11SustainabilityIssuesintheTwenty-FirstCenturyandIntroductiontoSustainableWaysforUtilizationofNaturalResourcesAmiyaKumarRay,PrasenjitMondal,andKumarAnupam1.
1IntroductionInthetwenty-firstcentury,theworldisfacingmanysocial,environmental,andeconomicchallengesofthetime,butthegreatestchallengeremainstokeepthisplanetinabettershapeforfuturegenerations.
Toachievethisgoal,theconceptofsustainabilityisevolved,whichemphasizestheoveralldevelopmentofasustainablesociety.
Thefollowingpara-graphsoutlinethechronologicalevolutionoftheterms"sustainability"and"sustainabledevelopment"(Web1).
ThenamesustainabilityisderivedfromtheLatinsustinere(tenere,"tohold";sus,"up").
"Sustain"canmean"maintain,""support,"or"endure"(Stivers1976;Meadowsetal.
2004).
Thehistoryofsustainabilitycandescribehuman-dominatedecologicalsystemsfromtheearliestcivilizationstothepresenttime(Barbier1987).
Itisreportedthattheconceptsofsustainabledevelopmentandsustainabilitywereusedinthepast(~twelfthtosixteenthcenturies)inforestmanagementas"sustainedyield,"whichisthetranslatedformofGermantermNachhaltigerErtrag(Grober2007;Ehnert2009).
However,overthepastfivedecades,theconcepthasbeensignificantlybroadened(Ehnert2009).
Intheseventhdecadeofthetwentiethcentury(the1970s),thetermsustainabilitywasusedtodescribeaneconomyinequilibriumwithbasicecologicalsupportsystems.
Initsclassicreportonthe"LimitstoGrowth,"theClubofRomeusedtheterm"sustainable"forthefirsttimein1972,whichhaslaterbeenhighlightedbyscientistsinmanyfields(Grober2007;Finn2009).
Toaddresstheconcernsovertheimpactsofexpandinghumandevelopmentontheplanet,economistshavealsopresentedanalternativeterm"steady-stateeconomy.
"CONTENTS1.
1Introduction.
11.
1.
1UtilizationofConventionalResourcesAdoptingCleanerRoutes31.
1.
2UtilizationofRenewableBiologicalResources51.
1.
3UtilizationofUnconventionalResources.
91.
1.
4OptimizationofResourceUtilization.
111.
1.
5SustainabilityAssessment.
121.
1.
6Conclusion14References.
14Citation"AmiyaKumarRay,PrasenjitMondal,KumarAnupam(2017)SustainabilityIssuesintheTwenty-FirstCenturyandIntroductiontoSustainableWaysforUtilizationofNaturalResources.
In:MondalP.
,DalaiA.
(eds)SustainableUtilizationofNaturalResources.
BocaRaton:CRCPress.
https://doi.
org/10.
1201/9781315153292"2SustainableUtilizationofNaturalResourcesSincethe1980s,sustainabilityhasbeenusedmoreinthesenseofhumansustainabil-ityontheplanetearth.
In1980,sustainabledevelopmentwasfirstreferredtoasaglobalpriorityin"TheWorldConservationStrategy"publishedbytheInternationalUnionfortheConservationofNature(IUCN1980).
Toguideandjudgethehumanconductaffectingnature,fiveprinciplesofconservationwereraisedbytheUnitedNationsWorldCharterforNaturein1982(UNWC1982).
Thereport"OurCommonFuture"alsocommonlyknownas"BrundtlandReport"wasreleasedbytheUnitedNationsWorldCommissiononEnvironmentandDevelopmentin1987.
Inthisreport,sustainabilityisdefinedasapartoftheconceptofsustainabledevelopmentthatensurestheneedsofthepresentwithoutcompromisingtheabilityoffuturegenerationstomeettheirownneeds(Brundtland1987;SmithandRees1998).
TheConceptofSustainableEconomicDevelopmentwasalsopublishedin1987bytheeconomistEdwardBarbier,inwhichhehadadvocatedthatthegoalsofenvi-ronmentalconservationandeconomicdevelopmentarenotconflictingandcanreinforceeachother(Barbier2006).
In1992,theUNConferenceonEnvironmentandDevelopment(UNCED)publishedthe"EarthCharter,"alsoknownasthe"RioSummit,""RioConference,"or"EarthSummit"(Portuguese:ECO92),whichoutlinesthebuildingofasustainablepeacefulglobalsocietyinthetwenty-firstcentury.
Theactionplan21Agendaidentifiedinformation,integration,andparticipationaskeybuildingblockstohelpcountriesachievesustainabledevelop-ment(UNCSD2012).
Tostrengthentheimplementationofsustainablegrowth,theUNConferenceonSustainableDevelopment2012(UNCSD2012),alsoknownasRio2012,Rio+20,orEarthSummit2012,washeldinBrazilin2012.
Afteradebateonmorethan90environmentalissuesinitiallyproposed,theUnitedNationsEnvironmentProgramme(UNEP)alsopromulgated21emergingissuesforthetwenty-firstcenturyin2012(UNCSD2012;UNEP2012).
In2013,fourinterconnecteddomains,namely,ecology,economics,poli-tics,andculture,wereidentifiedforreportingsustainability(Mageeetal.
2013),whichisrelatedtoourlong-termcultural,economic,andenvironmentalhealthaswellasvitality.
Sustainabilitycanbeachievedbylinkingtheseissuestogetherratherthanconsideringthemasseparate.
Aneconomicallyandenvironmentallyviableprocessmaynotbesus-tainableuntilitissociallydesirableasshowninFigure1.
1(SmithandRees1998).
EconomicEnvironmentSocialBearableEquitableSustainableViableFIGURE1.
1Venndiagramofsustainabledevelopmentattheconfluenceofthreeconstituentparts.
(https://en.
wikipedia.
org/wiki/Sustainability.
)3SustainabilityIssuesintheTwenty-FirstCenturySustainabledevelopmentisadynamicprocessoranactionplanoraroadmapforadesirablefuturestateforhumansocietiesinwhichlivingconditionsandresourceusecontinuetomeethumanneedswithoutunderminingthe"integrity,stability,andbeauty"ofnaturalbioticsystems(Web1).
Italsoensuresthecarryingcapacityofnaturalsystemswiththesocial,political,andeconomicstability(Stivers1976).
Hence,devisingmethodsandmechanismsforutilizationofnaturalresourcesforsustainabledevelopmentofahumansocietyistheprimarygoalofsustainability.
Asustainablesocietyfocusesontheminimumuseofnonrenewableresourcessuchasmineralsandfossilfuels;conservationoffinitestocksofbiodiversity;themaximumuseofrenewableresourcessuchasfreshwa-ter,soils,andforests;andconservationofabsorptivecapacityoflocalandglobalsinksofwastessuchasairandwaterresources.
Italsoprovidesanopportunityforeachhumanbeingtodevelopitselfinfreedom,withinawell-balancedsociety,andinharmonywithitssurroundings.
Thus,someimportantapproachesforachievingsustainabilitycanbelesserconsumptionofnaturalresourcessuchaswaterandenergy;reductionofenergywastage;moreuseoffuelefficientenginesinvehiclesandmachines;morerecyclingandreusingofwastematerials;andmoreeffortsforprotectionofsoilandforests.
Thischaptermainlyfocusesonvarioussustainablewaysofutilizingnaturalresources,whichmaybeeitherexhaustibleorrenewable.
Theformerincludesminerals,coals,petro-leum,nuclear,andnaturalgas,whereasthelatterincludesavarietyofsourcesgrowninorobtainedfromland,ocean,andair.
Someexamplesofsuchrenewableresourcesarebiomass,water,wind,solar,microorganisms,herbs,andplants.
Manyoftheseresourcesarebeingutilizedconventionally(withouttakingsufficientmeasuresfortheenvironmen-tal,social,cultural,andhealthneeds).
Theseresourcescanbeutilizedinamoreoptimalandeco-friendlywaytoensuresustainability.
Further,someresourcesarenotyetwellexploited,althoughthesehavegoodpotentialforcontributiontowardsustainability.
Thefollowingsectionsdescribehowsustainabilitycanbeachievedthroughvariouswaysofutilizationofnaturalresources.
Thischapterisorganizedasfollows:Section1.
1.
1describesutilizationofconventionalresourcesviacleanerroutes,Section1.
1.
2highlightsexploita-tionofrenewablebiologicalresources,Section1.
1.
3explainsutilizationofunconventionalresources,Section1.
1.
4illustratesmethodsofoptimizationofresourceutilization,andSection1.
1.
5emphasizessustainabilityassessment.
1.
1.
1UtilizationofConventionalResourcesAdoptingCleanerRoutesEnergyisoneofthemostsignificantinputsforeconomicgrowthandhumandevelopment,andcoalhasbeenrecognizedasthemostimportantsourceofenergy.
Todayapproximately40%oftheworld'senergyrequirementcanbeachievedthroughcoal.
