973AuthorsAbouttheAuthorsJanAllenChapterD.
15USArmyResearchLaboratorySensorsandElectronDevicesDirectorateAdelphi,USAjan.
l.
allen8.
civ@mail.
milDr.
JanAllenisaResearchChemistattheUSArmyResearchLaboratoryinAdelphi,Maryland.
HiscurrentresearchinterestsfocusprimarilyonLi-ionbatterymaterialsincludingelectrodematerialsandelectrolytes.
HereceivedtheBSinChemistryfromTrumanStateUniversityin1989andtheMSandPhDdegreesinChemistryfromNorthwesternUniversityin1990and1993,respectively.
MichaelAngeloChapterD.
19UniversityofHawaii–ManoaHawaiiSustainableEnergyResearchFacility,HawaiiNaturalEnergyInst.
Honolulu,USAmangelo@hawaii.
eduMichaelAngeloreceivedhisBSinChemicalEngineeringfromtheUniversityofDelawarein2004andMSinMechanicalEngineeringfromtheUniversityofHawaiiin2013.
HeiscurrentlyresearchfacultyattheUniversityofHawaiiwherehehasworkedsince2005.
Hisresearchinterestsincludefuelcellsandoptimizationofelectricalgridswithrenewableenergy.
DickBedeauxChapterA.
4NorwegianUniversityofScienceandTechnologyDept.
ChemistryTrondheim,Norwaydick.
bedeaux@chem.
ntnu.
noDickBedeauxreceivedhisDoctoratedegreeinTheoreticalPhysicsfromtheUniversityofUtrechtin1969.
HeisProfessoremeritusofPhysicalChemistryattheNorwegianUniversityofScienceandTechnology.
Hiscurrentresearchisinnon-equilibriumstatisticalmechanicsandthermodynamicsofheterogeneoussystems.
Hehasco-authored3books,270journalpapersandseveralbookchapters.
HeisaFellowoftheAmericanPhysicalSociety,amemberoftheNorwegianAcademyofScienceandLettersandoftheNorwegianAcademyofScienceandTechnology.
HewasappointedtothehonorarypositionofOnsagerProfessorattheNorwegianUniversityofScienceandTechnology.
DanielBélangerChapterD.
16UniversityQuebecatMontreal(UQAM)Dept.
ChemistryMontreal,Canadabelanger.
daniel@uqam.
caDanielBélangerisProfessorintheDépartementdeChimieoftheUniversitéduQuébecàMontréal.
HereceivedhisPhDinSciencesdel'nergiefromtheInstitutNationaldelaRechercheScientiqueoftheUniversitéduQuébec,Canada,in1985.
HispostdoctoralstudieswereattheMIT(1986–1987).
Hiscurrentresearchinterestsincludechemicalmodicationofsurfaces,developingnewmaterialsforenergystorageandenvironmentalapplications.
Hehaspublishedmorethan150papers.
KeithBethuneChapterD.
19UniversityofHawaii–ManoaHawaiiSustainableEnergyResearchFacility,HawaiiNaturalEnergyInst.
Honolulu,USAbethune@hawaii.
eduKeithBethunereceivedhisBSandMSinOceanEngineeringwithaspecializationinmarinecorrosionfromFloridaAtlanticUniversity.
HeiscurrentlytheleadtestengineerattheHawaiiSustainableEnergyResearchFacilityoftheUniversityofHawaiiatManoa.
Hiscurrentresearchfocusisadvanceddiagnostictechniquesforbatteriesandfuelcells.
NilsBrandauChapterB.
10VolkswagenAGFuelCellResearchWolfsburg,Germanynils.
brandau@volkswagen.
deNilsBrandaureceivedtwoDiplomasinElectricalEngineeringfromtheUniversityofKasselaswellasaDr.
degreeinMechanicalEngineeringfromtheUniversityofBraunschweig.
HehasbeenwiththeFuelCellDepartmentattheVolkswagenAGsince2009.
FortheFuelCellAutomotiveResearchProgramincollaborationwithBallardPowerSystems,hemovedtoVancouverfortwoyears.
HisworkisfocusedontheoperationstrategyofautomotivePEMFuelCellSystems.
Authors974AbouttheAuthorsCorneliaBreitkopfChapters1,2Forbiographicalprofile,pleaseseethesection"AbouttheEditors".
ThierryBrousseChapterD.
16UniversitédeNantesInst.
desMatériauxJeanRouxelIMN,UMRCNRS6502/PolytechNantesNantesCedex3,Francethierry.
brousse@univ-nantes.
frThierryBrousseisaProfessorofMaterialsScienceattheUniversityofNantes.
Hereceivedhisengineerdegreein1987andhisPhDdegreein1991.
HejoinedtheUniversityofNantesin1994andisaFullProfessorsince2005.
HeisaresearcheratInstitutdesMatériauxJeanRouxel(IMN),wherehefocusesonmaterialsforelectrochemicalenergystoragewithparticularemphasisonalternativematerialsforbatteries,Li-ioncapacitorsandinnovativeand/ormodiedmaterialsforelectrochemicalsupercapacitors.
ColinG.
CameronChapterD.
17DefenceResearchandDevelopmentCanadaAtlanticResearchCentreDartmouth,Canadacolin.
cameron@drdc-rddc.
gc.
caColinG.
CameronreceivedhisPhDinElectrochemistryfromMemorialUniversityofNewfoundland.
FollowingapostdoctoralappointmentatCaltech,hehasworkedasascientistwithCanada'sDepartmentofNationalDefencesince2002.
Hisresearchinterestsincludeelectrochemicalenergystorageandpolymerfailureinvestigations.
Jeng-KueiChangChapterE.
26NationalCentralUniversityInst.
MaterialScienceandEngineeringTaoyuan,Taiwanjkchang@ncu.
edu.
twJeng-KueiChangreceivedhisPhDinMaterialsScienceandEngineeringfromtheNationalChengKungUniversity,TainanCity,Taiwan,in2005.
HeisAssociateProfessorintheInstituteofMaterialsScienceandEngineeringatNationalCentralUniversityinTaoyuan.
Hiscurrentresearchisinsupercapacitors,batteries,andelectrochemicalsensors.
ProfessorChanghastwicereceivedtheOutstandingYoungScientistAwardfromNationalScienceCouncilofTaiwan.
GeorgeZ.
ChenChapterE.
25UniversityofNottinghamNingboChinaDept.
ChemicalandEnvironmentalEngineeringNingbo,Chinageorge.
chen@nottingham.
ac.
ukGeorgeZhengChen(FRSC,FRSA,FIMMM)obtainedhisDiplomafromJiujiangTeacherTrainingCollege(1981),MScfromFujianNormalUniversity(1985)China,andhisPhDfromImperialCollege,UniversityofLondon(1992).
HeworkedinOxford,Leeds,CambridgeandWuhanandisnowProfessorattheUniversityofNottinghamdoingresearchonelectrochemicaltechnologiesandliquidsaltsinnovationformaterials,energyandenvironment.
KazumiChibaChapterD.
16TokyoUniversityofAgricultureandTechnologyLaboratoryofBio-organicChemistryTokyo,Japanchiba@carlit.
co.
jpKazumiChibaearnedhisDoctorateinEngineeringfromtheTokyoUniversityofAgricultureandTechnologyin2011.
In1999hejoinedtheMinistryofInternationalTradeandIndustryandin2002theJapanCarlitCo.
,Ltd.
,whreheisengagedintheresearchofelectrolytesforEDLC.
HereceivedtheTechnologyAwardfromtheElectrochemicalSocietyofJapan.
KevinCooperChapterD.
20ScribnerAssociates,Inc.
SouthernPines,USAkevin@scribner.
comKevinCooperreceivedhisDoctoratedegreefromtheDepartmentofMaterialsScienceandEngineeringintheUniversityofVirginiain2001.
HeisPrincipalScientistatScribnerAssociates,Inc.
Hiscurrentinterestsincludefuelcellandbatterytesting,fuelcelleducation,novelelectrochemicalpowersources,diagnostictechniquesinelectrochemicalsystems,corrosionscience,andsensorarrays.
AbouttheAuthors975AuthorsMinatoEgashiraChapterD.
16NihonUniversityCollegeofBioresourceSciencesFujisawa,Japanegashira.
minato@nihon-u.
ac.
jpMinatoEgashirareceivedhisengineerdegreein1994andhisdoctor(Engineering)degreein1998.
HejoinedYamaguchiUniversityfrom2004to2013,Presently,heisanAssociateProfessorintheCollegeofBioresourceSciencesatNihonUniversity.
Hisresearchfocusesonmaterialsforelectrochemicalenergystoragewithparticularemphasisonalternativenon-aqueouselectrolytesfortheuseinbatteriesandelectrochemicalcapacitors.
FrédéricFavierChapterD.
16UniversitéMontpellierIIInst.
CharlesGerhardt(ICG)MontpellierCedex05,Francefredf@um2.
frFrédéricFavierisCNRSDirectorofResearchandVice-DirectoroftheChimieBalardCarnotInsitute,HejoinedtheCNRSattheUniversityofMontpellierin1993at,whatisnow,theCharlesGerhardtInstitute.
Hisresearchactivitieslieinthesynthesisandthecharacterizationofnanostructuredmaterialsforelectrochemicalsystems,includingelectrochemicalcapacitors,gassensors,electrocatalysisandLi-ion/Li-airbattery.
JamesM.
FentonChapterD.
20UniversityofCentralFloridaFloridaSolarEnergyCenterCocoa,USAJamesM.
FentonistheDirectoroftheUniversityofCentralFlorida'sFloridaSolarEnergyCenter(FSEC).
PriortojoiningFSEC,Dr.
Fentonspent20yearsasaChemicalEngineeringProfessorattheUniversityofConnecticut.
HereceivedhisPhDinChemicalEngineeringfromtheUniversityofIllinoisin1984andhisBSfromUCLAin1979.
HeisanElectrochemicalSocietyFellow.
RobertJ.
ForsterChapterC.
13DublinCityUniversitySchoolofChemicalSciencesDublin9,Irelandrobert.
forster@dcu.
ieRobertForsterholdsaPersonalChairwithintheSchoolofChemicalSciencesatDublinCityUniversity(DCU).
Forster'sresearchfocusesonthecreationofnovelmaterialsthathaveusefulelectronicorphotonicpropertiesbecausetheyarehighlyorderedonthemolecularlengthscale.
HeobtainedaPhDfromDublinCityUniversityin1990beforemovingtotheUniversityofIllinoisasaPostdoctoralFellow.
Heistheauthor/co-authorofmorethan200papersandreviews.
YannickGarsanyChapterC.
14ExcetInc.
/USNavalResearchLaboratoryChemistryDivisionWashington,USAyannick.
garsany.
ctr@nrl.
navy.
milDr.
YannickGarsanyisaseniorscientistforExcet,Inc.
workingintheAlternativeEnergySectionintheChemistryDivisionattheNavalResearchLaboratory(NRL)inWashington,DC.
HespecializesinelectrochemistryandpresentlystudiesPt-basedfuelcellelectrocatalystsplusworksonthedevelopmentandunderstandingofmembraneelectrodeassemblies(MEAs).
IsaíGonzalezMartínezChapterB.
9ThyssenKruppElectrolysisGmbHProcessEngineeringDortmund,Germanyisai.
gonzalez-martinez@thyssenkrupp.
comIsaiGonzalezMartinezworksforThyssenKruppElectrolysisGmbHintheProcessEngineeringDepartment.
Hismainareaofworkisplantengineeringforthechlorineindustry,withspecialfocusonthechlor-alkalielectrolysisandhydrochloricacidelectrolysisprocessesemployingmembranetechnology.
RichardHanke-RauschenbachChapterB.
9LeibnizUniversityHannoverInstituteforElectricPowerSystems,ElectricEnergyStorageSystemsHannover,Germanyhanke-rauschenbach@ifes.
uni-hannover.
deRichardHanke-RauschenbachobtainedhisDiplomainEnergyEn-gineeringfromLeipzigUniversityofAppliedSciences,Germany.
In2007,hereceivedaPhDdegreefromtheOtto-von-GuerickeUniversity,Magdeburg,Germany.
SincethenheisateamleaderattheMaxPlanckInstituteforDynamicsofComplexTechnicalSystems,Magdeburg.
Hisresearchfocusisontheanalysis,designandoperationofrenewableenergysystems.
Authors976AbouttheAuthorsTingHeChapterE.
27IdahoNationalLaboratoryEnergyandEnvironmentScienceandTechnologyIdahoFalls,USAting.
he@inl.
govTingHeisaDirectoratPhillips66,inchargeofthedevelopmentofcleanenergytechnologies.
HereceivedhisPhDinPhysicalandElectrochemistryfromtheLeibnizUniversityHannover,Germany.
Hisresearchinterestsincludetheapplicationofelectrochemistryandnanotechnologyinenergyconversion,storageandefcientutilization.
Heistheinventor/authorofover120patentsandrefereedjournalarticles.
DietrichHebeckerChapterA.
3Martin-Luther-UniversityHalle-WittenbergEngineeringScienceCenterHalle(Saale),Germanydietrich.
hebecker@iw.
uni-halle.
deDietrichHebeckerreceivedhisPhDinChemicalEngineeringin1972fromtheMoscowInstituteofChemicalEngineeringunderthesupervisionofProf.
S.
N.
Shorin.
Since1985hehasbeenProfessorofEnergyEngineeringattheTechnicalUni-versityLeuna-MerseburgandlaterattheMartin-Luther-UniversityHalle-Wittenberg,Germany.
Hisresearchfocusesonthethermodynamicandthermoeconomicanalysisofchemicalprocesses.
Italsoincludesenergytransformationandthermodynamiccyclesforrefrigerationaswellasforheatandpowerproduction.
MatthiasHeimChapterB.
6BMZGmbHKarlstein,Germanyheimmatthias@hotmail.
comMatthiasHeimreceivedhisDiplomainMaterialsSciencefromtheFriedrich-AlexanderUniversityinErlangen,Germanyin2007andhisPhDdegreefromtheUniversityofBordeaux,Francein2011workingondifferentaspectsofporouselectrodes.
CurrentlyhecarriesoutresearchonbatteriesasaPostdoctoralFellowinattheUniversityofSt.
Andrews,UK.
RudolfHolzeChapterD.
18TechnischeUniversittChemnitzInstitutfürChemieChemnitz,Germanyrudolf.
holze@chemie.
tu-chemnitz.
deProfessorRudolfHolzereceivedhisPhDin1983fromtheUniversityofBonn,Germany.
In1987hemovedtoOldenburgUniversityasassociateprofessorinPhysicalChemistry.
Since1993heisfullProfessorofPhysicalChemistryandElectrochemistryatTechnicalUniversityChemnitz,Germany.
Hisresearchisfocusedonspectroelectrochemistry,self-assembledmonolayers,lithiumionbatteries,electrochemicalenergyconversionandstorage,materialsscienceandcorrosion.
HeismemberoftheSaxonAcademyofSciences.
Heistheauthorofmorethan335articlesinrefereedinternationaljournalsandelevenbooks.
DiHuChapterE.
25UniversityofNottinghamNingboChinaDept.
ChemicalandEnvironmentalEngineeringNingbo,Chinadi.
hu@nottingham.
edu.
cnDiHureceivedtheBEngdegreefromtheChinaUniversityofMiningTechnology(Beijing)andtheMSc(Hons)andPhDdegreesfromtheUniversityofNottingham,UK.
HeiscurrentlyapostdoctoralresearchfellowintheDepartmentofChemicalandEnvironmentalEngineering,UniversityofNottingham.
Hiscurrentworkfocusesonmoltensaltelectrometallurgyandenergystoragesystems.
JackHuizinghChapterD.
19UniversityofHawaii–ManoaHawaiiSustainableEnergyResearchFacility,HawaiiNaturalEnergyInst.
Honolulu,USAhuizingh@hawaii.
eduJackHuizinghisagraduateoftheUniversityofMichiganinNavalArchitec-ture/MarineEngineeringandMechanicalEngineering.
HereceivedhisMSdegreefromNewYorkUniversity.
HeiscurrentlyaprojectengineerfortheHawaiiNaturalEnergyInstituteandfacilitymanagerfortheHawaiiSustainableEnergyResearchFacility.
GregJacksonChapterB.
8ColoradoSchoolofMinesDept.
MechanicalEngineeringGolden,USAgsjackso@mines.
eduProf.
GregJacksonhasservedasHeadofMechanicalEngineeringattheColoradoSchoolofMinessince2013.
Heleadsaresearchgroupinfuelcellsystems,catalysis,andthermochemicalenergystorage.
BeforeCSM,Jacksonwasonfacultyfor15yearsattheUniversityofMaryland.
HealsoworkedatPrecisionCombustionuntil1997oncatalyticreactorsforlow-NOxcombustion.
AbouttheAuthors977AuthorsMichelleD.
JohannesChapterB.
