POFHandbookSecondeditionOlafZiemann·JürgenKrauserPeterE.
Zamzow·WernerDaumPOFHandbookOpticalShortRangeTransmissionSystemsSecondedition123ProfessorDr.
-Ing.
OlafZiemannGeorg-Simon-Ohm-FachhochschuleNürnbergWassertorstr.
1090489NürnbergGermanyolaf.
ziemann@pofac.
fh-nuernberg.
deProfessorDr.
JürgenKrauserDeutscheTelekomLeipzigFBOptischeNachrichtentechnikGustav-Freytag-Str.
43–4504277LeipzigGermanyjuergen.
krauser@telekom.
deDipl.
-Ing.
PeterE.
ZamzowR&DCableSystemsErlen-Str.
5b44795BochumGermanypeter.
e.
zamzow@t-online.
deProfessorDr.
-Ing.
WernerDaumBundesanstaltfürMaterialforschungund-prüfung(BAM)UnterdenEichen8712205BerlinGermanywerner.
daum@bam.
deISBN978-3-540-76628-5DOI10.
1007/978-3-540-76629-2e-ISBN978-3-540-76629-2LibraryofCongressControlNumber:20079432472008,2001Springer-VerlagBerlinHeidelbergThisworkissubjecttocopyright.
Allrightsarereserved,whetherthewholeorpartofthematerialisconcerned,specicallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting,reproductiononmicrolmorinanyotherway,andstorageindatabanks.
DuplicationofthispublicationorpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.
ViolationsareliableforprosecutionundertheGermanCopyrightLaw.
Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.
inthispublicationdoesnotimply,evenintheabsenceofaspecicstatement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse.
Coverdesign:deblik,BerlinPrintedonacid-freepaper987654321springer.
comPrefaceInalmostallareasofdailylifethedemandsonthecommunicationsinfrastructureincreaseddramatically.
Withregardtothevolumeofdatathathastobetrans-mitted,nomatterwhetherwearedealingwithpublicorprivatenetworks,indus-trialfieldsorautomobiles,needswillcontinuetorise.
Consequently,thedemandsonthebandwidthofcommunicationssystemswillcontinuetoincreasesincemoreandmorevideodatastreamswithhighpicturequality(IPTV),inadditiontotele-phoneanddatacircuits,willbetransmitted.
MoredatastreamsarecomingaboutthroughtheconnectionofanincreasingnumberofWi-Fihotspotswithhighcapa-cities.
Alltheseservicesrequireabasicinfrastructurewithhighcapacitieswhichonlyoptictechnologiescanoffer.
TheexpansionoftheDSLnetworkwillbringglassfibersclosertotheendcustomerandwillgenerateademandforeasy-to-install,efficientandfavorablypricedcablingsolutionsinbuildings.
Insuchacasepolymeropticalfibersareaveritablealternative.
AfterPOFdemonstrateditsperformancecapabilitiesinindustrialuseandinautomotiveengineering,nothingmorestandsinthewayforemployingtheseopticalsolutionswithinbuildings.
TheuseofinexpensivevisibleLEDs,simpleplugconnectorsandinsensitivecablesandlines,allowsforfavorablypricedsys-temswhichanyprivateusercaneveninstallhimselfwheneverrequired.
Incon-trasttoWi-FiorPowerline,POFisimmunetointerferenceandalwaysguaranteeshighcapacityinpoint-to-pointconnections.
Incombinationwithnewelectronicsolutionsandcodingscheemsitispossibletodaytobridgedistancesofover100matadatarateof100Mbit/susingstandardstepindexPOF.
Thusthetech-nicalbasisislaidforlarge-scaleuseinbuildingcabling.
Itnowremainsthetaskofthecomponentmanufacturerstomakesuchsystemsavailabletothemarketasaneconomicalalternative.
ThemainemphasisofpolymerfiberapplicationsfordatatransmissionliesinJapanaswellasinGermany,SpainandItaly.
Germanyplaysaleadingroleinmanyoftheseapplications.
ThePolymerOpticalFiberApplicationCenter(POF-AC)attheNurembergUniversityofAppliedScienceshasdevelopedoverthelastfewyearsintoaEuro-peanCompetenceCenterforPOF.
ThePOFACandLeonihavecooperatedclose-lyandsuccessfullyforyears.
Formanyyears,theLeoniAGhasbeenoneoftheleadingmanufacturersofPOFandfiberglasscablesforuseinmobilenetworks(cars,trains,airplanes),inautomationtechnologyandinsensortechnology.
VIPrefaceLeonihasalsorecentlygoneintothemanufactureofglassfibersandtherequi-sitepreforms.
Thereinliesaparticularmainfocusontheproductionofmultimodeandspecialfibersasdescribedinthisbook.
Theareasofapplicationrangefrombuildingnetworkstomedicaltechnicalapplicationsusedinspectrometricsystems.
Furthermore,Leoni'sdevelopershavepresentedatconferencesheldoverthelastfewyearsnewsolutionsforopticalpressure-sensitivesensorsbasedonspecialplasticfibers.
InalltheseareasofactivityLeonihasaimedatcombiningitsexperiencewithopticalwaveguidesfromthefieldoftelecommunicationswiththeknowledgeandthesolutionsfromthemarketforspecialandPOFfibers,thusmakingavailablenewpracticalsolutionstousersinthemostdiversefields.
In1997,AndreasWeinert,workingtodaywithcolleaguesatLeoniFiberOptics,publishedoneofthefirstcomprehensivePOFbooks.
Thebook"POF-OpticalPolymerFibersforDataCommunication"publishedin2001providedanoverviewofPOFtechnologiesandinthemeantimeisoutofprint.
Thisneweditionisnowahandbookwhich,inadditiontodescribingPOFandthickcoreglassfibers,canalsobeusedforshort-distancecommunication.
Thisspecializedreferencebookisintendedtohelpusersanddeveloperstoobtaininformationthemselvesquicklyandcomprehensivelyaboutthestate-of-the-artdevelopmentofPOFfibersandtobecomeacquaintedwiththeirperfor-mancecapabilities.
Inasummarizedformitconveysanumberofexperimentalresultsalongwithnewtrendsindevelopmentandisavaluableadviserfordevelo-persofPOFsystems.
Thephysicalfundamentalsaswellaspracticalapplicationsarepresentedinasimpleandunderstandablemanner.
Nuremberg,May2007Dr.
KlausProbstCEO/LeoniAGEditor'sPrefaceInthepastfewyearspolymeropticalfibers(POF)andtheirapplicationshavecontinuedtodevelopatadizzyingpace.
Thiswasthedecisivefactorin2005todecideoncompletelyrevisingthebook,POF-OpticalPolymerFibersforDataCommunication",whichappearedinGermanin2001andinEnglishin2002.
Beforeyounowlietheresultsoftwoyearsofwork-almostdoublethenumberofpagesoftheFirstEdition.
OneessentialreasonfortheneweditionisthediverseresultswhichhavebeenobtainedatthePolymerOpticalFiberApplicationCenterattheNurembergUni-versityofAppliedSciences(POF-AC)sinceitsinceptionin2001.
ThescientificdirectorofthePOF-AChaswrittenthemajorityofthesectionsinthisbook.
Dr.
Christian-AlexanderBungefromtheTechnicalUniversityofBerlinhascontri-butedtwosections(MicrostructuredPolymerFibersandtheSimulationofOpticalFibers).