However,themajorconstraintintheutilizationofcoalisthat~65%ofitsglobalreservescontainlow-rankcoal,whichoncombustionproducesseriousecologicalandenvironmentalthreatsduetoemis-sionofobnoxiousgreenhousegases.
Extractionofcoalfromminesanditsprocessingforapplicationinpowerplantalsoadddifferenttypesofpollutantsinairandwater.
Forthesustainableutilizationofcoal,emphasisisbeinglaidonthedevelopmentofsuitablecoalextractiontechnologiesaswellasenergyrecoveryfromtheexistingcoalresourcesusingcleancoaltechnologies.
Variouscleancoaltechnologiesincludecoalbeneficiationwithultra-soundenhancedtechnology;coalgasification—bothconventionalandmoltenandplasmagasification;co-combustionwithgasification;carboncaptureandsequestration(CCS)usingprecombustion,postcombustion,andoxy-fuelcombustiontechniques;andcleancombus-tiontechniquesincludingtechnologiesforNOxreduction,high-temperatureaircombus-tion,chemicalloopingcombustion,andchemicalloopingreforming.
Unconventionalcoal4SustainableUtilizationofNaturalResourcestechnologiessuchasundergroundcoalgasification(UCG)andcoaltoliquidoil(CTL)pro-ductionarealsotwoimportantcleancoaltechnologies.
IntegrationofamixtureofthesecleancoaltechnologiesinexistingpowergeneratingsystemsisnecessarytoachieveaminimalenergypenaltyforCCS.
AccordingtheNationalEnergyTechnologyLaboratory,Morgantown,WestVirginia,deploymentofnewadvancedtechnologiescanreduceemis-sionaswellascoalconsumptionfortheproductionofacertainamountofelectricitybyincreasingtheoverallplantefficiency(Web2).
Ithasalsobeenpredictedthatusingcleanpowerplants,thegreenhousegasemissionscanbereducedby~30%by2030withreferencetotheemissionintheyear2005(Web3).
Petroleumcrudeoil,whichproducesusefulproductssuchasliquefiedpetroleumgas,naphtha,gasoline,kerosene,jetfuel,diesel,heatingoil,andasphaltbase,isanothermajorsourceofenergyaftercoal.
Theaboveproductsareproducedfromcrudeoilthroughatmo-sphericandvacuumdistillationprocesses.
Variousconversionprocessessuchascrackingandhydrotreatingarealsousedtoalterproductdistribution.
Agoodamountofresidueisalsogeneratedaftervacuumdistillationofcrudeoilcalledasvacuumresidue(VR).
TheamountandqualityofVRaredependentonthemetalandsulfurcontentofcrudeoilaswellasitsviscosity.
Utilizationordisposalofthisresidueisagreatconcernofarefineryasitinfluencestheeconomyandenvironmentalrequirements.
Duetograduallydegradedqualityofcrudeoil,itisbecomingheavierdaybyday,resultinginmoreresiduesrelatedtomorecontaminants.
Thus,upgradingofheavyresiduesisbecomingapriorityareaforthesustainabilityofpetroleumrefinery.
Anumberofapproaches(bothhydrogenaddi-tionandcarbonrejection)aredevelopedforupgradingtheheavyresidues.
Someoftheseprocessesarecracking,hydrocracking,visbreaking,delayedcoking,solventdeasphalting,andgasification(AncheytaandRana2004;Speight2013).
Recently,nanotechnologyandbiologicalrouteshavealsobeeninvestigatedtoexploretheupgradingofheavyresidue.
Naturalgasiswidelyusedasfossilfuelnexttocoalandpetroleumcrude.
Itmainlycon-tainsmethanealongwithsomehigherhydrocarbonsandCO2.
Itisusedforpowerandheatapplicationinpowerplantsaswellasinthetransportationsectorascompressednaturalgas.
Itcanalsobeusedtoproducehydrogenthroughsteamreforming.
Hydrogenproducedfromnaturalgascanfurtherbeusedtoproduceelectricityinafuelcell,oritcanbeusedforthesynthesisofmanychemicalssuchasammonia.
ApplicationofnaturalgasinaHondaCiviccanreduceglobalwarmingpollutionby~15%thanaconventionalgasoline-poweredCivic.
However,~30%emissionreductionispossibleifagasoline–electricCivichybridisusedinplaceofaconventionalgasoline-poweredCivic.
Further,theconversionofnaturalgastoelectricityorhydrogenanditssubsequentapplicationinplug-invehiclesorfuelcellvehiclescangive~40%savingofglobalwarmingemissions(Web4andWeb5).
Therefore,hydrogenproductionfromnaturalgasismoresustainablethanitsotherutilizationroutes.
Conventionalsteamreformingunitshaveverylargecapacityandhencearemoreeconomical.
Recently,extensiveresearchhasbeenconductedtoincreasetheefficiencyofthesmall-scalereformingprocessusingcompactreactorssuchasmicro-channelreactorsandmonolithreactors.
Anothernonconventionalfossilfuel,whichhasattractedgreatattentioninrecentyears,isoilsand,whichisbasicallyamixtureofclay,sand,water,andbitumen(adenseandextremelyviscousformofpetroleum).
Oilsanddepositshavebeenfoundinmanycountriesaroundtheworld,includingCanada(~169billionbarrels),theUnitedStates(~28billionbarrels),Venezuela(~100billionbarrels),Russia(~60billionbarrels),andsomeothercountries(Web6).
However,thelargestdepositofoilsandsisfoundinCanada.
Morethan320billioncubicmeters(twotrillionbarrels)ofglobaloilsanddepositshasbeenestimated.
Effortsaremadearoundtheworldtoextractandproduceusableoilfromoil5SustainabilityIssuesintheTwenty-FirstCenturysands,andtheAthabascadepositinAlbertaisutilizingthemostavailabletechnologicallyadvancedproductionprocess.
ItispredictedthattheoilsandproductioninCanadawouldincrease1.
7timesby2024withrespecttotheproductionintheyear2014(from2.
3millionbarrelsperdayto4millionbarrelsperday)(Web5).
ManyinternationalcompaniessuchasShell,ExxonMobil,Sinopec,BP,Total,Chevron,andPetroChinaaresettoexpandtheiroilextractionfromoilsandsintheupcomingyears.
However,developmentsofmorecost-effectiveandeco-friendlymethodsarerequiredfortheutilizationofthisresource.
1.
1.
2UtilizationofRenewableBiologicalResourcesThemajorbreakthroughinenergysecuritycanbeestablishedifrenewableresourcesareutilizedproperly.
Amongtherenewableresources,somearebiologicalresourcescompris-ingmainlylandbiomassandbiomassfrommarineandaquaticsources,whereaswind,ocean,hydro,andsolarsourcesaresomeotherimportantnonbiologicalsourcesofrenew-ableenergy.
Microorganismsinwastescanalsobeusedforenergyproduction.
Biomasscanbeconvertedintoliquidbiofuels,whichcanbeusedintransportation.
Themajorbiofuelisbioethanol,whichhashighoctanenumberandotherdesirablefuelprop-erties.
Itisalsoenvironmentallyfriendly.
Itismainlyproducedfromabundantrenew-ablebiomassthroughabiochemicalrouteinwhichlow-costandplentifulbiomassfromnonfoodsourcesisfirstbrokendownintoanumberofsugarsthroughpretreatmentandchemicalorenzymatichydrolysis.
Thisisthenfollowedbyfermentationinthepresenceofbiocatalystssuchasyeast,toproducebioethanol.
Anysugarysubstances(derivedfromcaneandbeet),starchyagriculturalcrops,cropresidues,lignocellulosicbiomass,andalgalbiomasshavethepotentialtobeafeedstockforbioethanolproduction.
Thepretreatmentstepsbecomemoreimportantforhandlinglignocellulosicbiomass.
ManykindsofmicrobessuchasSaccharomycescerevisiae,Zymomonasmobilis,thermophilicThermobacterethanolicusorthermophilicethanologen,thermophilicanaerobicbacteria,Clostridiumthermocellum,Themoanaerobactenumsachharolyticum,aerobicmesophilicfungus,Trichodermareesei,fun-galglucoamylase,cellulase-producingfungusAspergillusniger,andthermotolerantyeastKluyveromycessp.
IIPE453areusedforbioethanolproduction(MTCC5314)(Rayetal.
2013).
Productionofbioethanolfromediblebiomassisunderdebateastherequirementoffoodcropsisincreasingduetoincreasedpopulation.
Thus,applicationoflignocellulosicbiomassforbioethanolproductionisaveryimportantareaforsustainableproductionofbioethanol.
However,thisprocessisnotwellestablishedforcommercialscaleproductionduetolowbiodegradabilityoflignocellulosicbiomassandcomplexityinproductsepara-tionsteps.
Systematiceffortsarerequiredtodevelopanewtechnologytoproduceethanolfromlignocellulosicbiomass.
Currently,lignocellulosicethanolcanbecompetitivewithfossilfuelsatacrudepriceof$100perbarrelormore.