11USNavalResearchLaboratyCenterforComputationalMaterialsScienceWashington,USAmichelle.
johannes@nrl.
navy.
milDr.
Johannes'sworkcentersaroundtheuseofdensityfunctionaltheorytounderstandandpredictmaterialspropertiesforstronglycorrelatedsystems,includingbatterymaterials,superconductorsandmagneticcompounds.
Shecurrentlyleadsahighlyintertwinedtheoret-ical/experimentalnanosciencebatterygroup.
ShehasaPhDinPhysicsfromUCDavisandisafellowoftheAmericanPhysicalSociety.
T.
RichardJowChapterD.
15USArmyResearchLaboratorySensorsandElectronDevicesDirectorateAdelphi,USAt.
r.
jow.
civ@mail.
milT.
RichardJowreceivedhisDoctoratedegreeinMaterialsScienceandEngineeringfromNorthwesternUniversityin1977.
HeisanARLFellowandTeamLeadforEnergyStorageMaterialsattheUSArmyResearchLaboratoryinAdelphi,MD.
Hisresearchfocusesonthedevelopmentofenergystoragematerialsanddevices,includinghigh-energyandhigh-powerdensityrechargeablelithiumbatteriesanddielectriccapacitors.
Dr.
Jowhasco-editedonebook,co-authoredover120papersand28patents.
HeisamemberoftheElectrochemicalSocietyandtheIEEEDielectricandElectricalInsulationSociety.
MahaprasadKarChapterE.
27Phillips66ResearchCenterSustainabilityTechnologiesBartlesville,USAprasad.
kar@p66.
comMahaprasadKarreceivedhisBachelordegreeinChemicalEngineeringfromtheUniversityofMumbai,India(2005)andhisPhDinChemicalEngineeringfromPurdueUniversity,Indiana(2010).
HeisaresearchengineerinthesustainabilitytechnologiesdivisionatthePhillips66ResearchCenter,Bartlesville,OK.
Hisresearchinterestsincludethinlmphotovoltaics,electrochemicalhydrogengenerationandacidgascapture.
TiaE.
KeyesChapterC.
13DublinCityUniversitySchoolofChemicalSciencesDublin9,Irelandtia.
keyes@dcu.
ieTiaKeyesisaProfessorattheSchoolofChemicalSciencesDublinCityUniversity,whereshehasbeenamemberoffacultysince2002.
Herresearchinterestslieinphotoactivecoordinationcompoundsandsupramolecularandinterfacialchemistry.
Tiacoordinatesamulti-disciplinaryresearchteamwhichisbasedbetweenandtheNationalBiophotonicsandImagingPlatformIrelandandtheNationalCentreforSensorResearch.
ChunjoongKimChapterD.
21ChungnamNationalUniversityDepartmentofMaterialsScienceandEngineeringDaejeon,RepublicofKoreackim0218@cnu.
ac.
krProfessorChunjoongKimreceivedhisPhDinMaterialsScienceandEngineeringundertheguidanceofProf.
ByungwooParkfromSeoulNationalUniversity.
HeisanAssistantProfessoratChungnamNationalUniversityafterhavinghadpositionsatSamsungFineChemicals,LawrenceBerkeleyNationalLaboratory,andUniversityofIllinoisatChicago.
Hisresearchinterestsincludetheunderstandingofreactionmechanismsinelectrodematerialsforenergystorage/conversiondevices.
SigneKjelstrupChapterA.
4NorwegianUniversityofScienceandTechnologyDept.
ChemistryTrondheim,Norwaysigne.
kjelstrup@ntnu.
noKjelstrupgraduatedcumlaudeatNorwegianUniversityofScienceandTechnology(NTNU)in1974andbecameProfessorofPhysicalChemistryin1985.
Since2005,shehasheldapart-timechairattheTechnicalUniversityofDelft.
Herresearchconcernstransportatinterfaces,electrochemicalcells,membraneseparationandentropyproductionminimisationinprocessequipment.
Shehasauthored,co-authoredandeditedseveralbooks.
Authors978AbouttheAuthorsJürgenKhlerChapterB.
10UniversityofBraunschweigThermalScienceLaboratoryBraunschweig,Germanyjuergen.
koehler@tu-braunschweig.
deJürgenKhlerisaFullProfessorandHeadoftheThermalScienceLaboratoryattheUniversityofBraunschweig,Germany.
Hisresearchfocusesonthermalsciences,heatandmasstransfer,andthermalandrefrigerationprocesses.
In2007,hereceivedtheGermanEnvironmentalAwardoftheGermanEnvironmentalFoundation.
AndriyKovalenkoChapterA.
5UniversityofAlbertaNationalInst.
NanotechnologyEdmonton,Canadaandriy.
kovalenko@nrc-cnrc.
gc.
caAndriyKovalenkoisSeniorResearchOfcerattheNationalInstituteforNanotechnologysince2003,andAdjunctProfessorintheDepartmentofMechanicalEngineeringattheUniversityofAlberta,Edmonton,Canada.
HeearnedhisPhDdegree(1993)inTheoreticalandMathematicalPhysicsfromLvivStateUniversity,Bogolyubov'sInstitute.
Dr.
Kovalenkohasbeendevelopingmethodologyandsoftwareimplementationofstatistical-mechanical,moleculartheoryofsolvation,couplingitwithelectronicstructuretheories,molecularsimulations,anddockingprotocolsinaplatformofpredictivemultiscaletheoryandmodeling.
AlexanderKuhnChapterB.
6UniversitédeBordeauxEcoleNationaleSupérieuredeChimie,BiologieetPhysiquePessac,Francekuhn@enscbp.
frAlexanderKuhnobtainedaMSinChemistryfromtheTechnicalUniversityofMunichandaPhDinPhysicalChemistryfromtheUniversityofBordeauxin1994.
Afterapost-docpositionatCALTEC,hemovedtotheUniversityofBordeaux(1996)asanAssistantProfessorandholdsaFullProfessorsince2000.
Hismainresearchinterestsareinelectrochemistry,surfacemodicationandnanoscience.
HeobtainedtheElectrochemistryAwardoftheFrenchChemicalSociety,andhasbeennominatedin2013asaSeniorMemberoftheInstitutUniversitairedeFrance(IUF).
H.
RusselKunz(deceased)ChapterD.
20StuartLichtChapterD.
24GeorgeWashingtonUniversityDept.
ChemistryWashington,USAslicht@gwu.
eduStuartLichtisaProfessorofChemistryattheGeorgeWashingtonUniversityinWashington,DC,USA.
Hehaspublishedmorethan300peerreviewedstudiesandpatentsonrenewableenergy,climatechange,batteries,photoelectrochemistry,analyt-icalchemistry,environmentalchemistryandfundamentalphysicalelectrochemistry.
HewasaNationalScienceFoundationProgramDirectorinChemistry,waspreviouslyaProfessorattheTechnionInstitute,Israel.
HereceivedthePhDfromtheWeizmannInstituteandwasaPostdocatMIT.
HisawardsincludetheElectrochemicalSocietyEnergyTechnologyprize.
ManuelLohrengelChapterE.
28Heinrich-Heine-UniversittDüsseldorfInst.
PhysikalischeChemieDüsseldorf,Germanymanuel.
lohrengel@uni-duesseldorf.
deManuelM.
LohrengelreceivedhisDoctoratedegreeinPhysicalChem-istryfromtheFreeUniversityBerlinin1977.
HeisHeadoftheworkinggroupMicroelectrochemistryofHeinrich-Heine-UniversityDüsseldorf.
Hisresearchcoverselectrochemicalmachining,passivity,grainsandintermetallics,microcells,transientsandelectronicequipmentwhichwaspresentedinover120papersandover100lecturesatinternationalconferences.
AbouttheAuthors979AuthorsJeffreyLongChapterD.
16NavalResearchLaboratorySurfaceChemistryBranchWashington,USAjeffrey.
long@nrl.
navy.
milJeffreyLongjoinedtheUSNavalResearchLaboratoryinWashington,DCin2000asastaffscientistafterreceivingaPhDinChemistryfromtheUniversityofNorthCarolina,ChapelHillin1997andnishingaNationalResearchCouncilpostdoctoralfellowshipattheNRL(1997–2000).
Hisresearchfocusesonthedesign,synthesis,andevaluationofnanostructuredmaterials(metals,metaloxides,andcarbons)andadvancedelectrodearchitectures;withtheprimarygoalofimprovingtheperformanceofelectrochemicalpowersources(Li-ionbatteries,metal–airbatteries,electrochemicalcapacitors).
CoreyT.
LoveChapterB.
11USNavalResearchLaboratoryChemistryDivisionWashington,USAcorey.
love@nrl.
navy.
milDr.
CoreyT.
LoveisamaterialsresearchengineerintheAlternativeEnergySectionintheChemistryDivisionattheNavalResearchLaboratoryinWashingtonDC.
Hecurrentlyleadsbasicandappliedresearchprogramsenablingthesafeimplementationoflithium-ionbatteriesthroughmaterialsdiscoveryanddevelopmentandadvanceddiagnosticandmonitoringtechniques.
CynthiaA.
LundgrenChapterD.
15USArmyResearchLaboratorySensorsandElectronDevicesDirectorateAdelphi,USAcynthia.
lundgren@us.
army.
milCynthiaLundgreniscurrentlyChiefoftheElectrochemistryBranchattheArmyResearchLaboratory.
Herresearchinterestsincludeelectrochemicalenergystorageandconversiontoincludebatteries,fuelcells,catalysisandelectrochemicalenergytransduction.
Previously,shewasaSeniorResearchScientistatDuPont'sCentralRe-searchandDevelopmentDepatment,wheresheworkedonavarietyofelectrochemicalprograms.
NealD.
McDanielChapterE.
27Phillips66ResearchCenterSustainabilityTechnologiesBartlesville,USAneal.
d.
mcdaniel@p66.
comNealMcDaniel(PhD2010Princeton)isaSeniorScientistatPhillips66withresearchbackgroundininorganicsynthesis,electrochemistry,carbon/polymercomposites,andphotochemistry.
JohnR.
MillerChapterD.
16JME,Inc.
Beachwood,USAjmecapacitor@att.
netJohnR.
Miller,PresidentandfounderofJME,Inc.
andAdjunctProfessorinElectricalEngineering&ComputerScienceatCaseWesternReserveUniversity.
Hehas34yearsexperienceinadvancingelectrochemicalcapacitortechnology.
Hedevelopedanelectricdouble-layercapacitorthatoperatesuptokHzfrequenciesusingvertically-orientedgraphenenanosheets.
Dr.
MillerearnedBSandPhDdegreesinPhysicsfromMIT.
ShelleyD.
MinteerChapterD.
22UniversityofUtahDept.
ChemistryandDept.
MaterialsScienceandEngineeringSaltLakeCity,USAminteer@chem.
utah.
eduDr.
ShelleyMinteerisaUSTARProfessorinboththeDepartmentsofChemistryandMaterialsScienceandEngineeringattheUniversityofUtah.
ShereceivedherPhDinChemistryfromtheUniversityofIowain2000underthedirectionofJohnaLeddy.
AfterreceivingherPhD,shespent11yearsasaFacultyMemberatSaintLouisUniversitybeforemovingtotheUniversityofUtahin2011.
Shehasexpertiseinbioelectrocatalysisforbiosensorsandbiofuelcells.
MasayukiMoritaChapterD.
16YamaguchiUniversityGraduateSchoolofSciencesandTechnologyforInnovationUbe,Japanmorita@yamaguchi-u.
ac.
jpMasayukiMoritaisaProfessorofAppliedFineChemistryDivisionatYamaguchiUniversity.
HegraduatedandreceivedPhDdegreefromOsakaUniversityat1980.
HejoinedYamaguchiUniversityasaResearchAssociatein1980,andwaspromotedtoFullProfessorin1996.
Hisresearchinterestfocusesonmaterialsforelectrochemicalenergyconversion,includingelectrochemicalcapacitors.
HeisanactivememberoftheElectrochemicalSocietyandtheInternationalSocietyofElectrochemistry.
Authors980AbouttheAuthorsSeunghoonNamChapterD.
21KoreaInstituteofMachinery&Materials(KIMM)Dept.
ofNanoMechanics,NanoMechanicalSystemsResearchDivisionDaejeon,RepublicofKoreakwek14@kimm.
re.
krDr.
SeunghoonNamreceivedPhDdegreeinMaterialsScienceandEngineeringunderthesupervisionofProf.
ByungwooParkfromSeoulNationalUniversity.
HeisaseniorresearcheratSamsungAdvancedInstituteofTechnology(SAIT).
Hisresearchisassociatedwiththedevelopmentofelectrodematerialsandsolidelectrolytesforsolid-stateLi-ionbatteriesaswellasthecontroloftheelectrolyte/electrodeinterface.
KatsuhikoNaoiChapterD.
16TokyoUniversityofAgricultureandTechnologyJapanInstituteofSymbioticScienceandTechnologyTokyo,Japannaoi2@cc.
tuat.
ac.
jpKatsuhikoNaoiisExecutiveProfessorandViceDeanatTokyoUniversityofAgriculture&Technology.
HeobtainedhisPhDfromWasedaUniversity.
HeservesastheChairofTheCapacitorTechnologyCommitteeofTheElectrochemicalSocietyofJapan.
HeiscurrentlytheleaderoftheGlobalInnovationResearch(GIR)-SupercapteamandtheDirectorofAdvancedCapacitorResearchCenter(ACC)atTokyoUniversityofAgriculture&Technology.
Hisresearchinterestsareadvancedsupercapacitors,high-powerLi-ionbatteries,andotherEESforautomotive/stationaryapplications.
YuhongOhChapterD.
21SamsungElectro-MechanicsLCRMaterialsGroupSuwon,RepublicofKoreayuhong.
oh@samsung.
comDr.
YuhongOhreceivedhisPhDdegreeinMaterialsScienceandEngineeringunderthesupervisionofProf.
ByungwooParkfromSeoulNationalUniversity.
HeiscurrentlyaseniorengineeratSamsungElectro-Mechanics.
Hisresearchinterestslieinthesynthesisofvariousinorganicnanomaterialsforenergydevices.
ByungwooParkChapterD.
21SeoulNationalUniversityDept.
MaterialsScienceandEngineering,andResearchInstituteofAdvancedMaterialsSeoul,RepublicofKoreabyungwoo@snu.
ac.
krProfessorByungwooParkreceivedhisPhDinAppliedPhysicsfromHarvardUniversity(1989).
Afterpost-docatIBMT.
J.
WatsonResearchCenter,CALTEC(researchfellow),andGeorgiaInstituteofTechnology(assistantprofessor),hejoinedthefacultyoftheDepartmentofMaterialsScienceandEngineeringatSeoulNationalUniversityin1997.
Hiscurrentresearchinterestsincludethedevelopmentofnanoscalecoating,novelnanocomposites,quantum-dotsensitizedsolarcells,andnanophasecontrolofthin-lmelectrodesforenergyapplications.
VijayK.
RamaniChapterD.
20WashingtonUniversityinSt.
LouisDept.
Energy,EnvironmentalandChemicalEngineeringSt.
Louis,USAramani@wustl.
eduVijayRamaniholdstheRomaB.
andRaymondH.
WittcoffProfessorshipinEnergy,EnvironmentalandChemicalEngineeringatWashingtonUniversityinSt.
Louis.
Hisresearchinterestslieattheconuenceofelectrochemicalengineering,materialsscience,andrenewableenergytechnologies.
Currentresearchdirectionsinhisgroupincludemulti-functionalelectrolyteandelectrocatalystmaterialsforpolymer-basedelectrochemicalsystems,analyzingthesourceanddistributionofoverpo-tentialinelectrochemicalsystems,mitigatingcomponentdegradationinelectrochemicaldevices,andin-situdiagnosticstoprobeelectrochemicalsystems.
BruceB.
RandolphChapterE.
27Phillips66ResearchCenterSustainabilityTechnologiesBartlesville,USAbruce.
b.
randolph@p66.
comBruceRandolphisaResearchFellowatPhillips66.
Hisresearchinterestsincludealkylation,corrosionandemulsions,watertreating,tracemetalmanagement,andhydrogenproduction.
Hecurrentlyholds50USpatentsandhasco-authored26publications.
RandolphearnedaBSdegreeinChemistryfromSouthwesternOklahomaStateUniversity,andaPhDdegreeinChemistryfromtheUniversityofOklahoma.
AbouttheAuthors981AuthorsTatyanaReshetenkoChapterD.
19UniversityofHawaii–ManoaHawaiiSustainableEnergyResearchFacility,HawaiiNaturalEnergyInst.
Honolulu,USAtatyanar@hawaii.
eduTatyanaV.
ReshetenkoreceivedherMaster'sdegreeinCatalysisandAdsorptionfromNovosibirskStateUniversityandPhDdegreefromBoreskovInstituteofCatalysis,Russia.
