1.36fedora15

fedora15  时间:2021-04-01  阅读:()
arXiv:1110.
5229v1[hep-th]24Oct2011LMU-ASC51/11TUM-HEP818/11DESY-11-187LPSC-11220TheOrbifolder:ATooltostudytheLowEnergyEectiveTheoryofHeteroticOrbifoldsH.
P.
Nillesa,S.
Ramos-Sanchezb,P.
K.
S.
Vaudrevangec,d,e,A.
WingerterfaBetheCenterforTheoreticalPhysicsandPhysikalischesInstitutderUniversit¨atBonn,Nussallee12,53115Bonn,GermanybDepartmentofTheoreticalPhysics,PhysicsInstitute,UNAM,MexicoD.
F.
04510,MexicocDeutschesElektronen-SynchrotronDESY,Notkestrae85,22607Hamburg,GermanydPhysik-DepartmentT30,TechnischeUniversit¨atM¨unchen,James-Franck-Strae,85748Garching,GermanyeArnold-Sommerfeld-CenterforTheoreticalPhysics,Theresienstrae37,80333M¨unchen,GermanyfLaboratoiredePhysiqueSubatomiqueetdeCosmologie,UJFGrenoble1,CNRS/IN2P3,INPG,53AvenuedesMartyrs,F-38026Grenoble,FranceAbstractTheorbifolderisaprogramdevelopedinC++thatcomputesandanalyzesthelow-energyeectivetheoryofheteroticorbifoldcompactications.
Theprogramincludesroutinestocomputethemasslessspectrum,toidentifytheallowedcouplingsinthesuperpotential,toautomaticallygeneratelargesetsoforbifoldmodels,toidentifyphenomenologicallyinterestingmodels(e.
g.
MSSM-likemodels)andtoanalyzetheirvacuum-congurations.
Keywords:Orbifold,stringcompactication,extradimensions,particlespectrum,MSSMProgramSummaryProgramtitle:orbifolderProgramobtainablefrom:http://projects.
hepforge.
org/orbifolder/Distributionformat:tar.
gzProgramminglanguage:C++Computer:PersonalcomputerOperatingsystem:TestedonLinux(Fedora15,Ubuntu11,SuSE11)Wordsize:32bitsor64bitsExternalroutines:NoneDependencies:Boost,GSLTypicalrunningtime:Lessthanasecondpermodel.
Natureofproblem:Calculatingthelowenergyspectrumofheteroticorbifoldcompactications.
Solutionmethod:Quadraticequationsonalattice;representationtheory;polynomialalgebra.
PreprintsubmittedtoComputerPhysicsCommunicationsSeptember24,20181.
IntroductionStringtheoryisacandidateforaconsistentuniedquantumtheoryofgravityandgaugeinteractionsandcouldthusprovideuswithanultravioletcompletionformodelsofparticlephysics.
Thesearchfor4-dimensionalstringvacuaresemblingthestandardmodel(SM)(oritssupersymmetricextension(MSSM))isthereforeoneofthecentralquestionsinstringtheoryresearch.
Overtheyears,awidelandscapeof4-dimensionalstringmodelshasemergedanditremainstobeseenhowparticlephysicsphenomenacanbeincorporatedwithintheschemeofstringtheory.
Somehintspointtoaunicationofgaugecouplingswithintheframeworkofexceptionalgroups(ase.
g.
E8)butadirectroadfromstringstoparticlephysicshasnotyetbeenidentied.
Itisperhapsthetimetostepback,collectandclassifyexistingmodelconstructionsandtrytoidentifypropertiesrelevantforadescriptionofnature.
Herewepresentandanalyzeaspecicapproachthatwasstudiedalreadyinthe1980sandhasledtointerestingresultssincethen:orbifoldcompactication[1,2,3]oftheheteroticstrings[4,5].
Thereasonforthesuccessofthisapproachis"computability"pairedwithgeometricintuition.
Exacttoolsofconformaleldtheoryarehereatourdisposal[6,7]thatareusuallynotavailableinapproachesbasedoncompacticationonsmoothmanifolds.
Besides,inparticularE8*E8asagaugegroupallowsaperturbativeinclusionofthestandardmodelgaugegroup(aswellaspossiblygrandunication).
Atoroidalorbifoldisatwiththeexceptionofanumberofxedpointsorxedtori.
Itgivesrisetoapicturecalledtheheteroticbraneworldscenario[8,9,10]:eldscaneitherliveinthe10-dimensionalbulk(untwistedsector)orcanbelocalizedatthesexedpointsorxedtori(twistedsectors).
Therelativelocationoftheseeldsaswellasthelocalgaugestructuredeterminesmanypropertiesofthe4-dimensionalstringvacuaandisthesourceofgeometricintuitionformodelbuilding.
Theorbifoldpointisapointofenhancedsymmetries(inthemodulispaceofcompactication)andthosesymmetriesmightberelevantforadescriptionofnature.