However,in2030itisexpectedtobecompetitiveatacrudepriceof$75perbarrel(Clixoo2016).
Acombinedtechnologybasedontheintegratedbiorefineryconcept(BioGasol)forproductionofbiogas,hydrogen,meth-ane,ethanol,andsolidfuel(lignin)frombiomassmustbeemployedtogetsustainablelow-costproductionoflignocellulosicbioethanol(AhringandLangvad2008).
Thepos-sibilityofproducinglongerchainalcoholsuchasbutanol,isopropanol,and2,3-butanediolfromlignocellulosicbiomassshouldalsobeexplored.
Theenergydensityofbioethanolis~40%lessthanthatofregulargasoline,whereasforbiobutanol,itis~10%lessthanthatofregulargasoline,whichshowsthatbiobuta-nolhasmoreenergydensitythanbioethanol.
Physicochemicalpropertiesofthesetwoalcohols,responsibleforblendingandantiknockingpropertiesarealsocomparative(Muíkováetal.
2014).
Thus,biobutanolcanbemoresuitablyusedasgasolineblendthan6SustainableUtilizationofNaturalResourcesbioethanol.
Ithasbeenattractingstrongattentioninrecentyears(Jangetal.
2012).
Theyieldandspeedofproductionofbiobutanolisdependentonthetypesofmicroorganismsandsubstratesused.
Higheralcoholconcentration(>3%)showstoxiceffectstomicroorgan-isms(QureshiandMaddox1995).
Toovercomethislimitation,newmicrobesareusedandgeneticmodificationofmicrobesismade(Durre2007)togethighalcoholconcentrationwithstandingstrains.
ThemutantstrainsofClostridiumacetobutylicumandC.
beijerinckiihavebeenusedtoproducehighconcentrationsofcellulosicn-butanol.
Effortsaremadetodevelopthisprocessincommercialscale(Huangetal.
2010).
Amongthenonconventionalandrenewablebiosources,algalbiomassseemstobethemostpromisingoneasitsgrowthrateisveryhigh.
Throughphotosynthesis,algaepro-ducecarbohydrates,partofwhichisconvertedintolipidandproteinthroughdifferentmetabolicpathways.
Thecarbohydratecanformethanolthroughfermentation,whereaslipid/oilcanproducebiodieselthroughtransesterificationorotherroute.
Theproteinscanberecoveredandusedformanyapplications.
Algalbiofuelssuchasbioethanolandbiodieselarehighlybiodegradable,arenontoxic,andcontainnosulfur.
AlgaealsohelptoreducegreenhousegasbyconsumingCO2.
Figure1.
2showsthenecessaryprocessingstepsforproductionofvariouskindsofbiofuelsincludingbioethanolfromalgae.
Apartfrombioethanolandbiodiesel,biomethane,biohydrogen,electricity,andsyngascanalsobegeneratedfromalgae.
However,eachfuelproductionrequiresanumberofunitoperationswithdifferentcomplexities.
Themajorprocessingstepsincludepretreatment,conversion,finalproductseparation,andpurification.
Pretreatmentprocessesincludeoilextractionorthermochemicalstepstoproducealgaloilorbio-oilalongwiththeresidues.
Theconversionstepsconsistoftransesterification(biodiesel),hydroprocessing(greendie-sel,greenjetfuel,andgreengasoline),biochemicalconversion(oxygenates-bioethanol,biobutanol,biomethane),andthermochemicalgasification(syngas).
Biomassofplantsandalgaeisprovenasacompetitivefeedstockforenergyproduc-tion.
Theserenewableresourcescanalsobeconvertedintobiofertilizer,whichhasasig-nificantpotentialfortheimprovementofsoilpropertiesforbettercrops.
AlthoughgreenrevolutionhasimprovedthefoodsecurityintheworldbyapplyingchemicalfertilizerTAGBiodieselStarchBioethanolBiomethaneElectricitySyngasGasicationAnaerobicdigestionDirectcombustionPhotobiologicalH2productionBiomassfromalgaeBiohydrogenAlgaeFIGURE1.
2Pathofbioenergyproducedbyalgae.
TAG,triacylglycerideortriacylglycerol.
(FromBiernat,K.
etal.
,ThePossibilityofFutureBiofuelsProductionUsingWasteCarbonDioxideandSolarEnergy,2013.
Withpermission.
)7SustainabilityIssuesintheTwenty-FirstCenturyandpesticides,ithassignificantlyaffectedthesoilconditionsandthecropyieldisunderthreatinthetwenty-firstcentury.
Further,ithasalsoinducedmanycontaminationsinsoilaswellasgroundwater.
Useofbiofertilizerandbiopesticidescanhelptorestorethesoilpropertiesandreducepollution.
Biofertilizersaregenerallyproducedfromrenewableresources,whichutilizelivingmicroorganisms.
Thesefertilizerswhenappliedtoseed,plantsurfaces,orsoilpromotetheplantgrowthbydigestinglargebiopolymerssuchasproteins,carbohydrates,fibers,andfats,whichincreasetheavailabilityofprimarynutri-entstothehostplant.
Naturalnitrogenfixationaswellasphosphorusandpotassiumsolubilizationprocessesarepromotedbylivingmicroorganismstoaddnutrients(growth-promotingsubstances—aminoacids,sugars,andfattyacids)tothesoil.
Themainsourcesofbiofertilizersarebacteria,fungi,andcyanobacteria(blue-greenalgae)andothernaturalplantresourcessuchasneem.
SomeexamplesoflivingmicroorganismsforbiofertilizersareRhizobiumazospirillum,Azotobacter,andAcetobacter.
Biofertilizerscanacceleratesoilfer-tility,promoteplantgrowth,reducetheuseofchemicalfertilizer,scavengephosphatesfromsoillayers,andincreasetheavailabilityofnutrients.
Therearenumeroususesofbiofertilizerssuchasproductionoflegumes,paddycropsincludingrice,wheat,corn,mus-tard,cotton,potato,andmanyothervegetables.
Farmyardmanure(atypeofbiofertilizer)canbeproducedbyusingrawmaterialssuchascowdung,cowurine,andwastestrawanddairywastesafterproducinggobargasthroughcomposting.
Likebiofertilizers,thebiopesticides,whichcontrolpests,suppressthegrowthofotherbacteria,fungi,andpro-tozoa,arealsoderivedfromplants,bacteria,animals,andsomeminerals.
Someexamplesofbiopesticidesarefermentedcurdwater,cowurineextract,chilli–garlicextract,neemcowurineextract,bakingsoda,andcanolaoil.
Trichodermaviridecanactasabiofungicide.
Thesebiofertilizersandbiopesticidesareveryeffectiveinprovidinglong-termbenefitscomparedtochemicalpesticidesandotherchemicalproducts.
Likelandbiomass,renewablemarinebiomasshasalsohighpotentialtosupportthesustainabilityofthesociety.
Theoceanrepresentsarichsourceforpharmaceuticalprod-ucts,nutritionalsupplements,cosmetics,agrichemicals,andenzymes(Vigneshetal.
2011).
Itcanalsoprovidemanynaturalproductshavingauniquestructure,whichcanbeusedasasourceofbioactivecompoundssuitableforcombatingdeadlydiseasessuchascan-cer,osteoporosis,acquiredimmunodeficiencysyndrome(AIDS),humanimmunodeficiencyvirus(HIV),Alzheimer'sdisease,andarthritis.
Manycompoundspossessinganalgesic,anti-infective,antimicrobial,antitumor,andanti-inflammatorypropertieshavealsobeendeveloped.
Marinemicroorganisms,algae,andinvertebratesareprimarilyfoundtobethesourceofsuchlifesavingcompounds(JhaandZi-rong2004;Bhaduryetal.
2006).
Thefirstmarine-derivedcancerdrugCytosar-U(MedicinesByDesign2011)isproduceddecadesagofromaCaribbeanSeasponge,whichisusedtotreatleukemiaandlymphoma.
Yondelisisanothermarine-derivedcancerdrug,whichisisolatedfromEcteinascidiaturbinataandisunderclinicaltesting(Bhaduryetal.
2006).
Agrowingnumberofmarinefungiarethesourcesofnovelandpotentiallylifesavingbioactivesecondarymetabolites.
AnervetoxinPrialtDublin,IrelandhasbeenderivedfromconesnailandisbeingmarketedbyElanCorporation,plc,inDublin,Ireland.
Thisdrugjamsupnervetransmissioninthespinalcordandblockscertainpainsignalsfromreachingthebrain.
Theproductionofmedicinesfromindigenousmarine-pharmaceuticalbiomasswithcompetitivepricemaystimulatenewmar-ketsfortheagriculturesectorandcanalsocreatemanyjobopportunities(Bruckner2002).
Biomassfromhillsalsopossesseshighpotentialformaintainingsustainabilityinthetwenty-firstcentury.
TheHimalayaregionsinIndiahavetraditionalknowledgeofayurvedic/herbalmedicine.