ShehasbeenwiththeHawaiiNaturalEnergyInstitutesinceDecember2007.
HerresearchinterestsareinstudiesofspatialPEMFCperformanceunderdifferentoperatingconditionsandfuel/air/systemcontaminantsexposureusingasegmentedcellsystem.
Hans-HermannRüttingerChapterB.
7Martin-Luther-UniversityHalle-WittenbergDept.
PharmacyHalle,Germanyruettinger@pharmazie.
uni-halle.
deHans-HermannRüttingergraduatedasDiplomchemikerin1970atMartin-Luther-UniversityinHalle.
AfterPhDdegree(1973)inOrganicChemistryhejoinedtheelectrochemicalgroupofProf.
Matschinerforcooperationwithchemicalindustryinelectrolysis.
ParallelworkonorganicelectrosynthesisresultedinhisHabilitation1988.
Since1997hehasbeentheLeaderoftheAnalyticalLaboratoryintheDepartmentofPharmacy.
Maininterestsinthelastyearswereincapillaryelectrophoresisandelectrochemicalinstrumentation.
MichaelSchneiderChapterE.
28FraunhoferIKTSDept.
ElectrochemistryDresden,Germanymichael.
schneider@ikts.
fraunhofer.
deMichaelSchneiderstudiedattheMiningAcademyFreiberg,Germany.
HegraduatedasDipl.
-Ing.
inMaterialsSciencein1989andasDr.
-Ing.
attheTechnicalUniversityDresden,Germany,in1993.
Since2006heisGroupManagerElectrochemistryatFraunhoferIKTS,Dresden.
Currently,heisdealingwithfunctionaloxidelms,corrosion,electroplating,energystoragesystems,andelectrochemicalmachining.
PatriceSimonChapterD.
16UniversitéPaulSabatierCentreInter-universitairedeRechercheetd'IngénieriedesMatériauxToulouse,Francesimon@chimie.
ups-tlse.
frPatriceSimonisProfessorofMaterialsScienceattheUniversitéPaulSabatier,Toulouse,France.
Hisresearchisfocusedonthecharacteri-zationofnanostructuredmaterialsforelectrochemicalenergystoragesources,includingelectrochemicalcapacitorsandLi-ionbatteries.
HeisDirectoroftheAlistoreEuropeanResearchInstitutefocusedonLi-ionbatteryresearchandDeputyDirectoroftheFrenchnetworkonElectrochemicalEnergyStorage.
HeholdstheChairofExcellencefromtheAirbusGroupFoundationNanomaterialsforembeddedenergystoragesources.
RichardO.
StromanChapterB.
8USNavalResearchLaboratoryChemistryDivisionWashington,USArichard.
stroman@nrl.
navy.
milRickStromanhasbeenanEngineerattheUSNavalResearchLaboratorysince2004,wherehisresearchinvolvesthesimulation,design,anddevelopmentofpowersystems,primarilyforautonomousvehiclesandsoldierapplications.
HereceivedhisPhDinMechanicalEngineeringfromtheUniversityofMarylandin2013,forwhichhedevelopedatransport-focuseddirectborohydride-hydrogenperoxidefuelcellmodel.
JeanSt-PierreChapterD.
19UniversityofHawaii–ManoaHawaiiSustainableEnergyResearchFacility,HawaiiNaturalEnergyInst.
Honolulu,USAjsp7@hawaii.
eduJeanSt-PierreisaGraduateofcolePolytechnique,Montréal,Canadaandholds3degreesfromthisinstitution(PhD,MScA,BIng).
Mostofhisindustrialandacademiccareerhasbeendevotedtothedevelopmentofproton-exchangemembranefuelcellswhichledto95+journalpapers,bookchapters,proceedingsandpatents.
HeiscurrentlyaresearcherattheUniversityofHawaii.
Authors982AbouttheAuthorsWataruSugimotoChapterD.
16ShinshuUniversityDept.
FineMaterialsEngineering,FacultyofTextileScienceandTechnologyUeda,Japanwsugi@shinshu-u.
ac.
jpWataruSugimotoisaProfessorofMaterialsandChemicalEngineeringatShinshuUniversity.
HereceivedhisPhDdegreein1999fromWasedaUniversityandhasbeenafacultymemberoftheFacultyofTextileScienceandTechnology,ShinshuUniversitysincethen.
Hisresearchfocusesonnanomaterialsforelectrochemicalchargestorageandconversionwithparticularemphasisonthesynthesisandapplicationofnanosheetsandnanoparticles.
HeisalsoVice-DirectoroftheCenterforEnergyandEnvironmentalScience,ShinshuUniversity.
I-WenSunChapterE.
26NationalChengKungUniversityDept.
ChemistryTainan,Taiwaniwsun@mail.
ncku.
edu.
twI-WenSunreceivedthePhDdegreeinChemistryfromtheUniversityofMississippiin1989.
HewasResearchAssociateattheUniversityofTennessee1989–1992andiscurrentlyProfessorofChemistryatNationalChengKungUniversity,Taiwan.
Hisresearchinterestsareintheelectrochemistryinionicliquids,electrochemicalfabricationofnanomaterials,andenergystoragedevices.
KaiSundmacherChapterB.
9MaxPlanckInstituteforDynamicsofComplexTechnicalSystemsProcessSystemsEngineeringMagdeburg,Germanysundmacher@mpi-magdeburg.
mpg.
deKaiSundmacherisDirectoroftheMax-Planck-InstituteforDynamicsofComplexTechnicalSystems,ProfessorofProcessSystemsEngineeringatOtto-von-GuerickeUniversityinMagdeburg,GermanyandEinsteinProfessoroftheChineseAcademyofSciences.
Hisresearchfocusesonthemodel-basedanalysisandsynthesisofcomplex(bio-)chemicalproductionsystems,energyconversionprocesses,electrochemicalreactors,fuelcells,andparticulateprocesses.
KarenSwider-LyonsChapters1,2,B.
11,C.
14Forbiographicalprofile,pleaseseethesection"AbouttheEditors".
YuYeJ.
TongChapterC.
12GeorgetownUniversityDept.
ChemistryWashington,USAyyt@georgetown.
eduYuYeJ.
TongreceivedBS(1983)andMS(1986)inNuclearPhysicsfromFudanUniversity,ShanghaiChinaandPhDdegree(1994)inExperimentalCondensedMatterPhysicsfromtheSwissFederalInstituteofTechnologyinLausanne,Switzerland.
HecurrentlyisaProfessorandChairintheDepartmentofChemistryatGeorgetownUniversity,WashingtonDC,USA.
Hisresearchfocusesonfuelcellelectrocatalysisandchargetransferinmetalnanoparticles-basednanomaterialsbyinsituNMR/IR/Raman,SPM,andabinitioDFTcalculations.
TanjaVidakovi-KochChaptersB.
9,D.
23MaxPlanckInstituteforDynamicsofComplexTechnicalSystemsProcessSystemsEngineeringMagdeburg,Germanyvidakovi@mpi-magdeburg.
mpg.
deDr.
-Ing.
Vidakovic-Koch'sresearchfocusisonlow-temperatureelectro-chemicalprocesses.
Examplesaredirectmethanolfuelcell,enzymaticfuelcells/reactorsandchlorinerecycling.
ShegraduatedinChemicalEngineeringfromtheUniversityofBelgrade,SerbiaandreceivedherPhDfromtheOtto-von-GuerickeUniversity(OvGU),Magdeburg,Germany.
Since2005sheisateamleaderintheresearchgroupofProfessorSundmacher,Max-Planck-InstituteforDynamicsofComplexTechnicalSystems.
MebsVirjiChapterD.
19UniversityofHawaii–ManoaHawaiiSustainableEnergyResearchFacility,HawaiiNaturalEnergyInst.
Honolulu,USAmvirji@hawaii.
eduMebsVirjiisanAssociateSpecialistattheHawaiiNaturalEnergyInstitute,UniversityofHawaii.
HereceivedaPhDdegreeinmodelingandsimulationofPEMFCsystemsfromLoughboroughUniversity(UK).
Hiscurrentresearchworkisfocusedonrealtimehardware-in-the-loopsimulationofPEMFCsystemsforautomotiveandunmannedunderwatervehiclesusingadynamicfuel-cellteststation.
AbouttheAuthors983AuthorsJamesJ.
WalshChapterC.
13UniversityofLiverpoolStephensonInstituteforRenewableEnergyLiverpool,UKjjwalsh@liv.
ac.
ukJamiereceivedhisBSc(2007)andPhD(2011)degreesfromDublinCityUniversity.
HesubsequentlyundertookpostdoctoralworkinanalyticalbiospectroscopyatDCUandatQueen'sUniversity,Belfast,onphotoelectrocatalysis.
HeiscurrentlyworkingattheStephensonInstituteforRenewableEnergy,UniversityofLiverpool,onphotoelectrochemicalsolarfuelsproduction.
Hisresearchinterestsincludesolarfuels,(photo)electrochemistry,polyoxometalatesandspectroscopicstudiesofcomplexsystems.
KangXuChapterD.
15USArmyResearchLaboratorySensorsandElectronDevicesDirectorateAdelphi,USAconrad.
k.
xu.
civ@mail.
milKangXuisachemistattheUSArmyResearchLaboratory.
HereceivedhisPhDfromArizonaStateUniversityandhisworkonelectrolyteshasreceivedworld-wideattention.
Inadditiontothenewsalts,solventsandadditivesheinvented,heisbestknownintheeldforthetwocomprehensivereviewspublishedinChemicalReviewsin2004and2014,respectively.
YunfengZhaiChapterD.
19UniversityofHawaii–ManoaHawaiiSustainableEnergyResearchFacility,HawaiiNaturalEnergyInst.
Honolulu,USAyunfeng@hawaii.
eduYunfengZhaireceivedaPhDdegreeinChemicalEngineeringfromtheChineseAcademyofSciences.
HeisnowaJuniorResearcherattheUniversityofHawaii.
HeisworkingoncontaminationeffectsanddegradationinPEMFCs.
HeisamemberofTheElectrochemicalSocietyandtheAmericanChemicalSociety.
ShengS.
ZhangChapterD.
15USArmyResearchLaboratorySensorsandElectronDevicesDirectorateAdelphi,USAshengshui.
zhang.
civ@mail.
milShengshuiZhangreceivedhisPhDinPhysicalChemistryfromtheUniversityofScienceandTechnologyBeijing,China,in1993.
HecurrentlyisaResearchChemistintheElectrochemistryBranch,USArmyResearchLaboratory.
Hehasmorethan20yearsofexperiencesinrechargeablelithiumandlithium-ionbatteries.
Hismostrecentresearchesareonlithium-airandlithium-sulfurbatteries.
Hehasauthored131papers,holds28patents,andhaseditedtwobooks.
Hispublicationshavereceivedover7400citationswithanh-indexof49.
985DetailedCont.
DetailedContentsListofAbbreviationsXXI1ElectrochemicalScience–HistorialReviewCorneliaBreitkopf,KarenSwider-Lyons1References92ModernElectrochemistryCorneliaBreitkopf,KarenSwider-Lyons112.
1FundamentalComponentsofElectrochemistry112.
1.
1GeneralReferences122.
1.
2ElectrochemistryJournals142.
1.
3ElectrochemistryConferences.
142.
2Thermodynamics142.
3Kinetics.
172.
4MassTransport.
192.
5TheChargedElectrodeInterface/ElectrochemicalDoubleLayer.
.
.
.
.
.
212.
6IonicandElectronicResistance232.
7Experimentation.
242.
8SubtopicsinElectrochemistry262.
8.
1Solid-StateIonics.
262.
8.
2IonicLiquids262.
8.
3CorrosionatLiquidInterfaces272.
8.
4Chlor–AlkaliProcess272.
9Summary28References29PartAThermodynamics3ThermodynamicalAspectsofElectrochemicalReactionsDietrichHebecker333.
1ElectrochemicalReactionsforEnergyConversion.
333.
1.
1UnityofMaterialandEnergyConversion343.
1.
2EnergyBalanceofElectrochemicalReactions353.
1.
3EquilibriumandEquilibriumTemperature363.
1.
4AvailabilityofChemicalReactions373.
1.
5Temperature–EnergyDiagramofChemicalReactions.
.
.
.
.
473.
1.
6ExotropicReactions.
503.
1.
7EndotropicReactions.
523.
2ElectrochemicalReactionsandEnergyTransformation.
543.
2.
1SystematicsofEnergyTransformation543.
2.
2ChemicalEnergyTransformation573.
2.
3ElectrochemicalThermodynamicCycles.
60References67DetailedCont.
986DetailedContents4ThermodynamicsofElectrochemicalSystemsSigneKjelstrup,DickBedeaux694.
1ScopeandPremises694.
1.
1TheCorePostulatesofNon-EquilibriumThermodynamics704.
1.
2PerspectivesofNETonElectrochemicalSystems704.
1.
3SymmetryRulesinHeterogeneousSystems714.
1.
4TheBasicAssumption:LocalEquilibrium.
714.
2ThermodynamicPropertiesoftheTotalCell.
724.
3ExampleCells734.
4EntropyProductioninThree-andTwo-Dimensions744.
5AlternativeVariableSets754.
5.
1MassBalanceandEntropyProduction764.
5.
2TransferenceCoefficientsandTransportNumbers774.
5.
3ExternallyControlledFluxes.
TheMeasurableElectricPotential.
784.
5.
4IonicFluxesandForces:ThePlanckPotential794.
6CellPotentials804.
6.
1AnIsothermalFormationCellwithaConcentrationGradient804.
6.
2ANonisothermalFormationCell.
804.
6.
3TheLiquidJunction824.
6.
4TheButler–VolmerEquation.
834.
6.
5PowerfromReverseElectrodialysis854.
6.
6ElectrochemicalCellsasThermoelectricGenerators.
.
.
.
.
.
.
864.
7ThePolymerElectrolyteFuelCell874.
8TransportatInterfaces.
PerspectivesandConclusion90References915MultiscaleModelingofSolvationAndriyKovalenko.
955.
1IntegralEquationTheoryofMolecularLiquids.
965.
2Statistical–Mechanical,MolecularTheoryofSolvation.
995.
2.
13D-RISM-KHIntegralEquationsfortheSolvationStructure.
995.
2.
2AnalyticalExpressionsfortheSolvationThermodynamics1025.
2.
3AnalyticalTreatmentofElectrostatics1035.
2.
4Examplesof3D-RISM-KHCalculationsofSolvationStructure1035.
2.
5MolecularRecognitionandProtein–LigandBinding.
.
.
.
.
.
1125.
2.
6Post-ProcessingoftheThermodynamicsofMDTrajectories1125.
3MultiscaleCouplingofthe3D-RISM-KHMolecularTheory.
1135.
3.
1Self-ConsistentFieldCouplingofKS-DFTwith3D-RISM-KH1135.
3.
2ExampleofMultiscaleKS-DFT/3D-RISM-KHCalculations.
.
1155.
4Multi-Time-StepMolecularDynamicsofBiomolecules1165.
4.
1MolecularDynamicsCoupledwith3-DMolecularTheoryofSolvation1165.
4.
2CalculationofSolvationForcesby3D-RISM-KHMTS-MD.
.
1185.
4.
3MTS-MD/SFCE/3D-RISM-KHMethodforBiomolecularSolvation120DetailedContents987DetailedCont.
5.
5ElectricalDoubleLayerinNanoporousMaterials1235.
6ReplicaFormalismforFluidSorbedinaDisorderedMatrix1235.
7ReplicaDRISM-KH-VMforElectrolyteSolutionSorbedinNanoporousMaterial.
1245.
7.
1ThermodynamicsofSorbedSolution.
1265.
7.
2ElectricDoubleLayerintheNanoporesofHostMatrix.
.
.
.
1275.
7.
3MolecularMechanismofElectrosorptionandCapacitance1285.
7.
4IllustrationforaSupercapacitor.
1295.
8Conclusions133References134PartBElectrodesandElectrodeProcesses6HighlyOrderedMacroporousElectrodesAlexanderKuhn,MatthiasHeim1436.
1MacroporousElectrodesbyInfiltrationofColloidalTemplates.
.
.
.
.
.
1446.
1.
1AssemblyofColloidalCrystals1446.
1.
2OverviewoverDifferentInfiltrationTechniques1516.
1.
3ElectrodepositionofMetalsinColloidalTemplates1566.
1.
4ElectrodepositionofConductingPolymersinColloidalCrystals.
1656.
2MacroporousMaterialswithaGradientinPoreDiameter1726.
2.
1GradientPoreDiameterTemplateFabrication1736.
2.
2ElectrodepositionofMetalsandConductingPolymers.
.
.
.
1766.
3MacroporousMicroelectrodeswithCylindricalGeometry1816.
3.
1FabricationofColloidalCrystalTemplatesonGoldWires.
1826.
3.
2ElectrodepositionofMetalsandConductingPolymers.
.
.
.
1836.
3.
