AppendixABasicTheoreticalToolsThischaptercollectsbasicnotionsoffunctionalanalysisandnumericalanalysis,togetherwithtoolsthatareextensivelyusedthroughoutthebook.
Foramorein-depthreading,werefertoe.
g.
[265,36,166,66,1,236].
A.
1LinearMaps,FunctionalsandBilinearFormsLetVandWbetwonormedvectorspacesoverR.
Amap(oroperator)L:V→Wissaidtobelinearifforanytwovectorsx,y∈Vandanyscalarα∈RL(x+y)=L(x)+L(y),L(αx)=αL(x),thatis,ifitpreservesadditionandmultiplicationbyascalar.
Alineartransformationalwaysmapslinearsubspacesontolinearsubspaces–theselatterpossiblyoflowerdimension.
AlinearoperatorisboundedifthereexistsaconstantM>0suchthatLvW≤MvVv∈V.
Alinearboundedoperatorisalsocontinuous.
ThevectorspaceL(V,W)formedbyalllinearcontinuousoperatorsfromVintoWcanbeendowedwiththenormLL(V,W)=supv∈V\{0}LvWvV.
(A.
1)Letusintroducearelevantclassofmaps,theso-calledafnemaps,whichareextensivelyexploitedthroughoutthebook.
Anafnemap(orafnetransformation)L:V→Wisafunctionoftheformv→Mv+b,whereM:V→WisalinearmaponVandbisanelementofW.
Unlikea(purely)linearmap,anafnemapdoesnotmapthezeropointinitself.
Everylineartrans-formationisafne,butnoteveryafnetransformationislinear.
SpringerInternationalPublishingSwitzerland2016A.
Quarteroni,A.
Manzoni,F.
Negri,ReducedBasisMethodsforPartialDifferentialEqua-tions,UNITEXT–LaMatematicaperil3+292,DOI10.
1007/978-3-319-15431-2_A266AppendixA:BasicTheoreticalToolsAnafnemappreservespreservescollinearity(thatis,allpointslyingonalineini-tiallystilllieonalineaftertransformation)andratiosofdistances.
Moreover,setsofparallellinesremainparallelunderanafnetransformation.
IntheEuclideanspaceV=Rd,examplesofafnetransformationsincludetranslations,rotations,scal-ings,homotheties,similaritytransformations,reections,andtheircompositions.
Wepointoutthatalthoughanafnetransformationpreservesproportionsonlines,itdoesnotpreserveanglesorlengths.
Alltrianglesareafne,thatis,anytrianglecanbetransformedintoanyotherbyanafnetransformation.
Letusdenetwoimportant(linear)subspacesofVandW,respectively.
GivenalinearmapL:V→W,wedenethekernelandtheimageorrangeofLbyKer(L)={x∈V:L(x)=0},Range(L)={w∈W:w=L(x),x∈V}.
ThedimensionsofthesetwosubspacesaretherankandthenullityofL,respectively,dim(Range(L))=rank(L),dim(Ker(L))=null(L).
Thesetwosubspacesarerelatedthroughtheso-calledrank-nullitytheoremdim(Ker(L))+dim(Range(L))=null(L)+rank(L)=dim(V).
RemarkA.
1.
Matricesyieldexamplesoflinearmapsovernite-dimensionalvectorspaces:ifA∈Rm*nthenL(x)=Ax,x∈Rn,describesalinearmapbetweenRnandRm.
Inthiscase,therankandnullityofLcoincidewiththewell-knownnotionsofrankandnullityofthematrixA,respectively.
Aremarkablepropertyexploitedthroughoutthebookisthefollowingone.
Letusdenoteby{j}nj=1abasisforthespaceV,wheren=dim(V).
EachelementofVisuniquelydeterminedbyalinearcombinationofthebasisfunctions,undertheformc11+.
.
.
+cnn,withc1,.
.
.
,cn∈R.
Thus,ifL:V→Wisalinearmap,L(c11+.
.
.
+cnn)=c1L(1)+.
.
.
+cnL(n),thatis,themapLisentirelydeterminedbythevectorsL(1),.
.
.
,L(n).
Bydenoting{ζi}mi=1abasisofW,wecanrepresenteachelementL(j)∈WasL(j)=a1jζ1+.
.
.
+amjζm.
Inthisway,themapisentirelydeterminedbythematrixA∈Rm*n,whereAij=aij,i=1,.
.
.
,m,j=1,.
.
.
,n,sothatforanyv∈VwecanevaluateitsimagethroughLasL(v)=∑nj=1aijvj.
InthespecialcaseW=R,linearmapsarecalledfunctionals.
DenitionA.
1.
GivenavectorspaceV,wecallfunctionalonVanoperatorF:V→RassociatingarealnumbertoeachelementofV.
AfunctionalFisoftendenotedbymeansofthedualityF(v)=F,v.
Afunc-tionalissaidtobelinearifitislinearwithrespecttoitsargument,thatisifF(λv+μw)=λF(v)+μF(w)λ,μ∈R,v,w∈V.
A.
1LinearMaps,FunctionalsandBilinearForms267AlinearfunctionalisboundedifthereisaconstantC>0suchthat|F(v)|≤CvVv∈V.
(A.
2)AlinearandboundedfunctionalonaBanachspace(i.
e.
anormedandcompletespace)isalsocontinuous.
WecandenethespaceV,calleddualofV,asthesetoflinearandboundedfunctionalsonV,thatisV={F:V→RsuchthatFislinearandbounded}andweequipitwiththenorm·VdenedasFV=supv∈V\{0}|F(v)|vV.
(A.
3)TheconstantCappearingin(A.
2)isgreaterorequaltoFV.
Alinearoperatorbetweentwospacesforwhichtheinversealsoexistsiscalledisomorphism,accordingtothefollowingDenitionA.
2.
Alinearandbounded(hencecontinuous)operatorTbetweentwofunctionalspacesVandWisanisomorphismifitmapsbijectivelytheelementsofthespacesVandWanditsinverseT1exists.
IfalsoVWholds,suchisomor-phismiscalledcanonical.
Wefurtherintroducethedenitionofanotherfundamentalingredientofabstractvariationalproblems,bilinearforms.
DenitionA.
3.
GivenanormedfunctionalspaceVwecallformanapplicationwhichassociatestoeachpairofelementsofVarealnumbera:V*V→R.
Aformiscalled:1.
bilinearifitislinearwithrespecttobothitsarguments,i.
e.
ifa(λu+μw,v)=λa(u,v)+μa(w,v)λ,μ∈R,u,v,w∈V,a(u,λw+μv)=λa(u,v)+μa(u,w)λ,μ∈R,u,v,w∈V;2.
continuousifthereexistsaconstantM>0suchthat|a(u,v)|≤MuVvVu,v∈V;(A.
4)3.
symmetricifa(u,v)=a(v,u)u,v∈V;(A.
5)4.
positive(orpositivedenite)ifa(v,v)>0v∈V;(A.
6)5.
coerciveifthereexistsaconstantα>0suchthata(v,v)≥αv2Vv∈V.
(A.
7)268AppendixA:BasicTheoreticalToolsA.
2HilbertSpacesHilbertspacesrepresenttheidealsettingtoformulatethemostcommonboundaryvalueproblems.
Tothisaim,letusgivethefollowingDenitionA.
4.
Amap(·,·):V*V→RisaninnerorscalarproductinVifitsatisesthefollowingproperties:forallx,y,z∈V,α,β∈R,1.
positivity:(x,x)≥0and(x,x)=0ifandonlyifx=0;2.
symmetry:(x,y)=(y,x);3.
bilinearity:(αx+βz,y)=α(x,y)+β(z,y).
AnyscalarproductyieldsaninducednormoverV,denedasx=(x,x)x∈V.
(A.
8)Aninnerproductspace–thatis,avectorspacewithaninnerproduct–isalsoanormedvectorspace.
Moreover,thefollowingCauchy-Schwarzinequalityholds:|(x,y)|≤xyx,y∈V;(A.
9)equalityholdsin(A.
9)ifandonlyify=αx,forsomeα∈R.
IfVisa(linear)spaceendowedwithaninnerproduct–thatis,aninnerproductspace–wesaythatVisaHilbertspaceifitiscompletewithrespecttotheinducednorm(A.
8).
Wewilloftendenotethecorrespondingscalarproductby(·,·)V.
Twovectorsx,y∈VaresaidtobeorthogonalwithrespecttotheV-scalarproductandwritex⊥yif(x,y)V=0.
AvectorxissaidtobeorthogonaltoasetW(writtenx⊥W)ifx⊥wforeachw∈W.
Wenowconsiderthefollowingproblem:givenavectorx∈VandaclosedsubspaceWinV,nd(ifitexists)thevectorw∈Wclosesttox,inthesensethatitminimizesxwV.
Thefollowingtheoremgivesananswertothisproblem,aswellasausefulchar-acterizationofitssolutionintermsoforthogonalityproperties.
TheoremA.
1(Orthogonalprojections).
LetVbeaHilbertspaceandWaclosedsubspaceofV.
Correspondingtoanyvectorx∈V,thereisauniquevectorw∈W(calledtheprojectionofxontoW)suchthatxwV=infw∈WxwV.
Furthermore,anecessaryandsufcientconditionforw∈Wtobetheuniquemin-imizingvectoristhatxwbeorthogonaltoW,i.
e.
(xw,w)V=0w∈W.
TheorthogonalcomplementofasubspaceWofaHilbertvectorspaceV,denotedbyW⊥,isthesetofofallvectorsinVthatareorthogonaltoeveryvectorinWW⊥={v∈V|(v,w)V=0w∈W}.
(A.
10)A.
3AdjointOperators269TheorthogonalcomplementofasubspaceWofHisasubspaceofV,too,anditisalwaysclosed(inthetopologyinducedbythemetricdenedoverV).
IfWisaclosed(linear)subspaceofV,thenWW⊥=V,thatis,eachelementv∈Vcanbeuniquelyexpressedasasumofanelementw∈Wandanelementw⊥∈W⊥.
Finally,dimW+dimW⊥=dimV.
Thefollowingtheorem,calledidenticationorrepresentationtheorem(seee.
g.
[236]or[265]fortheproof),holds.
TheoremA.
2(Rieszrepresentationtheorem).
LetVbeaHilbertspace.
ForeachlinearandboundedfunctionalfonVthereexistsauniqueelementxf∈Vsuchthatf(y)=(y,xf)Vy∈V,andfV=xfV.
(A.
11)Conversely,eachelementx∈VidentiesalinearandboundedfunctionalfxonVsuchthatfx(y)=(y,x)Vy∈VandfxV=xV.
(A.
12)IfVisaHilbertspace,itsdualspaceVoflinearandboundedfunctionalsonVisaHilbertspacetoo.
Moreover,thankstoTheoremA.
2,thereexistsabijectiveandisometric(i.
e.
norm-preserving)transformationfxfbetweenVandVthankstowhichVandVcanbeidentied.
Wecandenotethistransformation–calledRiesz(isometric)isomorphism–asfollows:RV:V→V,x→fx=RVx,R1V:V→V,f→xf=R1Vx.
(A.
13)ThankstotheRieszisomorphism,wecandeneaninnerproductoverVasfollows:(F,G)V=(R1VF,R1VG)VF,G∈V.
Asaconsequence,FV=R1VFVF∈V.
(A.
14)DenitionA.
5.
LetXandYbetwoHilbertspaces.
WesaythatXisembeddedinYwithcontinuousembeddingifthereexistsaconstantCsuchthatwY≤CwXw∈X.
MoreoverXisdenseinYifeachelementbelongingtoYcanbeobtainedasthelimit,inthe·Ynorm,ofasequenceofelementsofX.
A.
3AdjointOperatorsRiesz'sTheoremenablesthedenitionofadjointoperatorofL,whichextendsthenotionoftransposeATofamatrixA∈Rm*n,thatis(Ax,y)=(x,ATy)x∈Rn,y∈Rm.