Theorganizationandlayoutofthenewbookareessentiallybasedonthefollowingconsiderations:Allpartsofthefirsteditionhavebeentakenoverinordertoprovidethemanynewcomersinthefieldwiththeopportunitytocompletelyunderstandthecontents,withouthavingtobuythefirstvolume-whichinthemeantimeisoutofprint.
Inadditiontotheopticalpolymerfibersmanydetailsonotherthick-corefibers,e.
g.
glassfiberbundlesandplastic-coatedglassfiber,havebeenadded.
Manyofthesefibersnotonlyhavethesameapplications,butalsosimilarcharacteristicsandplacesimilardemandsonmeasurementtechniques.
Whereasthefirsteditionmostlysummarizedtheresultsfromtechnicallite-rature,theneweditionnowpresentsthePOF-AC'sownmeasurementresultsonpracticallyallfibers.
Consequently,thisnewbookpresentsanddocumentsthefirstfiveyearsofourinstitute.
Theindividualchapterscorrespondtothesubjectmatterofthefirstedition.
Theorganizationandsequence,however,havebeenadaptedtothechangedpointsofemphasis.
Forexample,thewaveguidesarenowdealtwithinaseparatechapter.
ThechaptersonFibers(No.
)andonSystems(No.
6)areamongthepredominantlynewsections.
Togetherthesetwopartsformthecorecontentsofthebookanddocumenttheprogressoftechnology.
Unfortu-nately,however,thesenewpartswillalsobecomeobsoletemostquicklysincemanynewsolutionswillbefoundinthenextfewyears.
TheEnglisheditioniscompletelyidenticalwiththeGermanone,includingallpagenumbers.
Nonewcontenthasbeenincluded.
2VIIIAtthetimewhenthefirsteditionofthisbookappearedPOFapplicationswerestillexotic.
Onlyinthefieldsofautomationandlightingengineeringhadthismediumalreadybeenestablished.
Inthemeantime,millionsofvehiclesdrivethroughoutEuropewithpolymerfiberon-boardnetworksandthenextgenerationisrightinfrontofthedoor.
ManytelecommunicationscompaniesareworkingonsolutionsfortransmittingeverhigherbitratesviaPOFwithinapartments.
TheDeutscheTelekom,forexample,offersitscustomersacompletesetforfastEther-net.
Otherlarge-scaleapplicationsforPOFinmultimediaapplicationswillbeintroducedintothemarketinthenearfuture.
Theauthorsarethereforeveryoptimisticthatthisbookwillaccompanythede-velopmentofpolymerfibersfromanicheexistencetoanimportantbasisfordataandcommunicationstechnology.
Inadditiontouseintelecommunications,sensortechnologyandmultiparalleldataconnectionsaboveallpromisetobewideandinterestingfieldsfortheiruse.
AseparatesectionisdevotedtoeachoftheseareasinChapter8.
POFarenotnecessarilyarivaloftheestablishedtechnologiessuchasdatatransmissiononsymmetricalcopperwiresorradio.
Differentsectionsofthebookshowhowthediversetechnologiescanbecombinedinanoptimalfashioninordertoachievethebestsolutionstechnicallyandeconomically.
Wehavedoneourbesttorepresentthescientificresultsandtheproductsavailableonthemarketascompletelyandasimpartiallyaspossible.
Nevertheless,weareawareofthefactthatthisgoalcanonlyapproximatelybeattained.
Shouldamanufactureroraninstitutementionedinthebooknotfeelbeingsufficientlyrepresented-thiswasnotintended.
ThePOF-ACgladlyoffersallinterestedpartiessupportingainingaccesstothegrowingPOFcommunity".
ThePOF-ACoffersscientificactivitiessuchastheITGSubCommittee5.
4.
1PolymerOpticalFibers"aswellastechnicalinformationsuchasthePOF-Atlas"asaGermanPOFproductcatalog.
AseditoroftheSecondEditionIwouldliketoexpressmythankstoallcolleaguesatthePOF-ACNuremberg,theNurembergUniversityofAppliedSciencesandnotleastmyfamilyfortheirsupportduringthelasttwoyearsandtheirgivingupsomanyhoursthatIactuallyshouldhavespentwiththem.
AspecialthanktoProf.
Economides(Berlin),whoisthetranslator,andtheProf.
'sPoiselandHartlfortheirassistanceduringthecorrectionphase.
Iwishallreadersmuchpleasurewhenreadingthisvolume.
Theaimandinten-tionofthisbookistoprovideyouwithsomehelp,support,informationandfoodforthoughtinyourwork.
Pleaseexcusetheunavoidableerrorsandmistakesanddofeelfreetopassonyourreservations,criticismsandideastous.
OlafZiemannScientificDirectorofthePOF-ACNürnbergChairmanoftheITGSubCommittee5.
4.
1PolymerOpticalFibers"MemberoftheInternationalCooperativeofPolymerOpticalFibers"astheresponsibleeditorofthesecondedition,November2007Editor'sPrefaceContentAbbreviationsandSymbolsp.
XXI1.
BasicsofOpticalDataCommunicationp.
11.
1LightPropagationinOpticalFibersandWaveguidesp.
11.
1.
1WaveandQuantumNatureofLightp.
11.
1.
2ElectromagneticSpectrump.
11.
1.
3RefractionandTotalReflectionp.
21.
1.
4WaveguidesandOpticalFibersp.
31.
1.
5SinglemodeandMultimodeWaveguidesp.
41.
1.
6OverviewofOpticalFibersp.
51.
1.
7DesignationsofOpticalFibersp.
71.
2DigitalandAnalogOpticalSignalTransmissionp.
81.
2.
1DigitalOpticalSignalTransmissionp.
101.
2.
1.
1AnalogandDigitalSignalsp.
101.
2.
1.
2TransmissionQualityofAnalogandDigitalSignalsp.
131.
2.
1.
3BitErrorProbabilityandErrorCorrectionp.
151.
2.
1.
4NoiseinOpticalSystemsp.
171.
2.
2Amplitude,Frequency,andPhaseModulationp.
211.
2.
3ModulatingaCarrierFrequencyp.
221.
2.
4SpecificTransmissionMethodsinOpticalCommunicationsp.
231.
2.
5ModulatingaSubcarrierp.
251.
3NetworkArchitecturesp.
261.
3.
1ActiveandPassiveNetworksp.
261.
3.
2NetworkStructuresp.
271.
3.
3MultipleAccessMethodsp.
281.
3.
3.
1TimeDivisionMultiplexp.
281.
3.
3.
2FrequencyDivisionMultiplexp.
301.
3.
3.
3CodeDivisionMultiplexp.
311.
3.
3.
4WavelengthDivisionMultiplexp.
311.
3.
3.
5TheSpecialFeaturesofOpticalMultiplexingp.
311.
3.
3.
6Bi-directionalTransmissionp.
332.
OpticalFibersp.
372.
1FundamentalsofOpticalFibersp.
372.
1.
1RefractiveIndexProfilesp.
372.
1.
2NumericalAperturep.
392.
1.
3RayTrajectoryinOpticalFibersp.
402.
1.
4ModesinOpticalFibersp.
42XContent2.
1.
4.
1TheModeConceptp.
422.
1.
4.
2ModePropagationinRealFibersp.
442.
1.
5ParametersforDescribingRealFibersandWaveguidesp.
452.
1.
5.
1Attenuationp.
462.
1.
5.
2Mode-DependentAttenuationp.
472.
1.
5.
3ModeCouplingp.
492.
1.
5.
4ModeConversionp.
502.
1.
5.
5ModeCouplingLengthsp.
522.
1.
5.
6LeakyModesp.
552.
1.
5.