3CharacterizationofMacroporousGoldCylinders1886.
4ApplicationsofMacroporousElectrodes1886.
4.
1Electrocatalysis.
1896.
4.
2EnergyStorage1896.
4.
3SensingApplications1906.
4.
4Electrosynthesis.
1916.
4.
5OpticalApplications1936.
5Conclusion197References1977Ion-SensitiveElectrodesHans-HermannRüttinger2077.
1FundamentalsofPotentiometry2077.
1.
1ReferenceElectrodes2087.
1.
2SimpleIndicatorElectrodes.
2107.
1.
3MembraneElectrodes2107.
1.
4CharacterizationofIon-SelectiveElectrodes2177.
1.
5DirectPotentiometricDeterminationofConcentrations.
.
.
2187.
1.
6ModelsofISEResponse2187.
1.
7AllSolid-StateElectrodes2227.
1.
8Ion-SelectiveFieldEffectTransistor(ISFET)2257.
1.
9DrugSensitiveElectrodes226DetailedCont.
988DetailedContents7.
2ApplicationofISE.
2267.
2.
1Gas-SensitiveElectrodesandBiosensors.
2267.
2.
2DetectorsinFlowSystems2277.
3AmperometricandVoltammetricMethods2277.
3.
1ExperimentalMethods2277.
3.
2ElectrochemicalReactionMechanisms.
233References2378TransportinLiquid-PhaseElectrochemicalDevicesRichardO.
Stroman,GregJackson2398.
1AGeneralTransportModelforLiquid-FedElectrochemicalCells.
.
.
.
2408.
1.
1GoverningEquationsinLiquidElectrolytes2418.
1.
2TransportinLiquidElectrolytes.
2428.
1.
3TransportofLiquidsinPorousMedia2438.
1.
4CommonBoundaryConditionsandInterfaces2448.
1.
5ReactionFluxesattheElectrode–ChannelInterfaces.
.
.
.
.
2458.
2PracticalConsiderations.
2468.
2.
1GridDevelopmentandGradientApproximations2468.
2.
2ImplementationoftheGoverningEquations2468.
2.
3NumericalApproaches2478.
2.
4ModelCalibrationandValidation2488.
3ExampleCell:DirectBorohydride–HydrogenPeroxideFuelCell.
.
.
.
.
2488.
3.
1DBFCOverview2488.
3.
2TransportintheChannels2508.
3.
3TransportattheMembrane–ChannelInterfaces.
2508.
3.
4DBFCTransportModelCalibration2518.
3.
5ResultsfromtheDBFCTransportModel2538.
4Conclusions2568.
5Nomenclature.
256References2579CatalystLayerModelingTanjaVidakovi-Koch,RichardHanke-Rauschenbach,IsaíGonzalezMartínez,KaiSundmacher2599.
1GasDiffusionElectrodes2599.
2CatalystLayerPhysicalStructure2619.
2.
1CatalystandElectronConductingNetwork2619.
2.
2IonicConductingNetwork2629.
2.
3VoidFraction2629.
3GoverningEquations.
2629.
3.
1PorousElectrodeModels2639.
3.
2InterfaceModels–NeglectingSpatialGradients2679.
3.
3AgglomerateModels.
2699.
4MacroscaleModels2739.
4.
1InterfaceModels.
2739.
4.
2PorousElectrodeModels2769.
4.
3AgglomerateModels.
2779.
5ConclusionsandOutlook282References283DetailedContents989DetailedCont.
10WaterManagementinProtonExchangeFuellCellsNilsBrandau,JürgenKhler.
28710.
1WaterManagementinPEMFC28710.
2ThermodynamicsandElectrochemistry28910.
3PolarizationCurve29010.
4GasHumidification.
29410.
4.
1ModelofMassExchanger29410.
4.
2OperatingCharacteristicsofHumidifier.
30110.
5SensorlessHumidification302References31111CalculationsinLi-IonBatteryMaterialsMichelleD.
Johannes,CoreyT.
Love,KarenSwider-Lyons.
31311.
1UsingDFTtoCalculatetheVoltageofLayeredMaterials.
31511.
1.
1Background31511.
1.
2ComputationalMethods31611.
1.
3ExperimentalMethods31711.
1.
4ExperimentalandDFTResultsforNCMandNCA1=331711.
1.
5Conclusions32311.
2PDOSCalculationsofOxygenStabilityandCyclingSafety32311.
2.
1DFTMethods32411.
2.
2PDOSofLiCoO232411.
2.
3PDOSofNCA32611.
2.
4Conclusions32611.
3Summary326References327PartCElectrochemistryProbes12ElectrochemicalEnergyGenerationandStorageasSeenbyIn-SituNMRYuYeJ.
Tong33112.
1Spatially-Resolved195PtNMRSpectroscopyofPt-BasedElectrocatalysts33612.
1.
1195PtNMRofPtNanoparticles33612.
1.
2StudyofRu@PtVersusAu@PtM(Ru/Au)Core-PtShellNPs33812.
2NMR/MRIStudiesofEnergyStorage(Batteries)Materials.
34212.
2.
1ToroidResonator:Near-ElectrodeImagerVersusCompressionCoinCell34412.
2.
2Bellcore-LikeFlexibleNMRCells.
34712.
2.
3NMR/MRIStudiesofFormationofLiDentrites.
35012.
3MRIofWaterDistributioninFuelCells35212.
3.
1In-PlaneWaterDistribution35312.
3.
2Through-PlaneWaterDistribution35612.
4ConclusionandFuturePerspectives:Sensitivity,SensitivityandSensitivity357References360DetailedCont.
990DetailedContents13SpectroscopyofElectrochemicalSystemsJamesJ.
Walsh,RobertJ.
Forster,TiaE.
Keyes36513.
1GeneralExperimentalConsiderations36613.
1.
1InteractionofLightwithElectrodeMaterials.
36613.
2ElectronicSpectroscopy36813.
2.
1OpticallyTransparentElectrodesforTransmittanceSpectroscopy36813.
2.
2Thin-LayerSpectroelectrochemistry.
37013.
2.
3ReflectanceSpectroscopy38113.
3SpectroelectrochemistryoftheExcitedState.
38513.
3.
1Steady-StateEmissionSpectroelectrochemistry.
38613.
3.
2TransientLuminescenceSpectroelectrochemistry.
39113.
4VibrationalSpectroelectrochemistry39313.
4.
1IRSpectroelectrochemistry.
39313.
4.
2ExternalReflectance.
39913.
4.
3VibrationalCircularDichroismSEC.
40313.
5RamanSpectroelectrochemistry.
40413.
5.
1ResonanceRamanSpectroelectrochemistry40713.
5.
2Surface-EnhancedRamanSpectroscopy.
40913.
6SumFrequencyGenerationSpectroelectrochemistry41313.
7ConclusionsandOutlook414References41514KineticActivityinElectrochemicalCellsYannickGarsany,KarenSwider-Lyons42314.
1EvaluationofPt/VCElectrocatalystsfortheORR.
42814.
1.
1GlasswareCleaning.
42814.
1.
2ElectrocatalystInkFormulation,PreparationofGlassyCarbonElectrodeSubstrate,andElectrocatalystThin-FilmElectrodes42914.
1.
3ElectrochemicalTestProtocolforEvaluationoftheThin-FilmElectrocatalystElectrodes.
43314.
2ElectrochemicalCharacterizationofthePt/VCElectrocatalystThin-FilmElectrodesbyRDEandRRDE43514.
2.
1InfluenceofPt/VCThin-FilmElectrodesQuality.
43514.
2.
2PtECSACalculationinAcid43514.
2.
3PtECSACalculationinBase43614.
2.
4ORRPolarizationCurvesVersusFilmMorphologyinAcidElectrolytebyRDE43714.
2.
5ORRMeasurementsofPt/CinAcidElectrolytebyRRDE.
.
.
.
43814.
2.
6CalculationofElectrocatalystMassandSpecificActivities43914.
3ElectrochemicalCharacterizationofMnxOyThin-FilmElectrodes.
.
.
44014.
3.
1MnxOy/VCINK#1Preparation44014.
3.
2MnxOy/VCINK#2Preparation44114.
3.
3ComparisonORRMeasuredforMnxOy/VCINK#1toORRMeasuredMnxOy/VCINK#244114.
4Conclusions443References444DetailedContents991DetailedCont.
PartDEnergyConversionandStorage15Lithium-IonBatteriesandMaterialsCynthiaA.
Lundgren,KangXu,T.
RichardJow,JanAllen,ShengS.
Zhang44915.
1Overview–ElectrochemicalEvaluationofLi-IonBatteries44915.
2EvaluationofMaterialsandComponentsinLi-IonBatteries.
45115.
2.
1ElectrodeEvaluation45115.
2.
2ElectrolytesandInterphases.
45415.
2.
3Separators47015.
2.
4Advanced/InSituSpectroscopy47115.
3EvaluationattheCell–BatteryLevel48115.
3.
1CellConfigurations.
48115.
3.
2PerformanceCharacteristics48115.
3.
3EnergyDensity48315.
3.
4PowerCapability.
48315.
3.
5CycleLifeandStorageLife(orCalendarLife)48515.
3.
6Safety48615.
4BeyondLi-Ion48715.
4.
1Li–SBattery48715.
4.
2Li–AirBattery48915.
5Conclusions490References49116MaterialsforElectrochemicalCapacitorsThierryBrousse,DanielBélanger,KazumiChiba,MinatoEgashira,FrédéricFavier,JeffreyLong,JohnR.
Miller,MasayukiMorita,KatsuhikoNaoi,PatriceSimon,WataruSugimoto.
49516.
1BatteriesandElectrochemicalCapacitors–BasicConcepts.
49616.
1.
1ElectrochemicalCharacterizationofElectrochemicalCapacitors.
49716.
1.
2BasicConceptofHybridElectrochemicalCapacitor50016.
2Carbon.
50416.
2.
1ActivatedCarbons50516.
2.
2CarbonAerogelsandRelatedSol-Gel-DerivedNanoarchitectures50616.
2.
3TemplatedMesoporousCarbons(TMCs)50716.
2.
4MicroporousCarbons50716.
2.
5CarbonNanotubes.
50816.
2.
6EnhancedChargeStorage50916.
3ManganeseDioxide51016.
3.
1FundamentalStructuralProperties.
51016.
3.
2PseudocapacitanceMechanismsforManganeseOxides.
.
51116.
3.
3Thin-FilmElectrodes51316.
3.
4BulkCompositeMnO2Electrodes51616.
3.
5AdvancedMnO2-CarbonElectrodeArchitectures.
51816.
3.
6MnO2-BasedDevices52016.
3.
7FutureOutlook52216.
4RutheniumOxide.
52316.
4.
1Synthesis,Chemical,andPhysicalProperties52316.
4.
2CompositesandOtherRutheniumOxides52416.
4.
3ChargeStorageMechanism525DetailedCont.
992DetailedContents16.
5OtherPseudocapacitiveMaterials.
52916.
6Electrolytes.
52916.
6.
1Aqueous52916.
6.
2OrganicSolventSolutions52916.
6.
3IonicLiquids53016.
6.
4PolymerandGelElectrolytes53116.
6.
5StabilityoftheElectrolyteinHighVoltageEC53416.
7ApplicationsofElectrochemicalCapacitors.
53716.
7.
1Copiers.
53716.
7.
2PowerTools53816.
7.
3Transportation53816.
7.
4SecondaryUsesinTransportation54016.
7.
5IndustrialApplications54116.
7.
6StationaryApplicationsforPowerandPowerQuality.
.
.
.
.
54316.
8ElectrochemicalCapacitorProspectiveView.
543References54517ElectrochemicalCapacitorsColinG.
Cameron56317.
1TheNatureofCapacitance56317.
1.
1ImportantCapacitorRelationships.
56517.
1.
2Double-LayerCapacitance56517.
1.
3Pseudocapacitance56617.
1.
4TheRoleoftheElectrolyte56717.
2TestMethods.
56817.
2.
1ConstantCurrentDischarge56817.
2.
2CyclicVoltammetry57117.
2.
3Impedance57317.
2.
4Self-DischargeandLeakCurrents57817.
3Configuration57817.
3.
1Three-andTwo-ElectrodeCells57817.
3.
2HybridElectrochemicalCapacitors58117.
3.
3Two-ElectrodeCellDesigns58117.
3.
4ElectrodeConstruction58217.
3.
5Separators58317.
3.
6CurrentCollectors58317.
4FurtherPracticalConcerns58417.
4.
1ElectrodeAreaandPoreSize58417.
4.
2MinimizingSeriesResistance58517.
4.
3StandardTesting.
58517.
5SummaryandConclusions.
58617.
6Symbols586References58718KineticsofFastRedoxSystemsforEnergyStorageRudolfHolze59118.
1OverviewandIntroduction59118.
1.
1FlowBatteriesandRedoxFlowBatteries.
59218.
1.
2ChemistryofRedoxBatteries59318.
1.
3HybridSystems.
595DetailedContents993DetailedCont.
18.
2FlowBatteries–BasicComponents.
59718.
2.
1Electrodes59718.
2.
2Separators59718.
3RedoxReactionsandtheirKinetics59818.
3.
1Diffusion,TransportandFlowofReactants59918.
3.
2TransportinPorousElectrodes59918.
3.
3ChargeTransferReactions60018.
4AccelerationofRedoxReactions60018.
4.
1CatalysisbyChemicalSurfaceTreatment.
60118.
4.
2CatalysisbyChemicalSurfaceModification.
60118.
5MaterialsforElectrodesinFlowBatteries60118.
5.
1ModifiedCarbonsandGraphites60218.
5.
2Non-CarbonMaterials.
60518.
6CatalysisandSurfaceEnlargementEffects60518.
7FutureDirections606References60619ModernFuelCellTestingLaboratoryJeanSt-Pierre,MichaelAngelo,KeithBethune,JackHuizingh,TatyanaReshetenko,MebsVirji,YunfengZhai.
61119.
1FuelCellLaboratoryEvolution61119.
1.
1Background61219.
1.
2FuelCellLaboratoryOverview61419.
2SafetyandTestStations.
61419.
2.
1Safety61419.
2.
2TestStations.
61619.
3FuelCellStackComponentsandAssembly62119.
3.
1HardwareDesignandManufacturing.
62119.
3.
2CellandStackComponentsCleaning.
62119.
3.
3SingleCellAssembly62319.
3.
4CellAssemblyVerification.
62519.
3.
5InstallationintotheTestStation62519.
4TestingandDiagnosticTechniques62619.
4.
1Conditioning62719.
4.
2InSituTests62819.
4.
3ExSituTests63819.
5Conclusion640References64120PolymerElectrolyteFuelCellsVijayK.
Ramani,KevinCooper,JamesM.
Fenton,H.
RusselKunz64920.
1ExperimentalMethods65020.
1.
1FuelCellTestingSafetyandGoodLabPractices.
65120.
1.
2HandlingInstructionsforMembraneElectrodeAssemblies(MEA)65120.
1.
3SingleCellPEMFuelCellComponents.
65120.
1.
4FuelCellAssemblyInstructions.
65320.
1.
5CalculationofPinch65520.
1.
6FuelCellTestSystemInstrumentation65620.
1.
7ReactantHumidificationinFuelCellTesting656DetailedCont.
994DetailedContents20.
2H2/O2orAirFuelCellPerformanceTesting66220.
2.
1EffectsofOxygenPartialPressure66320.
2.
2TemperatureandRelativeHumidityEffects67220.
3ApplicationofaFuelCellEmpiricalModel67920.
3.
1ModelApplicationandAnalysis68020.
3.
2Summary68320.
4FuelCrossoverandElectrochemicalSurfaceArea68320.
4.
1HydrogenCrossoverandInternalShortCircuit68320.
4.
2HydrogenCrossoverTestviaLSV68620.
4.
3ElectrochemicallyActiveSurfaceAreaandCatalystUtilizationEvaluation68720.
5ImpedanceSpectroscopyofPEMFuelCells68920.
5.
1ImpedanceTheoryandPractice69020.
5.
2ResultsandDiscussion69920.
5.
3ImpedanceofaH2PEMFuelCell.
70120.
5.
4EffectofReactantHumidification70420.
5.
5ElectrodeProtonTransportResistance708References71021Next-GenerationElectrocatalystsSeunghoonNam,ChunjoongKim,YuhongOh,ByungwooPark71321.
1Oxygen-ReductionReaction–Cathodes71321.
1.
1EnhancementfromElectronicInteractions.
71421.
1.
2ImprovedStructuralStabilityAgainstPtDissolution.
.
.
.
.
.
.
71921.
1.
3Conclusions72421.
2Methanol-OxidationReaction–Anodes72421.
2.
1SuppressionofRuDissolutioninPtRuCatalyst72521.
2.
2EnhancementfromVariousNanostructuredCatalysts.
.
.
.
.
73121.
2.
3Conclusion738References73822MethodsinBiologicalFuelCellsShelleyD.