Modelsofparticlephysicsseemtorequiremany(discrete)symmetries,e.
g.
avoursymmetriesorsymmetriestopreventtoofastprotondecay.
Someofthesesymmetriescouldbeslightlybrokentoprovideuswithsmallparametersrelevantforthedescriptionofhierarchiesase.
g.
observedinthespectrumofquarkandleptonmasses.
Thissupportsourhopethatorbifoldcompacticationisnotjustanapproximationwithincreased"computability",butthatitprovidesarealisticcompactication:naturemighthavechosentoliveclosetotheorbifoldpointwithenhancedsymmetries.
Explicitorbifoldmodelconstructionsinthelast5to10yearshavebeenextremelysuccessful[11,12,13,14](see[15,16]forearlierreviews).
Manyofthepropertiesofparticlephysicscanbeincorporatedinthescheme.
Thisincludesgrandunication,gauge-Yukawaunication,satisfactoryYukawatextures,solutionstothe-problem,thecreationofhierarchiesandasuccessfulincorporationofneutrinoMajoranamasses.
Discretesymmetriesareidentiedtosolvetheavourproblemandtoavoidtoofastprotondecay.
ThesepropertieshavebeenidentiedinthesocalledMinilandscape(basedontheZ6-IIorbifold)[17,18,19]andsubsequentwork[20,21,22,23,24,25,26,27,28,29,30,31,32,33].
Thesearchforsuchmodelsrequiresacomputerassistedscanthatincorporatestherulesforaconsistentstringtheoryconstruction(ase.
g.
modularinvariance).
Thepurposeofthisworkistomakethetoolsandtechniquesavailabletothepublic.
Wehopethatthiswillgivemorepeopletheopportunitytocontributetothisexcitingeldofmodelconstructions.
Wepresenttheorbifolder,aprogramdevelopedinC++thatallowsthecalculationofthelow-energyspectrumofheteroticorbifoldconstructions.
Theprogramincludesroutinestocomputethemasslessspec-trumandtoidentifytheallowedcouplingsofthesuperpotential.
Itallowstheconstructionofarbitraryorbifoldmodels,theidenticationofphenomenologicallyinterestingmodelsandaclassicationoftheirvacuumcongurations.
TheorbifoldercanbeconsideredinsomeaspectsasthestringyanalogofprogramssuchasSoftSusy,2SuSpectandSPheno:Thelatteraredevotedtothedetailedcomputationofparticlespectra,interactionsandphenomenologicalquantities,usingasinputahighscalesupersymmetricmodelandimposinglow-energyconstraints.
Analogously,theorbifoldertakesasastartingpointthe10Dheteroticstringsand,providedsomegeometricinputdescribingthefeaturesofthesixcompactieddimensions,computesthe(massless)spectrum,interactionsandsymmetriesoftheresultinglower-energyeective4Deldtheory.
AfterashortintroductiontoheteroticorbifoldcompacticationinSection2,weexplainhowtodown-loadandinstalltheC++programinSection3.
Section4discussestheexplicitrecipetoruntheprogram,whileinSection5weconcludeandgiveanoutlookforfutureresearch.
Technicaldetailsarerelegatedtotheappendicesandtothewebpage[39,§Complementarynotes].
2.
HeteroticOrbifoldCompacticationsInthissectionwegiveabriefintroductiontoheteroticorbifolds,inordertointroduceournotationandconventionsusedintheorbifolder.
Formoredetailsonorbifoldcompactications,werefertothereviews[15,16,11,13,14].
Inthecontextofheteroticstringcompactications,wedeneanorbifoldasthequotientofsix-dimen-sionalrealspace6dividedbytheso-calledspacegroupS,wherethequotientistakenusingtheequiva-lencerelationXgXforallg∈SandX∈6.
Morespecically,thespacegroupischosentoconsistoftwoparts:discreterotationsthatformtheso-calledpointgroupP.
Forsimplicity,wechoosePtobeAbelian.
ToobtainN=1supersymmetryin4D,PiseitherMorM*Ngeneratedbyrotationmatricesθandω,whereweuseω=1forM.
Thesematricescanberepresentedbyso-calledtwistvectorsv1andv2thatgivethethreerotationalphasesinthethreecomplexplanesandthesumoverallentriesintegertoensureN=1.
Forexample,v1=0,13,13,23andv2=0forthe3orbifold.
translationsgeneratedbythevectorseα∈6,forα=1,6.
Theyforma6DlatticedenotedbyΓandhencedeneasix-torus.
ElementsofPmustmapthelatticeΓtoitself.
Indetail,anelementofthespacegroupisoftheformg=θkωl,nαeα∈S,wherek,l∈,nα∈(orinsomecasesnα∈)andsummationoverα=1,6.
ItactsonX∈6asgX=θkωlX+nαeα.
Usingthesedenitions,wecandealwithall6DAbelianandtoroidalorbifoldsincludingthecasesofroto-translationsandfreelyactinginvolutions(seee.
g.
