-2107(2000).
[10]WangAi-Fang,ZhangGang,WeiShi-Chun,CuiTong-Xiang;RelationbetweenfrosthardinessandparametersofelectricalimpedancespectroscopyinsaplingsofdifferentdevelopmentstageofPinussylvestrisL.
var.
mongolicaLitv.
ActaEcologicaSinica.
28(11),5741-5749(2008).
[11]RepoTapani,MinZhang,AijaRyypp,ElinaVapaavuori,SirkkaSutinen;Effectsoffreeze-thawinjuryonparametersofdistributedelectricalcircuitsofstemsandneedlesofScotspineseedlingsatdifferentstagesofacclimation.
JournalofExperimentalBotany,45(6),823-833(1994).
[12]AijaRyypp,TapaniRepo,ElinaVapaavuori;DevelopmentoffreezingtoleranceinrootsandshootsofScotspineseedlingsatnonfreezingtemperatures.
CanadianJournalofForestResearch,28(4),557-565(1998).
[13]LiHe-Sheng;Principlesofplantphysiologyandbiochemistryexperimentsandtechniques.
2nded.
HigherEducationPress,BeiJing,(2006).
[14]M.
A.
Cox,MingZhang,JhmWillison;Applebruiseassessmentthroughelectricalimpedancemeasurements.
JournalofHorticulturalScience,68,393-398(1993).
[15]J.
AaronPatton,M.
SuzanneCunningham,J.
Volenec,J.
ZacharyReicher;Differencesinfreezetoleranceofzoysiagrasses:IICarbohydrateandprolineaccumulation.
CropScience,47(5),2170-2181(2007).
[16]LiuWan-Ping,SuShu-Chai,LiuXiao,HouZhi-Xia;ComparisonofdifferentcultivarsofblueberryoverwinteringabilityinQingdaoofChina.
AmericanJournalofPlantSciences,3,391-396(2012).
[17]XuChun-Xiang,ChenJie-Zhong,LiangLi-Feng;Effectsoflowtemperatureonthecontentsofglycerol,starchandsugarsinbananaleaves.
JouranalofFruitScience,17(2),105-109(2000).

趣米云月付460元,香港CN2云服务器VPS月付低至18元

趣米云早期为做技术起家,为3家IDC提供技术服务2年多,目前商家在售的服务有香港vps、香港独立服务器、香港站群服务器等,线路方面都是目前最优质的CN2,直连大陆,延时非常低,适合做站,目前商家正在做七月优惠活动,VPS低至18元,价格算是比较便宜的了。趣米云vps优惠套餐:KVM虚拟架构,香港沙田机房,线路采用三网(电信,联通,移动)回程电信cn2、cn2 gia优质网络,延迟低,速度快。自行封...

牦牛云(3.5USD/月 )阿里云国际版云服务器 1核1G40G

收到好多消息,让我聊一下阿里云国际版本,作为一个阿里云死忠粉,之前用的服务器都是阿里云国内版的VPS主机,对于现在火热的阿里云国际版,这段时间了解了下,觉得还是有很多部分可以聊的,毕竟,实名制的服务器规则导致国际版无需实名这一特点被无限放大。以前也写过几篇综合性的阿里云国际版vps的分析,其中有一点得到很多人的认同,那句是阿里云不管国内版还是国际版的IO读写速度实在不敢恭维,相对意义上的,如果在这...

香港2GB内存DIYVM2核(¥50月)香港沙田CN2云服务器

DiyVM 香港沙田机房,也是采用的CN2优化线路,目前也有入手且在使用中,我个人感觉如果中文业务需要用到的话虽然日本机房也是CN2,但是线路的稳定性不如香港机房,所以我们在这篇文章中亲测看看香港机房,然后对比之前看到的日本机房。香港机房的配置信息。CPU内存 硬盘带宽IP价格购买地址2核2G50G2M1¥50/月选择方案4核4G60G3M1¥100/月选择方案4核8G70G3M4¥200/月选择...

se52se.com为你推荐
小程序开发制作小程序开发所有的流程?今日油条油条晚上炸好定型明天可再复炸吗?刘祚天DJ这个职业怎么样?陈嘉垣马德钟狼吻案事件是怎么回事百花百游迎得春来非自足,百花千卉共芬芳什么意思杨丽晓博客明星的最新博文www.kaspersky.com.cn卡巴斯基杀毒软件有免费的吗?稳定版的怎么找?广告法新广告法哪些广告词不能用,广告违禁词大全汴京清谈汴京残梦怎么样国风商讯《国风周南》
电信服务器租赁 plesk pw域名 uk2 国外服务器 香港主机 2014年感恩节 域名优惠码 宕机监控 贵州电信宽带测速 好玩的桌面 太原联通测速平台 怎样建立邮箱 cdn联盟 腾讯实名认证中心 免费活动 中国网通测速 网游服务器 个人免费主页 smtp虚拟服务器 更多