Minteer74322.
1Bioelectrocatalysis.
74422.
1.
1Microbial,Enzymatic,NucleicAcid,andOrganelleCatalysts74422.
1.
2MediatedVersusDirectBioelectrocatalysis74522.
2SpectroscopicMethods.
74622.
2.
1Michaelis–MentenKinetics74622.
2.
2SpecificActivity74622.
2.
3LeachingStudies.
74622.
2.
4XPSSurfaceAnalysis74822.
2.
5Infrared,NuclearMagneticResonance,andMassSpectrometry74822.
3ElectrochemicalMethods74922.
3.
1Voltammetry74922.
3.
2AmperometricMethods75022.
3.
3PolarizationMeasurements.
75022.
3.
4StabilityTesting.
75222.
3.
5ElectrochemicalImpedanceSpectroscopy752DetailedContents995DetailedCont.
22.
4EngineeringConsiderations75222.
5Conclusions753References75323EnergyConversionBasedonBio(electro)catalystsTanjaVidakovi-Koch75723.
1WorkingPrinciplesofBioelectrochemicalSystems75823.
1.
1EnzymaticFuelCells75823.
1.
2ElectrolyticBiochemicalSystems75823.
2BioelectrochemicalSystemsinCell-FreeSystems.
75823.
3GeneralAspects.
76023.
3.
1Thermodynamics76023.
3.
2MechanismofBioelectrochemicalTransformation.
76323.
3.
3ReactionKinetics76423.
3.
4BalanceEquations.
76623.
3.
5DeterminationofEnzymeCoverage76723.
3.
6DeterminationofKineticParameters76923.
4BiotransformationwithRedoxEnzymes.
77023.
4.
1EnzymesShowingDET.
77023.
4.
2FAD-andNAD-DependentEnzymes77123.
5ConclusionsandOutlook774References77424PhotoelectrochemicalConversionProcessesStuartLicht.
77924.
1OverviewandHistoricalPerspective77924.
2PhotoelectrochemicalProcesses.
78024.
2.
1Semiconductor/ElectrolyteElectricalEnergyConversion.
.
.
78024.
2.
2Semiconductor/ElectrolyteElectrochemicalEnergyStorage78124.
2.
3Dye-SensitizedSolarCell.
78524.
2.
4Multi-BandgapSemiconductor/ElectrolyteElectricalEnergyConversion78724.
2.
5SolarThermalElectrochemicalPhotochemicalEnergyConversion79124.
3State-of-the-ArtandEmergingTechnologies79524.
4Summary796References796PartEElectrochemicalProcesses25AdvancedExtractiveElectrometallurgyDiHu,GeorgeZ.
Chen80125.
1ConventionalExtractiveMetallurgy80125.
1.
1NonelectrolyticExtractionTechniques80225.
1.
2ConventionalElectrolyticExtractionTechniques80625.
2InnovativeElectrolyticExtractionTechniquesforTitanium80825.
2.
1ElectrolyticExtractionfromNon-OxideCompounds.
.
.
.
.
.
.
80825.
2.
2ElectrolyticExtractionfromSolidMetalOxides.
80925.
2.
3SummaryandNote.
813DetailedCont.
996DetailedContents25.
3DirectElectroreductionofSolidMetalOxidestoMetals:TheFFCCambridgeProcess81425.
3.
1History.
81425.
3.
2Principle.
81425.
3.
3Applications.
82425.
4Summary829References83026ElectrodepositionofNanomaterialsI-WenSun,Jeng-KueiChang83526.
1ProcessesforElectrodepositionofNanomaterials83626.
1.
1DirectElectrodepositionWithoutTemplate.
83626.
1.
2Template-AssistedElectrodeposition84826.
1.
3ElectrodepositiononHOPG85526.
1.
4LithographicallyPatternedElectrodeposition86126.
2ElectrodepositedNanomaterialsforEnergyStorage/ConversionDevices86526.
2.
1Lithium-IonBatteryApplications86626.
2.
2Pseudocapacitors87326.
3ConclusionsandProspects.
882References88227ElectrochemicalHydrogenProductionTingHe,MahaprasadKar,NealD.
McDaniel,BruceB.
Randolph89727.
1TheoreticalAspectsofElectrochemicalHydrogenProduction.
89927.
1.
1ThermodynamicsofWaterElectrolyzers89927.
1.
2ChemicalKineticsatElectrodes.
90127.
1.
3TransportinElectrolytes90127.
1.
4TemperatureEffect90227.
1.
5Photoelectrochemistry90427.
2ElectrochemicalHydrogenProductionMethods90527.
2.
1Low-TemperatureElectrolysis90527.
2.
2High-TemperatureElectrolysis.
91227.
2.
3Photoelectrolysis92327.
3DevelopmentPerspectives.
92927.
4Conclusions933References93428ElectrochemicalMachiningMichaelSchneider,ManuelLohrengel94128.
1IntroductionandHistory94228.
1.
1History.
94228.
2FundamentalsofElectrochemicalMachining94328.
2.
1TheFundamentalProcess.
94328.
2.
2Passivity,TranspassivityandTransitiontoECMConditions94328.
2.
3SideReactions94428.
2.
4CommonInterfaceModels94528.
3ExperimentalTechniques94628.
3.
1LaboratorySetupforQuantitativeInvestigations94628.
3.
2ProductAnalysis94828.
3.
3GaseousProducts.
948DetailedContents997DetailedCont.
28.
3.
4SurfaceCharacterizationElectronBackscatterDiffraction(EBSD)94828.
4TheInterfaceProcessDuringECM94928.
4.
1CyclicVoltammetryandSurfaceLayers.
94928.
4.
2SupersaturatedProductFilms95028.
5ClassificationofECMProcesses95228.
6SurfaceTopography,CrystallographicEffectsandSurfaceQuality.
.
.
95228.
6.
1Theory95328.
6.
2GrainsinExperiments.
95428.
6.
3GrainBoundariesandOtherCrystalDefects.
95528.
6.
4SurfaceBrightening95728.
7OxygenEvolution95828.
8PulseECM95928.
9TooDifficult-to-Machine:HardMetals,CarbidesandNitrides.
.
.
.
.
.
96228.
9.
1Titanium.
96328.
9.
2CementedCarbides964References967AbouttheAuthors.
973DetailedContents.
985SubjectIndex999999SubjectIndexSubjectIndex1HNMR3341-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine(POPC)1221-pyrenesulfonicacid(PSA)8473,5-bis(2-pyridyl)-1,2,4-triazole(HQBpt)4063-Ddistributionfunction1223-Dmoleculartheory1213D-HNCbridge-correctedclosure(3D-HNC)1003-D-prolometry4303D-RISMtheory1044-carboxy-(2,5,7-trinitro-9-uorenylidene)malonitrile(CTNFM)1917Li-NMR47613CNMR336195PtNMR335Aabsorbanceunit(AU)368AC(alternatingcurrent)454,633,752,851–dielectrophoresis148–impedance459,462accelerateddissolution943acceleratedtest629,630accelerated-ratecalorimetry(ARC)486accuratetransportmodel240acetonitrile(AN)498–healthconcern568acousticemission(AE)475acousticmeasurement478acousto-opticmodulator(AOM)385activation–energy232–enthalpybarrier84–overpotential290–polarization665,678active–dissolution945–electrodearea162–membranearea303–surfacearea144activitycoefcient83actuator194adenosinetriphosphate(ATP)758adenosine-50-triphosphate(ATP)190advancedbatteryenergydensity451advancedsolvationforceextrapolation(ASFE)119aerogel519–electrode506Ag/AgClreferenceelectrode817agglomeratemodel267,280aggregatednanoparticle841air–stoichiometricratio306alaninedipeptide120alcoholdehydrogenase(ADH)762alkalinefuelcell(AFC)424,460alkalinewaterelectrolysis908aluminum–anodization849–cell807–metalelectrolyticprocessfor7AmericanSocietyforTestingandMaterialsInternational(ASTMI)618amperometricmethod227,750amperometry752amphiphilicmolecule148Amsterdamdensityfunctional(ADF)98anionexchangemembrane(AEM)594anode280–composite809–humidication674–humidiertemperature(AHT)663–inert824–surface81–tinoxide824anodic–aluminamembrane(AAM)861–aluminumoxide(AAO)848–dissolution946–process944anodizationsetup849anthraquinone(AQ)580antimony-dopedtinoxide(ATO)155aqueouselectrolyte502–solution104area-specicactivity(SA)427area-specicimpedance(ASI)484Arrhenius–behavior85–equation17,45–relationship484ascending–descendingsequence178assembly621–verication625asymmetriccapacitor502,520atomic–forcemicroscopy(AFM)368,450,475,640,735,865–fraction339–layerdeposition(ALD)153attenuated–internalreectance(AIR)381–totalreectanceinfrared(ATR-FTIR)368–totalreection(ATR)380,748Au@PtNP341auxiliaryelectrode(AE)227,369,408availability38avalanchephotodiode(APD)390Avantiprocess810averagedelectrostaticpotential131Avramiplot454BBa0:5Sr0:5Co0:8Fe0:2O3(BSCF)914backdiffusion360back-scatteredelectron(BSE)829bacteriafuelcell613balanceequation766SubjectIndex1000SubjectIndexBallone–Pastore–Galli–Gazzillo(BPGG)100Barrett,Joyner,andHalendatheory(BJH)584battery73,189,331,496–dischargetimescale564–hybridwithelectrochemicalcapacitor564–leadacid564–lithium-based460–lithium-ion24,835–material449–redox591–transportproperty456beamsplitter(BS)390Becquerel779Beer–Lambertlaw368Bellcore-likeexibleNMRcell347betaphasestabilizer827bicinchoninicacid(BCA)748bicontinuouscathode190bifunction738Billitonprocess810biobattery744bioelectrocatalysis744–direct745–mediated745bioelectrochemicalelectrolyticsystem758bioelectrochemicalsystem–workingprinciple758bioelectrochemistry165biofuelcell24,181,744,750–tissue-based744biomedicaldevice861biomolecular–process119–solvation120biosensor190,226biphasicelectropolymerization848bipolar–bandgapMBPEC790–gap791–plate911birdcageresonator360bis(oxalato)borate(BOB)463bis(triuoromethanesulfonyl)imide(TFSI)463Bodeplot633,695borohydridefuelcell613boron-dopeddiamond(BDD)369bottlehumidier661boundaryconditions244–dynamic71,87–electrodesurfaces77bovinepancreatictrypsininhibitor(BPTI)100bovineserumalbumin(BSA)748brackishwater85Bradfordassay748Braggdiffraction193Brandaunumber298,301BrokenHillproprietary(BHP)810bromine594Brownianmotion146Brunauer–Emmett–Teller(BET)279,513,566,584Brunauer–Emmett–Teller(BET)theory–Barrett,Joyner,andHalendatheory(BJH)584Buckinghamtheory297bulk–electrolysis370–electrolyteresistance460–liquid116–magneticsusceptibility(BMS)345–movement902Butler–Volmer(BV)764–equation18,71,290,424,901bypass(BP)310,617Ccadmiumselenide(CdSe)844cadmiumsulde(CdS)840calcination152calciothermicreduction812calcium–incorporation821–titanate(CaTiO3)820–titanite(CaTi2O4)820calculationofpinch654calculationofsolvationforces118calibration620calomelelectrode82calorimetry–accelerated-rate486capacitance128–specic568capacitor24–asymmetric502,520–doublelayer496,565–hybrid503capacityloss322capillary–method151–pressure357–waterpermeation357capitalexpense(CAPEX)931cappingagent838carbide962carbochlorination805–process805carbon505–509–aerogel506–dioxide(CO2)801–dioxideelectrolysis794–electrode501–ber334–berelectrode602–graphene585–monoxide(CO)685,801–morphology584–nanoparticle131–nanotube(CNT)106,508,585,602,774,855–nanotubearray879–supportedRuO2524–surfacearea585–surface-modied566,580carbon/carboncapacitor500carbon-derivedcarbons(CDC)507carbonizedpolyvinylidenechloride(PVDC)129carbonizedPVDC129carbothermicreductionprocess803Carnotfactor38Car–Parrinellomoleculardynamics(CPMD)115carriergeneration781CaRuO3/CaTiO3composite824Castner–Kellnerprocess28catalysis601–heterogeneous336catalyst–biocatalyst743–coatedmembrane(CCM)621–ink639–utilization689catalyticprotein744catalyzedglucoseoxidation763cathode353–bicontinuous190–catalystlayer281–humidication674–humidiertemperature(CHT)663SubjectIndex1001SubjectIndex–lithiated454–optimal280–surface82cathodic–polarization965–reaction945cationexchanger215cation-exchangemembrane79cavityringdownspectroelectrochemistry(CRDS)384cell–channelow946–coin481–concentration73–conguration481–degradation922–design752–droplet946–dye-sensitizedsolar(DSC)195–electrochemical74,241,428–ow750–formation73–galvanic449–humidication672–longopticalpaththinlayer378–Ohmicphotoelectrochemical788–performance249,354–planar915–plasticexiblebattery344–potential80–pouch481–reectivethinlayer381–single624–solar786–solidoxideelectrolysis898–solidoxidefuel898–temperature(CT)663–thinlayer367–threeelectrode578–three-electrodestorage783–twoelectrode578–voltageloss680–wound482cell(DSC)–dye-sensitizedsolar779,784cell-freesystem758cellularrespiration759cellulosenanocrystal(CNC)106cementedcarbide964ceramicseparator471cetyltrimethylammoniumbromide(CTAB)841channelow–cell946Chapmanlayer44characteristicsmassexchanger299charge–balance11,264–cycle322–productiondensity265–storage525–storagemechanism528–transfer210,232–transfercomplex(CTC)773–transferoverpotential599–transferresistance577charge–dischargecycle347chargingcurrent635chemical–energytransformation57–equilibrium129–etching957–kinetics901–potential96,128–shift351–shiftimaging(CSI)351–substanceavailability39–vapordeposition(CVD)152,368,879chemicalreaction–availability37–energydiagram47–temperature47chlor–alkaliprocess27chlorideelectrolysis793chlorine–alkalielectrolysis54choiceofvariables75chronoabsorptometry375chronoamperometry(CA)835chronopotentiometry(CP)835circulardichroism(CD)380cleaningagent624closedelectrochemicalcycle60clusterednanoake840COadsorption436CO2footprint931coatedmicrowire187coatedwireelectrode226coaxialnanowire877cobalt964coefcientofperformance(COP)33,43,57coow297–operation292coincell481colloidal–assembly151–sphere146–stacking182–template156–templating152colloidalcrystal145,146–assembly147–fabrication152–gold-lled185–planardefect173–single-gradient173–template182–thickness150complementarymetal-oxide-semiconductor(CMOS)537complementaryreaction943completeactivespaceself-consistenteld(CASSCF)98complexingagent842composite–anode809–electrode516–polypyrrole168–structure165comprisingcatalyst(CL)259computationaluiddynamics(CFD)240concentration–cell73–cellpotential78–distributioncurve296–eld264–gradient80–overpotential599–polarization669–prole632concentratorphotovoltaiccell(CPV)794conductingpolymer(CP)143,165,170,222,566–capacitance566–nanostructure845–polypyrrole180–stability566conductivity–oftheelectronconductor265–oftheionconductor265confocalRamanspectroelectrochemistry406conifer-likestructure841SubjectIndex1002SubjectIndexconstant–currentdischarge453–phaseelement(CPE)576,634,692consumptionofreactant637contactangle196contactionpair(CIP)104contaminant615convection19conventionalcyclecomparison64conversionefciency782Coomassieblue748copper–grid345–sulde844–suldenanowire844core–shell–nanowire855–particle151correlationfunction101corrosion27,953–atliquidinterface27–protection165–resistance261cost-scalingfactor897coulombcounting450coulombicefciency(CE)486coulometry486counterelectrode(CE)155,370,407,428,635,685,781counterow–case296–operation293,299counterion165coupledtransport69,74,81,90coupling–atinterfaces71–inhomogeneousphases71crackformation147crackedcavityelectrode819crane542creactiveprotein(CRP)190crossowoperation299crossovercurrentdensity688crystal–membraneelectrode213–modier(CM)842–orbitalhamiltonianpopulation(COHP)341–quality146–structure451crystallizationoverpotential599crystallographiccharacterization955crystallographiceffect952CuUPD436cubo-octahedralcluster340Cu-Cu2Ocore–shellnanoparticle838Curieprinciple71Curietemperature194current–density46,943–discharge453–efciency967–interrupttechnique676–oscillation157–yield601currentcollector357,871,872–nanoarchitectured871current-voltagedistribution636–638cyclelife522cyclicvoltabsorptometry(CVA)378cyclicvoltammetry(CV)231,373,427,434,526,527