7DispersioninOpticalFibersp.
552.
1.
5.
8ModeDispersionp.
582.
1.
5.
9ChromaticDispersionp.
642.
2IndexProfilesandTypesofFibersp.
652.
2.
1StepIndexProfileFibers(SI)p.
652.
2.
2TheStepIndexFiberwithReducedNA(low-NA)p.
672.
2.
3TheDouble-StepIndexOpticalFiber(DSI)p.
682.
2.
4TheMulticoreStepIndexOpticalFiber(MC)p.
702.
2.
5TheDoubleStepIndexMulticoreFiber(DSI-MC)p.
732.
2.
6TheGradedIndexOpticalFiber(GI)p.
742.
2.
7TheMulti-StepIndexOpticalFiber(MSI)p.
752.
2.
8TheSemi-GradedIndexProfileFibers(Semi-GI)p.
762.
2.
9AnOverviewofIndexProfilesp.
772.
3TheDevelopmentofPolymerOpticalFibersp.
792.
3.
1Lookingbackp.
792.
3.
2StepIndexPolymerFibersp.
802.
3.
3DoubleStepIndexProfilePolymerFibersp.
832.
3.
4Multi-CorePolymerFibersp.
852.
3.
5Multi-StepIndexProfileandGradedIndexProfileFibersp.
872.
4GlassFibersforShort-RangeDataTransmissionp.
932.
4.
1200μmGlassFiberswithPolymerCladdingp.
932.
4.
2Semi-GradedIndexGlassFibersp.
972.
4.
3GlassFiberBundlesp.
982.
4.
3.
1QuartzGlassFiberBundlesp.
982.
4.
3.
2GlassFiberBundlesp.
1002.
5BandwidthofOpticalFibersp.
1032.
5.
1DefinitionofBandwidthp.
1032.
5.
2ExperimentalDeterminationofBandwidthp.
1042.
5.
3ExperimentalBandwidthMeasurementsp.
1072.
5.
3.
1BandwidthofSI-POFp.
1072.
5.
3.
2BandwidthMeasurementsonSI-POFp.
1122.
5.
3.
3BandwidthMeasurementsonMC-andMSI-POFp.
1172.
5.
3.
4BandwidthMeasurementswithGI-POFp.
1202.
5.
3.
5BandwidthMeasurementsonMC-GOFandPCSp.
1222.
5.
3.
6ComparisonofBandwidthMeasurementsandCalculationsp.
1302.
5.
4ChromaticDispersioninPolymerOpticalFibersp.
1332.
5.
5MethodsforIncreasingBandwidthp.
135ContentXI2.
5.
6BitRatesandPenaltyp.
1412.
6BendingPropertiesofOpticalfibersp.
1432.
6.
1BendingLossesinSI-POFp.
1442.
6.
2BendingLossesinGIFibersp.
1472.
6.
3ChangeofBandwidthbyBendsp.
1472.
6.
4BendsonPCS,MulticoreFibersandthinPOFp.
1492.
7MaterialsusedforPOFp.
1552.
7.
1PMMAp.
1552.
7.
2POFforHigherTemperaturesp.
1572.
7.
2.
1Cross-LinkedPMMAp.
1582.
7.
2.
2PolycarbonatePOFp.
1602.
7.
2.
3ElastomerPOFp.
1622.
7.
2.
4CyclicPolyolefinesp.
1642.
7.
2.
5ComparisonofHigh-TemperaturePOFsp.
1642.
7.
3Polystyrene-PolymerFibersp.
1662.
7.
4DeuteratedPolymersp.
1682.
7.
5FluorinatedPolymersp.
1732.
7.
6OverviewoverPolymersforPOFJacketsp.
1772.
8FiberandCableProductionp.
1802.
8.
1ProductionProcessesforPOFp.
1802.
8.
2ProductionofGradedIndexProfilesp.
1842.
8.
2.
1InterfacialGelPolymerizationTechniquep.
1842.
8.
2.
2CreatingtheIndexProfilesbyCentrifugingp.
1862.
8.
2.
3CombinedDiffusionandRotationp.
1862.
8.
2.
4PhotochemicalGenerationoftheIndexProfilep.
1872.
8.
2.
5ExtrusionofManyLayersp.
1872.
8.
2.
6ProductionofSemi-GI-PCSp.
1882.
8.
2.
7PolymerizationinaCentrifugep.
1892.
8.
2.
8ContinuousProductionatChromisFiberopticsp.
1902.
8.
2.
9GI-POFwithAdditionalCladdingp.
1912.
8.
3CableManufacturingp.
1942.
8.
3.
1CableConstructionwithSI-POFElementsp.
1962.
8.
3.
2Non-StrandedSI-POFCablesp.
1972.
8.
3.
3StrandedSI-POFCablesp.
2022.
8.
3.
4PrinciplesofStrandingp.
2042.
8.
3.
5CorrugatedMicroTubeCablesp.
2102.
9MicrostructuredFibersp.
2152.
9.
1KindsofWaveGuidingp.
2152.
9.
1.
1EffectiveRefractiveIndexp.
2162.
9.
1.
2PhotonicBandGapsp.
2172.
9.
1.
3BraggFibersp.
2192.
9.
1.
4Hole-AssistedFibersp.
2192.
9.
2ProductionMethodsp.
2202.
9.
2.
1MicrostructuredGlassFibersp.
2212.
9.
2.
2MicrostructuredPolymerFibers(MPOF)p.
2212.
9.
2.
3EndSurfacePreparationp.
223XIIContent2.
9.
3ApplicationsforMicrostructuredFibersp.
2252.
9.
3.
1DispersionCompensationp.
2252.
9.
3.
2EndlesslySinglemodep.
2252.
9.
3.
3Birefringencep.
2262.
9.
3.
4HighlyNonlinearFibersp.
2272.
9.
3.
5ControloftheEffectiveAreap.
2272.
9.
3.
6Filtersp.
2282.
9.
3.
7SensorTechnology,TunableElementsp.
2282.
9.
3.
8Double-CoreandMulti-CoreFibersp.
2292.
9.
3.
9Imagingp.
2292.
9.
3.
10MultimodeGradedIndexFibersp.
2303.
PassiveComponentsforOpticalFibersp.
2333.
1ConnectionTechnologyforOpticalFibersp.
2333.
1.
1ConnectorsforPolymerOpticalFibersp.
2343.
1.
2SurfacePreparationofPOFConnectorsp.
2353.
1.
2.
1POFPreparationbyCuttingandPolishingp.
2373.
1.
2.
2HotPlateSurfacePreparationp.
2383.
1.
2.
3POFPress-CutProcedurep.
2383.
1.
2.
4POFPreparationbyMillingp.
2403.
1.
3OverviewofConnectorSystemsp.
2413.
1.
3.
1TheV-PinConnectorSystemp.
2413.
1.
3.
2FSMAConnectorp.
2443.
1.
3.
3TheDNPSystemp.
2453.
1.
3.
4F05andF07p.
2463.
1.
3.
5STandSCConnectorsp.
2473.
1.
3.
6ConnectorsforFutureIn-HouseNetworksp.
2493.
1.
3.
7ConnectorsforVehicleNetworksp.
2503.
1.
3.
8OtherConnectorsp.
2523.
1.
4ProcessingToolsforPOFConnectorsp.
2533.
1.
5ConnectorsforGlassFibersp.
2573.
2BasisforCalculatingConnectorLossesp.
2593.
2.
1CalculationofConnectorLosseswithUniformModeDistributionp.
2593.
2.