Ref.
[34]).
Duetomodularinvariance,thegeometricactionofthespacegroupShastobeembeddedintothegaugedegreesoffreedomoftheheteroticstring,denotedbyXI,I=1,16inthebosonicformulation.
Werestrictourselvestothecaseofshiftembedding,whereθ→V1,ω→V2andeα→Wαforα=1,6.
Then,theactionofSonX∈6inducesanactiononXIasgX=θkωlX+nαeαgXI=XI+kVI1+lVI2+nαWIα,(1)whereI=1,16.
ThevectorsV1,V2andWαarecalledshiftsandWilsonlines,respectively.
Theyareconstrainedbymodularinvariance[2,35,36],e.
g.
M(V21v21)=0mod2andNαW2α=0mod2,(2)whereMistheorderofMandNαtheorderofWα.
Thecombinedgroupformedbythespacegroupanditsactiononthegaugedegreesoffreedomiscalledtheorbifoldgroup.
3Fromamodel-buildingstandpoint,wehavenowintroducedalltheinputdatatodeneaheteroticorbifoldmodel:thespacegroupS(consistingofthepointgroupPandthelatticeΓ)anditsembeddingasshiftsV1,V2andWilsonlinesWα.
Weclosethissectionwithaverybriefsummaryoftheconstructionofmasslessspectraofheteroticorbifolds.
Giventheinputdata,onedistinguishesbetweentwokindsofclosed(andmassless)stringsontheorbifold:rstofallordinaryclosedstrings,alsocalleduntwistedstrings,beingtheremnantsofthe10dE8*E8orSO(32)vectormultipletandthegravitymultiplet.
Secondly,thereareclosedstringsfromthetwistedsectorswhichcloseonlyuptotheactionoftheorbifoldgroup.
Toconstructthem,oneneedstoidentifytheinequivalentnon-trivialspacegroupelementsastheconstructingelementsoftwistedstrings:i.
e.
forg∈SonecandeneatwistedboundaryconditionX(τ,σ+π)=gX(τ,σ)onthestringworld-sheet.
Then,usingstandardCFTtechniques,theequationsformasslessright-andleft-moverswithboundaryconditiongreadq+vg2212+δc=0andp+Vg22+N1+δc=0(3)wherepisfromtheE8*E8orSpin(32)/2weightlattice,qfromthevectororspinorweightlatticeofSO(8),δcdenotestheshiftinthezero-pointenergyandNthenumberoperatorofleft-movingoscillators.
Furthermore,wedenethelocaltwistvg=kv1+lv2andthelocalshiftVg=kV1+lV2+nαWα.
Inthenalstep,onebuildsmasslessstatesastensorproductsofmasslessright-andleft-moverssuchthattheyareinvariantunderthefullorbifoldaction,i.
e.
|q+vgR|p+VgLor|q+vgRα|p+VgL,(4)whereαdenotespossibleoscillatorexcitations.
Wedenetheshiftedmomentaqsh=q+vgandpsh=p+Vg,wherepshdescribesthetransformationpropertiesundergaugetransformations.
ThestatesEq.
(4)correspondtomasslesseldsofthe4Deectiveeldtheory.
Theycarrygaugecharges(frompsh),discreteRcharges,modularweights(fromqshandpossibleoscillatorexcitations)anddiscretenon-Rcharges(fromtheconstructingelementg∈S).
3.
DownloadandInstallationTheminimalrequirementsforcompilingtheorbifolderaretheBoostC++Librariesversion≥1.
0[37]andtheGNUScienticLibrary(GSL)version≥1.
9[38].
AllcomponentsshouldcomepreinstalledonastandardLinuxdistribution.
Ifthisshouldnotbethecase,theycaneasilybeinstalled.
Onayum-baseddistributionlikee.
g.
Fedora,thecommand"yum-yinstallgslgsl-develboostboost-devel"willinstallthecorrespondinglibraries(recommended).
Alternatively,onecanalsodirectlyinstallfromsourceorusetheotherdownloadoptionsavailable[37,38].
TheorbifolderisfreesoftwareunderthecopyleftoftheGNUGeneralPublicLicenseandcanbedownloadedfrom[39]:http://projects.
hepforge.
org/orbifolder/Toinstalltheprogram,downloadtheleorbifolder-1.
0.
tgztoadirectoryofyourchoice,openashellandenterthefollowingcommandsattheprompt:1tarxfvzorbifolder-1.
0.
tar.
gz2cdorbifolder-1.
03.
/configure44make5makeinstallNotethattheversionnumber"1.
0"maychangeovertimeandshouldbesubstitutedaccordingly.
Therstlineunpacksthetar-ballandcreatesasubdirectorystructurewiththesourcecode.
Thesecondlinechangestotheinstallationdirectory.
Thethirdlinestartsthecongurationscriptthatcheckssystemre-quirementsandgeneratestheMakefile.
Thefourthlinecompilesthecode,andnallythefthlineinstallsitonyoursystem.