,571,684,732,816,835–capacitance572cyclicvoltammogram(CV)162,634cyclinglife485cylindricalsymmetry345cytochromecperoxidase767Ddataacquisition620datastorage861DCelectrophoresis148DCpolarization462Debye–Hückellaw243deepdischarge598defect–grainboundary150degradation311,918–mechanism921dehydration353dehydrogenase746dendriticstructure842density–functionaltheory(DFT)313,340,404–ofstate(DOS)315,725–probabilitydistribution83deoxyribonucleicacid(DNA)758depositionoverpotential856depthofdischarge(DOD)594descendingstack178desulfovibriofructosovorans(Df)761dewpointtemperature658diagnostic–imaging352–method611–technique626diaphorase(DI)192dichlorophenolindophenol(DCIP)746dielectricallyconsistentreferenceinteractionsitemodel(DRISM)124diethylmethyl(2-methoxyethyl)ammonium(DEME)530differencefrequencygeneration(DFG)413differential–cyclicvoltabsorptometry(DCVA)378–pulsetechnique190–reectance381–scanningcalorimetry(DSC)454,640diffractionelectrode451diffusereectance(DR)381diffusion–back360–coefcient302–Fick'slaw19–layermodel(DLM)220–overpotential599diffusionelement–Warburg694dimensionallystableelectrode(DSE)28dimethylcarbonate(DMC)456,530dimethylformamide(DMF)533,844dimethylsulfone(DMS)530dimethylsulfoxide(DMSO)840direct–borohydridefuelcell(DBFC)240–current(DC)458,696,752,851–electrontransfer(DET)760–methanolfuelcell(DMFC)53,240,662,713,724dischargecapacity453disorderedmatrix123disproportionation55SubjectIndex1003SubjectIndexdissipatedenergy73,83,91dissolution–kinetic953–rate942–reaction943divinylbenzene(DVB)859dodecylbenzenesulfonicacid(DBSA)839Donnanequilibrium86doublelayer44–capacitance265,508–capacitancepredicting565–capacitor496–capacity166,606–effect21double-gradientgoldelectrode179downeld348dropletcell946drugsensitiveelectrode226dryairmassowrate306drybulbtemperature658d-sorbitoldehydrogenase(DSDH)192dual-bandgapsystem924durability630dye-sensitizedsolarcell(DSC)195,779,784dynamichydrogenelectrode(DHE)432dynamicnuclearpolarization(DNP)332,360Eedge-inducedshearing151effectivemasstransfercoefcient296,299,304effectivesurfacearea281effectivenessfactor271efciency752–conversion782elasticphotoniccrystal(EPC)195electric–doublelayer(EDL)11,24,96,123–potential78–potentialprole89–vehicle(EV)450,537electrical–conduction352–efciency900–energyconversion780–misuse486–short616–work15electromotoricforce(EMF)220electroactiveintegratedopticalwaveguide(EA-IOW)384electro-assisteddeposition(EAD)191electrocatalysis165,338electrocatalyst423,745–ink429–loading431electrocatalyticsurfacearea(ESA)722electrochemical–process767–quartzcrystalmicrobalance(EQCM)512electrochemical(EC)331,897–activesurfacearea427,636,684–availability41–characterization162,497–cycle61–deposition155–device240–devicemodeling240–doublelayer268–doublelayercapacitor496,565,873–energystorage781–lithography864–quartzcrystalmicrobalance512–reaction33,54,233,262,713–stability923–step-edgedecoration857–storage594–strainmicroscopy475–surfacearea719–thermodynamiccycle60electrochemicalcapacitor(EC)496,563–areafromBET584–binarysolventsystem568–bipolarstack582–capacitance568–celldesign581–charge565–chargetransferresistance576–coincell581–constantcurrentdischarge568,578–construction582–currentcollector583–cyclicvoltammetry571–deLevieporemodel576–dischargetimescale564–double-layercapacitance565–electrode581–electrolyte567–energy565–ESR569,585–hybrid500–hybridwithbattery564–impedancespectroscopy(IS)573–leakcurrent578–lowfrequencycapacitance576–maximumpower571–Nyquistplot574–pore576–potentialdrift580–power565–pseudocapacitance566–Ragoneplot568–resistance576–self-discharge578–separator578–seriesresistance585–sourceofESR570,577,584–speciccapacitance568–specicenergy568,578–specicpower568–stability573–standardtestmethod585–threeelectrodecell578–transmissionlinemodel576–twoelectrodecell578–two-versusthree-electrode579electrochemicalcell–three-electrode761electrochemicalimpedancespectroscopy(EIS)4,25,274,454,498,573,632,752,922electrochemicalmachining(ECM)941–sidereaction944–simulation954electrochemicalpotential902–denition76electrochemicallyactivesurfacearea(EASA)602electrochemiluminescence(ECL)389electrode597–Ag/AgClreference817–architecture185–auxiliary227,369,408–calomel82–coatedwire226–crystalmembrane213SubjectIndex1004SubjectIndex–design925–dimensionallystable28,596–drugsensitive226–electrochemicaltechnique453–electrolyteinterface901–evaluation451–gasdiffusion259,621,651–gas-evolving907–gas-sensitive226–glass211–glassycarbon429–gold178–graphene585–hydrogen209–inert210–intercalation477–interface21–kinetics668–material451,497–membrane210–metal-based605–model262–nanoarchitecture507–nanoporous125–normalhydrogen402,731–opticallytransparent368–overpotential69–performance671–pseudoreference332–saturatedcalomel432,841–sheetresistance708–Si478–silversulde213–sodium-selective212–solid-state222–spectroscopicstudy452–storage785–surface74–symmetric127–thermalstudy454–thin-lm368,429–thin-lmRDE431–working155,407,425,460,634,683–W-SiO2820electrode(DHE)–dynamichydrogen432electrodepositedpaint(EDP)192electrodeposition156,176,340–nanoparticle836–template-assisted848,854electro-Fenton'sreagent603electrolysis897–alkalinewater908–cell73–rate370–temperature793–water5electrolyte454,529–additive468–aqueous502–binarysolventsystem568–conductivity567,951–distributedresistance(EDR)576–electrochemicalcapacitor567–freezingpoint568–iondepletion568–solution124electrolytic449,808–NMRcell332,335–system760electrolyzer24,907electromagnetic(EM)368,411electromagneticinterference(EMI)697electromotiveforce(emf)15,82,750electron–backscatterdiffraction(EBSD)948,956–beamlithography(EBL)835,863–conductingnetwork261–diffractionx-rayanalysis(EDX)958–paramagneticresonance(EPR)366–transfer(ET)375electroneutrality127electronicinteraction738–Au/AlPO4715–Pt/Au714electronicresistance23electronicallymediatedreaction(EMR)809electronic-orbital-specic(EOS)341electroosmosis86–88electroosmotic–drag353electrophoresisnuclearmagneticresonance(eNMR)463–tube463electrophoreticforces146electropolishing190,957electropolymerization165electrosorption128electrostatic103–model945–potential132–repulsion145elementalcomposition829emulsionpolymerization145endergonicreaction35,49endothermicelectrolyticprocess780endothermicreaction35endotropicreaction48–endothermic53–example53–exoenergetic52energy–balance35–conversion33,34,779–disproportionation55–dissipated73,83,91–ofelectrolysis793–reorganization766–specicenergy568–storage165–storagematerials342–surface953–synproportionation57–transformation54,58energydensity–advancedbattery451energy-dispersive–spectrometry(EDS)722–spectroscopy(EDS)878–x-rayanalysisspectrometer(EDAX/EDS)640–x-rayspectroscopy(EDX)829enginecranking541entropybalance73entropycreation46entropyproduction70,87–fromcalorimetricmeasurements73–homogeneoussystems74–interfaces74–mesoscopiclevel84environmentalcompound39environmentalscanningelectronmicroscopy(ESEM)640enzymaticcatalyst762enzymaticfuelcell758enzyme744–coverage767–linkedimmunosorbantassay227–substrate(ES)763equation–Nernst16,46,291,449SubjectIndex1005SubjectIndexequilibrium36–constant36–global72–local71–temperature36–zeroentropyproduction72equivalent–circuitmodel703–electricalcircuit(EEC)632,634–serialresistance(ESR)129,498,522,565–temperature37ethanoloxidation737ethyl-3-methylimidazoliumchloride(EMIC)845ethylenecarbonate(EC)456ethylenediaminetetraacetate(EDTA)210,600ethylmethylcarbonate(EMC)456,530ethylmethylimidazolium(EMI)530ethyl-methyl-immidazolium-triuoro-methane-sulfonylimide(EMI,TFSI)508evanescentwave(EW)384evanescentwavebroadbandcavity-enhancedabsorptionspectroscopy(EW-BBCEAS)385evanescentwavecavityringdownspectroelectrochemistry(EW-CRDS)384evaporationhumidier661exergericCOP43exergonicreaction35exergy38–loss43,73,91exoenergeticreaction48exothermicreaction35exotropicreaction49–endoenergetic51–example51–exoenergetic50experimentalconsistencycheck70experimentaldesign70exponentialrecoveryfunction336extendedx-rayabsorptionnestructure(EXAFS)450,640externalcavitydiodelaser(ECDL)385externallycontrolledux78externallycontrolledvariable78extractiveelectrometallurgy–calciothermicreduction810–constantvoltageelectrolysis818–continuousproductionoftitanium811–directelectrodeoxidation815–directelectroreduction814–directproductionofalloys823–electrochemicalreductionofSiO2818–electrochemicalreductionofTiO2819–electrolyticextraction808,809–moltenoxideelectrolysis811–polartitaniumprocess813–titaniumelectrolyticextractionprocess811–titaniumproduction808extractivemetallurgy–carbothermicreduction802–electrolyticextraction806–electrometallothermicreduction815–electrometallurgy801–Hall–Héroultprocess808–Hunterprocess804–indirectmetallothermicreduction803–Krollprocess804–magnesiumreduction805–metallothermicreduction802FFabry–Pérotfringes175face-centeredcubic(fcc)146,837faradaicefciency900Faradayconstant15Fenanocrystal837Fenton'sreagent603ferrocene(Fc)396beropticspectroelectrochemicalsensor(FOSEC)383Fick'slaw46,291,426–ofdiffusion19eldeffecttransistor(FET)225eldemission(FE)821–scanningelectronmicroscopy(FESEM)860eldhomogeneity334gureofmerit(FOM)449,932llingratio153lling-factor348lter-presstypeelectrolyzer906ngerprintsensor194niteelement(FE)239nitevolume(FV)239ammablematerials651ashphotolysis391avinadeninedinucleotide(FAD)745,762avinmononucleotide(FMN)773oodedagglomeratemodel281owbattery591,640–cell598–lithium-based592owcell750oweld598uctuation–hydrodynamic72uctuation-dissipationtheorem72uoridesensitiveelectrode213uorine-dopedtinoxide(FDTO)367uxdensity902uxequation82foreseeablemisuse486forklift542formationcell73–massbalance76–non-isothermal80formationreaction39formicacidoxidationreaction(FAOR)341fouling595Fourier'slaw88Fourier-transform(FT)394Fourier-transformelectrochemicallymodulatedinfraredspectroscopy(FT-EMIRS)397Fourier-transforminfrared(FTIR)376,640,748frameofreference75Fray–Farthing–Chen(FFC)801,815–Cambridgeprocess814frequencyresponseanalyzer(FRA)633,697freshwater85frictionelectricity86Frumkin/Temkin(FT)274Frumpkin21FTIRspectroscopy394fuel–channel249–crossover683–efciency752SubjectIndex1006SubjectIndexfuelcell(FC)73,189,352,423,617,640,713,910–alkaline424,460–bacteria613–biological743,744–borohydride613–componentfabrication640–conditioning627–design623–enzymatic758–high-temperature276–humidication294–hybrid744–hydrogen615–limitingcurrentdensity666–methanol53,240,662,713,724–microbial752–microuidic752–moisturecontent659–operation287,916–oxygen615–performance353,651,661–polymerelectrolyte87–proton460–proton-exchangemembrane23,248,352,423,656–regenerative591–stack621–supportcomponent629–system294,310–teststand619–teststation616,657–teststationcontrol618–thinlayer613fuelcelllaboratory611–facilityplanning614–regulation614–teststation614fullcellpotential78fullwidthathalfmaximum(FWHM)334,373fusionalloyingprocess823Ggadolinium-dopedceria(GDC)912Galvanipotential21galvaniccell449galvanicsystem760galvanostatic–discharge568–polarization750gapidentication626,627gaschromatography-massspectrometry(GC-MS)748gasdiffusionelectrode(GDE)259,621,651gasdiffusionlayer(GDL)259,288,352,489,624,651gasoweldplate624gas-evolvingelectrode907gas-sensitiveelectrode226Gaussiande-convolution339gelelectrolyte470,531gelpolymerelectrolyte531generalized–gradientapproximation(GGA)317–minimalresidual(GMRes)103–SFE(GSFE)98–solvationforceextrapolation(GSFE)119generalizedBorn(GB)97–solventaccessiblesurfacearea(GBSA)97germaniuminverseopal155Gibbs–energy36,80–excessdensity71–freeenergy14,243,760,900GinattaTechnologieTitanio(GTT)808glasselectrode211glassycarbon(GC)428,774,837–electrode429globalwarmingpotential(GWP)932glucose40–dehydrogenase(GDH)772–oxidase(GOx)743,772Gouy–Chapman–diffuselayer96–model21grainboundary955graphene–basedopticallytransparentelectrode368–oxide602–paper879graphite602–intercalationcompound(GIC)467–oxide(GO)368–surfacearea585–waxelectrode(GWE)378gravitationalforce146griddevelopment246grid-relatedstorage592Grothuss-liketransportationmechanism469Hhalf-cellreaction899hard–andsofttemplates144–anodization(HA)848–metal962hardwareintheloop631,639Hartreepotential114heatoftransfer87,88heattransformation58heat-treatedcarbonber602helicalrosettenanotube(HRN)112Helmholtz–layer21,44–model508heterogeneouscatalysis336heterogeneoussystem69,90hexagonalclose-packed(hcp)146,955hierarchicalowerlikegoldmicrostructure(HFGM)840hierarchicalporosity164high–angleannulardarkeld(HAADF)716–frequencyresistance632–precisioncoulometry(HPC)486–resolutiontransmissionelectronmicroscopy(HRTEM)473–solartoelectricefciency784–surfaceareacarbon(HSC)423,429–voltage616higherheatingvalue(HHV)900highestoccupiedmolecularorbital(HOMO)470high-eldoxide952high-frequencyresistance(HFR)698highlyorderedpyrolyticgraphite(HOPG)534,605,835,856high-performanceliquidchromatography(HPLC)226,381high-temperatureelectrolysis(HTE)898high-temperaturefuelcell276hollow–berhumidier301SubjectIndex1007SubjectIndex–golfclubhead828–sphere828homogeneousanodephase80horseradishperoxidase(HRP)766HPLC-detector236humanneuroglobin(hNb)375humidication287,309,660–control618–method660humidier287–calculation307–development303–efciency307–operationcharacteristic307humidity292,357Hunterprocess803hybrid–capacitor503–double-wallednanotube(HDWNT)855–drivetechnology539–electricvehicle(HEV)450,537–pulsepowercharacteristic(HPPC)484–truck538–vehicle539hydrodynamicelectrochemistry425hydrogel–electrolyte531–inverseopal194hydrogen615–adsorption/desorption(Hupd)436–adsorption/desorption(HAD)684–chlorideelectrolysis52–crossoverrate636,637–electrode209–evolutionreaction(HER)910–fuel780–oxidationreaction(HOR)634–production897–sensor857hydrogenfuelcell43,65,615–closedcircuit64hydrogenase770hydrophobicsolvent109hypernettedchain(HNC)100Iidealelectrochemicalprocesses249impedancespectra702impedancespectroscopy(IS)25,460,471,633,699–constantphaseelement576–diffusionregion576–Nyquistplot574–porousregion576–principle632–transmissionlinemodel576indicatorelectrode210indiumtinoxide(ITO)148,367,513,716,840inductivelycoupledplasma-atomicemissionspectroscopy(ICP-AES)733inductivelycoupledplasma-massspectroscopy(ICP-MS)729industrialshaping942inert–anode824–electrode210–metal952inltrationofcolloidalcrystal153infrared(IR)366,787–reectionabsorptionspectroscopy(IRRAS)394,397inorganic–crystalstructuredatabase(ICSD)315–nanotube843–nanowire843integratedlaboratoryscale(ILS)914intensiedCCD(iCCD)392intercalatedLi343intercalationelectrode477interface–model267,273,945–modeling276–process949interferencelithography(IL)863internal–DCresistance483–shortcircuit683–variable71,83interparticlediffusionalcoupling(IDC)856interphase455–additive468–formation463inter-valencechargetransfer(IVCT)372inverseopal155ion–etching603–selectivesensor(ISS)222ionexchange172–membrane(IEM)85,86,239,596ionic–conductivity458,459–mobility315–resistance23–transferencenumber464ionicliquid(IL)26,98,115,508,530,845–electrochemicalcapacitor567–voltagerange567ionomerphase282ionomer-to-carbonratio(I/C)429ion-selective–electrode(ISE)217–eld-effecttransistor(ISFET)225ironoxideelectrolysis794irreversibility45isobaricgas292JJahn–Tellersymmetrybreaking319J-coupling337junctionmaterial817KKaptontube181Kauranenmodel274KetjenBlack(KB)524Kikuchilines948kinetic17–limitation678–loss631Knightshift336,352Kohn–Shamdensityfunctionaltheory(KS-DFT)98Koutecky–Levichequation426,639KovalenkoandHirata(KH)97Krollprocess806Llaboratoryscope626laccase743SubjectIndex1008SubjectIndexLangevin(LN)117LangmuirorFrumkin/Temkinadsorption274Langmuir–Blodgetttechnique(LB)148lanthanummanganite(LSM)913lanthanumstrontiumcobaltferrite(LSCF)913lawofmassaction72layer-by-layer–assembly174–deposition149layeredoxidecompound316L-camphorsulfonicacid(L-CSA)847leadacidaccumulator596Lennard-Jonescross-term114Levich20–equation426Leydenjar1Li–battery74–dentriticstructure350–diffusion454–insertion345–microstructure350–NMR342LiCoO2452,453lifecycleanalysis(LCA)931LiFePO4451–453ligandchargetransfertransition408ligand-gatedionchannel(GLIC)97Li-ion–battery23,315,470,866–cell483–technology450limitingcurrent632–density292,666linecircuitmodel705linear–ux–forcerelations69,81–polarization751–sweepvoltammetry(LSV)230,650Lineweaver–Burkplot746LiNi1=3Co1=3Al1=3O2(NCA1=3)313LiNi1=3Co1=3Mn1=3O2(NCM)313liquid–ionexchanger214–junctionpotential82–membraneelectrode213–precursor154liquidchromatography-massspectrometry(LC-MS)748liquidelectrolyte460–governingequations241–separator470–transport242liquid-phaseelectrolyte239lithiatedcathode454lithiation324,466lithium-basedbattery460lithium-ionbattery(LIB)24,835lithium-sulfur(Li-S)487–battery487lithographicmethod864lithographically–guidedelectrodeposition861–patternednanowireelectrodeposition(LPNE)862loadleveling592localdensityapproximation(LDA)317localdensityofstate(LDOS)338localequilibrium–chemical71–evidencefor72–model220–thermodynamic71localizedsurfaceplasmon(LSP)853longopticalpaththinlayercell(LOPTLC)378long-rangecorrelation72long-termperformance921long-termstability722losscoefcient43lostwork73lowhumiditycondition705lowtemperature(LT)617low-carbonelectricitysource930lowestunoccupiedmolecularorbital(LUMO)470Lowryassay748low-temperatureelectrolysis905Luggincapillary227luminescencespectrometer386Mmacropore143,505macroporous–conductingpolymer180–electrode181–hydrogelPC194–material172–metalelectrode156,161–platinum164macroporousgold–cylinder181–electrode160,177–lm196macroscalemodeling269,282magicanglespinning(MAS)342,348,475Magneliphase820magneticcirculardichroism(MCD)376magneticresonanceimaging(MRI)331magnetohydrodynamic(MHD)61manganesedioxide510,518–522–polymorph516manganesedioxide/carboncompositeelectrode518manganeseoxide566manganese-carbonnanoarchitecture522Marcustheory766Martynov–Sarkisov(MS)100mass–activity(MA)435–balance263–detectionsensitivity331–exchanger294,298–owcontroller(MFC)656–spectrometry(MS)748masstransfer–coefcient287,303–efciency298–loss631masstransport11–correction439–limitations678–loss667mass-specicactivity(MA)427material–balance266,269–characterization640–safetydatasheet(MSDS)616materialsandelectrochemicalresearch(MER)809matrixnanoparticle127Maxwellpotential77Maxwell-Stefandiffusioncoefcient266Mayerdiagram124meansphericalapproximation(MSA)100SubjectIndex1009SubjectIndexmeasuringhumidity658mechanochromicphotoniccrystal195mediatedelectrontransfer(MET)764mediator764meltingpoint471membrane–diffusion87–humidier660–resistance664–template850–thermalconductivity87membraneelectrode210–crystalline213membrane–channelinterface247membrane–electrodeassembly(MEA)288,425,612,651,723,909mercuryintrusionporosimetry(MIP)640meshelectrode369mesopore143,505mesoporouscarbonmicrobead(MCMB)605mesoporousvanadiumoxide866metal–airbattery423–electrode210–nanoparticle192–nanowire851–nanowirefabrication860–phosphatematrix738–to-ligandchargetransfer(MLCT)372metalalloy–hydrogenstorage825–LaNi5-typealloy825–synthesis825–Ti-6Al-4V829–Ti-10Walloy826–TiFe0:4Ni0:6826–Ti-Nialloy826–titanium-basedalloy825metaloxide313–chromiumoxide(Cr2O3)802–electrolysis793–ironoxide(Fe2O3)801–mercuriyoxide(HgO)801–mixture823–nickeloxide(NiO)801–structure314metal-adsorbatebonding340metal-basedelectrode605metallic–cavityelectrode(MCE)817–component827–Li343metallothermic814metallurgical-grade-silicon(MG-Si)802methanol(MeOH)341–fuelcell62methanoloxidation–COpoisoning724–reaction(MOR)341methyl–isobutylketonisopropanol(MIBK:IPA)864–orange(MO)847–viologen369methylmethyl-imidazolium(mmimC)110Michaelisconstant746Michaelis–Menten–kinetic746–plot746microanalyticalsystem223microbe744microbialfuelcell752microcell946microdroptechnique387microelectrode232microuidicfuelcell752micropore505microporouscarbon507microscale269migration19mildanodization(MA)848MnO2-baseddevices521mobility–alongreactioncoordinate84–ionic79model–application680–discrimination274–parameter279–porouselectrode263,268modelingimpedancedata703modied–carbon602–directinversionintheiterativesubspace(MDIIS)103–Verlet(VM)100moisture-exchangedevice660molar–electricwork289–electrostaticpotentialenergy15–owrate289,298,918–mass306molecular–buildingblock110–dynamics(MD)97,116–Langmuirlm148–liquid96–mechanics(MM)109,115–orbital(MO)341–recognition112–theory99moltenoxideelectrolysis811moltensaltelectrolysis(MSE)809monodispersity145monolayer149Mssbauereffect453multienzymecascade760multilayeredtemplate184multiplebandgap–device787–photoelectrochemicalsolarcell(MBPEC)788multipletimestep(MTS)117–moleculardynamics(MTS-MD)97multiscalecoupling113multistagereduction487multiwallcarbonnanotube(MWCNT)580,602,771NN,N-diethyl-N-methyl-N-methoxyethylammonium(DEME)531Naon262–lm429–membrane359–transportproperty250nano–conifer841–crystal(NC)836–fabrication144–ake878–ower879–foam506–patterning865–peapod852–pillarcurrentcollector873–pore127–prick840–rod854–scalecatalyst336SubjectIndex1010SubjectIndex–spherelithography149–void196nanocomposite–AlPO4–Pt/Cmethanol724–FePO4–Pt/C720–722–Pt/AlPO4737–Pt/FePO4734nanocrystal(NC)836–Fe837nanoparticle(NP)336,856–aggregated841–chain853–electrodeposition836nanoporous–Au854–carbon133–carbonizedPVDC131–connement99–electrode125–material123–matrix130–morphology96nanoporousPt734–thinlm733nanostructure96–conductingpolymer845–thinlm515nanotrench859–fabrication858nanotube–array876–electrodeposition854nanowire(NW)844,861–array859,876–coaxial877–electrodeposition851–multicomponent852–segmented852naphthalenesulfonicacid(NSA)846naturalgraphite(NG)605Navier–Stokesequation241near-infrared(NIR)366near-net-shapemetalliccomponent827Nernst–behavior635–diffusionlayer767–Einsteinrelation242–equation16,46,291,449–Planckequation79,242–potential82,604netux902neuralengineering165neutralcomponent80neutralredcatalyst762neutrondepthproling479neutrondiffraction479Ni/Cunanowire852Ni/Pd/Pt852nickel–chelatingnitrilo-triaceticacid(Ni(II)-NTA)376,401–inverseopal155–metalhydride(NiMH)538,585nickel–zincdeposit845nicotinamideadeninedinucleotide(NAD)745,762–phosphate(NADP)745NiO-YSZcathode914nitratereduction948nitride529,962Ni–YSZelectrode913NMRcell–Bellcore-likeexible347nonaqueouselectrolyte460nonaqueousRFBs595nonequilibriumthermodynamicdescription–concentrationcell73,74–formationcell73,74nonequilibriumthermodynamics(NET)69–75nonlinear–ux–forcerelations69,84,90–frequencyresponseanalysis(NFRA)275–systemcoupling85non-oxidecompound808normalhydrogenelectrode(NHE)402,731normalizedexergy38,42Nosé–Hoover(NH)117nuclearmagneticresonance(NMR)115,331,366,450,475,748–spectroscopy335–tube332numberoftransferunits(NTU)298Nyquistplot633,695–idealelectrochemicalcapacitor574OO2owrate354octadecyltrichlorosilane(OTS)843Ohmicloss632,666Ohmicphotoelectrochemicalcell788one-stepanionmaker952Ono–Suzuki(OS)process810Onsagerrelation70opal145opalinelm151opencircuit–potential(OCP)386,578,770–voltage(OCV)314,346,452,635,664,760,915–voltagecrystallineSi346openelectrochemicalcycle63opticalsensor194opticallytransparent–electrode(OTE)368–thinlayerelectrode(OTTLE)370optimalcathode280–porosity822optimizedcatalystlayer280optimizedisokineticNosé–Hoover(OIN)98orbital-freeembedded(OFE)98ordinarypyrolyticgraphite(OPG)605organelle744organic–electrolyte501–Rankinecycle(ORC)61–solvent529Ornstein–Zernike(OZ)97outdoorphotoelectrochemicalcell782outermembranecytochrome(OMC)412overpotential17,83,290,424,900–deposition856–diffusion599–effectivedrivingforce85–metaldeposition(opd)604–surface901oxidantcomposition668oxidation724–reaction11oxidativeandreductivecycle(ORC)411oxide338,529oxide-containingmatrix145oxidizerchannel249oxidoreductaseenzyme746oxygen615–cathode276oxygenevolution958–reaction(OER)490,910SubjectIndex1011SubjectIndexoxygenreductionreaction(ORR)341,423,489,634,662,713–four-electronreduction713–hydrogenperoxide716–two-electronreduction713Ppackingdensity(PD)338packingfactor150pair-densityfunction(PDF)528PANInanorod845parasiticcurrent460partialdensityofstates(PDOS)319–calculation326partialseriesexpansionsofordern(PSE-n)100patternedelectrodeposition861PbS839PbTe843peakcurrent634peakpotentialdifference634peapodnanostructure853Peltier–coefcient73–cooling87–effect75,86PEMfuelcell–operatingconditions678–performance628–polarizationcurve631–resistance658–stack294Percus–Yevick(PY)100peruorosulfonicacid(PFSA)23,261,910periodictable358perovskitisation821phasediagram457phenazinemethosulfate(PMS)746phosphatebuffersolution(PBS)846photo-activatedlocalizationmicroscopy(PALM)415photoanode903photoelectrochemical(PEC)779,898–conversionefciency782–PVcell780–storagecell782–784photoelectrochemistry779,904photoelectrode903photoelectrolysis923photolithographicmethod861photomultipliertube(PMT)385photonicbandgap(PBG)145,193photoniccrystal(PC)145photoresist(PR)861photosynthesis760photovoltaic(PV)779,927–array933physicaldamage486physicalvapordeposition(PVD)153,863pinch655–calculationof654planarcell915planarmembranehumidier301Planckpotential78,86plasmaenhancedCVD(PECVD)153plasticexiblebatterycell344platinumlm161platinum/carbon(Pt/C)423plot–Avrami454–Bode633,695–Lineweaver–Burk746–Nyquist633,695–Ragone500–Tafel45Poisson–Boltzmann(PB)97–solventaccessiblesurfacearea(PBSA)97Poisson'selectrostaticequation241polarizationcurve290,631,664,749–composition632polarizationmodulated(PM)398poly(3,4-ethylenedioxythiophene)(PEDOT)155,378,566,878poly(3-octylthiophene)(POT)223poly(dimethyldiallylammoniumchloride)(PDDA)192poly(ethyleneglycol)dimethylether(PEGDE)532poly(ethyleneterephthalate)(PET)850poly(methylmethacrylate)(PMMA)145,532,864poly(tetrauoroethylene)(PTFE)533,581,652,907poly(vinylidenediuoride)(PVdF)532poly(vinylpyrrolidone)(PVP)839polyaniline(PANI)156,566,845polybithiophene(PBT)169polycarbonate(PC)850polyethylene(PE)470polymeraerogel506polymerelectrodemembranefuelcell(PEMFC)287,713polymerelectrolyte531,909–fuelcell87–membrane(PEM)260,294,743polymerfuelcell82polymerinverseopal154polyolenmembrane471polyoxometalate(POM)369polypyrrole(PPy)156,846–deposition165–lm167polystyrene(PS)145polysulde(PS)487polythiophene(PT)156polyvinylchloride(PVC)213polyvinylpyridine(PVP)393pore–gradientarchitecture172–layer177–sizegradient180porosityratioshrinkage(PRS)822porous–electrode482,599–electrodemodel263,268–media243–nanowire853–typeanodization849postulatesofnonequilibriumthermodynamics70potassiumferrocyanide433potential–averagedelectrostatic131–chemical96,128–concentrationcell78–electrostatic79–energylevel132–eld46,264–Galvani21–Hartree114–isothermalformationcell80–liquidjunction82–Maxwell77–non-isothermalformationcell80–ofmeanforce(PMF)97,104–Planck78potentiometricmeasurement227potentiostatic–deposition840SubjectIndex1012SubjectIndex–intermittenttitration(PITT)454–polarization750pouchcell481power–curve749–quality592–specicpower568–tool538PPYnanowire847precursorinltration152primary–battery449–particle482–solvationsheath457processtimescale626product–analysis948–composition959–identication637productionreaction(PR)39programmedelectrodeposition836propylene(PP)470propylenecarbonate(PC)467,506–replacementforacetonitrile568protectionadditive468proteinquantication747protein–ligandbinding112proton–conductivity288–diffusion513–fuelcell460–nuclearmagneticresonance(1H-NMR)528proton-exchangemembrane(PEM)23,53,352,649,898–fuelcell(PEMFC)23,352,423,613,656proton-exchangemembranefuelcell(PEMFC)244pseudoreferenceelectrode332pseudocapacitance(PC)511,565pseudocapacitivematerial529pseudocapacitor496,873pseudo-inductiveresponse695Ptdissolution719Ptelectrochemicalsurfacearea(PtECSA)427Ptisland340Pt/C435–electrocatalyst427Pt/metaloxidecatalyst–Pt–RuO2731–Pt–WO3731Pt/Rucatalyst724Pt-basedelectrocatalyst331PtRucatalyst–FePO4coating727–FePO4-coatedPtRu727,728–Rucrossover727–Rudissolution725,730pulseECM959pulseeldgradient(PFG)463pumpstoragepowerplant591pyramidalCunanocrystal839pyrroloquinolinequinone(PQQ)746,772QQ-factor332q-reaction36quadrupolarinteraction343quantum–chemistry