Actually,thenotionofadjointoperatorcanbedenedforanygivenL∈L(V,W),beingVandWtwoBanachspaces.
Tothisend,letusconsiderthereal-valuedmapTy:x→Wy,LxW.
Foranyprescribedy∈W,TydenesanelementofV.
270AppendixA:BasicTheoreticalToolsInfact,|Tyx|=|Wy,LxW|≤LxWyW≤LL(V,W)xVyW,sothatTy≤LL(V,W)yW.
TheoperatorL:W→VdenedbythemapWy→Ty∈ViscalledtheadjointofL.
Moreprecisely:DenitionA.
6.
TheoperatorL:W→VdenedbytheidentityVLy,xV=Wy,LxWx∈V,y∈W,(A.
15)iscalledtheadjointofL.
LisalinearandboundedoperatorbetweenWandV,thatisL∈L(W,V),moreoverLL(W,V)=LL(V,W).
InthecasewhereVandWaretwoHilbertspaces,anadditionaladjointoperator,L:W→V,calledtransposeorHilbertspaceadjointorsimplyadjointofL,canbeintroduced.
Itisdenedby(Ly,x)V=(y,Lx)Wx∈V,y∈W.
(A.
16)Here,(·,·)VdenotesthescalarproductofV,while(·,·)Wdenotesthescalarprod-uctofW.
Theabovedenitioncanbeexplainedasfollows:foranygivenelementy∈W,thereal-valuedfunctionx→(y,Lx)Wislinearandcontinuous,henceitde-nesanelementofV.
ByRiesz'stheorem(TheoremA.
2)thereexistsanelementxofV,whichwenameLy,thatsatises(A.
16).
SuchoperatorbelongstoL(W,V)(thatis,itislinearandboundedfromYtoX),moreoverLL(W,V)=LL(V,W).
(A.
17)WesaythatLisselfadjoint(orHermitian)ifV=WandL=L.
Then,(A.
16)inthiscasereducesto(Lx,y)V=(x,Ly)V.
Inparticular,symmetricmatricesarespecialcasesofselfadjointoperators.
InthecasewhereVandWaretwoHilbertspaces,wethushavetwonotionsofadjointoperator,LandL,whicharelinkedthroughthefollowingrelationship:RVL=LRW,(A.
18)RVandRWbeingRiesz'scanonicalisomorphismsfromVtoVandfromWtoW,respectively(see(A.
13)).
Indeed,x∈V,y∈W,VRVLy,xV=(Ly,x)V=(y,Lx)W=WRWy,LxW=VLRWy,xV.
A.
4CompactOperatorsInthissection,webrieyrecallthedenitionandsomeremarkablepropertiesofcompactoperators.
Forafurtheranalysisofthistopic,see,e.
g.
,[226,72,66].
InthefollowingVandWwilldenotetwoHilbertspaces.
A.
4CompactOperators271DenitionA.
7.
AnoperatorL∈L(V,W)iscompactifLmapsboundedsetsintoprecompactsets,i.
e.
L(E)iscompactinWforeveryboundedEV.
DenitionA.
8.
L∈L(V,W)issaidtohaveniterankifRange(L)Wisnitedimensional.
IfL∈L(V,W)isaniterankoperator,thenLiscompact.
Inparticular,ifeitherdim(V)0,δ>0suchthatF(x+h)F(x)LxhW≤εhVh∈Vwith||h||Vm+n/2.
Inparticular,inonespatialdimension(n=1),thefunctionsofH1(Ω)arecontinuous(theyareindeedabsolutelycontinuous,see[236]and[36],whileintwoorthreedimensionstheyarenotnecessarilyso.
Instead,thefunctionsofH2(Ω)arealwayscontinuousforn=1,2,3.
276AppendixA:BasicTheoreticalToolsAnotherSobolevspace,ubiquitousinthevariationalformulationofPDEs,when-everweimposeDirichletboundaryconditions,isH10(Ω),thatis,thespaceoffunc-tionsv∈H1(Ω)vanishingontheboundaryΩ.
WecanthusdeneH10(Ω)={v∈H1(Ω):v|Ω=0}ifwerequirethatv=0overtheentireboundaryΩ,orH1ΓD(Ω)={v∈H1(Ω):v|ΓD=0,ΓDΩ}ifwerequirethatv=0overtheportionΓDΩ.
Togiveaprecisemeaningtothevaluev|Ωofv∈H1(Ω)onΩ–theso-calledtraceofvonΩ–weneedtointroduceatraceoperator,whichassociatestoeachfunctionv∈L2(Ω),withgradientinL2(Ω),afunctionv|ΩrepresentingitsvaluesonΩ:TheoremA.
5.
LetΩbeadomain3ofRdprovidedwithasufcientlyregularbound-aryΩ,andletk≥1.
Thereexistsoneandonlyonelinearandcontinuousappli-cationγ0:Hk(Ω)→L2(Ω)suchthatγ0v=v|Ωforanyv∈Hk∩C0(Ω);γ0viscalledtraceofvonΩ.
Inparticular,thereexistsaconstantC>0suchthatγ0vL2(Γ)≤CvHk(Ω).
TheresultstillholdsifweconsiderthetraceoperatorγΓD:Hk(Ω)→L2(ΓD)whereΓDisasufcientlyregularportionoftheboundaryofΩwithpositivemeasure.
Owingtothisresult,DirichletboundaryconditionsmakesensewhenseekingsolutionsvinHk(Ω),withk≥1,providedweinterprettheboundaryvalueinthesenseofthetrace.
ThetraceoperatorsallowforaninterestingcharacterizationofthepreviouslydenedspaceH10(Ω).
Indeed,wehavethefollowingproperty:PropositionA.
1.
LetΩbeadomainofRdprovidedwithasufcientlyregularboundaryΩandletγ0bethetraceoperatorfromH1(Ω)inL2(Ω).
ThenH10(Ω)=Ker(γ0)={v∈H1(Ω):γ0v=0}.
Inotherwords,H10(Ω)isformedbythefunctionsofH1(Ω)havingnulltraceontheboundary.
ThefunctionsofH10(Ω)and,moreingeneral,thoseofH1ΓD(Ω),foreveryΓDΩ,meas(ΓD)>0,enjoythefollowingrelevantproperties:PropositionA.
2(Poincareinequality).
LetΩbeaboundedsetinRd;thenthereexistsaconstantCΩsuchthatvL2(Ω)≤CΩ|v|H1(Ω)v∈H10(Ω).
(A.
22)PropositionA.
3.
Theseminorm|v|H1(Ω)isanormonthespaceH10(Ω)thatturnsouttobeequivalenttothenormvH1(Ω).
3AdomainΩofRdisaboundedconnectedopensubsetofRdwithaLipschitzcontinuousboundaryΩ,see,e.
g.
,[66,Chap.
1].
A.
8PolynomialInterpolationandOrthogonalPolynomials277A.
7BochnerSpacesWhenconsideringparametrizedfunctionsv(x,μμμ),μμμ∈PRP,P>0,itisnaturaltointroducethedenitionofLp-spacesofWk,q(Ω)-valuedfunctions.
LetusdenotebySacompactsubsetPofRP.
For1≤p,q2n2n2andλn(T)2n+1enlogn,n→∞sothatforlargenLagrangeinterpolationshallbecomeunstable.
ThisfallsunderthenameofRungephenomenon:theinterpolantInfmightshowoscillationsclosetotheextremaoftheintervalnearly2ntimeslargerthanf,eveniffisanalytic.
See,e.
g.
,[221,Sect.
8.
1].
InterpolationbasedonChebyshev(orLegendre)polynomialsallowstoovercometheRungephenomenon.
ChebyshevandLegendrepolynomialsaretwoexamplesoffamiliesoforthogonalpolynomials,whichprovideageneraltoolinapproximationtheory(see,e.
g.
,[51,221,249]).
Letw=w(x)beapositive,integrablefunctionon(1,1)anddenoteby{pk∈Pk,k=0,1,.
.
.
}asystemofalgebraicpolynomialswhicharemutuallyorthogonalon(1,1)withrespecttow,thatis,11pk(x)pm(x)w(x)dx=0ifk=m.
A.
8PolynomialInterpolationandOrthogonalPolynomials279Letusdenoteby(·,·)wtheinnerproductdenedby(f,g)w=11f(x)g(x)w(x)dxandfw=(f,f)1/2w;(·,·)wand·warerespectivelythescalarproductandthenormfortheweightedL2w(1,1)space.
LegendreandChebyshevpolynomialsover[1,1]correspondtothefollowingtwocases,forwhichwecanalsoprovidetheexpressionofGausspointsandco-efcients–respectively,Gauss-Lobattopointsandcoefcients,inthecasewealsoincludetheextremaoftheintervalamongthesetofpoints:Chebyshevweightw(x)=(1x2)1/2,resultingintheGausspointsandweightsxj=cos(2j+1)π2(n+1),wj=πn+1,0≤j≤n;thecorrespondingGauss-Lobattopointsandweightsarexj=cosπjn,wj=πdjn,0≤j≤n,n≥1(A.
27)beingd0=dn=2,Dj=1forj=1,.
.
.
,n1.
TheGausspointsare,foraxedn≥0,thezerosoftheChebyshevpolynomialTn+1∈Pn+1,beingTk(x)=coskθ,θ=arccosx,k=0,1,.
.
.
whereas,forn≥1,theinternalGauss-LobattopointsarethezerosofTn;Legendreweightw(x)=1,resultingintheGausspointsandweightsxjzerosofLn+1(x),wj=2(1x2j)(Ln+1(xj))2,0≤j≤n;thecorrespondingGauss-Lobattopointsandweightsarex0=1,xn=1,xjzerosofLn(x),1≤j≤n1(A.
28)wj=2n(n+1)1(Ln(xj))2,0≤j≤nwhereLk(x)=12k[k/2]∑l=0(1)lkl2(kl)kxk2lk=0,1,.
.
.
isthek-thLegendrepolynomial.
280AppendixA:BasicTheoreticalToolsTheChebyshevinterpolantoffisthepolynomialIGLn,wfofdegreenthatinterpo-latesfattheGauss-Lobattopoints(A.
27),andcanbeexpressedasIGLn,wf(x)=n∑i=0f(xi)li(x)(A.
29)whereli∈Pnisthei-thcharacteristicLagrangepolynomialdenedby(A.
25),suchthatli(xj)=δijforanyi,j=0,.
.
.
,n.
InthesamewaywecanobtaintheLegendreinterpolantoff,byreplacingthepoints(A.
27)withthosedenedin(A.
28).
Amoreefcient(andstable)interpolationisobtainedbyrelyingontheso-calledbarycentricformulae,seee.
g.
[249]forfurtherdetails.
TheclusteringofChebyshevpointsclosetotheextremaoftheintervalisin-deedakeyfeature–Legendrepointshaveasimilardistributionandsharethesamegoodbehavior.
Fromaquantitativestandpoint,theLebesgueconstantgrowsonlylogarithmicallyifChebyshevpointsareused,sinceΛn(T)≤2πlog(n+1)+1andλn(T)2πlogn,n→∞.
(A.
30)ThisresultmakesChebyshevpointsabetterchoiceforpolynomialinterpolation.
Thankstothisresult,wecanalsostatethatChebyshevinterpolantsarenear-best:puttingtogether(A.
26)and(A.
30),wehavethatthemaximumnormaccuracydifferencebetweenChebyshevinterpolantsandthebestapproximantcanneverbelarge.
Infact,ifIGLn,wfistheChebyshevinterpolantoffatthen+1Gauss-Lobattopoints,thenfIGLn,wf∞≤2+2πlog(n+1)fpn∞wheretheconstantappearingattheright-handsideisoforder102forn>1066.
Finally,anotherrelevantfeatureofChebyshev(orLegendre)interpolationisthatthesmootherthefunctionbeinginterpolated,thefasterthedecayoftheerrorwithrespectton.
Inparticular,theinterpolationerrorcanbeboundedasfIGLn,wfw≤Cnsfs,w,s≥1inthecaseofbothChebyshevandLegendreinterpolation,providedforsomes≥1f(k)∈L2w(1,1)foranyk=0,.