Aftersuccessfulcompilationandinstallation,themainprogram(namedorbifolder)willbeavailableinthecurrentdirectory.
Wehavedisabledcustominstallationusingthe--prefixswitchinthecongurationscript.
Themainprogramorbifoldercansimplybecopiedtothedirectoryoftheuser'schoicebythestandardshellcommands.
DetailedinstallationinstructionscanalsobefoundintheREADMEleintheinstallationdirectoryandonthewebsite[39].
Wehavetestedtheinstallationprocessona32-bitsystemrunningLinuxUbuntu11.
04withBoost1.
42andGSL1.
14,a64-bitsystemrunningLinuxSuSE11withBoost1.
36andGSL1.
11,a64-bitsystemrunningLinuxFedora15withBoost1.
46andGSL1.
14,andascertainedthatourcodecompilescorrectly.
Shouldthereariseanyproblemsduringtheinstalla-tion,werequestthattheusersendustheleconfig.
logandtheoutputofthemakecommandbyemail(orbifolder@projects.
hepforge.
org).
4.
HowtoruntheprogramTherearethreemainwaystogainaccesstotheorbifolder:throughtheprompt,throughawebinter-faceanddirectlythroughtheC++sourcecode.
Inthefollowingwewillpresentthemindetail.
4.
1.
ThepromptTheorbifoldercanbecontrolledusingaLinux-stylecommandlinecalledtheprompt.
Thepromptoersaninteractiveaccesstoalmostallvariablesandfunctionsoftheorbifolder.
Ithasthestructureofalesystemwhereorbifoldmodelsappearasdirectories.
Inthefollowingweexplainhowtostartandusetheprompt.
4.
1.
1.
HowtogetstartedWebeginwithasmalltutorial,seeTab.
4intheadditionalmaterial[39,§Complementarynotes]forasampleinputandoutput.
Ingeneral,thepromptcanbestartedusingthecommand.
/orbifolderor.
/orbifolder[modelfile].
Intheformercase,nomodelisloadedautomatically.
Inthelattercase,thedetailsofamodelcontainedintheplain-text-basedmodelfileareloaded(FurtherpropertiesofmodellesareexplainedinSection4.
4.
2).
Asanexample,runtheprogramusingthecommand.
/orbifoldermodelZ3.
txt(5)withparametermodelZ3.
txtinordertoloadthestandardembeddingmodelofthe3orbifoldfromthisle.
Havingstartedtheprogram,oneentersthepromptinitsmaindirectory/>.
Thecommanddir(6)5listsallcommandsandsubdirectoriesofthecurrentdirectory.
Inourexample,thereisonesubdirectoryinthemaindirectory/>calledZ3StandardEmbeddingwhichcorrespondstothe3modelloaded.
Ingeneral,a(sub-)directoryAcanbeaccessedusingthecommandcdA.
Inourexample,cdZ3StandardEmbedding(7)resultsintheoutput/Z3StandardEmbedding>fromwhereonecanaccess,analyzeorchangethedetailsofthe3standardembeddingmodel.
Again,typeinthecommanddirtoseeallcommandsandsubdirectoriesofthecurrentdirectory.
Forallorbifoldmodeldirectoriestherearevesubdirectories,/model>,/gaugegroup>,/spectrum>,/couplings>and/vev-config>,(8)containingcommandsoftherespectivecategory:/model>:Printandchangetheinputdataofthecurrentorbifoldmodel.
SeeAppendixB.
2.
2.
/gaugegroup>:Printdetailsonthegaugegroup,changetheU(1)basisandndaccidentalU(1)symmetries.
SeeAppendixB.
2.
3.
/spectrum>:Printdetailsonthespectrumofmasslesselds.
SeeAppendixB.
2.
4.
/couplings>:Createandanalyzethesuperpotentialandtheresultingeectivemassmatrices.
SeeAppendixB.
2.
5.
/vev-config>:Deneandanalyzevariousvev-congurations.
SeeAppendixB.
2.
6.
Eachcongu-rationisspeciedbythedistinctionbetweenobservableandhiddensectorofthegaugegroupandtheassignmentoflabelsandvacuumexpectationvaluestotheelds(labelsareassignedinasubdirectorycalled/labels>,seeAppendixB.
2.
7).
Again,onecanaccessthesedirectoriesusingthecdcommand.
Forexample,trycdgaugegrouptoenterthesubdirectory/gaugegroup>andusethecommandsprintgaugegroupandprintsimplerootstoseethegaugegroup(E6*SU(3)*E8)and(achoiceof)thecorrespondingsimpleroots.
Inordertogobackonedirectoryoneusesthecommandcd.
.
attheprompt.
Next,trythesubdirectory/spectrum>andusethecommandprintsummarytogetasummarytableofallmasslessmatterelds.
Thecommandcdisusedtogobacktothemaindirectory/>.
FurtherstandardcommandsofthepromptaredescribedinTab.