(QC)464–mechanicalsimulation953–mechanics(QM)115–sizeeffect(QSE)336quartzcrystalmicrobalance(QCM)747quasimetallic348quasi-equilibriumsolvation97Quebecironandtitanium(QIT)811–process813Rradialdistributionfunction(RDF)126,130radiofrequency(RF)335–chokes332–coil335–radiation350–resonator359Ragoneplot500Ramanspectroelectrochemicalemersioncell407Ramanspectroscopy404Randlescircuit695rate-determiningmechanism822rate-limitingprocess902reactant–humidication661–humidity676–purity617–supply617–utilization666reaction–coordinate83–endergonic35–endothermic35–endotropic48–exoenergetic48–exothermic35–exotropic49–ux245–formation39–formicacidoxidation341–Gibbsenergy80–half-cell899–kinetics271–overpotential599–oxygenreduction341,423,489,634,662,713reactive-ionetching(RIE)863recoverybraking540redox–couple784–enzyme770–owbattery(RFB)591–process170–shuttle470redoxbattery591–all-vanadiumsystem594–bromine/polysuldesystem594–chemistry593–iron/chromiumsystem593–vanadium/brominesystem595–zinc/brominesystem596–zinc/ceriumsystem595redoxreaction–acceleration600–heterogeneous600reducednicotinamideadeninedinucleotide(NADH)758reduction–depth816–metaloxidereduction801–oftitaniametallothermic803reference–electrode(RE)155,208,370,428,634,653,818–interactionsitemodel(RISM)95–systempropagatoralgorithm(RESPA)117reectancespectroscopy381reectivethinlayercell381refractiveindexchange194regenerationkinetic764regenerativefuelcell591regionsofinterest(ROI)354SubjectIndex1013SubjectIndexrelativehumidity(RH)356,649remoteareapowersupply(RAPS)591reorganizationenergy766replicaformalism123resonanceRamanspectroscopy407reverseelectrodialysis85–powerdensity86reversible–charge-transferreaction14–deionization15–hydrogenelectrode(RHE)426,716revolutionperminute(rpm)426Reynoldsnumber946rhombic-dodecahedral(RD)837Rietveldrenement451ringdiskcollectionefciency427Robin-Dayclassication373roomtemperature(RT)716rootmeansquare(RMS)484,585rosettenanotube(RNT)110–surfaceself-assembly111rosettering110rotatingring-disc750–electrode(RRDE)426,638,639rotatingring-discelectrode(RRDE)423rotating-diskelectrode(RDE)20,423–425,639,722,761,767–hydrodynamicow425–methodology424rotating-diskvoltammetry749roughnessfactor164,268rulesofcoupling71RuO2523–528Ru@PtNP341ruthenium–dioxide524–528–oxide523,566Ssafety486,611–datasheet(SDS)651–Li-ionbattery486–plan614–regulation614safety-triggeradditive468salinepowerplant85saltbridge82samarium-dopedceria(SDC)912saturatedcalomelelectrode(SCE)432,841scandia-stabilizedzirconia(ScSZ)912scanning–electronmicroscopy(SEM)144,278,348,640,735,821,837,954–neareldopticalmicroscopy(SNOM)415–probemicroscopy(SPM)475–probemicroscopy(SPM)probe477–transmissionelectronmicroscopy(STEM)722–tunnelingmicroscopy(STM)475,640,845Sc–Ce-dopedzirconia(ScCeZ)914Schottkybarrier904seawater85secondary–electrodeinterface(SEI)22–electrolyteinterphase(SEI)449–electrolyteinterphase(SEI)layer465Seebeckcoefcient86selectivedissolution734selectivitycoefcient218selfdischarge593self-assembledmonolayer(SAM)144self-heating487self-humidication660semiconductor86–photoelectrode(SPE)783semi-innitelineardiffusion(SILD)370sensitivity358sensitizedsolar–cell786–mechanismofadye787sensor–ngerprint194sensorlesshumidication302separator358,595shapingmetal943shearalignment151Shockleycurrent781shortlivedtransientspecies344shrinkage154Sicluster346Sielectrode478Si-basedelectrode477sidereaction944,967Siemensprocess802signalenhancementtechnique332signal-over-noiseratio348silicon–column821–metallurgical-grade-silicon(MG-Si)803–purication802silversuldeelectrode213simpleenergyconversion54single–carbonsphere(SCS)130–electrodeheats86–molecule(SM)412–wallcarbonnanotube(SWCNT)771singlecell622,624–PEMfuelcell655–testing656single-electrodemethod749singlyoccupiedmolecularorbital(SOMO)380six-memberedsupermacrocycle110skin-deptheffect350slabopticalwaveguidespectroscopy(SOWG)379slowbeat339smallanglex-rayscattering(SAXS)640smoothlydeposited(SD)347sodiumdodecylbenzenesulfonate(SDBS)842sodiumdodecylsulfate(SDS)160,847sodium-selectiveelectrode212softwareandhardwarecontrol620solar–conversion782–toelectricalefciency785solarcell786–dyesensitized786–multiplebandgap787–stackedmultijunction789solarthermalelectrochemicalproduction(STEP)779,792–energypathway795–ironproduction792–solarefciency795solar-cell-grade(SoG)802solar-poweredelectrolysis931solar-to-hydrogen(STH)923solenoidcoil348sol–gelprocess154SubjectIndex1014SubjectIndexsol–gel-derivednanoarchitecture506solid–metaloxide809–polymerelectrolyte787solidelectrolyte–interphase(SEI)343,868–membrane259solidoxide–electrolysiscell(SOEC)898–fuelcell(SOFC)23,276,614,898–membrane(SOM)824solid-stateelectrode222solid-stateionic26solvation99–chemicalpotential102–structure99,116,131–thermodynamics102solvationforce118–calculationof118–coordinateextrapolation(SFCE)117–extrapolation(SFE)98solvation-freeenergy102–density(SFED)102solvent–diffusionux243–distribution123–evaporation147–separatedionpair(SSIP)104sorbedelectrolytesolutionspecies125sorbedsolution126Soretequilibrium81sorptioncapacity133spatialdecompositionanalysis(SDA)103speciesux246specic–activity(SA)435,746–humidity(SH)657–surfacearea(SSA)505spectroelectrochemical335–cell638–quartzcrystalmicrobalancemeasurement(SECQM)378spectroelectrochemistry(SEC)366–circulardichroism380–quantitative375–steady-stateluminescence386–thinlayer370–vibrational393spectroscopy640,748spinechosequence338spinelgroup952spin-latticerelaxation336spin-spinrelaxation337spirobipyrrolydiniumtetrauoroborate(SBP-BF4)530stability–testing752–window534–537stack623,911–plot358standard–calomelelectrode(SCE)513–electrode208–hydrogenelectrode(SHE)593,761standardhydrogenelectrode(SHE)411standardization627starting,lightingandignition(SLI)591stateofcharge(SOC)450stationarycorrosion945steady-state360–current462steaminjection661steammethanereforming(SMR)897step-likegrainboundaries957Sternlayer98stochasticopticalreconstructionmicroscopy(STORM)415storageelectrode785storagelife485stress-annealedpyrolyticgraphite(SAPG)605structuraltransition107subtractivelynormalizedinterfacialFouriertransforminfraredspectroscopy(SNIFTIRS)394sulforane(SL)530sumfrequencygeneration(SFG)393,413supercapacitor(SC)129,189,496,592,866–electrochemicalcapacitor563super-hydrophobic842supersaturatedlm949surface–area(SA)97–brightening957–chargedistribution108–electrochemistry27–nishing957–layer949–overpotential901–plasmonpolariton(SPP)196–plasmonresonance(SPR)414–potentialdrop82–redoxreaction378–topography952surfaceenergy953–minimization152surface-catalyticmechanism468surface-enhancedinfraredabsorption(SEIRA)400–spectroscopy(SEIRAS)400surface-enhancedRaman–scattering(SERS)853–spectroscopy(SERS)196,401surface-enhancedresonanceRaman(SERR)376,412surface-templatedmaterial169surface-templating155sustainability612symmetricelectrode127symmetryrules71synproportionation55system–cleaning617,618–development311–efciency311TTafel–equation19–plot45–slope670tank-typeelectrolyzer906tantalumoxynitride(TaON)928temperaturecontrol619temperatureeffect902temperature–energy-diagram47template143–freedirectelectrochemicalsynthesis841–mesoporouscarbon(TMC)507terbiumoxide(Tb4O7)816ternaryphasediagram457tert-butylalcohol(TBA)104teststation616–controlsystem618–diagnostictechnique626tetrabutylammoniumtetrauoroborate(TBABF6)169SubjectIndex1015SubjectIndextetracyanoquinodimethan(TCNQ)773tetraethylorthosilicate(TEOS)145tetraethylammonium(TEA)392,530tetraethylenepentamine601tetragonalbipyramidal(TB)837tetrahexahedral(THH)836tetrathiafulvalane(TTF)773thermalcharacterization486thermalpowerstation66thermochemical–cycle61–data16thermodynamic–cycle61–integration102thermodynamics14,899–ofsmallsystems72thermoelectricenergyconversion87thermoelectricpowergeneration86thermogravimetricanalysis(TGA)640thermoneutralvoltage904thermostat134thetacapillaries946Thielemodulus271thinelectrolyteshell272thinlayer–cell367–fuelcell613–SECredoxprobe375thin-lm516–battery479–electrode368,429,513–RDEelectrode431thiol-top-functionalizedsilanemonolayer(TFSM)865thiourea(TU)844three-compartmentelectrochemicalcell428three-electrodeelectrolysis816three-electrodestoragecell783three-phaseinterline(3PI)815through-holecavityelectrode819through-planewaterdistribution356time-correlatedsingle-photoncounting(TCSPC)390time-resolvedluminescencespectroelectrochemistry(TRLS)391tinoxideanode824titaniaslag813titanium963–carbide(TiC)801–dendrite807–tetrachloride(TiCl4)803titrationpotentiostaticintermittent454total–analyticalsystem(TAS)223–cell72–internalreectanceuorescencemicroscopy(TIRF)414–ionstrengthadjustmentbuffer(TISAB)218tracerspecies615transferencecoefcient73–ofsalt77–positiondependent77transferencenumber460transformation–characteristics58–efciency57–ratio57transmission–electronmicroscopy(TEM)165,336,463,473,640,716,733,852–linemodel(TLM)576–linemodel-poresizedistribution(TLM-PSD)576–spectroscopy366transport901–equation240–loss241–model240–number77transportation538–541transportedentropy81triethylmethylammonium(TEMA)530triplephaseboundary(TPB)903tungstencarbide964tungsteninverseopal154two-bandmodel338two-electrodePEC782two-stepanionmaker952Uultracapacitor496–electrochemicalcapacitor563ultracentrifugation524ultrasmallmagnet862ultraviolet(UV)780,861ultraviolet–visible(UV-Vis)746underpotentialdeposition(UPD)604,853uninterruptiblepowersupply(UPS)543,591UnitedStatesDepartmentofEnergy630unityofmaterialandenergy34VVanderWaalsforce145vanadiumelectrolyte791vapor-growncarbonber(VGCF)602Verletcorrection126vertical345–deposition(VD)146vibrationalcirculardichroism(VCD)403vibrationalspectroscopy393Viennaabinitiosimulationpackage(VASP)315vinylenecarbonate(VC)469voltage–currentcontrol620–efciency752–prole321voltaicpile5voltammetricmethod227voltammetry634,749–proteinlm749volume-templating154Voronoitessellation850vulcancarbon(VC)440Ww;q-reaction36Warburg–diffusionelement694–impedance692water357–brackish85–content528–distribution353–electrolysis64,793,898–electrolyzer899–fresh85–management287,309–sea85–transport288–transportmechanism288SubjectIndex1016SubjectIndexwater–alcoholmixtures104water-splitting903wavelengthdispersivex-rayspectrometer(WDS)640weakoxidegroup952Wilhelmyplate149workforce612workingelectrode(WE)155,407,425,460,634,683woundcell482W-SiO2electrode820Xx-rayabsorption–near-edgespectroscopy(XANES)512,640–near-edgestructure527–spectroscopy(XAS)511x-raydiffraction(XRD)317,463,511,566,640,820,840–data473–prole474x-rayphotoelectronspectroscopy(XPS)368,452,511,566,640,718,748x-rayradialelectrondensitydistribution(REDD)640YY0:2,Ce0:8O2(YDC)914yttria-stabilizedzirconia(YSZ)912Zzincoxide(ZnO)843RecentlyPublishedSpringerHandbooksSpringerHandbookofElectrochemicalEnergy(2017)ed.
byBreitkopf,Swider-Lyons,1016p.
,978-3-662-46656-8SpringerHandbookofOceanEngineering(2016)ed.
byDhanak,Xiros,1345p.
,978-3-319-32550-7SpringerHandbookofRobotics(2nd)(2016)ed.
bySiciliano,Khatib,2227p.
,978-3-319-32550-7SpringerHandbookofComputationalIntelligence(2015)ed.
byKacprzyk,Pedrycz,1633p.
,978-3-662-43505-2SpringerHandbookofMarineBiotechnology(2015)ed.
byKim,1512p.
,978-3-642-53970-1SpringerHandbookofAcoustics(2nd)(2015)ed.
byRossing,1286p.
,978-1-4939-0754-0SpringerHandbookofSpacetime(2014)ed.
byAshtekar,Petkov,887p.
,978-3-642-41991-1SpringerHandbookofBio-/Neuro-Informatics(2014)ed.
byKasabov,1230p.
,978-3-642-30573-3SpringerHandbookofNanomaterials(2013)ed.
byVajtai,1222p.
,978-3-642-20594-1SpringerHandbookofLasersandOptics(2nd)(2012)ed.
byTrger,1694p.
,978-3-642-19408-5SpringerHandbookofGeographicInformation(2012)ed.
byKresse,Danko,1120p.
,978-3-540-72678-4SpringerHandbookofMedicalTechnology(2011)ed.
byKramme,Hoffmann,Pozos,1500p.
,978-3-540-74657-7SpringerHandbookofMetrologyandTesting(2nd)(2011)ed.
byCzichos,Saito,Smith,1229p.
,978-3-642-16640-2SpringerHandbookofCrystalGrowth(2010)ed.
byDhanaraj,Byrappa,Prasad,Dudley,1816p.
,978-3-540-74182-4SpringerHandbookofNanotechnology(3rd)(2010)ed.
byBhushan,1961p.
,978-3-642-02524-2SpringerHandbookofAutomation(2009)ed.
byNof,1812p.
,978-3-540-78830-0SpringerHandbookofMechanicalEngineering(2009)ed.
byGrote,Antonsson,1576p.
,978-3-540-49131-6SpringerHandbookofExperimentalSolidMechanics(2008)ed.
bySharpe,1096p.
,978-0-387-26883-5SpringerHandbookofSpeechProcessing(2007)ed.
byBenesty,Sondhi,Huang,1176p.
,978-3-540-49125-5SpringerHandbookofExperimentalFluidMechanics(2007)ed.
byTropea,Yarin,Foss,1557p.
,978-3-540-25141-5SpringerHandbookofElectronicandPhotonicMaterials(2006)ed.
byKasap,Capper,1406p.
,978-0-387-26059-4SpringerHandbookofEngineeringStatistics(2006)ed.
byPham,1120p.
,978-1-85233-806-0SpringerHandbookofAtomic,Molecular,andOpticalPhysics(2nd)(2005)ed.
byDrake,1506p.
,978-0-387-20802-2SpringerHandbookofCondensedMatterandMaterialsData(2005)ed.
byMartienssen,Warlimont,1120p.
,978-3-540-44376-6
现在宝塔面板真的是越来越过分了,删除文件、删除数据库、删除站点等操作都需要做计算题!我今天升级到7.7版本,发现删除数据库竟然还加了几秒的延时等待,也无法跳过!宝塔的老板该不会是小学数学老师吧,那么喜欢让我们做计算题!因此我写了个js用于去除各种计算题以及延时等待,同时还去除了软件列表页面的bt企业版广告。只需要执行以下命令即可一键完成!复制以下命令在SSH界面执行:Layout_file="/w...
易探云怎么样?易探云是国内一家云计算服务商家,致力香港服务器、国内外服务器租用及托管等互联网业务,目前主要地区为运作香港BGP、香港CN2、广东、北京、深圳等地区。目前,易探云推出深圳或北京地区的适合挂机和建站的云服务器,国内挂机宝云服务器(可选深圳或北京地区),独立ip;2核2G5M挂机云服务器仅330元/年起!点击进入:易探云官方网站地址易探云国内挂机宝云服务器推荐:1、国内入门型挂机云服务器...
zji怎么样?zji最近新上韩国BGP+CN2线路服务器,国内三网访问速度优秀,适用8折优惠码zji,优惠后韩国服务器最低每月440元起。zji主机支持安装Linux或者Windows操作系统,会员中心集成电源管理功能,8折优惠码为终身折扣,续费同价,全场适用。ZJI是原Wordpress圈知名主机商:维翔主机,成立于2011年,2018年9月启用新域名ZJI,提供中国香港、台湾、日本、美国独立服...
www.mfcclub.net为你推荐
淘宝门户分析淘宝网、三大门户网站、易趣、阿里巴巴属于哪种电子商务模式沙滩捡12块石头价值近百万捡块石头价值一亿 奇石到底应该怎么定价云爆发云联惠是什么来的怎么查询商标手机上能查询商标吗?怎么查?同一ip网站最近我们网站老是出现同一个IP无数次的进我们网站,而且是在同一时刻,是不是被人刷了?为什么呀?www.yahoo.com.hk香港的常用网站www.228gg.comwww.a8tb.com这个网站该如何改善125xx.com高手指教下,www.fshxbxg.com这个域名值多少钱?javbibitreebibi是什么牌子的yinrentangweichentang万艾可正品的作用真的不错吗
网通服务器租用 域名空间购买 主机测评 新世界机房 美国主机推荐 站群服务器 美元争夺战 圣迭戈 抢票工具 免费名片模板 windows2003iso 中国特价网 免费ftp空间申请 我爱水煮鱼 空间论坛 百度云1t 酷番云 如何安装服务器系统 raid10 网页提速 更多