.
.
,sandfs,w=(∑sk=0f(k)2w)1/2.
Weunderlinethattheconvergencedependsonthedegreeofregularityoffinadditiontothenumberofinterpolationpoints.
Wealsoobtainanexponentialconvergenceresultinthecaseofanalyticfunctions,s→∞.
Moreover,foranycontinuousfunctionf,fIGLn,wf∞≤Cn1/2sfs,w,s≥1.
References1.
Adams,R.
A.
:SobolevSpaces.
AcademicPress,NewYork(1975)2.
Afanasiev,K.
,Hinze,M.
:Adaptivecontrolofawakeowusingproperorthogonaldecom-position.
In:J.
Cagnol,M.
Polis,J.
P.
Zolesio(eds.
)Shapeoptimizationandoptimaldesign,LectureNotesinPureandAppl.
Math.
,vol.
216,pp.
317–332.
Dekker,NewYork(1999)3.
Ainsworth,M.
,Oden,J.
T.
:Aposteriorierrorestimationinniteelementanalysis,vol.
37.
JohnWiley&Sons,NewYork(2011)4.
Alleborn,N.
,Nandakumar,K.
,Raszillier,H.
,Durst,F.
:Furthercontributionsonthetwo-dimensionalowinasuddenexpansion.
J.
FluidMech.
330,169–188(1997)5.
Almroth,B.
O.
,Stehlin,P.
,Brogan,F.
A.
:Useofglobalfunctionsforimprovementinef-ciencyofnonlinearanalysis.
AIAApaper81-0575pp.
286–292(1981)6.
Almroth,B.
O.
,Stern,P.
,Brogan,F.
A.
:Automaticchoiceofglobalshapefunctionsinstruc-turalanalysis.
AIAAJ.
16(5),525–528(1978)7.
Amsallem,D.
,Cortial,J.
,Carlberg,K.
,Farhat,C.
:Amethodforinterpolatingonmanifoldsstructuraldynamicsreduced-ordermodels.
Int.
J.
Numer.
Meth.
Engng.
80(9),1241–1258(2009)8.
Amsallem,D.
,Farhat,C.
:Anonlinemethodforinterpolatinglinearparametricreduced-ordermodels.
SIAMJ.
Sci.
Comput.
33(5),2169–2198(2011)9.
Amsallem,D.
,Zahr,M.
J.
,Choi,Y.
,Farhat,C.
:Designoptimizationusinghyper-reduced-ordermodels.
Struct.
Multidisc.
Optim.
pp.
1–22(2014).
DOI10.
1007/s00158-014-1183-y10.
Amsallem,D.
,Zahr,M.
J.
,Farhat,C.
:Nonlinearmodelorderreductionbasedonlocalreduced-orderbases.
Int.
J.
Numer.
MethodsEngr.
92(10),891–916(2012)11.
Antil,H.
,Heinkenschloss,M.
,Hoppe,R.
W.
,Linsenmann,C.
,Wixforth,A.
:Reducedordermodelingbasedshapeoptimizationofsurfaceacousticwavedrivenmicrouidicbiochips.
Math.
Comput.
Simul.
82(10),1986–2003(2012)12.
Antoulas,A.
C.
:ApproximationofLarge-ScaleDynamicalSystems.
SocietyforIndustrialandAppliedMathematics,Philadelphia(2005)13.
Arian,E.
,Fahl,M.
,Sachs,E.
W.
:Trust-regionproperorthogonaldecompositionforowcontrol.
Tech.
Rep.
25,InstituteforComputerApplicationsinScienceandEngineering,NASALangleyResearchCenter(2000)14.
Arnold,D.
N.
,Brezzi,F.
,Cockburn,B.
,Marini,L.
:UniedanalysisofdiscontinuousGalerkinmethodsforellipticproblems.
SIAMJ.
Numer.
Anal.
39(5),1749–1779(2002)15.
Astrid,P.
,Weiland,S.
,Willcox,K.
,Backx,T.
:Missingpointestimationinmodelsdescribedbyproperorthogonaldecomposition.
IEEETrans.
Automat.
Control53,2237–2251(2008)16.
Aubry,N.
:Onthehiddenbeautyoftheproperorthogonaldecomposition.
Theor.
Comp.
Fluid.
Dyn.
2,339–352(1991)17.
Aubry,N.
,Lian,W.
Y.
,Titi,E.
S.
:Preservingsymmetriesintheproperorthogonaldecompo-sition.
SIAMJ.
Sci.
Comput.
14(2),483–505(1993)SpringerInternationalPublishingSwitzerland2016A.
Quarteroni,A.
Manzoni,F.
Negri,ReducedBasisMethodsforPartialDifferentialEqua-tions,UNITEXT–LaMatematicaperil3+292,DOI10.
1007/978-3-319-15431-2282References18.
Audouze,C.
,DeVuyst,F.
,Nair,P.
B.
:Reduced-ordermodelingofparameterizedPDEsusingtime-spaceparameterprincipalcomponentanalysis.
Int.
J.
Numer.
MethodsEngrg.
80(10),1025–1057(2009)19.
Babuˇska,I.
:Error-boundsforniteelementmethod.
Numer.
Math.
16,322–333(1971)20.
Babuˇska,I.
,Nobile,F.
,Tempone,R.
:Astochasticcollocationmethodforellipticpartialdifferentialequationswithrandominputdata.
SIAMReview52(2),317–355(2010)21.
Baiges,J.
,Codina,R.
,Idelsohn,S.
:Explicitreduced-ordermodelsforthestabilizedniteelementapproximationoftheincompressibleNavier-Stokesequations.
Int.
J.
Numer.
Meth.
Fluids72(12),1219–1243(2013)22.
Ballarin,F.
,Manzoni,A.
,Quarteroni,A.
,Rozza,G.
:SupremizerstabilizationofPOD-GalerkinapproximationofparametrizedsteadyincompressibleNavier-Stokesequations.
Int.
J.
Numer.
MethodsEngng.
102(5),1136–1161(2015)23.
Barrault,M.
,Maday,Y.
,Nguyen,N.
C.
,Patera,A.
T.
:An'empiricalinterpolation'method:applicationtoefcientreduced-basisdiscretizationofpartialdifferentialequations.
C.
R.
Math.
Acad.
Sci.
Paris339(9),667–672(2004)24.
Benner,P.
,Mehrmann,V.
,Sorensen,D.
C.
(eds.
):DimensionReductionofLarge-ScaleSys-tems,LectureNotesinComputationalScienceandEngineering,vol.
45.
Springer,BerlinHeildeberg(2005)25.
Benner,P.
,Sachs,E.
W.
,Volkwein,S.
:ModelorderreductionforPDEconstrainedopti-mization.
In:G.
Leugering,P.
Benner,S.
Engell,A.
Griewank,H.
Harbrecht,M.
Hinze,R.
Rannacher,S.
Ulbrich(eds.
)TrendsinPDEConstrainedOptimization,InternationalSe-riesofNumericalMathematics,vol.
165,pp.
303–326.
SpringerInternationalPublishing,Basel(2014)26.
Benzi,M.
,Golub,G.
H.
,Liesen,J.
:Numericalsolutionofsaddlepointproblems.
ActaNu-merica14,1–137(2005)27.
Berggren,M.
:Numericalsolutionofaow-controlproblem:vorticityreductionbydynamicboundaryaction.
SIAMJ.
Sci.
Comput.
19(3),829–860(1998)28.
Berkooz,G.
,Holmes,P.
,Lumley,J.
L.
:Theproperorthogonaldecompositionintheanalysisofturbulentows.
Annu.
Rev.
FluidMech.
25(1),539–575(1993)29.
Bernardi,C.
,Maday,Y.
:Approximationsspectralesdeprobl`emesauxlimiteselliptiques.
Springer,Berlin-Heidelberg(1992)30.
Binev,P.
,Cohen,A.
,Dahmen,W.
,DeVore,R.
,Petrova,G.
,Wojtaszczyk,P.
:Convergenceratesforgreedyalgorithmsinreducedbasismethods.
SIAMJ.
Math.
Anal.
43(3),1457–1472(2011)31.
Biswas,G.
,Breuer,M.
,Durst,F.
:Backward-facingstepowsforvariousexpansionratiosatlowandmoderateReynoldsnumbers.
J.
FluidsEng.
126(3),362–374(2004)32.
Bof,D.
,Brezzi,F.
,Fortin,M.
:MixedFiniteElementsandApplications.
Springer-Verlag,Berlin-Heidelberg(2013)33.
Borz`,A.
,Schulz,V.
:ComputationalOptimizationofSystemsGovernedbyPartialDiffer-entialEquations.
SocietyforIndustrialandAppliedMathematics,Philadelphia(2011)34.
Bramble,J.
,Pasciak,J.
:Anewapproximationtechniquefordiv-curlsystems.
Math.
Comp.
73(248),1739–1762(2004)35.
Brenner,S.
C.
,Scott,L.
R.
:TheMathematicalTheoryofFiniteElementMethods,thirdedn.
Springer-Verlag,NewYork(2008)36.
Brezis,H.
:FunctionalAnalysis,SobolevSpacesandPartialDifferentialEquations.
Springer-Verlag,NewYork(2011)37.
Brezzi,F.
:Ontheexistence,uniqueness,andapproximationofsaddlepointproblemsarisingfromLagrangianmultipliers.
R.
A.
I.
R.
O.
,Anal.
Numer.
2,129–151(1974)38.
Brezzi,F.
,Bathe,K.
J.
:Adiscourseonthestabilityconditionsformixedniteelementfor-mulations.
Comput.
Meth.
Appl.
Mech.
Engrg.
82(1–3),27–57(1990)39.
Brezzi,F.
,Rappaz,J.
,Raviart,P.
A.
:Finitedimensionalapproximationofnonlinearproblems.
PartI:Branchesofnonsingularsolutions.
Numer.
Math.
36,1–25(1980)40.
Buffa,A.
,Maday,Y.
,Patera,A.
T.
,Prud'homme,C.
,Turinici,G.
:Aprioriconvergenceofthegreedyalgorithmfortheparametrizedreducedbasismethod.
ESAIMMath.
ModellingNumer.
Anal.
46(3),595–603(2012)References28341.
Buhmann,M.
D.
:RadialBasisFunctions:TheoryandImplementations.
CambridgeUniver-sityPress,Cambridge(2003)42.
Bui-Thanh,T.
,Damodaran,M.
,Willcox,K.
:Properorthogonaldecompositionextensionsforparametricapplicationsintransonicaerodynamics(AIAAPaper2003-4213).
In:Pro-ceedingsofthe15thAIAAComputationalFluidDynamicsConference(2003)43.
Bui-Thanh,T.
,Damodaran,M.
,Willcox,K.
:Aerodynamicdatareconstructionandinversedesignusingproperorthogonaldecomposition.
AIAAJournal42(8),1505–1516(2004)44.
Bui-Thanh,T.
,Willcox,K.
,Ghattas,O.
:Modelreductionforlarge-scalesystemswithhigh-dimensionalparametricinputspace.
SIAMJ.
Sci.
Comput.
30(6),3270–3288(2008)45.
Bui-Thanh,T.
,Willcox,K.
,Ghattas,O.
:Parametricreduced-ordermodelsforprobabilisticanalysisofunsteadyaerodynamicsapplications.
AIAAJournal46(10)(2008)46.
Bungartz,H.
J.
,Griebel,M.
:Sparsegrids.
ActaNumerica13,147–269(2004)47.
Burkardt,J.
,Gunzburger,M.
D.
,Lee,H.
C.
:PODandCVT-basedreduced-ordermodelingofNavier-Stokesows.
Comput.
Meth.
Appl.
Mech.
Engrg.
196(1-3),337–355(2006)48.
Caiazzo,A.
,Iliescu,T.
,John,V.
,Schyschlowa,S.
:Anumericalinvestigationofvelocity-pressurereducedordermodelsforincompressibleows.