1;seealsoAppendixBforaglossaryofcommands.
commanddescriptiondirdisplaycommandsandsubdirectoriesofthecurrentdirectorycdAchangethecurrentdirectorytoA(ifAexists)cd.
.
gobackonedirectorycdgobacktothemaindirectory/>exitexittheprogramifnoprocessisrunning;usetheparameterorbifoldertoenforceexit(alsoinsideascript)Table1:Somestandardcommandsintheprompt.
64.
1.
2.
HowtocreateneworbifoldmodelsBeinginthemaindirectory/>ofthepromptneworbifoldmodelscanbeaccessedbasicallyinthreeways:loadorbifolds(Filename):Loadorbifoldmodelsfromamodelle.
Forexample,loadthe6–IIorbifoldMSSMof[40]usingthecommandloadorbifolds(modelBHLR.
txt).
createorbifold(A)withpointgroup(M,N):CreateaMorM*NorbifoldnamedAbyspec-ifyingMandN(setN=1forM).
AfterenteringthenewdirectoryusingcdA,oneisaskedtospecifymoredetailsonthemodellikeshiftsandWilsonlines,seeAppendixB.
2.
2.
createrandomorbifoldfrom(A).
Seebelow.
Orbifoldmodelscanbecreatedrandomlybyusingthecommandcreaterandomorbifoldfrom(A)(9)inthemaindirectory/>.
TheparameterAmustbeeitherthenameofanexisting(loadedorpreviouslycreated)orbifoldmodelor*foranyexistingorbifoldmodelintheorbifolder.
Thecommandstartsanewprocessthatrunsinthebackgroundsothatonecancontinuetoworkwiththeprompt(seeAppendixB.
1.
5formoredetailsonprocesses).
Onecanspecifyseveraloptionalparameters:if(.
.
.
):Specifythedesiredpropertiesofthemodel:inequivalentinordertochooseonlymod-elswithinequivalentspectraandSM,PSorSU5formodelswitha(net)numberofXgenerationsofStandardModel(SM),Pati-Salam(PS)orSU(5)gaugegroupplusvector-likeexotics,whereXis3bydefaultandcanbechangedusingtheparameterXgenerations;c.
f.
thecommandanalyzeconfiginAppendixB.
2.
6.
saveto(Filename):Savethemodelswiththedesiredpropertiestoamodelle.
use(1,1,0,1,.
.
.
):EightdigitsfortwoshiftsplussixWilsonlines;either1ifthecorrespondingshift/WilsonlineshallbetakenfrommodelA,or0ifitshallbecreatedrandomly.
#models(X):Denehowmanymodels(withthedesiredproperties,ifspecied)shallbecreatedrandomly.
Use#models(all)tocreateasmanymodelsaspossible.
If#models(X)isnotused,onlyonemodelshallbecreated.
printinfo:Printashortsummaryofthespectrumimmediatelywhenanewmodelwiththedesiredpropertieshasbeenfound.
loadwhendone:Loadthecreatedmodelsintotheorbifolderaftertheprocesshasnished.
donotcheckanomalies:Usethisparametertospeeduptheprocess.
compare#couplingsoforder(X):Ifonlyinequivalentmodelsaresaved,thisparameterrenesthecomparisonbetweentwomodels:compareinadditionthenumberofallsuperpotentialcouplingsuptothespeciedorderX.
Slowsdowntheprocessconsiderably.
7Examples.
Atypicalexampleofhowtousethiscommandlookslikecreaterandomorbifoldfrom(Z3StandardEmbedding)if(inequivalent)(10)saveto(Z3NewModels.
txt)use(1,1,0,0,0,0,0,0)#models(10)printinfoexecutedfromthemaindirectory/>.
Inthiscaseanewprocessisstartedthatconstructsnew3orbifoldmodelsusingbothshifts(i.
e.
V2=0)butnoWilsonlinesfrommodelZ3StandardEmbedding,savesonlyinequivalentmodelstoamodellenamedZ3NewModels.
txt,printsabriefsummaryofeachnewmodelandstopsaftercreatingteninequivalentmodels.
Inasecondexample,tenrandommodelsofSM(StandardModel)typearecreatedstartingfromthe6–IIorbifoldMSSMof[40]byusingthecommandcreaterandomorbifoldfrom(Z6IIOrbifoldBHLR)if(inequivalentSM)(11)saveto(Z6IINewMSSMModels.
txt)use(1,1,1,1,1,1,0,0)#models(10)printinfoloadwhendoneinthemaindirectory/>.
Theparameteruse(1,1,1,1,1,1,0,0)speciesthatonlytheWilsonlinesW5andW6arecreatedrandomly,i.
e.
theshiftsandotherWilsonlinesaretakenfromtheoriginalmodel.
Furthermore,onlyinequivalentstandardmodels(SM)areprinted,savedtoleZ6IINewMSSMModels.
txtandnallyloadedintotheorbifolderaftertheprocesshasnished.