2DifferencesinCoreDiameterp.
2593.
2.
3DifferencesinNumericalAperturep.
2603.
2.
4LateralOffsetoftheFibersp.
2613.
2.
5LossesduetoRoughSurfacesp.
2623.
2.
6LossesthroughAnglesbetweentheFiberAxisp.
2633.
2.
7LossesthroughFresnelReflectionp.
2643.
2.
8LossesthroughAxialDistanceoftheFibersp.
2653.
2.
9LossesduetoDifferentCausesp.
2683.
3POFCouplersp.
2693.
3.
1ConstructionofPOFCouplersp.
2693.
3.
2CommercialCouplersp.
2713.
3.
2.
1PolishedCouplerfromDieMountp.
2733.
3.
2.
2MouldedCouplersfromIMMp.
274ContentXIII3.
3.
2.
3WaveguideCouplersfromtheUniversityofSendaip.
2753.
4FiltersandAttenuatorsforPOFp.
2763.
4.
1Filtersp.
2763.
4.
2Attenuatorsp.
2773.
5ModeMixersandConvertersp.
2823.
6OpticalSlipRingsandRotaryOpticalConnectorsp.
2853.
6.
1RotaryOpticalConnectorsp.
2853.
6.
2TheMicro-rotationProjectp.
2863.
6.
3POFSlipRingsp.
2883.
6.
4PrismCouplerSlipRingp.
2903.
6.
5TheMirrorGrooveSlipRingp.
2924.
ActiveComponentsforOpticalSystemsp.
2954.
1EmittersandReceiversp.
2954.
1.
1ThePrincipleofLightGenerationinSemiconductorsp.
2964.
1.
2StructuringSemiconductorComponentsp.
3004.
1.
3StructuresofSemiconductorTransmittersp.
3024.
1.
3.
1LuminescenceEmittingDiodep.
3024.
1.
3.
2LaserandSuperLuminescenceDiodesp.
3024.
1.
3.
3SurfaceEmittingLaserp.
3044.
1.
3.
4ResonantCavityLEDp.
3054.
1.
3.
5NonResonantCavityLEDp.
3064.
2TransmittingDiodesforDataCommunicationp.
3074.
2.
1RedLEDsandSLEDsp.
3074.
2.
2RedLaserDiodesp.
3094.
2.
3BlueandGreenLEDsp.
3144.
2.
4GreenLaserDiodesp.
3204.
2.
5VerticalLaserDiodesandRC-LEDp.
3214.
2.
5.
1RedRC-LEDp.
3214.
2.
5.
2RedVCSELsp.
3274.
2.
5.
3VCSELintheIRRegionp.
3334.
2.
6NonResonantCavityLEDp.
3344.
2.
7PyramidLEDsp.
3364.
3WavelengthsforPOFSourcesp.
3374.
4Receiversp.
3384.
4.
1EfficiencyandSensitivityp.
3394.
4.
2PhotodiodeStructuresp.
3404.
4.
3JunctionCapacityandBandwidthp.
3434.
4.
4OverviewofReceiversp.
3434.
4.
5CommercialProductsp.
3444.
4.
6ImprovementinSensitivityp.
3464.
5Transceiversp.
3474.
5.
1Componentsbefore2000p.
3474.
5.
2FastEthernetTransceiverp.
3504.
5.
2.
1POFSolutionsfromDieMountinWernigerodep.
3504.
5.
2.
2OpticalClampsfromRatioplastp.
352XIVContent4.
5.
2.
3TransceiverFamilyfromAvagop.
3524.
5.
2.
4HomeInstallationbyRDMp.
3534.
5.
2.
5POFTransceiversfromInfineon/Siemensp.
3534.
5.
3OtherSystemsp.
3544.
5.
3.
1Comossp.
3544.
5.
3.
2IEEE1394,MOSTandFastEthernetfromFirecommsp.
3554.
5.
3.
3JapaneseManufacturersp.
3564.
5.
3.
4FastEthernet,EthernetandVideofromLuceatp.
3564.
5.
3.
5DSLModemwithPOFp.
3575.
PlanarWaveguidesp.
3595.
1MaterialsforWaveguideStructuresp.
3605.
2ProductionofPolymerWaveguidesp.
3615.
3SinglemodeWaveguidesp.
3645.
4MultimodeWaveguidesp.
3685.
5FunctionalComponentsasWaveguidesp.
3715.
5.
1Thermo-OpticalSwitchesp.
3715.
5.
2Modulatorsp.
3735.
5.
3CouplingComponentsp.
3735.
5.
4WaveguideGratingsp.
3745.
6WaveguidesasInterconnectionSolutionsp.
3755.
6.
1OpticalBackplaneSystemsfromDaimlerChryslerp.
3755.
6.
2SystemsfromtheUniversityofUlmp.
3785.
6.
3Electro-opticalPCBfromtheUniversityofSiegenp.
3795.
6.
4IBMResearchCenterZurich/ETHZurichp.
3805.
6.
5ResultsoftheNeGITProjectp.
3826.
SystemDesignp.
3876.
1LinkPowerBudgetofOpticalTransmissionSystemsp.
3876.
1.
1ChangesoftheTransmittedPowerp.
3876.
1.
2SensitivityoftheReceiverp.
3886.
1.
3AttenuationoftheFiberLinkp.
3916.
1.
3.
1CouplingLossesfromtheTransmitterintothePOFp.
3916.
1.
3.
2LossesintheFiberLinkp.
3936.
1.
3.
3ConnectorLossesp.
3946.
1.
3.
4PassiveComponentLossesp.
3956.
1.
3.
5CouplingLossesbetweenPOFandReceiverp.
3976.
1.
4TheLinkPowerBudgetoftheATMForumSpecificationp.
3986.
1.
4.
1LossAnalysisbytheATMForump.
3986.
1.
4.
2ChangesintheTransmissionPowerp.
3986.
1.
4.
3AttenuationofthePolymerOpticalFiberLinkp.
4006.
1.
4.
4ConnectorLossesp.
4076.
1.
4.
5AdditionalLossesthroughExternalInfluencesp.
4086.
1.
5ChoiceofWavelengthforPOFSystemsp.
4106.
1.
5.
1LEDasTransmittersforPOFSystemsp.
4116.
1.
5.
2SelectionoftheTypeofSourcep.
418ContentXV6.
1.
5.
3TypicalLossesforLEDSourcesp.
4196.
1.
5.
4LasersforPOFSystemsp.
4216.
1.
5.
5VCSELandRC-LEDforPOFSystemsp.
4226.
1.
6DefinitionofnewLEDParametersp.
4236.
2ExamplesofLinkPowerBudgetsp.
4276.
2.
1ATMForumSpecificationp.
4276.
2.
2IEEE1394bp.
4286.
2.
3D2BandMOSTp.
4296.
2.
4ISDNoverPOFp.
4316.
2.
5LinkPowerBudgetforBi-DirectionalTransmissionp.
4316.
2.
5.
1AsymmetricalCouplersp.
4326.
2.
5.
2SymmetricalCouplersp.
4326.
3OverviewofPOFSystemsp.
4346.
3.
1StepIndexProfilePOFSystemsat650nmp.
4356.
3.
1.
1ThefirstSIPOFSystemsp.
4356.
3.
1.
2SIPOFSystemswithover500Mbit/sp.
4406.
3.
1.
3SI-POFSystemswithmorethan500Mbit/sp.
4446.
3.
1.
4SI-POFSystemsatthePOF-ACNürnbergp.
4516.
3.
2SystemswithPMMASIPOFatWavelengthsbelow600nmp.