Somerareandendemicspeciesofmedicinalandaromaticplantsareavailableinthisregionalongwithmanyotherspecies,whicharevaluabletothe8SustainableUtilizationofNaturalResourcespharmaceuticalandcosmeticindustries(BanerjiandBasu2011).
Approximately45%plantsincluding8000speciesofangiosperms,44speciesofgymnosperm,600speciesofpterido-phytes,1736speciesofbryophytes,1159speciesoflichens,and6900speciesoffungihavemedicinalproperties(Samantetal.
1998).
In2008,thesizeoftheglobalmarketofherbaldrugwas~US$60billionperannum(Sharmaetal.
2008).
Thedemandofherbaldrugsisalsoincreasingveryfastanditsglobalmarketsizein2017mayreach~US$100billionperannum(Sharmaetal.
2008).
Thus,theHimalayanmedicinesystem,avasttreasureofherbalmedicine,shouldbeexhaustivelyexploredandusedfortheeconomicregenerationofthelocalpeopleaswellasforthemedicalbenefitofthewholeworld.
BasedonchemicalinvestigationsontheherbsoftraditionaltribalfolkavailableintheherblayeroftheHimalayasformedicinaluse,ithasbeenestablishedthatanumberofmodernlifesavingdrugsaretheprominentconstituentsoftheseherbs.
Anumberoflifesavingdrugssuchasreserpine,pilocarpine,ephedrine,theophylline,vincamine,atropine,aconite,andcolchicineshavebeenderivedfromtraditionalfolkmedicinalherbs.
ThefollowingplantsarethemainconstituentsoftheherblayeroftheGreatHimalayas:Carexnubigena,C.
muricata,Ainsliaeaaptera,Violacanescens,Goldfusiadalhosiana,Stellariamonosperma,Bupleurumlanceo-latum,Valerianajatamansi,Scutellariaangulosa,Justiciasimplex,Oxaliscorniculata,Rubiacordi-folia,Anaphaliscontorta,Anemonerivularis,Swertiaspp.
,Eupatoriumspp.
,andDipterocarpusspp.
Herbaldrugsareusedforthetreatmentofcancer,AIDS,malaria,liverdiseases,kala-azarandotherinfectiousdiseases,hypertension,antiarthritic,bronchialasthma,andsoon.
Thesehavealsotheantitumor,hepatoprotective,andantfibroticactivities.
Thesecanalsoactasanti-inflammatory,sexhormoneandoralcontraceptive,anantidotetoinsectbitesandsnakebites,febrifuge,astimulanttouterinecontraction,andasedative(Goswamietal.
2002).
Taxolobtainedfromyewtree,arareHimalayanplant,isusedforchemotherapyforcancer,breast,andovariancancer.
ThecostofthismedicineisUS$13permilligramwithamarketpotentialofUS$870million.
Ashwagandha(Withaniasomnifera)isalsousedforcan-certreatment.
MerremiapeltataandMalpighiaemarginata,flavonoidsofPlantagoasiaticaL.
,havebeenemployedforAIDS/HIVinhibitors.
Therearenoticeableadvantagesforherbalmedicinescomparedtosyntheticones,andresearchisbeingconductedtofurtherexploretheherbalsourcesformedicinaluse.
Notonlythehigherplantsandherbsbutalsomicroorganismshavethepotentialtohelpsustainabilityinthetwenty-firstcentury.
Microbialfuelcells(MFCs)providenewoppor-tunitiesforthesustainableproductionofenergyfrombiodegradable,reducedcompoundsandeffluents(RabaeyandVerstraete2005).
Theyconvertbiochemicalmetabolicenergyintoelectricalenergy.
Thus,theycanalsobeusedsimultaneouslyforwastewatertreatmentandelectricity(DasandMangwani2010).
MostrecentdevelopmentsinMFCtechnologyincludeitsuseasmicrobialelectrolysiscells,inwhichanoxiccathodeisusedwithincreasedexternalpotentialatthecathodeandhydrogenisproduced.
PhototropicMFCsandsolar-poweredMFCtechnologyforelectricitygenerationarealsofewlatestdevelopments.
MFCshavethefollowingoperationalandfunctionaladvantagesoverthetechnologiescurrentlyusedforgeneratingenergyfromorganicmatter(RabaeyandVerstraete2005).
1.
Substrateconversionefficiencyishigh.
2.
Theycanoperateefficientlyatambientandevenatlowtemperatures.
3.
Theydonotrequiregastreatment.
4.
Theydonotneedenergyinputforaerationwhenthecathodeispassivelyaerated(RabaeyandVerstraete2005).
5.
Theycanbeusedinlocationslackingelectricalinfrastructures.
9SustainabilityIssuesintheTwenty-FirstCenturyTheMFCtechnologyisevaluatedrelativetocurrentalternativesforenergygeneration.
Thoughitisrenewable,eco-friendly,sustainable,andusefulforwastewatertreatment,electricitygeneration,andbioremediationoftoxiccompoundsatthesametime,commer-cialexploitationisstillawaited.
Studiesoneconomicfeasibilityforlarge-scaleproductionareneeded.
1.
1.
3UtilizationofUnconventionalResourcesWiththerapiddepletionoffossilfuelreservesandtheever-increasingdemandofenergywiththeassociatedcostofenergy,itisanimperativenecessitytoexploreunconventionalrenewableenergyresourcesinthedevelopingcountriessuchasIndia.
Themajortypesofunconventionalrenewableenergysourcesincludesolar,wind,miniandmicrohydroen-ergy,geothermalenergy,waveenergy,tidalpowerplants,andoceanthermalenergyconversion;allofthesehavethepotentialtomeetfutureenergyneeds.
Amongtheseresources,solarandwindenergyareconsideredasthemostimportantinIndia.
Althoughsolarenergyproductionhassomedrawbackssuchaslow-energydensityperunitareaanduncertaintyofavailabilitywithextremeseasonalvariation,extensiveeffortsaremadearoundtheworldtodevelopthistechnologyasitisnonexhaustibleandcompletelypol-lutionfree.
SolarenergyseemsverypromisingforcountriessuchasIndia,Pakistan,andChina,asthesefallinthesolarzone(Enerco2015).
Presently,around13.
5%ofthetotalenergyproductioninIndiatakesplacethroughrenewableroutesandthesolarenergycontributesapproximately10%oftherenewableenergyproduction.
Itisalsogrowingveryfastwithahighlyambitioustargettoproduce100GW(100,000MW)by2022(ChaureyandKandpal2010).
Thereareprincipallytwomethodsofsolarenergyutilization:thethermalconversionofsolarenergyforheatingapplicationsandthephotovoltaic(PV)conversionofsolarenergyintoelectricpowergeneration.
Solarheatersorthermosyphonsolarcollectorsareusedtoraisethetemperatureofthefluid(waterorair)flowingthroughthecollector.
However,poorheattransfercoefficientofairflowingthroughthecollectorresultsinlowthermalefficiency(SainiandSaini2005).
Solarthermalsystemsalsorequireastorage.
InPVcon-version,directelectricityisproducedbymeansofsiliconwaferPVcellscalledsolarcells.
Itiseasytoinstallandseemsabetteroptionforpowergenerationifthelifecycleenergyuseandgreenhousegasemissionareconsidered,althoughlarge-scaleexploitationofPVmayleadtosomeundesirableenvironmentalimpactsintermsofmaterialavailabilityandwastedisposal.
Further,thecostandmaintenanceofsolarcellsarethegreatestproblems(Kelloggetal.
1998;Celik2003;Arunetal.
2007;Hrayshat2009;Singhetal.
2009;BekeleandPalm2010;ChaureyandKandpal2010).
CombustionoffossilfuelsemitshighamountofCO2intheatmosphere,andgloballyaround30GtCO2hasbeenemittedinayearinrecenttimes.
TheCO2concentrationintheatmospherehasincreasedfrom300ppminpreindustrialtimeto400ppminthetwenty-firstcenturyduetotheemissionsfromfossilfuelcombustion.
Further,itisexpectedthatinthenextfewdecadesalso,fossilfuelswillbethemainsourceofenergy;thus,itmaybedifficulttoreachthetargetofCO2emissionreductioneventhoughtheenergyefficiencyisimprovedandrenewableenergyisused.
Therefore,effortsaremadetocaptureCO2atitssourceofproductionaswellasitsutilizationfortheproductionofvalue-addedproducts.
VarioustechnologieshavebeendevelopedinrecentyearstocaptureCO2anditsstorageeffectivelyandeconomically,althoughthesearenotmaturedyetforpostcombustionpowerplants.
ThecapturedCO2canbeusedasasolventoraworkingfluid,astoragemediumforrenewableenergyaswellasafeedstockforvariouschemicals.
Itcanalsobeusedfor10SustainableUtilizationofNaturalResourcesthegrowthofmicroalgae.
Itisawell-knownfactthatCO2helpsthegrowthofautotrophicbiomassthroughphotosynthesis.
Thus,properlydesignedmethodfortheutilizationofCO2canbeappliedforthegrowthofmicroalgaeandotherbiomassforenergyfeedstock.