NotethattheseMSSMmodelsshouldbepartoftheMini-Landscape[17,19].
4.
2.
ThewebinterfaceTheorbifoldercanalsobeaccessedthroughauser-friendlywebinterface.
Theorbifolderon-linemakesextensiveuseofthepromptexplainedinSection4.
1renderingitavailabletoanyuserwithaccesstoaninternetbrowser,suchasMozillaFirefoxversion≥3.
6,GoogleChromeversion≥2.
1,andInternetExplorer≥8.
0.
Consequently,theprogramisalsoavailabletousersofallkindsofsmartphones.
Oneoftheadvantagesofthewebinterfaceisthatonedoesnotneedtoinstallanyprogramonthelocalcomputertobeabletousemostofthefunctionsoftheorbifolder.
Anotheradvantageisthatitcanbeexecutedfromplatformsthatworkwiththemostpopularoperatingsystems(withoutfurtherauxiliaryapplications):Windows,LinuxandMac.
Onthelessbrightside,oneshortcomingofthisversionisthatitisnotrecommendedtoexecutetime-consuminginstructionssinceshortinterruptionsintheinternetservicemayaecttheresults.
Furthermore,acommandrunningduringmorethan60minutesisdisabledautomaticallytoavoidoverloadoftheserver.
Finally,forsecurityreasons,commandsinvolvinglemanipulationareextremelylimited.
Specically,theparametersandcommands@begin/@endprinttofile(Filename),saveto(Filename),load/savecouplings(Filename),load/savelabels(Filename)aredisabled.
Theorbifolderon-linecanbeusedonourmainpage[39]http://projects.
hepforge.
org/orbifolder/whichredirectstoanyofourmirrorservers.
Togainaccess,youmustclickonthelinkorbifolderon-line.
Thisstartsanorbifoldersessionontheselectedserver.
Thenewpageconsistsofthreeparts:History:Theresultofthelatestinstructionsisshown.
ThebuttondownloadhistoryprovidesanRTFlecontainingthefullhistory,i.
e.
notonlytheresultofthelatestinstructions,buttheresultofallthecommandsusedduringthecurrentsession.
Theusercanresizethiswindow.
ListofCommands:Thisistheinputarea,wherethecommandsofthepromptaretyped.
Toexecutethem,itisnecessarytoclickonthebuttonexecutecommands.
Anadditionalhelpinthissectionisthe8buttonuploadcommands.
Thisbuttoncanbeusedwhenles(notlargerthan100Kb)inplain-textfor-matcontaining(listsof)admissiblecommandshavebeenprepared.
ThebuttondownloadcommandsprovidesanRTFlecontainingthelistofallthecommandstypedduringtheactiveorbifoldersession.
ListsofusefulcommandsandtheiruseisprovidedinSection4.
1andAppendixB.
Help:Thebottompartcontainsalistofallavailablecommandsforthecurrentdirectory.
Eachcommandinthedisplayedlistisalinktoamoreprecisedescriptionofitsuse.
Toterminateanorbifolderon-linesession,itsucestoclickontheupperbuttonEXIT.
Thebuttonsprovidedontheresultingpageallowtheusertodownloadthefullhistoryofthecurrentsessionandthecompletelistofsuccessfullyexecutedcommands.
Occasionally,errorsintheinputdatamaycausetheorbifoldertocrash.
Inthosecases,thewebinterfaceshallcloseyoursession,givingyoutheopportunitytodownloadthelistofinstructions(buttondownloadcommands)tobeusedifyourestarttheorbifolder.
Please,makesurethatthedownloadedlistofcommandsdoesnotcontaintheinstructionsthatledtothefailureoftheprogram.
Weencourageuserstocontacttheauthorsreportinganyfailureintheprogram,preferablybyusingthelinkcontactusonthemainpageofthewebinterface.
4.
3.
TheC++sourcecodeTheorbifolderiswritteninC++,distributedoverseveralles.
Manyphysicalquantities,asbrieyintroducedinSection2,havebeenencapsulatedintoclasses,forexampleCSpaceGroupforthespacegroupSandCSpaceGroupElementforitselementsg∈S,CTwistVectorforthetwistsviandCShiftVectorforthecorrespondingshiftsVi,CWilsonLinesforthesetofsixWilsonlinesWα,COrbifoldGroupfortheorbifoldgroup,CMasslessHalfStateforndingmasslessleft-andright-movers,i.
e.
solutionstoEq.
(3),CHalfStatefortheweightsofCMasslessHalfStatesortedwithrespecttotheirtransformationprop-ertiesundertheelementsofthecentralizer,CStatefororbifold-invarianttensorproductsofmasslessleft-andright-movers,seeEq.
(4),COrbifoldforthefullorbifoldcompactication,CFieldforaeldoftheeective4-dimensionaltheory,CMonomialfor(gaugeinvariant)monomialsofeldscorrespondingtoD=0solutions,andmanymore.
Inadditiontherearetechnicalclasses.