J.
Comput.
Phys.
259,598–616(2014)49.
Caloz,G.
,Rappaz,J.
:Numericalanalysisfornonlinearandbifurcationproblems.
In:P.
G.
Ciarlet,J.
Lions(eds.
)HandbookofNumericalAnalysis,vol.
V,pp.
487–637.
North-Holland,Amsterdam(1997)50.
Canuto,C.
,Hussaini,M.
,Quarteroni,A.
,Zang,T.
A.
J.
:SpectralMethodsinFluidDynamics.
Springer-Verlag,NewYork(1987)51.
Canuto,C.
,Hussaini,M.
,Quarteroni,A.
,Zang,T.
A.
J.
:Spectralmethods:FundamentalsinSingleDomains.
Springer-Verlag,Berlin(2006)52.
Canuto,C.
,Hussaini,M.
,Quarteroni,A.
,Zang,T.
A.
J.
:Spectralmethods:EvolutiontoCom-plexGeometriesandApplicationstoFluidDynamics.
Springer-Verlag,Berlin(2007)53.
Canuto,C.
,Tonn,T.
,Urban,K.
:Aposteriorierroranalysisofthereducedbasismethodfornon-afneparameterizednonlinearPDEs.
SIAMJ.
Numer.
Anal.
47(3),2001–2022(2009)54.
Carlberg,K.
:Modelreductionofnonlinearmechanicalsystemsviaoptimalprojectionandtensorapproximation.
Ph.
D.
thesis,StanfordUniversity,Stanford(2011)55.
Carlberg,K.
,Bou-Mosleh,C.
,Farhat,C.
:Efcientnon-linearmodelreductionviaaleast-squaresPetrov-Galerkinprojectionandcompressivetensorapproximations.
Int.
J.
Numer.
Meth.
Engng.
86(2),155–181(2011)56.
Carlberg,K.
,Farhat,C.
:Alow-cost,goal-orientedcompactproperorthogonaldecompositionbasisformodelreductionofstaticsystems.
Int.
J.
Numer.
Meth.
Engng.
86(3),381–402(2011)57.
Carlberg,K.
,Farhat,C.
,Cortial,J.
,Amsallem,D.
:TheGNATmethodfornonlinearmodelreduction:Effectiveimplementationandapplicationtocomputationaluiddynamicsandturbulentows.
J.
Comput.
Phys.
242,623–647(2013)58.
Chaturantabut,S.
,Sorensen,D.
C.
:Nonlinearmodelreductionviadiscreteempiricalinterpo-lation.
SIAMJ.
Sci.
Comput.
32(5),2737–2764(2010)59.
Chen,Y.
,Hesthaven,J.
S.
,Maday,Y.
,Rodriguez,J.
:Amonotonicevaluationoflowerboundsforinf-supstabilityconstantsintheframeofreducedbasisapproximations.
C.
R.
Acad.
Sci.
Paris,Ser.
I346,1295–1300(2008)60.
Chen,Y.
,Hesthaven,J.
S.
,Maday,Y.
,Rodriguez,J.
:Improvedsuccessiveconstraintmethodbasedaposteriorierrorestimateforreducedbasisapproximationof2DMaxwell'sproblem.
ESAIMMath.
ModellingNumer.
Anal.
43,1099–1116(2009)61.
Chen,Y.
,Hesthaven,J.
S.
,Maday,Y.
,Rodrguez,J.
:CertiedreducedbasismethodsandoutputboundsfortheharmonicMaxwell'sequations.
SIAMJ.
Sci.
Comput.
32(2),970–996(2010)62.
Chen,Y.
,Hesthaven,J.
S.
,Maday,Y.
,Rodriguez,J.
,Zhu,X.
:Certiedreducedbasismethodforelectromagneticscatteringandradarcrosssectionestimation.
Comput.
Meth.
Appl.
Mech.
Engrg.
233-236,92–108(2012)284References63.
Chevreuil,M.
,Nouy,A.
:Modelorderreductionbasedonpropergeneralizeddecompositionforthepropagationofuncertaintiesinstructuraldynamics.
Int.
J.
Numer.
Meth.
Engng89(2),241–268(2012)64.
Christensen,E.
A.
,Brns,M.
,Srensen,J.
N.
:Evaluationofproperorthogonaldecomposition–baseddecompositiontechniquesappliedtoparameter-dependentnonturbu-lentows.
SIAMJ.
Sci.
Comput.
21,1419–1434(1999)65.
Ciarlet,P.
G.
:TheFiniteElementMethodforEllipticProblems.
ClassicsinAppliedMathe-matics,40.
SocietyforIndustrialandAppliedMathematics,Philadelphia(2002)66.
Ciarlet,P.
G.
:Linearandnonlinearfunctionalanalysiswithapplications.
SocietyforIndus-trialandAppliedMathematics,Philadelphia(2014)67.
Clenshaw,C.
,Curtis,A.
:Amethodfornumericalintegrationonanautomaticcomputer.
Numer.
Math.
2(1),197–205(1960)68.
Cline,A.
K.
,Dhillon,I.
S.
:ComputationoftheSingularValueDecomposition.
In:L.
Hogben(ed.
)HandbookofLinearAlgebra,rstedn.
CRCPress(2006)69.
Cochran,W.
G.
:Samplingtechniques.
JohnWiley&Sons,Chichester(2007)70.
Cohen,A.
,DeVore,R.
:Approximationofhigh-dimensionalparametricPDEs.
ArXive-prints1502.
06797(2015)71.
Cohen,A.
,DeVore,R.
,Schwab,C.
:AnalyticregularityandpolynomialapproximationofparametricandstochasticellipticPDEs.
Anal.
Appl.
9(1),11–47(2011)72.
Conway,J.
B.
:ACourseinOperatorTheory.
AmericanMathematicalSoc.
,Providence(2000)73.
Cormen,T.
H.
,Leiserson,C.
E.
,Rivest,R.
L.
,Stein,C.
:IntroductiontoAlgorithms,thirdedn.
TheMITPress,Cambridge(2009)74.
Cottrell,J.
A.
,Hughes,T.
J.
R.
,Bazilevs,Y.
:Isogeometricanalysis:towardintegrationofCADandFEA.
JohnWiley&Sons,Chichester(2009)75.
Cui,T.
,Marzouk,Y.
,Willcox,K.
:Data-drivenmodelreductionfortheBayesiansolutionofinverseproblems.
Int.
J.
Numer.
MethodsEngrg.
102(5),966–990(2015)76.
Dahmen,W.
,Plesken,C.
,Welper,G.
:Doublegreedyalgorithms:reducedbasismethodsfortransportdominatedproblems.
ESAIMMath.
ModellingNumer.
Anal.
48(3),623–663(2014)77.
Dautray,R.
,Lions,J.
L.
:MathematicalAnalysisandNumericalMethodsforScienceandTechnology.
Springer-Verlag,BerlinHeidelberg(2000)78.
Deane,A.
E.
,Kevrekidis,I.
G.
,Karniadakis,G.
E.
,Orszag,S.
A.
:Low-dimensionalmodelsforcomplexgeometryows:Applicationtogroovedchannelsandcircularcylinders.
Phys.
FluidsA3,2337(1991)79.
Ded`e,L.
:Reducedbasismethodandaposteriorierrorestimationforparametrizedlinear-quadraticoptimalcontrolproblems.
SIAMJ.
Sci.
Comput.
32(2),997–1019(2010)80.
Ded`e,L.
:Reducedbasismethodanderrorestimationforparametrizedoptimalcontrolprob-lemswithcontrolconstraints.
J.
Sci.
Comput.
50(2),287–305(2012)81.
Dedner,A.
,Kl¨ofkorn,R.
,Nolte,M.
,Ohlberger,M.
:Agenericinterfaceforparallelandadap-tivescienticcomputing:abstractionprinciplesandtheDUNE-FEMmodule.
Computing90(3–4),165–196(2010)82.
Dedner,A.
,Kl¨ofkorn,R.
,Nolte,M.
,Ohlberger,M.
:DUNE-FEMWebpage.
URL:http://dune.
mathematik.
uni-freiburg.
de(2011)83.
Degroote,J.
,Vierendeels,J.
,Willcox,K.
:Interpolationamongreduced-ordermatricestoob-tainparameterizedmodelsfordesign,optimizationandprobabilisticanalysis.
Int.
J.
Numer.
MethodsFluids63(2),207–230(2010)84.
Demkowicz,L.
:Babuˇska=BrezziTech.
Rep.
08-06,ICE,Univ.
ofTexas,Austin(2006)85.
Demkowicz,L.
,Gopalakrishnan,J.
:AclassofdiscontinuousPetrov–Galerkinmethods.
II.
optimaltestfunctions.
Numer.
MethodsPartialDifferentialEquations27(1),70–105(2011)86.
Deparis,S.
:Reducedbasiserrorboundcomputationofparameter-dependentNavier-Stokesequationsbythenaturalnormapproach.
SIAMJ.
Num.
Anal.
46(4),2039–2067(2008)87.
Deparis,S.
,Lvgren,A.
E.
:Stabilizedreducedbasisapproximationofincompressiblethree-dimensionalNavier-Stokesequationsinparametrizeddeformeddomains.
J.
Sci.
Comput.
50(1),198–212(2012)References28588.
Deparis,S.
,Rozza,G.
:Reducedbasismethodformulti-parameter-dependentsteadyNavier-Stokesequations:Applicationstonaturalconvectioninacavity.
J.
Comp.
Phys.
228(12),4359–4378(2009)89.
Dihlmann,M.
,Drohmann,M.
,Haasdonk,B.
,Ohlberger,M.
,Schaefer,M.
:RB-matlab.
URL:http://www.
ians.
uni-stuttgart.
de/MoRePaS/software/rbmatlab/0.
11.
04/doc/90.
Dihlmann,M.
,Haasdonk,B.
:Certiednonlinearparameteroptimizationwithreducedbasissurrogatemodels.
Proc.
Appl.
Math.
Mech13(1),3–6(2013)91.
Dihlmann,M.
,Haasdonk,B.
:CertiedPDE-constrainedparameteroptimizationusingre-ducedbasissurrogatemodelsforevolutionproblems.
Comput.
Optim.
Appl.
60(3),753–787(2015)92.
Drikakis,D.
:Bifurcationphenomenainincompressiblesuddenexpansionows.
Phys.
Flu-ids9(76)(1997).
DOI10.
1063/1.
86917493.
Drohmann,M.
,Haasdonk,B.
,Kaulmann,S.
,Ohlberger,M.
:Asoftwareframeworkforre-ducedbasismethodsusingDune-RBandRBmatlab.
In:A.
Dedner,B.
Flemisch,R.
Kl¨ofkorn(eds.
)AdvancesinDUNE,pp.
77–88.
Springer-Verlag,BerlinHeidelberg(2012)94.
Drohmann,M.
,Haasdonk,B.
,Ohlberger,M.
:Reducedbasisapproximationfornonlinearparametrizedevolutionequationsbasedonempiricaloperatorinterpolation.
SIAMJ.
Sci.
Comput.
34(2),A937–A969(2012)95.
Dunavant,D.
A.
:Highdegreeefcientsymmetricalgaussianquadraturerulesforthetriangle.
Int.
J.
Num.
Meth.
Engrg.
21(6),1129–1148(1985)96.
Eckart,C.
,Young,G.
:Theapproximationofonematrixbyanotheroflowerrank.
Psy-chometrika1(3),211–218(1936)97.
Edmonds,J.
:Matroidsandthegreedyalgorithm.
Math.
Program.
1(1),127–136(1971)98.
Eftang,J.
L.
,Grepl,M.
A.
,Patera,A.
T.
:Aposteriorierrorboundsfortheempiricalinterpola-tionmethod.
C.
R.
Math.
Acad.
Sci.
Paris,SerieI348(9–10),575–579(2010)99.
Eftang,J.
L.
,Huynh,D.
B.
P.
,Knezevic,D.
J.
,Patera,A.