Differentenergystoragechemicals,suchassyngas,methane,ethylene,formicacid,meth-anol,anddimethylether,canbeproducedfromCO2.
VariouspolymericmaterialscanalsobeproducedbyinsertingCO2intoepoxides.
Approximately0.
3–0.
7Gt/yearofCO2maybeconsumedthroughvariouschemicalconversionpathways(Web7).
ConversionofCO2intoinorganicmineralsthroughelectrochemicalreactionsfollowedbythenecessarymineralizationreactionhasbeenastronginterestinrecentyearsasthesecanbeusedinbuildingmaterials.
Apreliminaryestimatesuggeststhat~1.
6Gt/yearCO2couldbecon-sumedif10%oftheworld'sbuildingmaterialswerereplacedbysuchasource.
Enhancedoilrecovery,whichcanincreaseoilrecoveryby10%–20%,isanotherimportantcommercialtechnologyforCO2anditsstorage.
Similarly,methanerecoveryfromunminedcoalseamscanalsobedoneusingCO2.
Water,whichisabundantlyavailableinnature,canbeasourceofenergy.
Inhydroelectricpowerplant,thekineticenergyofwaterisusedtoproduceelectricity;thewatermoleculesarealsousedfortheproductionofhydrogenthroughsteamreforming,gasification,andsoon.
Hydrogenisalsoproducedfromwaterthroughotherroutessuchaselectrolysisandphotocatalyticreactions.
Hydrogenproductionfromwaterthroughelectrolysisisanoldconcept;however,itsufferswithhighcapitalandmaintenancecostsoftheprocess(NREL2009).
Alargenumberofinvestigationsarebeingconductedtoreducethecostofthisprocesssothatwatercanbeusedmoreenvironmentallyfriendlyforenergy/hydrogenproduction.
Freshwaterisafiniteandvulnerableresourceandessentialtosustainlife,development,andtheenvironment.
Inabroadersense,waterislinkedupwithallkindsofresources,namely,energy,agriculture,finance,industry,tourism,environment,andfisheries.
Asys-tematicprocesscalledintegratedwaterresourcesmanagement(IWRM)isevolvedfortheallocationandmonitoringofwaterresourcesandtheiruseinthecontextofeconomic,social,andenvironmentalobjectivestoachievesustainabledevelopment.
IWRMconsidersinterdependencyamongallthedifferentusesoffinitewaterresources.
Thefinalstate-mentoftheministersattheInternationalConferenceonWaterandtheEnvironmentin1992(socalledtheDublinPrinciples)recommendedthedevelopmentofIWRMtopromoteessentialchangesinpracticesforimprovedwaterresourcesmanagement(Web8;Youngetal.
2008).
IWRMishenceaprocess,whichpromotesthecoordinateddevelopmentandmanagementofwater,land,andrelatedresourcesinordertomaximizeeconomicandsocialwelfareinanequitablemannerwithoutcompromisingthesustainabilityofvitalecosystems.
TheconceptofIWRMisawayforwardforthesustainabledevelopmentandmanagementoftheworld'slimitedwaterresources.
Differenttechniques,systems,ormodelssuchasgeographicinformationsystem,database,andintegratedwaterresourcesplanningmodelareusedforIWRM.
Eachmodeliscomplexinnatureandneedsasophisticatedsoftwaretosolve.
Forexample,time-serieswaterbalancemodelcompriseswaterdemandforecastingmodule,waterbalancemodule,waterqualitymodule,waterallocation/costingmodule,resourceman-agement/developmentoptionmodule,anddevelopmentscenarioevaluationmodule.
Similarly,watershedmodelingisanotherinteractivemodelingemployedforIWRMwhichconsistsofseveralcomponents.
Modelingthroughadvancedtechniquesisbeingappliedtoachievereliablewatersecurity,enhancedagriculturalyield,improvedliv-ingstandard,andsustainableland-useandcommunityconsensus.
However,becauseIWRMpracticesdependonthecontext,sometimesitbecomeschallengingtotranslatetheagreedprinciplesintoconcreteaction.
11SustainabilityIssuesintheTwenty-FirstCentury1.
1.
4OptimizationofResourceUtilizationOptimumuseofresourcesisanotherimportantapproachforsustainabledevelop-ment.
Itimprovestheeconomyofaprocessaswellaspreservesresourcesforfur-therapplication.
Intheprocessindustry,theoptimizationofwaterandenergyusageisaninterestingarea,whichhasasignificantimpactontheoveralleconomyoftheprocess.
Tomaintainsustainability,reductioninwaterconsumptionaswellaswaste-waterdischargeisessential.
Regenerationandrecyclingofwastewaterintheprocesscanreducefreshwaterrequirementwhilesatisfyingenvironmentalregulations.
Waterminimizationintheprocessindustry(bothfreshwaterandwastewater)canbemadethroughimprovedoperationsandequipmentaswellasbyeliminatingorreducingwater-intensivepractices.
Changesinheatingandcoolingmethodologies,preventionofleakagefromwater-carryingsystemsandwaterspilloveralsohelptoreducewaterconsumption.
Effectivewatermonitoringandmaintenanceprogramisthusnecessary.
Optimizationstrategyisimportantinachievingnotonlyfreshwaterminimizationandminimumwastewatergenerationbutalsoasubsequentreductioninthecostofopera-tion.
Integratedprocessdesignorprocesssynthesiscalledpinchtechnologyisoneofsuchapproachesbasedonrecycleandreusepractices.
Thebranch-and-boundmethodofoptimizationisalsofrequentlyemployedtodesigntheflowsheetinginchemicalprocessengineering.
Tosimultaneouslytargettheminimumfreshwaterrequirement,minimumwastewatergeneration,maximumwaterreuse,andminimumeffluenttreat-ment,anovellimitingcompositecurvealsocalledasasourcecompositecurvewaspro-posed(BandyopadhyayandCormos2008).
Toaddressthewatermanagementissuesoftheintegratedprocessinvolvingregenerationandrecyclethroughasingletreatmentunit(singlecomponent),graphicalrepresentationsaswellasanalyticalalgorithmscanbeused.
Inmulticontaminantproblems,theproposedmethodologycanbeappliedbasedonthelimitingcontaminant.
Effortsaremadetodevelopageneralapproachfordealingwithmulticomponentproblems.
Chemicalprocessindustriessuchassugarandpaper,distilleryaregenerallyenergyintensive.
Theenergycostsintheseindustriesareontheorderof25%–30%ofthetotalcostofmanufacture.
Therefore,energyconservationintheseindustriesisnecessary,whichcanbeachievedbyreducingenergylossesintheprocess.
Theissueofenergyconservationisinterrelatedwithsteamgeneration,processsteamdemand,conden-sateextractionandblow-off,incorporationofotherheateconomymeasuresintheplant,properchoiceofallequipmentwithconceptualoptimaldesignfeatures,designalternationofexistingequipmentandnetwork,andsoon.
Efficientevaporatorsystemdesignwithvaporrecompressionandbleedingofvaporsaswellassplittingofmul-tipleeffectevaporatorsetupsimprovetheenergyeconomy.
Improvedheatexchangernetworkcanalsoreduceenergyconsumption.
Thus,energyoptimizationpoliciesshouldbeemployedtoevaluatetheenergyconsumptioninaspecificindustry,mainlysteamusage,andthenvariousmodelingtechniquesshouldbeutilizedtooptimizetheenergyconsumption.
Statisticalmultiplelinearornonlinearregressionmodelshavebeenusedtostudytheeffectsofvariablesonthesteamconsumption(RaghavendraandArivalagan1993).
Pinchtechnologyhasbeenusedtooptimizetheheatexchangernetworktoreduceenergyconsumption.
Italsohelpstoachieveatargetedenergysce-nariowithimprovednetwork.
Likeprocessindustries,waterandenergyoptimizationcanbeachievedindomesticandcommercialcomplexesthroughimplementingtheconceptofgreenbuilding,whichreferstoastructure,andusingaprocessthatisenvironmentallyresponsibleandresource12SustainableUtilizationofNaturalResourcesefficientthroughoutabuilding'slifecycle.
Thewholeprocessconsistingofdesign,con-struction,operation,maintenance,renovation,anddemolitionrequiresthecooperationofthedesignteam,architects,engineers,andclients.
Themaingoalsofagreenbuildingarebettersustainabilityindex,sittingandstructuredesignefficiency,energyefficiency,waterefficiency,materialsefficiency,indoorenvironmentalquality,reducedwastes,andmaintenancecost.
Thebenefitsofgreenbuildingsareevaluatedbasedonenvironmental,economic,andhumanaspects,includingthermalcomfort,indoorenvironmentalquality,health,andproductivity(Haugeetal.
2011).
Someimportantgreenbuildingassessmenttoolsareasfollows:LeadershipinEnergyandEnvironmentalDesign,BuildingResearchEstablishmentEnvironmentalAssessmentMethod,GreenBuildingCouncilofAustralia,andGreenStar(ZuoandZhao2014).