Forexample,thereareseveralclassesdevotedtogrouptheory(likedynkin,freudenthal,gaugeGroupFactorandgaugeGroup),theclassCAnalyseModelcontainsfunctionstoanalyzemodelsfortheirphenomenologicalproperties,theclassCPrintcontainsallprintingcommandsandtheclassCPromptcontainsthesourcecodeoftheprompt.
Asthereareintotalmorethan40classeswecannotexplainthemindetailhere.
WegivefurtherdetailsofsomeofthemoreimportantclassesinAppendixAandashortexampleprograminAppendixA.
1.
94.
4.
FilesdeninganorbifoldmodelTherearetwolesthatdeneanorbifoldmodel:i)Thegeometrylecontains,asthenamesuggests,thegeometricalinformationabouttheorbifold,suchasthespacegroup,andii)themodellecontainsshiftsandWilsonlines,i.
e.
theactionoftheorbifoldonthegaugesectoroftheheteroticstring.
Inthefollowingwegivesomemoredetails.
Examplesaregivenintheadditionalmaterial[39,§Complementarynotes].
4.
4.
1.
ThegeometryleThegeometrylebasicallycontainsinformationaboutthespacegroup,i.
e.
theorderofthetwist(s),thesixlatticevectorsofΓandthegeneratorsofthespacegroup,thediscrete(Randnon-R)symmetriesoftheorbifold(importantforthecomputationofallowedsuperpotentialcouplings),theinequivalentxedpointsspeciedbytheirconstructingelementsθkωl,nαeαandforeachconstructingelementalistofcentralizerelements,i.
e.
elementsh∈Swith[h,g]=0.
Wegivetwoexamplesintheadditionalmaterial[39,§Complementarynotes]:Tab.
1givesadetaileddescriptionofageometryleusingthe3exampleandTab.
2explainshowtocreateanewgeometryleof,forexample,model(1-3)ofRef.
[34].
4.
4.
2.
ThemodelleThemodellecontainsalistoforbifoldmodels,whereeachmodelisspeciedbythenameofthemodel(willbeusedasthenameofthecorrespondingdirectoryintheprompt),thenameofthegeometryle,thetypeofheteroticstring(i.
e.
Spin(32)/2orE8*E8),twoshiftsV1,V2(wheretheV2=0forMorbifolds),sixWilsonlinesWα,optionally,theparametersof(generalized)discretetorsiona,bα,cαanddαβasdenedinRef.
[36],optionally,someoftheU(1)generators,optionally,onecanspecifyascriptthatisexecutedautomaticallyafterthemodelhasbeenloaded.
Anexampleforthecaseofa3orbifoldwithstandardembeddingisgivenintheadditionalmaterial[39,§Complementarynotes].
105.
ConclusionsandoutlookWiththetoolsprovidedhereitshouldbepossibletothoroughlyinvestigatethelandscape(inparticulartheMSSM-likelandscape)oforbifoldcompacticationoftheheteroticstring.
This"heteroticbraneworld"providesacoherentgeometricpictureofMSSM-likemodels.
Crucialpropertiesoftheschemedependonthegeographyofeldsinextradimensions.
Thisleadstotheconceptof"LocalGrandUnication"andageometricunderstandingofe.
g.
Yukawacouplings,the-term,neutrinomassesandprotondecay.
Detailedpropertiesofmodelscanbecomputedreliablywithinthecontextofconformaleldtheory.
Themodelsconstructedhereshouldbecompared(andpossiblyrelated)tootherregionsoftheMSSM-likelandscape,ase.
g.
fermionicformulations[41,42,43],tensoringofconformedeldtheories[44],smoothcompacticationsoftheheteroticstring[45,46,47,48,49,50],typeII(intersecting)brane-models[51,52,53,54,55],M-andF-theoryconstructions[56,57,58,59,60,61,62].
Itwouldbeinterestingtoidentifysimilaritiesanddierencesofthecorrespondingschemes.
Allthesecasesrelyona(sometimeshidden)geometricinterpretationthatdenesthepropertiesofthemodelssuchastheappear-anceofgrandunication,valuesofYukawa-couplingsandtheexistenceofhierarchies.
Oneoftheimportantobservationsintheframeworkoftheheteroticbraneworldconcernsthecrucialroleplayedbydiscrete(gauge)symmetries.
Theyariseasremnantsofthegaugesymmetryaswellassym-metriesduetothespeciallocationofeldsinextradimensions.
Theycontrolpropertiesofthescheme,ase.
g.
avoruniversalityandthequestionofprotonstability.
Attheorbifoldpointweencounteranen-hancementofdiscretesymmetriesandparticlespectra.
Thesesymmetriesareabasicingredientofmodelbuilding.
Slightlybroken,theymightgiveusanexplanationfortheappearanceofhierarchiesinparticlephysics(ase.
g.
theratioofYukawacouplings).