T.
:Atwo-stepcertiedreducedbasismethod.
J.
Sci.
Comput.
51(1),28–58(2012)100.
Eftang,J.
L.
,Knezevic,D.
J.
,Patera,A.
T.
:An"hp"certiedreducedbasismethodforpara-metrizedparabolicpartialdifferentialequations.
Math.
Comput.
Model.
Dynam.
Syst.
17(4),395–422(2011)101.
Eftang,J.
L.
,Patera,A.
T.
,Rnquist,E.
M.
:An"hp"certiedreducedbasismethodforpa-rametrizedellipticpartialdifferentialequations.
SIAMJ.
Sci.
Comput.
32(6),3170–3200(2010)102.
Eftang,J.
L.
,Stamm,B.
:Parametermulti-domainhpempiricalinterpolation.
Int.
J.
Numer.
MethodsEngrg.
90,412–428(2012)103.
Elman,H.
C.
,Liao,Q.
:Reducedbasiscollocationmethodsforpartialdifferentialequationswithrandomcoefcients.
SIAM/ASAJ.
Uncertain.
Quantif.
1,192–217(2013)104.
Elman,H.
C.
,Silvester,D.
J.
,Wathen,A.
:FiniteElementsandFastIterativeSolverswithApplicationsinIncompressibleFluidDynamics.
OxfordUniversityPress,NewYork(2004)105.
Ern,A.
,Guermond,J.
L.
:Theoryandpracticeofniteelements.
Springer-Verlag,NewYork(2004)106.
Evans,L.
C.
:PartialDifferentialEquations.
AmericanMathematicalSociety(1998)107.
Fares,M.
,Hesthaven,J.
S.
,Maday,Y.
,Stamm,B.
:Thereducedbasismethodfortheelectriceldintegralequation.
J.
Comput.
Phys.
230,5532–5555(2011)108.
Fink,J.
P.
,Rheinboldt,W.
C.
:Onthediscretizationerrorofparametrizednonlinearequations.
SIAMJ.
Numer.
Anal.
20(4),732–746(1983)109.
Fink,J.
P.
,Rheinboldt,W.
C.
:Ontheerrorbehaviorofthereducedbasistechniquefornon-linearniteelementapproximations.
Z.
Angew.
Math.
Mech.
63(1),21–28(1983)110.
Fink,J.
P.
,Rheinboldt,W.
C.
:Solutionmanifoldsandsubmanifoldsofparametrizedequationsandtheirdiscretizationerrors.
Num.
Math.
45(3),323–343(1984)111.
Galbally,D.
,Fidkowski,K.
,Willcox,K.
,Ghattas,O.
:Nonlinearmodelreductionforuncer-taintyquanticationinlarge-scaleinverseproblems.
Int.
J.
Numer.
MethodsEngrg.
81(12),1581–1608(2010)286References112.
Gerner,A.
L.
,Veroy,K.
:ReducedbasisaposteriorierrorboundsfortheStokesequationsinparametrizeddomains:apenaltyapproach.
Math.
ModelsMeth.
Appl.
Sci.
21(10),2103–2134(2010)113.
Gerner,A.
L.
,Veroy,K.
:Certiedreducedbasismethodsforparametrizedsaddlepointprob-lems.
SIAMJ.
Sci.
Comput.
34(5),A2812–A2836(2012)114.
Gerstner,T.
,Griebel,M.
:Numericalintegrationusingsparsegrids.
Numericalalgorithms18(3-4),209–232(1998)115.
Girault,V.
,Raviart,P.
A.
:FiniteelementmethodsforNavier-Stokesequations:Theoryandalgorithms.
Springer-Verlag,Berlin(1986)116.
Gohberg,I.
,Goldberg,S.
,Krupnik,N.
:Tracesanddeterminantsoflinearoperators.
Birkh¨auser,Basel(2000)117.
Golub,G.
H.
,VanLoan,C.
F.
:MatrixComputations,fourthedn.
TheJohnHopkinsUniversityPress,Baltimore(2013)118.
Gr¨atsch,T.
,Bathe,K.
J.
:Aposteriorierrorestimationtechniquesinpracticalniteelementanalysis.
Comput.
andStruct.
83,235–265(2005)119.
Grepl,M.
A.
:Certiedreducedbasismethodsfornonafnelineartime-varyingandnonlinearparabolicpartialdifferentialequations.
Math.
ModelsMethodsAppl.
Sci.
22(3),1150,015(2012)120.
Grepl,M.
A.
,Maday,Y.
,Nguyen,N.
C.
,Patera,A.
T.
:Efcientreduced-basistreatmentofnonafneandnonlinearpartialdifferentialequations.
ESAIMMath.
ModellingNumer.
Anal.
41(3),575–605(2007)121.
Grepl,M.
A.
,Nguyen,N.
C.
,Veroy,K.
,Patera,A.
T.
,Liu,G.
R.
:Certiedrapidsolutionofpar-tialdifferentialequationsforreal-timeparameterestimationandoptimization.
In:L.
Biegler,O.
Ghattas,M.
Heinkenschloss,D.
Keyes,B.
VanBloemenWaanders(eds.
)Real-timePDE-ConstrainedOptimization,pp.
197–215.
SocietyforIndustrialandAppliedMathematics,Philadelphia(2007)122.
Grepl,M.
A.
,Patera,A.
T.
:Aposteriorierrorboundsforreduced-basisapproximationsofparametrizedparabolicpartialdifferentialequations.
ESAIMMath.
ModellingNumer.
Anal.
39(1),157–181(2005)123.
Guevel,Y.
,Boutyour,H.
,Cadou,J.
M.
:Automaticdetectionandbranchswitchingmethodsforsteadybifurcationinuidmechanics.
J.
Comput.
Phys.
230,3614–3629(2011)124.
Gunzburger,M.
D.
:FiniteElementMethodsforViscousIncompressibleFlows.
AcademicPress,SanDiego(1989)125.
Gunzburger,M.
D.
:PerspectivesinFlowControlandOptimization.
AdvancesinDesignandControl.
SocietyforIndustrialandAppliedMathematics,Philadelphia(2003)126.
Gunzburger,M.
D.
,Bochev,P.
:Least-SquaresFiniteElementMethods.
Springer-Verlag,NewYork(2009)127.
Gunzburger,M.
D.
,Hou,L.
,Svobodny,T.
P.
:Boundaryvelocitycontrolofincompressibleowwithanapplicationtoviscousdragreduction.
SIAMJ.
ControlOptim.
30,167(1992)128.
Haasdonk,B.
,Dihlmann,M.
,Ohlberger,M.
:Atrainingsetandmultiplebasesgenerationapproachforparameterizedmodelreductionbasedonadaptivegridsinparameterspace.
Math.
Comput.
Model.
Dyn.
Syst.
17(4),423–442(2011)129.
Haasdonk,B.
,Ohlberger,M.
:Reducedbasismethodfornitevolumeapproximationsofparametrizedlinearevolutionequations.
ESAIMMath.
ModellingNumer.
Anal.
42,277–302(2008)130.
Hay,A.
,Borggaard,J.
T.
,Akhtar,I.
,Pelletier,D.
:Reduced-ordermodelsforparameterde-pendentgeometriesbasedonshapesensitivityanalysis.
J.
Comp.
Phys.
229(4),1327–1352(2010)131.
Hay,A.
,Borggaard,J.
T.
,Pelletier,D.
:Localimprovementstoreduced-ordermodelsus-ingsensitivityanalysisoftheproperorthogonaldecomposition.
J.
FluidMech.
629,41–72(2009)132.
Herrero,H.
,Maday,Y.
,Pla,F.
:RB(reducedbasis)forRB(Rayleigh-Benard).
Comput.
Meth.
Appl.
Mech.
Engrg.
261–262,132–141(2013)References287133.
Hesthaven,J.
S.
,Stamm,B.
,Zhang,S.
:Efcientgreedyalgorithmsforhigh-dimensionalparameterspaceswithapplicationstoempiricalinterpolationandreducedbasismethods.
ESAIMMath.
ModellingNumer.
Anal.
48,259–283(2014)134.
Hesthaven,J.
S.
,Warburton,T.
:NodalDiscontinuousGalerkinMethods:Algorithms,Anal-ysis,andApplications.
Springer-Verlag,NewYork(2008)135.
Hinze,M.
,Pinnau,R.
,Ulbrich,M.
,Ulbrich,S.
:OptimizationwithPDEConstraints.
Springer,Netherlands(2009)136.
Hinze,M.
,Volkwein,S.
:Properorthogonaldecompositionsurrogatemodelsfornonlineardynamicalsystems:Errorestimatesandsuboptimalcontrol.
In:P.
Benner,D.
C.
Sorensen,V.
Mehrmann(eds.
)DimensionReductionofLarge-ScaleSystems,LectureNotesinCompu-tationalScienceandEngineering,vol.
45,pp.
261–306.
Springer,BerlinHeidelberg(2005)137.
Holmes,P.
J.
,Lumley,J.
L.
,Berkooz,G.
:Turbulence,coherentstructures,dynamicalsystemsandsymmetry.
CambridgeUniversityPress,Cambridge(1998)138.
Holmes,P.
J.
,Lumley,J.
L.
,Berkooz,G.
,Mattingly,J.
C.
,Wittenberg,R.
W.
:Low-dimensionalmodelsofcoherentstructuresinturbulence.
PhysicsReports287(4),337–384(1997)139.
Hotelling,H.
:Simpliedcalculationofprincipalcomponents.
Psychometrika1,27–35(1936)140.
Huynh,D.
,Rozza,G.
,Sen,S.
,Patera,A.
T.
:Asuccessiveconstraintlinearoptimizationmethodforlowerboundsofparametriccoercivityandinf-supstabilityconstants.
C.
R.
Acad.
Sci.
Paris.
Ser.
IMath.
345,473–478(2007)141.
Huynh,D.
B.
P.
,Knezevic,D.
,Patera,A.
T.
:Astaticcondensationreducedbasiselementmethod:approximationandaposteriorierrorestimation.
ESAIMMath.
ModellingNumer.
Anal.
47,213–251(2013)142.
Huynh,D.
B.
P.
,Knezevic,D.
,Patera,A.
T.
:Astaticcondensationreducedbasiselementmethod:Complexproblems.
Comput.
Meth.
Appl.
Mech.
Engrg.
259,197–216(2013)143.
Huynh,D.
B.
P.
,Knezevic,D.
J.
,Chen,Y.
,Hesthaven,J.
S.
,Patera,A.
T.
:Anatural-normsuc-cessiveconstraintmethodforinf-suplowerbounds.
Comput.
Meth.
Appl.
Mech.
Engrg.
199(29–32),1963–1975(2010)144.
Huynh,D.
B.
P.
,Nguyen,N.
C.
,Patera,A.
T.
,Rozza,G.
:rbMIT,CopyrightMIT.
URL:http://augustine.
mit.
edu(2006-2007)145.
Iapichino,L.
,Quarteroni,A.
,Rozza,G.
:Areducedbasishybridmethodforthecouplingofparametrizeddomainsrepresentedbyuidicnetworks.
Comput.
MethodsAppl.
Mech.
Engrg.
221–222,63–82(2012)146.
Ito,K.
,Ravindran,S.
S.
:AreducedbasismethodforcontrolproblemsgovernedbyPDEs.
In:W.
Desch,F.
Kappel,K.
Kunisch(eds.
)ControlandEstimationofDistributedParameterSystem,InternationalSeriesofNumericalMathematics,vol.
126,pp.
153–168.
Birkh¨auser,Basel(1998)147.
Ito,K.
,Ravindran,S.
S.
:Areducedordermethodforsimulationandcontrolofuidows.
J.
Comput.
Phys.
143(2),403–425(1998)148.
Kahlbacher,M.
,Volkwein,S.
:Galerkinproperorthogonaldecompositionmethodsforpa-rameterdependentellipticsystems.
Discuss.
Math.
,Differ.
Incl.
ControlOptim.
27(1),95–117(2007)149.