4586.
3.
2.
1SystemswithAIIIBVSemiconductorLEDsp.
4586.
3.
2.
2SystemswithGaNLEDsp.
4596.
3.
2.
3CommercialDevelopmentsp.
4666.
3.
2.
4POF-ACSystemsp.
4696.
3.
3SystemswithSI-POFatWavelengthsintheNearInfraredRangep.
4726.
3.
3.
1PMMAFiberSystemsforInfraredp.
4726.
3.
3.
2PCFiberSystemsinInfraredp.
4756.
3.
3.
3SystemExperimentsatthePOF-ACp.
4756.
3.
4SystemswithPMMAGI-POF,MSI-POFandMC-POFp.
4796.
3.
4.
1PMMAGI-POFSystemExperimentsbefore2000p.
4806.
3.
4.
2RecentPMMAGI-POFSystemsp.
4866.
3.
4.
3SystemExperimentsbyTelekomandPOF-ACp.
4876.
3.
5SystemswithFluorinatedPOFp.
4916.
3.
5.
1FirstSystemswithPF-GI-POFp.
4926.
3.
5.
2ExperimentsattheTechnicalUniversityofEindhovenp.
4956.
3.
5.
3DataRatesover5Gbit/swithGI-POFp.
5006.
3.
6POFMultiplexp.
5076.
3.
6.
1WavelengthMultiplexSystemswithPMMAPOFp.
5086.
3.
6.
2WavelengthMultiplexSystemswithPF-GI-POFp.
5146.
3.
6.
3Bi-DirectionalSystemswithPOFp.
5196.
3.
7SpecialSystems,forExample,withAnalogSignalsp.
5286.
3.
7.
1VideoTransmissionwithPOFp.
5286.
3.
7.
2TransmissionofAnalogModulatedDigitalSignalsp.
5336.
3.
7.
3RadiooverFiberp.
5406.
3.
7.
4ModeMultiplexp.
5416.
3.
7.
5FiberRibbonSystemsp.
5446.
4OtherOpticalTransmissionSystemswithFibersp.
546XVIContent6.
4.
1DataTransmissiononHigh-TemperaturePOFp.
5466.
4.
2Multi-ParallelPOFConnectionsp.
5486.
4.
3Systemswith200μmPCSandSemi-GI-PCSp.
5506.
4.
4SystemswithGlassFiberBundlesp.
5556.
5OverviewandComparisonofMultiplexTechniquesp.
5577.
Standardsp.
5617.
1StandardsforPolymerandGlassFibersp.
5627.
1.
1PolymerFibersp.
5627.
1.
2PlasticCladGlassFibersp.
5647.
1.
3FibersinGeneralp.
5657.
2ApplicationStandardsp.
5667.
2.
1ATMForum(AsynchronousTransferMode)p.
5667.
2.
2IEEE1394bp.
5697.
2.
3SERCOS(SErialRealtimeCOmmunicationSystem)p.
5727.
2.
4Profibusp.
5737.
2.
5INTERBUSp.
5747.
2.
6IndustrialEthernetoverPOFp.
5757.
2.
7D2B(DomesticDigitalBus)p.
5787.
2.
8MOST(MediaOrientedSystemTransport)p.
5807.
2.
9IDB1394p.
5827.
2.
10EN50173p.
5837.
3StandardsforMeasurementTechniquesp.
5877.
3.
1TheVDE/VDIGuideline5570p.
5888.
ApplicationofPolymerOpticalandGlassFibersp.
5938.
1DataTransmissionwithPOFp.
5938.
1.
1POFintheAutomotiveFieldp.
5958.
1.
1.
1D2Bp.
5988.
1.
1.
2MOSTp.
5998.
1.
1.
3Byteflightp.
6038.
1.
1.
4IDB1394p.
6048.
1.
1.
5MOSTwithPCSp.
6058.
1.
1.
6OutlookfortheAutomobileNetworksp.
6098.
1.
1.
7CorrugatedMicroTubePOFCableintheCarp.
6118.
1.
1.
8OpticalCameraLinksforTrucksp.
6118.
1.
2DataNetworksinApartmentsandBuildingsp.
6148.
1.
2.
1UseofPOFinLANApplicationsp.
6158.
1.
2.
2UseofPOFinPrivateNetworksp.
6168.
1.
2.
3POFandtheDevelopmentofBroadbandNetworksp.
6238.
1.
2.
4POFandWirelessp.
6268.
1.
2.
5POFTopologiesp.
6298.
1.
3InterconnectionSystemswithPOFp.
6318.
1.
3.
1ParallelDateTransmissionwithGlassFibersp.
6318.
1.
3.
2ParallelDataTransmissionwithPOFp.
6318.
2POFinLightingTechnologyp.
634ContentXVII8.
2.
1POFforLightGuidingp.
6348.
2.
1.
1POFforAdvertisingPillarIlluminationp.
6368.
2.
1.
2POFStarryCeilingLightsp.
6378.
2.
2Side-LightingFibersp.
6398.
3POFinSensorTechnologyp.
6438.
3.
1RemotePoweredSensorsp.
6448.
3.
2TransmissionandReflectionSensorsp.
6458.
3.
2.
1POFasDistanceSensorp.
6458.
3.
2.
2POFSensorsforConcentrationp.
6478.
3.
2.
3DeformationandPressureSensorsp.
6478.
3.
3SensorswithFibersasSensitiveElementsp.
6498.
3.
3.
1ThePOFScalep.
6498.
3.
3.
2POFExpansionSensorp.
6508.
3.
4SensorswithSurface-ModifiedFibersp.
6528.
3.
4.
1BendingSensorswithNotchedFibersp.
6528.
3.
4.
2POFEvanescenceFieldSensorsp.
6548.
3.
4.
3FillLevelSensorsp.
6568.
3.
4.
4POFBraggGratingSensorsp.
6578.
3.
5SensorsforChemicalMaterialsp.
6588.
3.
5.
1Humidityp.
6598.
3.
5.
2Biosensorsp.
6608.
3.
5.
3Liquidsp.
6618.
3.
5.
4Corrosionp.
6628.
3.
6GlassFiberSensorsp.
6629.
OpticalMeasuringMethodsp.
6659.
1Overviewp.
6659.
2MeasuringPowerp.
6669.
3DependenceontheLaunchConditionsp.
6709.
4MeasurementoftheOpticalParametersp.
6749.
4.
1NearFieldp.
6759.
4.
2FarFieldp.
6799.
4.
3InverseFarFieldp.
6849.
4.
4IndexProfilep.
6879.
4.
5Attenuationp.
6889.
4.
5.
1InsertionandSubstitutionMethodsp.
6889.
4.
5.
2Cut-BackMethodp.
6909.
4.
5.
3MeasuringAttenuationforDiscreteWavelengthsp.
6909.
4.
5.
4MeasuringAttenuationoveraLargerSpectralRangep.
6929.
4.
5.
5ResultsofMeasurementsp.
6989.
4.
6OpticalBackscatteringMethodp.
7049.
4.
6.
1PrincipleoftheODTRp.
7049.
4.
6.
2ImprovementintheResolutionbyDeconvolutionp.
7089.
4.
6.
3CommercialPOFOTDRp.
7099.
4.
6.
4ExperimentalPOFOTDRp.
7119.
4.
6.
5MeasurementoftheConnectorAttenuationp.
713XVIIIContent9.
4.
6.
6BandwidthMeasurementswithOTDRp.
7149.
4.
7Dispersionp.
7169.
4.
7.