1.
1.
5SustainabilityAssessmentWithincreasingawarenessonsustainabilityissueinthetwenty-firstcentury,extensiveresearchisbeingconductedaroundtheworldtointroducenewtechnologies/products,withlessenvironmentalimpact,higheconomicbenefit,andacceptablesocialimpactassustainabilityisrelatedwiththesethreemajorfactors.
Thus,toascertainthesustainabledevelopment,itisimperativetoquantifythesustainabilityaspectofaprocess/productbeforetakinganydecisiononitbythepolicymaker.
Manyindicatorshavebeendevel-opedforthisquantificationpurpose,andsomeframeworkshavebeendevisedbymanyorganizations.
Forexample,sustainabilitymetricscoveringeconomic,environment,andsocialdimensionsandinvolvingadifferentsetofindicatorshavebeenformulatedbytheInstitutionofChemicalEngineers(IChemE)(Labuschagneetal.
2005).
Themet-ricsasshowninFigure1.
3wasinitiatedtoassessthesustainabilityperformanceoftheprocessindustry.
Toassesstheenvironmentalimpactsassociatedwithallthestagesofaproduct/process,thelifecycleassessment(LCA)isused.
TheroleofLCAiscrucialindeterminingthevaluesofvariousmetricsandemissionsalongtheentirechainofaproduct.
Thesevaluesarefurtherusedtoovercomesustainabilitychallengesthroughcreativethinking,andthewholeprocessiscalledsustainabilitylifecycleassessment(SLCA).
TheSLCAisnothingIChemEsustainabilitymetricsEnvironmentalindicatorsEconomicindicatorsResourcesusageAdditionalitemsAdditionalitemsAdditionalitemsProt,value,andtaxWorkplaceInvestmentsSocietyEmissions,waste,andeuentsSocialindicatorsFIGURE1.
3TheIChemEmetricsforsustainability.
(FromSingh,R.
K.
etal.
,Ecol.
Indic.
,15,281–299,2012.
Withpermission.
)13SustainabilityIssuesintheTwenty-FirstCenturybutanassessmenttoolandanaccompanyingprocesstogetastrategicoverviewofthefullscopeofsocialandecologicalsustainabilityattheproductlevel.
Aneffectivelifecycleapproachcanidentifywherepotentialtrade-offsmayoccuracrossdifferentmediaandacrossthelifecyclestages(Favaetal.
1993).
Consideringthescarcityanddegradedqualityoffossilfuels,biofuelsareattractinghighattentionasarenewablefuel.
Extensiveresearchisbeingcarriedoutaroundtheworldtoimprovethequalityandyieldofbiofuelsfromdifferentbiomassfeedstocks.
Althoughapparentlyitseemsthatbiofuelsaremoreattractivethanfossilfuels,thestrat-egiesforsustainabilityhavetobethoroughlyassessedatseverallevelssuchasrelevanceofbiofuelswithrespecttosustainabledevelopment,sustainabletransport,mainsustain-abletransportstrategies,technologystrategies,alternativefuelstrategy,biofuelstrategyfromthefirst-tothefourth-generationbiofuels,sustainabilityframeworks,standards,criteriaandcertification,theoreticalperspectives,andmethodologyinrespectoftrans-fereffects,industrialecology,andlifecycleassessmenttoassesstheirsuitabilityastransportfuels(HoldenandGilpin2013).
Tobemorespecific,toassessthesustainabilityofbiofuelsforroadtransport,oneshouldconsiderthekeycharacteristicsofbiofuelsaswellassomeessentialcriteriaasstatedbelowbeforeadoptingassessmentpolicies(Curran2013):1.
Thefourmaindimensionsforsustainabledevelopmentmustbesatisfiedifabio-fuelisused.
2.
Gainsfrombiofuelstrategiesmustbecompetitivetogainsfromothersustainabletransportstrategies,suchasreducingtransportvolumeandalteringtransportpatterns.
3.
Gainsfromusingonegenerationofbiofuels(e.
g.
,firstgeneration)mustbecom-paredfavorablytogainsfromusingothergenerationsofbiofuels(e.
g.
,secondthroughfourthgenerations).
4.
Benefitsfromusingbiofueledvehiclesmustbecompetitivewiththosefromusingotheralternative-fueledvehicles.
Itisnoteworthytomentionthatnosinglestrategysuchasincreasingtheuseofbiofu-els,reducingtrafficvolumes,improvingpublictransport,increasingtheuseofplug-inhybrids,andlong-range-batteryelectricvehiclescanachievesustainabletransport;afullportfolioofstrategiesisrequiredinthisregard(Wangetal.
2009).
Further,becausethepotentialfeedstocksforbiofuelsarelargeinnumberandwithdif-ferentcharacteristics,itischallengingforthecurrentLCAapproachtoapplyadistributeddecision-makingmethodologyduetothevastscopeofinformationneededtoaddresssomanyalternatives(HalogandBortsie-Aryee2013).
Thus,multicriteriadecisionanalysis,suchastheanalytichierarchyprocess,isusedtodeterminethemostcriticalcriteria,vari-ables,andindicatorstostakeholders,whichcanrepresenttheirconflictinginterestswithrespecttoeconomic,environmental,technological,andsocialdimensionsofsystemssus-tainability(HoldenandGilpin2013).
Itisforecastedthatbiofuelswillcontribute6%ofthetotalfueluseby2030(Hannonetal.
2010),andalgalbiomassisemergingasapromisingfeedstockforbiofuelproductionduetoitshighgrowthrate;however,anumberofhurdlesshouldbeovercomebythistech-nologytobecompetitiveinthefuelmarket(Hannonetal.
2010;SanderandMurthy2010).
Someimportantchallengesareidentificationofsuitablestrainsandtheirimprovementintermsofbothoilproductivityandcropprotection,allocationanduseofnutrientand14SustainableUtilizationofNaturalResourcesresourceaswellasproductionofco-productstoimprovetheeconomicsoftheentiresys-tem.
InvestigationisbeingconductedaroundtheworldontheLCAforalgaebiomassutilizationwithanaimtoprovidebaselineinformationforthealgaebiodieselprocess(SanderandMurthy2010).
Likeroadtransportbiofuelssuchasbioethanolandbiodiesel,thebiomass-derivedjetfuel(biojetfuel)isalsobecomingakeyrenewablefuelintheaviationindustry'sstrategy.
Thebiojetfuelhasthepotentialtoreduceoperatingcosts,environmentalimpacts,andgreenhousegasemissions.
Additionally,itmustmeettheAmericanSocietyforTestingandMaterials(ASTM)Internationalspecificationsandpotentiallybea100%drop-inreplace-mentforcurrentpetroleumjetfuel.
Suchfuelscanbeproducedthroughalcohol-to-jet,oil-to-jet,syngas-to-jet,andsugar-to-jetpathways.
Themainchallengesforeachtechnologypathwayincludeconceptualprocessdesign,processeconomics,andLCA.
1.
1.
6ConclusionInthischapter,thesustainabilityissuesinthetwenty-firstcenturyalongwithvariousapproachesforachievingsustainabilityanditsassessmenthavebeenpresented.
Thehis-toricalevolutionoftheterm"sustainabledevelopment"inrelationtosustainabilityhasbeenbrieflydiscussed.
Attentionhasalsobeenpaidtotherelationamongenvironmen-talconservation,economicdevelopment,andpopulationgrowth,whichareinfactnotconflictingandcanreinforceeachotherwiththeinteractionoffourterms—economics,ecology,politics,andculture.
Theexistingtechnology,researchtrend,improvementinprocessing,andfutureprospectsregardingsustainabilitythroughutilizationofconven-tionalresourcesadoptingcleanerrouteshavebeenaddressed.
Thespecificexamplesofcleancoaltechnologies,downstreamprocessingofheavierpetroleumfractions,andhydro-genfromnaturalgasandliquidfuelfromoilsandsarecited.
Sustainabilitythroughutili-zationofrenewablebiologicalresourcessuchasethanolandbutanolfromlignocellulosicbiomass,oilfromalgae,utilizationofbiofertilizerandbiopesticides,exploringlifesavingdrugsfrommarinesourcesaswellasfromHimalayanherbs,andbioenergyproductionthroughMFCshavebeendiscussed.
Acriticalanalysisonsustainabilitythroughutiliza-tionofunconventionalresources,specifically,utilizationofsolarenergyproductionandPVcells,CO2forfuelsandchemicals,hydrogenfromwater,andintegratedwatermanagement,hasbeenincluded.
Sustainabilitythroughoptimizationofresourceutilizationsuchaswaterandenergyoptimizationinprocessindustriesaswellasgreenbuildingshasbeenassessed.
Finally,lifecycleanalysisasthesustainabilityassessment,multicriteriadecisiontoolforroadtransportbiofuels,algalbiofuelwithspecialemphasisonresidualbiomassprocessing,andsustainableproductionandutilizationtechnologiesofbiojetfuelhavebeenhighlighted.
ReferencesAhring,B.