Kahlbacher,M.
,Volkwein,S.
:PODa-posteriorierrorbasedinexactSQPmethodforbilinearellipticoptimalcontrolproblems.
ESAIM:Math.
Model.
Numer.
Anal.
46(02),491–511(2012)150.
K¨archer,M.
,Grepl,M.
A.
:Acertiedreducedbasismethodforparametrizedellipticoptimalcontrolproblems.
ESAIMControlOptim.
Calc.
Var.
20(2),416–441(2014)151.
Kerschen,G.
,Golinval,J.
C.
,Vakakis,A.
F.
,Bergman,L.
A.
:Themethodofproperorthogonaldecompositionfordynamicalcharacterizationandorderreductionofmechanicalsystems:anoverview.
Nonlin.
Dyn.
41,147–169(2005)152.
Kirk,B.
S.
,Peterson,J.
W.
,Stogner,R.
H.
,Carey,G.
F.
:libMesh:AC++LibraryforParallelAdaptiveMeshRenement/CoarseningSimulations.
Eng.
Comput.
22(3–4),237–254(2006)153.
Knezevic,D.
J.
,Peterson,J.
W.
:Ahigh-performanceparallelimplementationofthecertiedreducedbasismethod.
Comput.
Meth.
Appl.
Mech.
Engrg.
200(13),1455–1466(2011)288References154.
Kolmogorov,A.
N.
:Berdiebesteann¨aherungvonfunktioneneinergegebenenfunktionen-klasse.
Ann.
ofMath.
37,107–110(1936)155.
Kolmogorov,A.
N.
,Fomin,S.
V.
:ElementsoftheTheoryofFunctionsandFunctionalAnal-ysis.
V.
M.
Tikhominov,Nauka-Moscow(1989)156.
Kunisch,K.
,Volkwein,S.
:Galerkinproperorthogonaldecompositionmethodsforparabolicproblems.
Num.
Math.
90,117–148(2001)157.
Kunisch,K.
,Volkwein,S.
:Galerkinproperorthogonaldecompositionmethodsforageneralequationinuiddynamics.
SIAMJ.
Numer.
Anal.
40(2),492–515(2003)158.
Kunisch,K.
,Volkwein,S.
:Properorthogonaldecompositionforoptimalitysystems.
ESAIMMath.
ModellingNumer.
Anal.
42(1),1–23(2008)159.
Lassila,T.
,Manzoni,A.
,Quarteroni,A.
,Rozza,G.
:Boundarycontrolandshapeoptimizationfortherobustdesignofbypassanastomosesunderuncertainty.
ESAIMMath.
ModellingNumer.
Anal.
47(4),1107–1131(2013)160.
Lassila,T.
,Manzoni,A.
,Quarteroni,A.
,Rozza,G.
:Areducedcomputationalandgeomet-ricalframeworkforinverseproblemsinhaemodynamics.
Int.
J.
Numer.
MethodsBiomed.
Engng.
29(7),741–776(2013)161.
Lassila,T.
,Manzoni,A.
,Quarteroni,A.
,Rozza,G.
:Modelorderreductioninuiddynamics:challengesandperspectives.
In:A.
Quarteroni,G.
Rozza(eds.
)ReducedOrderMethodsforModelingandComputationalReduction,Modeling,SimulationandApplications(MS&A),vol.
9,pp.
235–274.
SpringerInternationalPublishing,Switzerland(2014)162.
Lassila,T.
,Manzoni,A.
,Rozza,G.
:Ontheapproximationofstabilityfactorsforgeneralparametrizedpartialdifferentialequationswithatwo-levelafnedecomposition.
ESAIMMath.
ModellingNumer.
Anal.
46(6),1555–1576(2012)163.
Lassila,T.
,Rozza,G.
:Parametricfree-formshapedesignwithPDEmodelsandreducedbasismethod.
Comput.
MethodsAppl.
Mech.
Engrg.
199(23–24),1583–1592(2010)164.
Lee,J.
:Introductiontosmoothmanifolds,GraduateTextsinMathematics,vol.
218.
Springer,NewYork(2012)165.
Lieberman,C.
,Willcox,K.
,Ghattas,O.
:Parameterandstatemodelreductionforlarge-scalestatisticalinverseproblems.
SIAMJ.
Sci.
Comput.
32(5),2523–2542(2010)166.
Lions,J.
L.
,Magenes,E.
:QuelquesMethodesdesResolutiondesProblemesauxLimitesnonLineaires.
Dunod,Paris(1968)167.
Lohr,S.
L.
:Sampling:DesignandAnalysis,secondedn.
CengageLearning,Boston(2010)168.
Lvgren,A.
E.
,Maday,Y.
,Rnquist,E.
M.
:AreducedbasiselementmethodforthesteadyStokesproblem.
ESAIMMath.
ModellingNumer.
Anal.
40(3),529–552(2006)169.
Lvgren,A.
E.
,Maday,Y.
,Rnquist,E.
M.
:Thereducedbasiselementmethod:ofine-onlinedecompositioninthenonconforming,nonafnecase.
In:J.
S.
Hesthaven,E.
Rnquist(eds.
)SpectralandHighOrderMethodsforPartialDifferentialEquations.
SelectedpapersfromtheICOSAHOM'09conference,June22-26,Trondheim,Norway,LectureNotesinCompu-tationalScienceandEngineering,vol.
76,pp.
247–254.
Springer,BerlinHeidelberg(2011)170.
Lumley,J.
:Thestructureofinhomogeneousturbulentows.
In:A.
M.
Yaglom,V.
I.
Takarski(eds.
)AtmosphericTurbulenceandRadioWavePropagation,pp.
166–178.
Nauka,Moscow(1967)171.
Machiels,L.
,Maday,Y.
,Patera,A.
T.
:Outputboundsforreduced-orderapproximationsofellipticpartialdifferentialequations.
Comput.
Meth.
Appl.
Mech.
Engrg.
190(26-27),3413–3426(2001)172.
Maday,Y.
,Nguyen,N.
C.
,Patera,A.
T.
,Pau,G.
S.
H.
:Ageneralmultipurposeinterpolationprocedure:themagicpoints.
Commun.
PureAppl.
Anal.
8(1),383–404(2009)173.
Maday,Y.
,Patera,A.
,Penn,J.
,Yano,M.
:Aparametrized-backgrounddata-weakapproachtovariationaldataassimilation:formulation,analysis,andapplicationtoacoustics.
Int.
J.
Numer.
MethodsEngrg.
102,933–965(2015)174.
Maday,Y.
,Patera,A.
T.
,Turinici,G.
:APrioriconvergencetheoryforreduced-basisapprox-imationsofsingle-parameterellipticpartialdifferentialequations.
J.
Sci.
Comput.
17(1-4),437–446(2002)References289175.
Maday,Y.
,Patera,A.
T.
,Turinici,G.
:Globalaprioriconvergencetheoryforreduced-basisapproximationofsingle-parametersymmetriccoerciveellipticpartialdifferentialequations.
C.
R.
Acad.
Sci.
Paris,SerieI335(3),289–294(2002)176.
Maday,Y.
,Quarteroni,A.
:LegendreandChebyshevspectralapproximationsofBurgers'equation.
Numer.
Math.
37,321–332(1981)177.
Maday,Y.
,Rnquist,E.
M.
:Areduced-basiselementmethod.
J.
Sci.
Comput.
17,447–459(2002)178.
Maday,Y.
,Rnquist,E.
M.
:Thereducedbasiselementmethod:Applicationtoathermalnproblem.
SIAMJ.
Sci.
Comput.
26(1),240–258(2004)179.
Maday,Y.
,Stamm,B.
:Locallyadaptivegreedyapproximationsforanisotropicparameterreducedbasisspaces.
SIAMJ.
Sci.
Comput.
35(6),A2417A2441(2013)180.
Maday,Y.
,Tadmor,E.
:Analysisofthespectralvanishingviscositymethodforperiodiccon-servationlaws.
SIAMJ.
Numer.
Anal.
26(4),854–870(1989)181.
Manzoni,A.
:Reducedmodelsforoptimalcontrol,shapeoptimizationandinverseproblemsinhaemodynamics.
Ph.
D.
thesis,EcolePolytechniqueFederaledeLausanne(2012)182.
Manzoni,A.
:AnefcientcomputationalframeworkforreducedbasisapproximationandaposteriorierrorestimationofparametrizedNavier-Stokesows.
ESAIMMath.
ModellingNumer.
Anal.
48,1199–1226(2014)183.
Manzoni,A.
,Negri,F.
:HeuristicstrategiesfortheapproximationofstabilityfactorsinquadraticallynonlinearparametrizedPDEs.
Adv.
Comput.
Math.
(2015).
DOI10.
1007/s10444-015-9413-4.
Inpress184.
Manzoni,A.
,Pagani,S.
:AcertiedreducedbasismethodforPDE-constrainedparamet-ricoptimizationproblemsbyanadjoint-basedapproach.
Tech.
Rep.
15-2015,MATHICSEReport,EcolePolytechniqueFederaledeLausanne(2015).
Submitted185.
Manzoni,A.
,Quarteroni,A.
,Rozza,G.
:Modelreductiontechniquesforfastbloodowsimulationinparametrizedgeometries.
Int.
J.
Numer.
MethodsBiomed.
Engng.
28(6–7),604–625(2012)186.
Manzoni,A.
,Quarteroni,A.
,Rozza,G.
:Shapeoptimizationofcardiovasculargeometriesbyreducedbasismethodsandfree-formdeformationtechniques.
Int.
J.
Numer.
MethodsFluids70(5),646–670(2012)187.
Manzoni,A.
,Salmoiraghi,F.
,Heltai,L.
:Reducedbasisisogeometricmethods(RB-IGA)forthereal-timesimulationofpotentialowsaboutparametrizedNACAairfoils.
Comput.
Meth.
Appl.
Mech.
Engrg.
284,1147–1180(2015)188.
Melenk,J.
M.
:Onn-widthsforellipticproblems.
J.
Math.
Anal.
Appl.
247,272–289(2000)189.
Meyer,M.
,Matthies,H.
G.
:Efcientmodelreductioninnon-lineardynamicsusingtheKarhunen-Lo`eveexpansionanddual-weighted-residualmethods.
Comput.
Mech.
31(1-2),179–191(2003)190.
Milk,R.
,Rave,S.
,Schindler,F.
:pyMOR.
URL:http://pymor.
org/191.
Mirsky,L.
:Symmetricgaugefunctionsandunitarilyinvariantnorms.
Quart.
J.
Math.
11(1),50–59(1960)192.
Morin,P.
,Nochetto,R.
H.
,Siebert,K.
G.
:Convergenceofadaptiveniteelementmethods.
SIAMReview44(4),631–658(2002)193.
Nagy,D.
A.
:Modalrepresentationofgeometricallynonlinearbehaviourbytheniteelementmethod.
Comput.
Struct.
10,683–688(1979)194.
Necas,J.
:LesMethodesDirectesenTheoriedesEquationsElliptiques.
Masson,Paris(1967)195.
Negri,F.
,Manzoni,A.
,Rozza,G.
:ReducedbasisapproximationofparametrizedoptimalowcontrolproblemsfortheStokesequations.
Comput.
&Math.
withAppl.
69(4),319–336(2015)196.
Negri,F.
,Rozza,G.
,Manzoni,A.
,Quarteroni,A.
:Reducedbasismethodforparametrizedellipticoptimalcontrolproblems.
SIAMJ.
Sci.
Comput.
35(5),A2316–A2340(2013)197.
Nguyen,N.
C.
:Aposteriorierrorestimationandbasisadaptivityforreduced-basisapproxi-mationofnonafne-parametrizedlinearellipticpartialdifferentialequations.
J.
Comp.
Phys.
227,983–1006(2007)198.
Nguyen,N.
C.
,Rozza,G.
,Patera,A.
T.
:Reducedbasisapproximationandaposteriorierrorestimationforthetime-dependentviscousBurgers'equation.