1TimeBasedMeasurementp.
7169.
4.
7.
2FrequencyBasedMeasurementp.
7189.
5ConnectorMeasurementsp.
7199.
6TheReliabilityofPOFp.
7229.
6.
1EnvironmentalInfluencesonPolymerOpticalFibersp.
7229.
6.
2TheEffectofEnvironmentalInfluencesonOpticalTransmissionp.
7249.
6.
2.
1AttenuationFactorsofPolymerOpticalFibersp.
7249.
6.
2.
2DetectionbyMeasuringOpticalTransmissionp.
7259.
6.
2.
3DetectionbyMeasuringBackscatteringp.
7279.
7InvestigationofReliabilityunderVariousEnvironmentalInfluencesp.
7299.
7.
1MechanicalStressp.
7299.
7.
1.
1RepeatedBendingp.
7299.
7.
1.
2Flexingp.
7339.
7.
1.
3Torsionp.
7359.
7.
1.
4TensileStrengthp.
7389.
7.
1.
5ImpactStrengthp.
7419.
7.
1.
6CrushingStrengthp.
7459.
7.
1.
7Vibrationp.
7469.
7.
2StressduetoChangeinClimaticConditionsp.
7479.
7.
3AgingduetotheStressofHighTemperatureandHumidityp.
7499.
7.
4ResistancetoChemicalsp.
7569.
7.
5StressCausedbyUltravioletandHigh-EnergyRadiationp.
7599.
8StandardsandSpecificationsp.
76010.
SimulationofOpticalWaveguidesp.
76310.
1ModelingofPolymerOpticalFibersp.
76310.
1.
1TypesofFibersp.
76510.
1.
2ModelingApproachesp.
76610.
1.
2.
1ApproacheswithWaveTheoryp.
76610.
1.
2.
2RayTracingProcedurep.
76710.
1.
3WaveTheoryDescriptionp.
76810.
1.
3.
1WKBMethodp.
76810.
1.
3.
2StepIndexProfileFiberp.
76910.
1.
3.
3GradedIndexFiberswithPower-LawProfilep.
77010.
1.
3.
4MultiStepIndexFibersp.
77110.
1.
3.
5DeterminingtheModePowerDistributionp.
77210.
1.
3.
6CalculatingtheTransmissionFunctionandtheOutputSignalp.
77210.
1.
4Ray-Tracingp.
77310.
1.
4.
1StepIndexFibersp.
77410.
1.
4.
2GradedIndexFibersp.
77410.
1.
4.
3MultiStepIndexFibersp.
77510.
1.
4.
4Bendsp.
77610.
1.
5Mode-DependentAttenuationp.
77610.
1.
5.
1AdditionalPath-DependentAttenuationofHigherModesp.
777ContentXIX10.
1.
5.
2AdditionalLossesofHigherModesthroughLoss-EncumberedReflectionsp.
77810.
1.
5.
3Goos-HnchenEffectp.
77910.
1.
6ModeMixingp.
78010.
1.
6.
1Coupled-ModeTheoryp.
78110.
1.
6.
2DiffusionModelp.
78310.
1.
6.
3ApplicationwiththeAidoftheSplit-StepAlgorithmp.
78410.
1.
6.
4PhenomenologicalApproachp.
78510.
2ExamplesforSimulationResultsp.
78610.
2.
1CalculatingtheBandwidthofSIFibersp.
78610.
2.
2ALinearPOFPropagationModelp.
79010.
3MeasurementandSimulationofBandwidthofPF-GI-POFp.
79310.
4SimulationofOpticalReceiversandLargeAreaPhotodiodesp.
79711.
POFClubsp.
80311.
1TheJapanesePOFConsortiump.
80311.
2HSPNandPAVNETp.
80411.
3TheFrenchPOFClubp.
80711.
4TheInformationTechnologySociety(ITG)subcommittee(FG)5.
4.
1"PolymerOpticalFibers"p.
80711.
5ThePolymerOpticalFiberApplicationCenter(POF-AC)attheUniversityofAppliedSciencesNürnbergp.
81111.
6VDIWorkingGroupTestingofPolymerOpticalFibers"p.
81511.
7ProductDirectoryPOF-Atlasp.
81511.
8ThePOF-ALLProjectp.
81611.
9TheKoreanPOFClubp.
82011.
10WorldwideOverviewp.
822Referencesp.
823TranslatorP.
874IndexofKeytermsp.
875ListofAdvertisersp.
883Biographiesp.
885ListofAbbreviationsandSymbolsSymbolExplanationDAngle(hereinanopticaldensemediumrelativetotheaxisofincidence)DAttenuation(coefficient)indB/kmDmaxMaximumpropagationangleinthefiberDeffEffectivelossDexcessExcesslossDFlLossbycrossareamismatchDHDPELinearexpansioncoefficientofHDPEDLEDPOFattenuationforLEDDNALossbyNAmismatchDPMMA,DPA6LinearexpansioncoefficientofPMMA,PA6DsCompleteattenuationD'Attenuationcoefficientinkm-1D`sAttenuationcoefficientduetoRayleighscatteringDTCriticalangleoftotalreflectionEAngleatthegratingEPropagationconstantF3NonlinearrefractiveindexGPropagationangleofaray(seeFig.
2.
3)GmaxMaximumpropagationangleofaray(seeFig.
2.
3)'Relativerefractiveindexdifference'OSpectralwidth'fFrequencydifference'nAbsoluterefractiveindexdifference'tTimedifferencegenerally'tmodPropagationtimedifferenceduetomodedispersion'tprofPropagationtimedifferenceduetoprofiledispersion'tmatPropagationtimedifferenceduetomaterialdispersion'xSlitwidthHAngledifferenceofthefiberaxisJAngleofarayinthefiberrelativetothecladdingJNonlinearparameterJmaxMaximumangleofarayinthefiberrelativetothecladdingXXIIAbbreviationsandSymbolsJfReciprocalcouplinglengthKElCouplingefficiencyKmFrequencyofthemodegroupmonthetotalpowerNExponentforpulsebroadeningOWavelengthOsourceSourcewavelengthO1,O2,O3,O4VariouswavelengthsOBBlazewavelength4Angle(hereintheopticalthinnermedium,relativetotheaxisofincident)4Angleofareflectedbeam4maxAcceptanceangle24maxApertureangleofafiberTmax1,Tmax2VariousacceptanceanglesWgrGrouppropagationtimeWmPropagationtimeofthemodegroupm\AngleofskewraysrelativetotangentialplaneZCircularfrequency:1,:2Varioussolidangles6zSummarizednumberofelementsNoisecurrentdensitydE/dZGrouppropagationtimedR/dtReactionrateaFibercoreradiusaAttenuationvalueaAccelerationaTAccelerationfactoraT,LAccelerationfactorrelevanttodurabilityAAttenuationANNumericalapertureANLaunchLaunchNAANmin,ANmaxMinimumandmaximumnumericalapertureAN1,AN2VariousnumericalaperturesA,BConstantsA1,A2FibercrossareasA/DAnalog/DigitalADSLAsymmetricalDigitalSubscriberLineAMAmplitudeModulationAPDAvalangePhotoDiodeASKAmplitudeShiftKeyingATMAsynchronousTransferModeAWGArrayedWaveguideGratingAZActivelayerAbbreviationsandSymbolsXXIIIBBandwidth(generally)BAMFederalInstituteforMaterialResearchandTestingBBBromobenzeneBBPBenzyln-Butyl-PhtalateBERBitErrorRatioBKBroadbanfcable(Breitbandkabel)BPSKBinaryPhaseShiftKeyingBRBitRateBzMABenzylMethacrylatecVelocityoflightcmVelocityoflightinamediumcvVelocityoflightinvacuum(2.
99792458·108m/s)CConstantvalue(generally)CmnCouplingcoefficientbetweenthemodesmandnCPDCapacityofthephotodiodeCANControllerAreaNetworkCCDChargedCoupledDeviceCCPCustomerConveniencePortCDCompactDiskCDCCompactDiskChangerCDMCodeDivisionMultiplexCDMACodeDivisionMultipleAccessCMTCorrugatedMetallicTubeCNRCarriertoNoiseRatioCSOCompositeSecondOrderCTBCompositeTripleBeatCYTOPCyclicTransparentOpticalPolymer(AsahiGlassComp.
)dFiberdiameterdDiameterofthecablelayunit(Chapter4.
2)dReciprocalgratingconstantd1,d2VariousdiametersdGM(4)Fieldpenetrationdepth,dependentontheangleofincident4dmCladdingthicknessdmin,dmaxMinimumandmaximumdiameterdrayBeamdiameterDWirediameterDDistancegenerallyDDiffusionconstantDDispersionconstantDADiameterofthestrandingbasketDKInsertionlossDmAveragediameterofthecablelayuplayerDrecReciprocaldispersionD2BDigitalDomesticBus(serialbusforautomotives)XXIVAbbreviationsandSymbolsDAWirepair(Doppelader)DBRDistributedBraggReflectorDCDirectCurrentDEMUXDemultiplexerDFB-LDDistributedFeedbackLaserDiodeDHDoubleHeterostructureDH-MQWDoubleHeterostructureMultiQuantumWellDNPDryNonPolish(connectorsystemfromAMP)DPSDiphenyl-SulfideDPSKDifferentialPhaseShiftKeyingDSIDoubleStepIndexDVBDigitalVideoBroadcastingDVDDigitalVersatileDiske/oElectro/opticalEReceiver(Empfnger)EElElectricalfieldofthemodesECOCEuropeanConferenceonOpticalCommunicationELEffectiveLaserLaunchELEDEdgeemittingLEDENEuropeanstandardEMDEquilibriumModeDistributionEOFElastomerOpticalFiberETFETefzelEVAEthylen-Vinylacetat-CopolymerefFrequencygenerally(Hz)fExtensionfactor(chapter4.
2)fFocallengthf0Referencefrequencyf3dBBandwidthat3dBbelowmaximumfaSamplingfrequencyfgrCutofffrequencyFForcegenerallyFmaxMaximumforceFDMFrequencyDivisionMultiplexFDMAFrequencyDivisionMultipleAccessFECForwardErrorCorrectionFEPTetrafluoroethylen-HexafluoropropyleneFETFieldEffectTransistorFMFrequencyModulationFOPFrenchPlasticOpticalFibreFP-LDFabry-PerotLaserdiodeFSKFrequencyShiftKeyingFTTB,FTTHFiberToTheBuilding,FiberToTheHomeFWHMFullWidthatHalfMaximumAbbreviationsandSymbolsXXVgIndexcoefficientg(t)PulseresponseGIGradedIndexGI-MPOFGradedIndexprofilemultimodeMPOFGI-PCSGradedIndexPlasticCladSilicaGOFGlassOpticalFiberGRINGradedIndex(continuouslyindex.
.
.
.
)hPlancksconstant(6.
629·10-34Js)h(t)ImpulsresponseH(f)FrequencyresponseH0ThermalvalueHAViHomeAudioVideoHC-MPOFHollowCoreMPOFHCSHardCladPolymerHDMIHighDefinitionMultimediaInterfaceHDTVHighDefinitionTelevisonHECHydroxylethylenzelluloseHFCHybridFiberCoaxHFIP2-FAHexafluoroisopropyle2-FluoroacrylateHLSemiconductor(inGerman:Halbleiter)HomeplanetHomePlasticFiberNetworksbasedonHAViHPCFHardPlasticCladFiberHSPNHighSpeedPlasticNetworkICurrentgenerallyIphPhotocurrentIRMSNoisecurrent(rootmeansquare)IthThresholdcurrentIDBIntelligentDataBusIGPTInterfacialGelPolymerizationTechniqueIRInfraredISDNIntegratedServicesDigitalNetworkISMIndustrial,Scientific,andMedicalBandITGInformationstechnischeGesellschaft(InformationTechnologySociety)Jl(u)BesselfunctionJISJapaneseIndustrialStandardkBoltzmannsconstantKl(v)BesselfunctionkrRadialcomponentofthepropagationvectorKFCorrectionfactorKISTKwangjuInstuituteofScienceandTechnologyKPCFKoreaPOFCommunicationForumXXVIAbbreviationsandSymbolslPeripheralorderLLengthL1,L2Lengthsofdifferentopticalpath'sLcCouplinglengthLANLocalAreaNetworkLDLaserDiodeLEDLightEmittingDiodeLow-NAReducedNumericalApertureLWLOpticalwaveguide(inGerman:Lichtwellenleiter)mOrderofrefractionMMaterialdispersionparameterMHighestgroupnumberM('z)ModecouplingmatrixM1,M2VariousmonomersMCMultiCoreMC-GOFMultiCoreGlassOpticalFiberMCVDModifiedChemicalVaporDepositionMFCModeFieldConverterMGDMModeGroupDivisionMultiplexMIMOMultipleInput-MultipleOutputMMAMethylmethacrylatMM-GOFMultimodeGlassOpticalFiberMOSTMediaOrientedSystemTransport(serialbusinautomotives)MPOFMicrostructuredPOFMP3CompressionmethodformusicMP-PMultipointtoPointMP-MPMultipointtoMultipointMPEGMotionPictureExpertGroup(datacompressionstandard)MQWMultiQuantumWellMSIMultiStepIndexMUXMultiplexernRefractiveindexnNumberoflayer(chapter2.
8.
3)n0Refractiveindexofair(approx.
1)n1Rotationalspeedofstrandingbasket(chapter2.
8.
3)n2Rotationaldirectionandspeedofthecapstangear(chap.
2.
8.
3)n1,n2,n3RefractiveindexinvariousmedianairRefractiveindexofairncladdingRefractiveindexofthecladdingncoreRefractiveindexofthecorencore,maxMaximumrefractiveindexofthecoreinGIfibersnPMMARefractiveindexofPMMANNumberofguidedmodesNANumericalApertureAbbreviationsandSymbolsXXVIINEXTNearEndCrosstalkNRC-LEDNonResonantCavityLEDNRZNonReturntoZero(modulationformat)NTBANetworkTermination-BasicAccessNTCNegativeTemperatureCoefficiento/eOptical/electricalOIICOpticalInterconnectedIntegratedCircuitsOTDROpticalTimeDomainReflectometerOVALOpticalVideo/Audio-LinkpImpulsePProfiledispersionPPowergenerallyP0OutputpowerP0x,P1xPowerformeasurementsofconnectorlossesPeffEffectivepowerPelectr,PelElectricalpowerPLPoweratthelengthLPL1,PL2PoweratfiberoutputsPoptOpticalpowerPoutOutputpowerPrBackscatteredpowerPreceivReceivedpowerP(f)PoweratthefrequencyfPA,PA-6Polyamide,Polyamide6PAMPhaseAmplitudeModulationPAVNETPlasticFiberandVCSELNetworkPCPersonalComputerPCPolycarbonatePC(AF)PartiallyfluorinatedpolycarbonatePCSPlasticCladSilicaPEPolyethylenePE-FRNCPolyethyleneflame-retardant/halogenatedPEHDPolyethylene(highdensity)PELD;MDPolyethylene(lowdensity;mediumdensity)PFATetrafluoroethylen-Perfluoroalkylvinyl-EtherPFMPreformmethodPFMPulseFrequencyModulationPF-POFPerfluorinatedPOFPhMAPhenyl-Methacrylatepin-PDPhotodiodewithp-i-n-semiconductorstructurePLCPowerLineCommunicationP-LEDPolymerLEDPLLPhaseLockedLoopPNAPhoneNetworkAssociationXXVIIIAbbreviationsandSymbolsPMMAPolymethylmethacrylatePMMA-d8CompletedeuterinatedPMMAPMTPhotoMultiplierTubePOFPolymerOpticalFiberPOF-ACPolymerOpticalFiberApplicationCenterattheUniversityofAppliedSciencesNürnbergPOF-ALLPavingtheOpticalFuturewithAffordableLightning-FastLinks(EUproject:www.