K.
,andN.
Langvad.
2008.
Sustainablelowcostproductionoflignocellulosicbioethanol-"Thecarbonslaughterhouse.
"AprocessconceptdevelopedbyBioGasol.
InternationalSugarJournal10(1311):184–190.
Ancheyta,J.
,andM.
S.
Rana.
2004.
Futuretechnologyinheavyoilprocessing.
Encyclopediaoflifesupportsystems(EOLSS).
http://www.
eolss.
net/sample-chapters/c08/e6-185-22.
pdf,AccessedMarch29,2016.
15SustainabilityIssuesintheTwenty-FirstCenturyArun,P.
,R.
Banerjee,andS.
Bandyopadhyay.
2007.
Sizingcurvefordesignofisolatedpowersys-tems.
EnergyforSustainableDevelopment11(4):21–28.
Bandyopadhyay,S.
,andC.
C.
Cormos.
2008.
Watermanagementinprocessindustriesincorporatingregenerationandrecyclethroughasingletreatmentunit.
Industrial&EngineeringChemistryResearch47(4):1111–1119.
Banerji,G.
,andS.
Basu.
2011.
SustainablemanagementoftheherbalwealthoftheHimalayas.
https://www.
pragya.
org/doc/Pragya_Herbal-Wealth.
pdf,AccessedMarch29,2016.
Barbier,E.
B.
1987.
Theconceptofsustainableeconomicdevelopment.
EnvironmentalConservation14(2):101–110.
Bekele,G.
,andB.
Palm.
2010.
Feasibilitystudyforastandalonesolar–wind-basedhybridenergysystemforapplicationinEthiopia.
AppliedEnergy87(2):487–495.
Bhadury,P.
,B.
T.
Mohammad,andP.
C.
Wright.
2006.
Thecurrentstatusofnaturalproductsfrommarinefungiandtheirpotentialasanti-infectiveagents.
JournalofIndustrialMicrobiologyandBiotechnology33(5):325–337.
Biernat,K.
,A.
Malinowski,andM.
Gnat.
2013.
ThePossibilityofFutureBiofuelsProductionUsingWasteCarbonDioxideandSolarEnergy,Biofuels-Economy,EnvironmentandSustainability,Prof.
ZhenFang(Ed.
),InTech.
Bruckner,A.
W.
2002.
Life-savingproductsfromcoralreefs.
IssuesinScienceandTechnology18(3):39.
https://coast.
noaa.
gov/funding/_pdf/NOAA-NOS-OCM-2016-2004570-ffo-posted-09.
09.
2015.
pdf,AccessedMarch28,2016.
Brundtland,G.
H.
1987.
Reportoftheworldcommissiononenvironmentanddevelopment:"Ourcommonfuture.
"UnitedNations.
http://www.
un-documents.
net/our-common-future.
pdf.
Celik,A.
N.
2003.
Techno-economicanalysisofautonomousPV-windhybridenergysystemsusingdifferentsizingmethods.
EnergyConversionandManagement44(12):1951–1968.
Chaurey,A.
,andT.
C.
Kandpal.
2010.
Atechno-economiccomparisonofruralelectrificationbasedonsolarhomesystemsandPVmicrogrids.
EnergyPolicy38(6):3118–3129.
Clixoo.
2016.
Futurepredictionsofcellulosicethanolproductioncosts.
http://www.
clixoo.
com/,AccessedMarch28,2016.
Curran,M.
2013.
Areviewoflife-cyclebasedtoolsusedtoassesstheenvironmentalsustainabil-ityofbiofuelsintheUnitedStates.
U.
S.
EnvironmentalProtectionAgency,Washington,DC,EPA/600/R/12/709.
https://cfpub.
epa.
gov/si/si_public_record_report.
cfmdirEntryId=262400,AccessedMay15,2016.
Das,S.
,andN.
Mangwani.
2010.
Recentdevelopmentsinmicrobialfuelcells:Areview.
JournalofScientificandIndustrialResearch69:727–731.
Durre,P.
2007.
Biobutanol:Anattractivebiofuel.
BiotechnologyJournal2(12):1525–1534.
Ehnert,I.
2009.
SustainableHumanResourceManagement.
AConceptualandExploratoryAnalysisfromaParadoxPerspective.
Physica-Verlag,Berlin,Germany,35–36.
Enerco.
2015.
RenewableenergyserveinIndia.
http://www.
econserve.
in/solar_energy_latest_news,AccessedMarch28,2016.
Fava,J.
A.
,F.
Consoli,R.
Denison,K.
Dickson,T.
Mohin,andB.
Vigon.
1993.
Aconceptualframeworkforlife-cycleimpactassessment,workshopreport,SocietyofEnvironmentalToxicologyandChemistry(SETAC),SETACFoundationforEnvironmentalEducation,Pensacola,FL.
Finn,D.
2009.
Ouruncertainfuture:CangoodplanningcreatesustainablecommunitiesPh.
D.
Thesis,UniversityofIllinois,Urbana-Champaign,IL.
https://books.
google.
co.
in/booksid=pS-kdAIXn8EC&printsec=frontcover&dq=Our+Uncertain+Future:+Can+Good+Planning+Create+Sustainable+Communities&hl=en&sa=X&ved=0ahUKEwj1tfXs393MAhXMto8KHZ0QDNMQ6AEIKTAA#v=onepage&q=Our%20Uncertain%20Future%3A%20Can%20Good%20Planning%20Create%20Sustainable%20Communities&f=false,AccessedMay15,2016.
Goswami,A.
,P.
K.
Barooah,andJ.
S.
Sandhu.
2002.
Prospectofherbaldrugsintheageofglobalization-Indianscenario.
JournalofScientificandIndustrialResearch61(6):423–431.
Grober,U.
2007.
Deeproots:Aconceptualhistoryofsustainabledevelopment(Nachhaltigkeit),WZBDiscussionpaper.
http://econstor.
eu/bitstream/10419/50254/1/535039824.
pdf,AccessedMay15,2016.
16SustainableUtilizationofNaturalResourcesHalog,A.
,andN.
A.
Bortsie-Aryee.
2013.
TheNeedforIntegratedLifeCycleSustainabilityAnalysisofBiofuelSupplyChains.
INTECHOpenAccessPublisher,Rijeka,Croatia.
Hannon,M.
,J.
Gimpel,M.
Tran,B.
Rasala,andS.
Mayfield.
2010.
Biofuelsfromalgae:Challengesandpotential.
Biofuels1(5):763–784.
Hauge,.
L.
,J.
Thomsen,andT.
Berker.
2011.
Userevaluationsofenergyefficientbuildings:Literaturereviewandfurtherresearch.
AdvancesinBuildingEnergyResearch5(1):109–127.
Holden,E.
,andG.
Gilpin.
2013.
Biofuelsandsustainabletransport:Aconceptualdiscussion.
Sustainability5(7):3129–3149.
Hrayshat,E.
S.
2009.
Techno-economicanalysisofautonomoushybridphotovoltaic-diesel-batterysystem.
EnergyforSustainableDevelopment13(3):143–150.
Huang,H.
,H.
Liu,andY.
R.
Gan.
2010.
Geneticmodificationofcriticalenzymesandinvolvedgenesinbutanolbiosynthesisfrombiomass.
BiotechnologyAdvances28(5):651–657.
IUCN.
1980.
Worldconservationstrategy.
https://portals.
iucn.
org/library/efiles/edocs/WCS-004.
pdf,AccessedMarch28,2016.
Jang,Y.
S.
,A.
Malaviya,C.
Cho,J.
Lee,andS.
Y.
Lee.
2012.
Butanolproductionfromrenewablebio-massbyclostridia.
BioresourceTechnology123:653–663.
Jha,R.
K.
,andX.
Zi-rong.
2004.
Biomedicalcompoundsfrommarineorganisms.
MarineDrugs2(3):123–146.
Kellogg,W.
D.
,M.
H.
Nehrir,G.
Venkataramanan,andV.
Gerez.
1998.
Generationunitsizingandcostanalysisforstand-alonewind,photovoltaic,andhybridwind/PVsystems.
IEEETransactionsonEnergyConversion13(1):70–75.
Labuschagne,C.
,A.
C.
Brent,andR.
P.
VanErck.
2005.
Assessingthesustainabilityperformancesofindustries.
JournalofCleanerProduction13(4):373–385.
Magee,L.
,A.
Scerri,P.
James,J.
A.
Thom,L.
Padgham,S.
Hickmott,H.
Deng,andF.
Cahill.
2013.
Reframingsocialsustainabilityreporting:Towardsanengagedapproach.
Environment,DevelopmentandSustainability15(1):225–243.
Meadows,D.
,J.
Randers,andD.
Meadows.
2004.
LimitstoGrowth:The30-YearUpdate.
ChelseaGreenPublishingCompany,WhiteRiverJunction,VT.
http://www.
unice.
fr/sg/resources/docs/Meadows-limits_summary.
pdf.
MedicinesByDesign.
2011.