Calcolo46(3),157–185(2009)290References199.
Nguyen,N.
C.
,Veroy,K.
,Patera,A.
T.
:Certiedreal-timesolutionofparametrizedpartialdifferentialequations.
In:S.
Yip(ed.
)HandbookofMaterialsModeling,pp.
1523–1558.
Springer,TheNetherlands(2005)200.
Nocedal,J.
,Wright,S.
J.
:NumericalOptimization,secondedn.
SpringerVerlag,NewYork(2006)201.
Noor,A.
:Recentadvancesinreductionmethodsfornonlinearproblems.
Comput.
Struct.
13,31–44(1981)202.
Noor,A.
K.
:Onmakinglargenonlinearproblemssmall.
Comput.
Meth.
Appl.
Mech.
Engrg.
34,955–985(1982)203.
Noor,A.
K.
,Peters,J.
M.
:Reducedbasistechniquefornonlinearanalysisofstructures.
AIAAJ.
18,455–462(1980)204.
Noor,A.
K.
,Peters,J.
M.
:Bifurcationandpost-bucklinganalysisoflaminatedcompositeplatesviareducedbasistechniques.
Comput.
Meth.
Appl.
Mech.
Engrg.
29,271–295(1981)205.
Oliveira,I.
B.
,Patera,A.
T.
:Reduced-basistechniquesforrapidreliableoptimizationofsys-temsdescribedbyafnelyparametrizedcoerciveellipticpartialdifferentialequations.
Op-tim.
Eng.
8,43–65(2007)206.
Pacciarini,P.
,Rozza,G.
:Stabilizedreducedbasismethodforparametrizedadvection-diffusionPDEs.
Comput.
Meth.
Appl.
Mech.
Engrg.
274(1),1–18(2014)207.
Patera,A.
:Aspectralelementmethodforuiddynamics:laminarowinachannelexpan-sion.
J.
Comput.
Phys.
54,468–488(1984)208.
Patera,A.
T.
,Rozza,G.
:ReducedBasisApproximationandAPosterioriErrorEstimationforParametrizedPartialDifferentialEquations.
ToappearinMITPappalardoGraduateMono-graphsinMechanicalEngineering(2007).
Version1.
0,cMassachusettsInstituteofTech-nology209.
Pearson,K.
:Onlinesandplanesofclosestttosystemsofpointsinspace.
PhilosophicalMagazine2,559–572(1901)210.
Peterson,J.
S.
:Thereducedbasismethodforincompressibleviscousowcalculations.
SIAMJ.
Sci.
Stat.
Comput.
10(4),777–786(1989)211.
Pinkus,A.
:n-WidthsinApproximationTheory.
Springer-Verlag,Ergebnisse(1985)212.
Pinnau,R.
:Modelreductionviaproperorthogonaldecomposition.
In:W.
H.
A.
Schilders,H.
A.
vanderVorst,J.
Rommes(eds.
)ModelOrderReduction:Theory,ResearchAspectsandApplications,MathematicsinIndustry,vol.
13,pp.
96–109.
Springer,BerlinHeidelberg(2008)213.
Porsching,T.
A.
:Estimationoftheerrorinthereducedbasismethodsolutionofnonlinearequations.
Math.
Comput.
45(172),487–496(1985)214.
Prud'homme,C.
,Rovas,D.
V.
,Veroy,K.
,Machiels,L.
,Maday,Y.
,Patera,A.
T.
,Turinici,G.
:Reliablereal-timesolutionofparametrizedpartialdifferentialequations:Reduced-basisoutputboundmethods.
J.
FluidEng.
124(1),70–80(2002)215.
Prud'homme,C.
,Rovas,D.
V.
,Veroy,K.
,Patera,A.
T.
:Amathematicalandcomputationalframeworkforreliablereal-timesolutionofparametrizedpartialdifferentialequations.
ESAIMMath.
ModellingNumer.
Anal.
36(5),747–771(2002)216.
Quarteroni,A.
:NumericalModelsforDifferentialProblems,Modeling,SimulationandAp-plications(MS&A),vol.
8,secondedn.
Springer-VerlagItalia,Milano(2014)217.
Quarteroni,A.
,Rozza,G.
:NumericalsolutionofparametrizedNavier-Stokesequationsbyreducedbasismethods.
Numer.
Meth.
PartialDifferentialEquations23(4),923–948(2007)218.
Quarteroni,A.
,Rozza,G.
(eds.
):ReducedOrderMethodsforModelingandComputationalReduction,Modeling,SimulationandApplications(MS&A),vol.
9.
SpringerInternationalPublishing,Switzerland(2014)219.
Quarteroni,A.
,Rozza,G.
,Manzoni,A.
:Certiedreducedbasisapproximationforparame-trizedpartialdifferentialequationsinindustrialapplications.
J.
Math.
Ind.
1(3)(2011)220.
Quarteroni,A.
,Rozza,G.
,Quaini,A.
:Reducedbasismethodsforoptimalcontrolofadvection-diffusionproblem.
In:W.
Fitzgibbon,R.
W.
Hoppe,J.
Periaux,O.
Pironneau,Y.
Vassilevski(eds.
)AdvancesinNumericalMathematics,pp.
193–216(2007)221.
Quarteroni,A.
,Sacco,R.
,Saleri,F.
:NumericalMathematics,secondedn.
Springer,NewYork(2007)References291222.
Quarteroni,A.
,Valli,A.
:NumericalApproximationofPartialDifferentialEquations,rstedn.
Springer-Verlag,Berlin-Heidelberg(1994)223.
Rathinam,M.
,Petzold,L.
R.
:Anewlookatproperorthogonaldecomposition.
SIAMJ.
Numer.
Anal.
41(5),1893–1925(2003)224.
Ravindran,S.
S.
:Areduced-orderapproachforoptimalcontrolofuidsusingproperorthog-onaldecomposition.
Int.
J.
Numer.
Meth.
Fluids34,425–448(2000)225.
Renardy,M.
,Rogers,R.
C.
:AnIntroductiontoPartialDifferentialEquations,vol.
13,secondedn.
Springer-Verlag,NewYork(2004)226.
Retherford,J.
R.
:Hilbertspace:CompactOperatorsandtheTraceTheorem.
CambridgeUniversityPress,Cambridge(1993)227.
Rivi`ere,B.
:DiscontinuousGalerkinMethodsforSolvingEllipticandParabolicEquations.
SocietyforIndustrialandAppliedMathematics,Philadelphia(2008)228.
Rovas,D.
:Reduced-basisoutputboundmethodsforparametrizedpartialdifferentialequa-tions.
Ph.
D.
thesis,MassachusettsInstituteofTechnology(2003)229.
Rozza,G.
:ReducedbasismethodsforStokesequationsindomainswithnon-afneparame-terdependence.
Comput.
Vis.
Sci.
12(1),23–35(2009)230.
Rozza,G.
,Huynh,D.
B.
P.
,Manzoni,A.
:ReducedbasisapproximationandaposteriorierrorestimationforStokesowsinparametrizedgeometries:rolesoftheinf-supstabilitycon-stants.
Numer.
Math.
125(1),115–152(2013)231.
Rozza,G.
,Huynh,D.
B.
P.
,Patera,A.
T.
:Reducedbasisapproximationandaposteriorierrorestimationforafnelyparametrizedellipticcoercivepartialdifferentialequations.
Arch.
Comput.
MethodsEngrg.
15,229–275(2008)232.
Rozza,G.
,Lassila,T.
,Manzoni,A.
:Reducedbasisapproximationforshapeoptimiza-tioninthermalowswithaparametrizedpolynomialgeometricmap.
In:J.
S.
Hesthaven,E.
Rnquist(eds.
)SpectralandHighOrderMethodsforPartialDifferentialEquations.
Se-lectedpapersfromtheICOSAHOM'09conference,June22-26,Trondheim,Norway,Lec-tureNotesinComputationalScienceandEngineering,vol.
76,pp.
307–315.
Springer,BerlinHeidelberg(2011)233.
Rozza,G.
,Veroy,K.
:OnthestabilityofreducedbasismethodsforStokesequationsinparametrizeddomains.
Comput.
Meth.
Appl.
Mech.
Engrg.
196(7),1244–1260(2007)234.
Rudin,W.
:PrinciplesofMathematicalAnalysis,thirdedn.
InternationalSeriesinPureandAppliedMathematics.
McGraw-Hill,Inc.
(1976)235.
Saad,Y.
:IterativeMethodsforSparseLinearSystems,secondedn.
SocietyforIndustrialandAppliedMathematics,Philadelphia(2003)236.
Salsa,S.
:PartialDifferentialEquationsinAction,Unitext,vol.
86,secondedn.
Springer-VerlagItalia,Milano(2015)237.
Santner,T.
J.
,Williams,B.
J.
,Notz,W.
:ThedesignandAnalysisofComputerExperiments.
Springer-Verlag,NewYork(2003)238.
Schilders,W.
H.
A.
:Introductiontomodelorderreduction.
In:W.
H.
A.
Schilders,H.
A.
vanderVorst,J.
Rommes(eds.
)ModelOrderReduction:Theory,ResearchAspectsandApplica-tions,,MathematicsinIndustry,vol.
13,pp.
3–32.
Springer,BerlinHeidelberg(2008)239.
Schmidt,E.
:Zurtheoriederlinearenundnichtlinearenintegralgleichungen.
Math.
Ann.
63(4),433–476(1907)240.
Sen,S.
:Reducedbasisapproximationandaposteriorierrorestimationfornon-coerciveel-lipticproblems:applicationtoacoustics.
Ph.
D.
thesis,MassachusettsInstituteofTechnology(2007)241.
Sen,S.
,Veroy,K.
,Huynh,D.
B.
P.
,Deparis,S.
,Nguyen,N.
C.
,Patera,A.
T.
:"Naturalnorm"aposteriorierrorestimatorsforreducedbasisapproximations.
J.
Comp.
Phys.
217(1),37–62(2006)242.
Sirovich,L.
:Turbulenceandthedynamicsofcoherentstructures,parti:Coherentstructures.
Quart.
Appl.
Math.
45(3),561–571(1987)243.
Sirovich,L.
:Analysisofturbulentowsbymeansoftheempiricaleigenfunctions.
FluidDynam.
Res.
8(1-4),85–100(1991)244.
Stewart,G.
W.
:Ontheearlyhistoryofthesingularvaluedecomposition.
SIAMreview35(4),551–566(1993)292References245.
Stewart,G.
W.
:Fredholm,Hilbert,Schmidt:threefundamentalpapersonintegralequations.
Translatedwithcommentary(2011).
URL:www.
cs.
umd.
edu/stewart/FHS.
pdf246.
Temam,R.
:Navier-StokesEquations.
AMSChelsea,Providence,RhodeIsland(2001)247.
Tonn,T.
,Urban,K.
,Volkwein,S.
:Optimalcontrolofparameter-dependentconvection-diffusionproblemsaroundrigidbodies.
SIAMJ.
Sci.
Comput.
32(3),1237–1260(2010)248.
Tonn,T.
,Urban,K.
,Volkwein,S.
:ComparisonofthereducedbasisandPODaposteriorierrorestimatorsforanellipticlinear-quadraticoptimalcontrolproblem.
Math.
Comput.
Model.
Dynam.
Syst.
17(4),355–369(2011)249.
Trefethen,L.
N.
:ApproximationTheoryandApproximationPractice.
SocietyforIndustrialandAppliedMathematics,Philadelphia(2013)250.
Trefethen,L.
N.
,Bau,D.
:NumericalLinearAlgebra.
SocietyforIndustrialandAppliedMathematics,Philadelphia(1997)251.
Tr¨oltzsch,F.
:Optimalcontrolofpartialdifferentialequations:theory,methodsandapplica-tions,GraduateStudiesinMathematics,vol.
112.
AmericanMathematicalSociety,Provi-dence(2010)252.
Tr¨oltzsch,F.
,Volkwein,S.
:PODa-posteriorierrorestimatesforlinear-quadraticoptimalcontrolproblems.