ist-pof-all.
org)POFTOPOFTradeOrganizationPPPolypropyleneP-MPPointtoMultipointP-PPointtoPointPSPolystyrolePRBSPseudorandomBitSequencePSKPhaseShiftKeyingPTCPositiveTemperatureCoefficientPTFEPolytetrafluoroethylenePURPolyurethan(thermoplastic)PVC,PVC90°Polyvinylchloride,Polyvinylchloride90°CPVCflameret.
PolyvinylchlorideflameretardantQAMQuadratureAmplitudeModulationQWGextExternalquantumefficiencyrRadiusgenerallyrkRadius,whichisnotremainedbyhelicalrays(Fig.
2.
7)R,ResponsivityRElectricalresistanceRBendingradiusRRadiusvectorRHRelativeHumidityRRadiusofMCfibersRC-LEDResonantCavityLEDRIEReactiveIonEtchingRMLRestrictedModeLaunchsPitchlengthsAxialdistanceoffiberssHProducedpitchlengthSTransmitter(German:Sender)SBackscatteringcoefficientSSafetycoefficientSin,SoutModulationsignalatinputandoutputSCStrainCompressedSCMSubcarrierMultiplexSDMSpaceDivisionMultiplexAbbreviationsandSymbolsXXIXSemi-GISemigradedindexprofileSERCOSSerialReal-timeCommunicationSystemSIStepindexSi-PDSiliconphotodiodeSLEDSuperluminescentdiodeSM-GOFSingleModeGlassOpticalFiberSNRSignaltoNoiseRatioSOASemiconductorOpticalAmplifierSQWSingleQuantumWellSP1,SP2.
.
.
ReferencepointsSt.
-NAStandardNA(typ.
0.
50)tTimet1,t2,t3Differentpropagationtimesta,tbEfficiencyparameter(inTab.
3.
3)tfFalltimetiLengthofthelaunchedimpulsetin,toutPulsewidthatinputandoutputtrRisetimetAAgingtimetLLifetime(durability)TTransmitterTTemperaturegenerallyTmin,TmaxMinimumandmaximumtemperatureTGGlasstransitiontemperatureTSReferencetemperatureT-DSLTelekomADSLTDMTimeDivisionMultiplexTDMATimeDivisionMultipleAccessTTPTimeTriggeredProtocoluNormalizedpropagationconstantUVoltagegenerallyUIUnitIntervalUKWUltrashortwave(Ultrakurzwelle)UMTSUniversalMobileTelecommunicationsSystemUSBUniversalSerialBusUMDUniformModeDistributionUVUltravioletUWBUltraWideBandvGroupvelocityvNormalizedpropagationconstantvmDrawvelocityv,x,y,zVariablesforthecalculationofSNR(chapter1.
3.
3)VFiberparameterforthecalculationofthemodenumberXXXAbbreviationsandSymbolsVStrandingnumber(chapter2.
3.
8)VBVinylBenzoatVCSELVerticalCavitySurfaceEmittingLaserVDEAssociationforElectrical,Electronic&InformationTechnologies(VerbandderElektrotechnik,ElektronikundInformationstechnik)VDIAssociationofGermanEngineers(VereinDeutscherIngenieure)VPAcVinyl-PhenylazetateVPECrosslinkedpolyethyleneV-pinVersatileLinkconnectorfromHewlettPackardWThermalactivationenergyWPhotonenergyWGBandgapenergyWG1,WG2BandgapsofvarioussemiconductorsWDMWavelengthDivisionMultiplexWDMAWavelengthDivisionMultipleAccessWigWamWirelessGigabitWithAdvancedMultimediaSupportWiMaxWorldwideInteroperabilityforMicrowaveAccessWLFWilliams-Landel-FerryWPANWirelessPersonalAreaNetworkxLateralfiberdisplacementx,yFractionsinquaternarysemiconductorsy,zDifferentpathlengthszVariablevaluegenerallyzNumberoflayers(chapter2.
8.
3)zFiberposition
昔日数据,国内商家,成立于2020年,主要销售湖北十堰和香港HKBN的云服务器,采用KVM虚拟化技术构架,不限制流量。当前夏季促销活动,全部首月5折促销,活动截止于8月11日。官方网站:https://www.xrapi.cn/5折优惠码:XR2021湖北十堰云服务器托管于湖北十堰市IDC数据中心,母鸡采用e5 2651v2,SSD MLC企业硬盘、 rdid5阵列为数据护航,100G高防,超出防...
DogYun是一家2019年成立的国人主机商,提供VPS和独立服务器租用等,数据中心包括中国香港、美国洛杉矶、日本、韩国、德国、荷兰等,其中VPS包括常规VPS(经典云)和按小时计费VPS(动态云),使用自行开发的面板和管理系统,支持自定义配置,动态云各个硬件独立按小时计费,带宽按照用户使用量计费(不使用不计费)或者购买流量包,线路也可以自行切换。目前商家发布了6.18促销方案,新购动态云7折,经...
近日CloudCone商家对旗下的大硬盘VPS云服务器进行了少量库存补货,也是悄悄推送了一批便宜VPS云服务器产品,此前较受欢迎的特价20美元/年、1核心1G内存1Gbps带宽的VPS云服务器也有少量库存,有需要美国便宜大硬盘VPS云服务器的朋友可以关注一下。CloudCone怎么样?CloudCone服务器好不好?CloudCone值不值得购买?CloudCone是一家成立于2017年的美国服务...
www.mfcclub.net为你推荐
特朗普取消访问丹麦特朗普当选总统后对准备出国留学的学生有什么影响陈嘉垣电视剧《反黑》里面,雷太太女儿扮演者是谁?se95se.com现在400se就是进不去呢?进WWW怎么400se总cOM打开一半,?求解www.5any.com重庆哪里有不是全日制的大学?www.idanmu.com万通奇迹,www.wcm77.HK 是传销么?www.toutoulu.com安装好派克滤芯后要检查其是否漏气dpscycle国服魔兽WLK,有什么适合死亡骑士的插件?铂金血痕为什么我有红血痕?www.5566.com.cn大家在哪里在线看动漫?猴山条约猴山条约是怎么回事啊?有知道的吗?
中文域名注册 北京租服务器 北京vps 德国vps 中国域名网 鲨鱼机 优key 12306抢票攻略 windows2003iso 京东商城双十一活动 创梦 工作站服务器 上海联通宽带测速 新世界服务器 碳云 美国asp空间 winserver2008 stealthy 装修瓦工培训 小米电视主机 更多