DrugsFromNature,ThenandNow.
https://publications.
nigms.
nih.
gov/medbydesign/chapter3.
html,AccessedMarch12,2016.
Meech,J.
A.
OilsandsminingandprocessingMINE292-Lecture22.
http://slideplayer.
com/slide/3727964/,AccessedMay15,2016.
Muíková,Z.
,P.
imáek,M.
Pospíil,andG.
ebor.
2014.
Density,viscosityandwaterphasestabilityof1-butanol-gasolineblends.
JournalofFuels1–7.
doi:10.
1155/2014/459287.
NREL.
2009.
Current(2009)state-of-the-arthydrogenproductioncostestimateusingwaterelectrolysis.
https://www.
hydrogen.
energy.
gov/pdfs/46676.
pdf,AccessedMay15,2016.
Qureshi,N.
,andI.
S.
Maddox.
1995.
Continuousproductionofacetone-butanol-ethanolusingimmo-bilizedcellsofclostridiumacetobutylicumandintegrationwithproductremovalbyliquid-liquidextraction.
JournalofFermentationandBioengineering80(2):185–189.
Rabaey,K.
,andW.
Verstraete.
2005.
Microbialfuelcells:Novelbiotechnologyforenergygeneration.
TRENDSinBiotechnology23(6):291–298.
Raghavendra,B.
G.
,andA.
Arivalagan.
1993.
Applicationsofoperationsresearchtechniquesinpaperindustry.
Areviewofthestateoftheart.
IPPTA5:67.
http://ipptaelibrary.
org/DownloadPage.
aspxid=1126,AccessedMarch29,2016.
Ray,A.
K.
,S.
P.
Yadav,andP.
Sharma.
2013.
Economicproductionofbio-ethanolfromvariousindig-enoussourcesinIndia-Areview.
ProceedingsofAIChE2013AnnualMeeting,SanFrancisco,CA,betweenNovember3and8,2013,Paper(181c).
Saini,S.
K.
,andR.
P.
Saini.
2005.
Solarairheaterswithartificialroughnedabsorberplates.
ProceedingAllIndiaSeminaronEngineeringTrendsinEnergyConservationandManagement,TheInstituteofEngineers,UniversityofRoorkee,Roorkee,India,pp.
267–282.
Samant,S.
S.
,U.
Dhar,andL.
M.
S.
Palni.
1998.
MedicinalPlantsofIndianHimalaya:Diversity,DistributionPotentialValue.
GyanodayaPrakashan,Nainital,India.
17SustainabilityIssuesintheTwenty-FirstCenturySander,K.
,andG.
S.
Murthy.
2010.
Lifecycleanalysisofalgaebiodiesel.
TheInternationalJournalofLifeCycleAssessment15(7):704–714.
Sharma,A.
,C.
Shanker,L.
K.
Tyagi,M.
Singh,andC.
V.
Rao.
2008.
Herbalmedicineformarketpoten-tialinIndia:Anoverview.
AcademicJournalofPlantSciences1(2):26–36.
Singh,R.
K.
,H.
R.
Murty,S.
K.
Gupta,andA.
K.
Dikshit.
2012.
Anoverviewofsustainabilityassess-mentmethodologies.
EcologicalIndicators15(1):281–299.
Singh,S.
N.
,B.
Singh,andJ.
Ostergaard.
2009.
RenewableenergygenerationinIndia:Presentscenarioandfutureprospects.
InPowerandEnergySocietyGeneralMeeting.
https://www.
researchgate.
net/publication/224598308_Renewable_energy_generation_in_India_Present_scenario_and_future_prospects,AccessedMay15,2016.
Smith,C.
,andG.
Rees.
1998.
EconomicDevelopment,2nded.
Macmillan,Basingstoke.
Speight,J.
G.
2013.
HeavyandExtra-heavyOilUpgradingTechnologies.
GulfProfessionalPublishing,UK.
Stivers,R.
L.
1976.
Thesustainablesociety:Ethicsandeconomicgrowth.
WestminsterPress,Philadelphia,PA,240.
UNCSD.
2012.
Conferenceonsustainabledevelopment2012.
https://sustainabledevelopment.
un.
org/content/documents/Agenda21.
pdf,AccessedMarch28,2016.
UNEP.
2012.
YearBook2012.
http://www.
unep.
org/yearbook/2012/pdfs/UYB_2012_FULLREPORT.
pdf,AccessedMarch28,2016.
UNWC.
1982.
UnitedNationsGeneralAssembly.
https://www.
un.
org/documents/ga/res/37/a37r007.
htm,AccessedMarch28,2016.
Vignesh,S.
,A.
Raja,andR.
A.
James.
2011.
Marinedrugs:Implicationandfuturestudies.
InternationalJournalofPharmacology7:22–30.
http://scialert.
net/fulltext/doi=ijp.
2011.
22.
30&org=11,AccessedMarch28,2016.
Wang,J.
J.
,Y.
Y.
Jing,C.
F.
Zhang,andJ.
H.
Zhao.
2009.
Reviewonmulti-criteriadecisionanalysisaidinsustainableenergydecision-making.
RenewableandSustainableEnergy:Reviews13(9):2263–2278.
Young,G.
,B.
Shah,andF.
Kimaite.
2008.
Statusreportonintegratedwaterresourcesmanagementandwaterefficiencyplans.
UNWaterReport.
http://www.
unwater.
org/downloads/UNW_Status_Report_IWRM.
pdf,AccessedMarch28,2016.
Zuo,J.
,andZ.
Y.
Zhao.
2014.
Greenbuildingresearch–currentstatusandfutureagenda:Areview.
RenewableandSustainableEnergyReviews30:271–281.
https://en.
wikipedia.
org/wiki/Sustainability,AccessedMarch28,2016.
https://en.
wikipedia.
org/wiki/National_Energy_Technology_Laboratory,AccessedMarch28,2016.
http://insideclimatenews.
org/carbon-copy/18052015/coals-future-facing-three-hurdles-and-steady-decline-projections-epa-clean-power,AccessedMarch28,2016.
http://www.
ucsusa.
org/clean_energy/our-energy-choices/coal-and-other-fossil-fuels/uses-of-natural-gas.
html#.
Vvpoe2RsiSB,AccessedMay15,2016.
http://www.
energy.
alberta.
ca/ourbusiness/oilsands.
asp,AccessedMarch28,2016.
https://issuu.
com/dnv.
com/docs/dnv-position_paper_co2_utilization,AccessedMay15,2016.
http://www.
sswm.
info/es/category/concept/iwrm,AccessedMay15,2016.
商家介绍:创梦云是来自国内的主机销售商,成立于2018年4月30日,创梦云前期主要从事免备案虚拟主机产品销售,现在将提供5元挂机宝、特惠挂机宝、香港云服务器、美国云服务器、低价挂机宝等产品销售。主打高性价比高稳定性挂机宝、香港云服务器、美国云服务器、香港虚拟主机、美国虚拟主机。官方网站:http://cmy0.vnetdns.com本次促销产品:地区CPU内存硬盘带宽价格购买地址香港特价云服务器1...
飞讯云官网“飞讯云”是湖北飞讯网络有限公司旗下的云计算服务品牌,专注为个人开发者用户、中小型、大型企业用户提供一站式核心网络云端部署服务,促使用户云端部署化简为零,轻松快捷运用云计算。飞讯云是国内为数不多具有ISP/IDC双资质的专业云计算服务商,同时持有系统软件著作权证书、CNNIC地址分配联盟成员证书,通过了ISO27001信息安全管理体系国际认证、ISO9001质量保证体系国际认证。 《中华...
pacificrack在最新的7月促销里面增加了2个更加便宜的,一个月付1.5美元,一个年付12美元,带宽都是1Gbps。整个系列都是PR-M,也就是魔方的后台管理。2G内存起步的支持Windows 7、10、Server 2003\2008\2012\2016\2019以及常规版本的Linux!官方网站:https://pacificrack.com支持PayPal、支付宝等方式付款7月秒杀VP...
www.mfcclub.net为你推荐
乐划锁屏乐视手机屏幕锁怎么自己就变了网易网盘关闭入口网易网盘怎么用????微信回应封杀钉钉微信违规操作被封了,access数据库ACCESS数据库和SQL有什么区别?甲骨文不满赔偿劳动法员工工作不满一个月辞退赔偿标准原代码什么是原代码www.522av.com我的IE浏览器一打开就是这个网站http://www.522dh.com/?mu怎么改成百度啊 怎么用注册表改啊51sese.com谁有免费看电影的网站?www.7788dy.comwww.tom365.com这个免费的电影网站有毒吗?javbibi日文里的bibi是什么意思
美国加州vps openv blackfriday kdata softbank官网 轻博客 香港新世界电讯 NetSpeeder 2017年万圣节 godaddy域名证书 刀片服务器的优势 工作站服务器 老左来了 135邮箱 什么是服务器托管 爱奇艺vip免费试用7天 免费高速空间 百度云1t 国外免费asp空间 微软服务器操作系统 更多