Comput.
Optim.
Appl.
44,83–115(2009)253.
Verf¨urth,R.
:AposterioriErrorEstimationTechniquesforFiniteElementMethods.
OxfordUniversityPress,Oxford(2013)254.
Veroy,K.
,Patera,A.
T.
:Certiedreal-timesolutionoftheparametrizedsteadyincompress-ibleNavier-Stokesequations:rigorousreduced-basisaposteriorierrorbounds.
Int.
J.
Numer.
Meth.
Fluids47,773–788(2005)255.
Veroy,K.
,Prud'homme,C.
,Rovas,D.
V.
,Patera,A.
T.
:Aposteriorierrorboundsforreducedbasisapproximationofparametrizednoncoerciveandnonlinearellipticpartialdifferentialequations.
In:Proceedingsofthe16thAIAAComputationalFluidDynamicsConference(2003).
Paper2003-3847256.
Volkwein,S.
:Properorthogonaldecomposition:Theoryandreduced-ordermod-elling.
URL:www.
math.
uni-konstanz.
de/numerik/personen/volkwein/teaching/POD-book.
pdf(2013).
LectureNotes,UniversityofKonstanz257.
Wang,Z.
,Akhtar,I.
,Borggaard,J.
T.
,Iliescu,T.
:Properorthogonaldecompositionclosuremodelsforturbulentows:Anumericalcomparison.
Comput.
Meth.
Appl.
Mech.
Engrg.
237–240,10–26(2012)258.
Weyl,H.
:Dasasymptotischeverteilungsgesetzdereigenwertelinearerpartiellerdifferen-tialgleichungen(miteineranwendungaufdietheoriederhohlraumstrahlung).
Math.
Ann.
71(4),441–479(1912)259.
Wirtz,D.
:KerMor.
URL:http://www.
ians.
uni-stuttgart.
de/MoRePaS/software/kermor/260.
Wirtz,D.
,Sorensen,D.
C.
,Haasdonk,B.
:APosterioriErrorEstimationforDEIMReducedNonlinearDynamicalSystems.
SIAMJ.
Sci.
Comput.
36(2),A311–A338(2014)261.
Xiao,D.
,Fang,F.
,Buchan,A.
G.
,Pain,C.
C.
,Navon,I.
M.
,Du,J.
,Hu,G.
:Non-linearmodelreductionfortheNavier-StokesequationsusingtheresidualDEIMmethod.
J.
Comp.
Phys.
263,1–18(2014)262.
Xiu,D.
,Hesthaven,J.
S.
:High-ordercollocationmethodsfordifferentialequationswithran-dominputs.
SIAMJ.
Sci.
Comput.
27(3),1118–1139(2005)263.
Xu,J.
,Xikatanov,L.
:SomeobservationonBabuˇskaandBrezzitheories.
Numer.
Math.
94(1),195–202(2003)264.
Yano,M.
:Aspace-timePetrov-Galerkincertiedreducedbasismethod:ApplicationtotheBoussinesqequations.
SIAMJ.
Sci.
Comput.
36(1),A232–A266(2014)265.
Yosida,K.
:FunctionalAnalysis.
Springer-Verlag,Berlin(1974)266.
Zahr,M.
J.
,Farhat,C.
:Progressiveconstructionofaparametricreduced-ordermodelforPDE-constrainedoptimization.
Int.
J.
Numer.
MethodsEngng.
102(5),1111–1135(2015)267.
Zeidler,E.
:NonlinearFunctionalAnalysisanditsApplications,vol.
I:Fixed-PointTheo-rems.
Springer-Verlag,NewYork(1985)268.
Zeidler,E.
:NonlinearFunctionalAnalysisanditsApplications,vol.
II/A:LinearMonotoneOperators.
Springer-Verlag,NewYork(1990)IndexAafneexpansion163parametricdependence7,8,52transformation157,162,175approximationfull-order1Galerkin24,31high-delity1,41low-rank117Petrov-Galerkin27Bbestapproximation96,118branchofnonsingularsolutions216Ccompliance47computeraideddesign179conditiondiscreteinf-sup27,32,187inf-sup16,18uniformellipticity20constantcoercivity14continuity14,228discretecoercivity26discretecontinuity31discreteinf-sup30Lebesgue278Sobolevembedding217,232,242controlvariable3convergence25DderivativeFrechet215,217,219,272Gateaux272inthesenseofdistributions273deviation96directsum79discrepancy96distribution273domain276original40,155reference40,155,161domaindecomposition179Eequationadvection-diffusion-reaction12,20,159,181equationslinearelasticity172linearelasticity12,22,184Navier-Stokes13,23,173,217,232Oseen243Stokes13,22,173,186erroraprioriestimate34approximation24errorestimateoptimal24,27,32errorestimatoraposteriori56effectivity59Ffactorcoercivity41continuity41stability41,46niteelementsLagrangianbasis34SpringerInternationalPublishingSwitzerland2016A.
Quarteroni,A.
Manzoni,F.
Negri,ReducedBasisMethodsforPartialDifferentialEqua-tions,UNITEXT–LaMatematicaperil3+292,DOI10.
1007/978-3-319-15431-2294Indexform267afne52bilinear14,267coercive14,41,267continuous14,40,267inf-supstable16,41nonafne167,205parametric52positive267stronglycoercive14symmetric15,267trilinear23,217weaklycoercive16free-formdeformation179full-ordermodelseehigh-delitymodelfunctioncompactsupport273functional266bounded267continuous14,265cost246linear14,266norm267objective246quadratic15,246GGalerkinorthogonality24,46Gram-Schmidtorthonormalization109,143greedyalgorithm8,142,143Hhigh-delitymodel1,41hpreducedbasis109hyper-reduction227Iimage266inequalityG¨arding17,21Korn35Poincare21,276interpolationChebyshev279Lagrange102,194,277Legendre279isogeometricanalysis179isomorphism267KKarhunen-Lo`evedecomposition123kernel266Kolmogorovn-width96,97,149,199LLagrangemultiplier250,257Lagrangiancharacteristicpolynomials277lemmaCea25Lax-Milgram15Strang206liftingfunction20,22,165linearprogram64Mmagicpoints195mapafne265linear265matrixcorrelation124inversegeneralized117Jacobian221,224,233,234Moore-Penrosegeneralizedinverse117,140stiffness25,42transformation6,54,75methodcollocation5,103,194descent249discreteempiricalinterpolation193,203,227empiricalinterpolation193,195,227niteelement33Galerkin24,76convergence25Gauss-Newton225generalizedGalerkin206gradient249least-squares77Newton220,221,225,232Petrov-Galerkin78projection-based6reducedbasis43EIM-G-RB205element179G-RB76,224LS-RB77,224,225nonlinearLS-RB225PG-RB78reducedbasis(RB)EIM-G-RB206stochasticcollocation194stronglyconsistent24successiveconstraint62Index295modelorderreduction1Nnodes34nonafneparametrization167problems167normenergy15,24Frobenius116,117Hilbert-Schmidt271normalequations77nullity266numberPeclet68Reynolds174Oofine/onlinestrategy7operator265adjoint270bounded265compact271continuous265discretesupremizer30niterank271Hilbertspaceadjoint270Hilbert-Schmidt129,271linear265projection79selfadjoint270semilinearelliptic218supremizer28,49,188,233trace276transpose270optimaltestspace28optimalitysystem257,258orthogonalcomplement268Pparameterset39parameterscontrol247geometric39physical39scenario247parametriccomplexity89,104parametrizedPDE1Piolatransformation171pointsequispaced278Gauss279Gauss-Lobatto279polynomialsChebyshev102,278Legendre102,278orthogonal104,278PrincipalComponentAnalysis123principalcomponentanalysis121problemreducedbasis(RB)6abstractvariational14adjoint250,251,259constrainedminimization19dataassimilation245forward2heattransfer3high-delity1,41identication3,245inverse3many-query4minimization15mixedvariational17optimalcontrol3,245optimaldesign3,245parametricoptimization247,248parametrized1,40parametrizedoptimalcontrol247,256PDE-contrainedoptimization245saddlepoint17stronglycoercive14variational15weaklycoercive16projection6projection-basedmethod5projector79oblique81orthogonal81properorthogonaldecomposition8,123basis124gappy204Rradialbasisfunction66,179range266rank266reducedbasiserrorestimator59functions44Galerkin45,76Hermite110Lagrange109least-squares48,77method2Petrov-Galerkin45,78296Indexsolution6,44space44Taylor110reduced-ordermodel2,45reduced-ordermodeling1residual6,58,76Rieszrepresentative30,48,269Rungephenomenon278Ssaddlepoint19sampletest69training69,143samplingfullfactorial135latinhypercube135random135sparsegrid135tensorial135scalarproductdiscrete73seminorm20,276sensitivityequations94,250sequentialquadraticprogramming251shapeoptimization3,246singularvaluedecomposition115singularvalues115singularvectors115snapshots2,5,43,124,143solutionmanifold87map87regular219,228set87spaceBanach267dual267Hilbert268ofdistributions273Sobolev274sparsegrid195stabilityestimate24,41stabilityfactor26,62,65,188,228interpolant65lowerbound62supportcompact273ofafunction273systemapproximation227TtheoremBabuˇska27Banachxed-point230,243Brezzi18,32ImplicitFunction93,216Kantorovich220,231Leray-Schauder217,218Neˇcas16orthogonalprojection268Riesz269Schmidt130Schmidt-Eckart-Young118spectral271trace276transformationPiola158,178Vvertices34
paypal贝宝可撸$10的代金券!这两天paypal出了活动,本次并没有其他的限制,只要注册国区的paypal,使用国内的手机号和62开头的银联卡,就可以获得10美元的代金券,这个代金券购买产品需要大于10.1美元,站长给大家推荐几个方式,可以白嫖一年的VPS,有需要的朋友可以看看比较简单。PayPal送10美元活动:点击直达活动sfz与绑定卡的号码可以重复用 注册的邮箱,手机号与绑的银联卡必须...
有一段时间没有分享Gcore(gcorelabs)的信息了,这是一家成立于2011年的国外主机商,总部位于卢森堡,主要提供VPS主机和独立服务器租用等,数据中心包括俄罗斯、美国、日本、韩国、新加坡、荷兰、中国(香港)等多个国家和地区的十几个机房,商家针对不同系列的产品分为不同管理系统,比如VPS(Hosting)、Cloud等都是独立的用户中心体系,部落分享的主要是商家的Hosting(Virtu...
今天上午有网友在群里聊到是不是有新注册域名的海外域名商家的优惠活动。如果我们并非一定要在国外注册域名的话,最近年中促销期间,国内的服务商优惠力度还是比较大的,以前我们可能较多选择海外域名商家注册域名在于海外商家便宜,如今这几年国内的商家价格也不贵的。比如在前一段时间有分享到几个商家的年中活动:1、DNSPOD域名欢购活动 - 提供域名抢购活动、DNS解析折扣、SSL证书活动2、难得再次关注新网商家...
5555tk.com为你推荐
沙滩捡12块石头价值近百万捡块石头价值一亿 奇石到底应该怎么定价京沪高铁上市首秀我能买京沪高铁股票吗商标注册流程及费用注册商标的流程是什么,大概需要多少费用?百度关键词分析怎样对关键词进行分析和选择8090lu.com《8090》节目有不有高清的在线观看网站啊?haokandianyingwang有什么好看的电影网站www.zhiboba.com看NBA直播的网站哪个知道www.jizzbo.comwww.toubai.com是什么网站175qq.comhttp://www.qq10008.com/这个网页是真的吗?汴京清谈汴京残梦怎么样
中国万网域名注册 长春域名注册 深圳主机租用 网通服务器ip 52测评网 bgp双线 北京双线 美国在线代理服务器 免费网页空间 流媒体加速 如何建立邮箱 视频服务器是什么 网购分享 西安服务器托管 石家庄服务器托管 乐视会员免费领取 phpwind论坛 apachetomcat 建站论坛 asp.net虚拟主机 更多