Attheorbifoldpointwecanrelyonexactconformaleldtheorytechniquesthatcouldbeusefultounderstandtheblow-upprocedure[6,7,63,64,65,30,66]oforbifoldsingularitiesinacontrolledwayandthusconnecttosmoothcompactications.
WithabetterknowledgeoftheMSSM-landscapewemighthopetorelatethevariousconstructionsandimprovethecalculationalpowerinthosemodelswherewestillhavetorelyonaneectivelow-energysupergravityand/orlargevolumeapproximation.
Thefutureoftheeldrequiresreliablecalculationaltools(ase.
g.
conformedeldtheorytechniques)whichareuptonowonlyapplicableinsomecornersofthelandscape.
Butwemightbeluckyandnaturemighthavechosentoliveclosetosuchacorner.
AcknowledgmentsWewouldliketothankMichaelBlaszczyk,NanaGeraldineCaboBizet,StefanF¨orste,DavidGrell-scheid,TomaˇsJeˇzo,StefanGrootNibbelink,MichaelRatz,FabianR¨uhleandJesusTorrado-Cachoforusefuldiscussions.
P.
V.
wouldliketothankLMUExcellentforsupport.
ThismaterialispartlybaseduponworkdoneattheAspenCenterforPhysicsandsupportedbytheNationalScienceFoundationunderGrantNo.
1066293.
ThisresearchwassupportedbytheDFGclusterofexcellenceOriginandStruc-tureoftheUniverse,theSFB-TransregioTR33"TheDarkUniverse"andTR27"NeutrinosandBeyond"(DeutscheForschungsgemeinschaft)andtheEuropeanUnion7thnetworkprogram"UnicationintheLHCera"(PITN-GA-2009-237920).
S.
R-S.
waspartiallysupportedbyCONACyTproject82291andDGAPAprojectIA101811.
11AppendixA.
GlossaryofrelevantclassesTheorbifoldermakesextensiveuseoftheclassstructureoeredbyC++.
Theinformationofanorbifoldmodelisdistributedaccordingtothefollowingclasses.
ClassCAnalyseModel.
TheclassCAnalyseModelcontainsseveralfunctionsthatanalyzethephenomenol-ogyoforbifoldmodels,mainlyforthecasesoftheStandardModel,PatiSalamorSU(5)gaugegroup.
ClassCField.
ACFieldobjectcontainsallphysicalinformationaboutamasslesseld,suchastherep-resentation,theU(1)charges,theqshcharges,thelocalizationanditsvev.
Inaddition,itcontainsalistofindiceswhichspecifyitsweightspsh(storedinthemembervariablevectorWeightsoftheassociatedCMasslessHalfStateobject).
ClassCFixedBrane.
ACFixedBraneobjectcontainsallinformationaboutall(untwistedortwisted)stringswithconstructingelementg=θkωl,nαeα∈S.
Theleft-movingpartofthestringiscomputedusingthelocalshiftVg=kV1+lV2+nαWα.
Hence,thesolutionsoftheequationformasslessleft-movers,Eq.
(3),arestoredhereinavectorofCMasslessHalfStateobjects,oneentryforeachdierentchoiceofoscillatorexcitation.
Afterthemasslesssolutionshavebeenidentied,theyaresortedwithrespecttotheircentralizereigenvaluesandstoredinacorrespondingvectorofCHalfStateobjects(oneentryforeachdierentchoiceofNwithdierenteigenvalues).
Inthelaststep,themasslessright-movingCHalfStateobjectsfromCSectoraretensoredtogetherwiththemasslessleft-movingCHalfStateobjectsstoredheretoformorbifold-invariantstringstates.
ThesestatesarestoredinvectorInvariantStates.
ClassCHalfState.
ACHalfStateobjectdescendsfromaCMasslessHalfStateobjectbysortingthemass-lesssolutions(i.
e.
theweightsqshorpshforright-orleft-movers)withrespecttotheircentralizer-eigenvalues.
Theindicesoftheweights(aslistedinvectorWeightsofthecorrespondingCMasslessHalfStateobject)havingthesameeigenvaluesvectorEigenvaluesarestoredinvectorWeights.
ClassCMasslessHalfState.
ACMasslessHalfStateobjectstoresthesolutionsoftheequationformass-lessright-orleft-movers,respectively,seeEq.
(3).
TheconstructorCMasslessHalfState(MoversTypeType,constSOscillatorExcitation&Excitation)needstwoparameters:therstparameterMovers-TypecanbeeitherLeftMoverorRightMoverandthesecondonespeciestheoscillatorexcitation.
Then,onecancallthememberfunctionboolSolveMassEquation(constCVector&constructingElement,constSelfDualLattice&Lattice)tocreatethesolutionsofEq.
(3),whereconstructingElementde-notesthelocaltwistvgorthelocalshiftVgandSelfDualLatticecanbeeitherE8xE8,Spin32orSO8.
ThesolutionsarestoredinvectorWeights.
ClassCOrbifold.
ACOrbifoldobjectcontainsallinformationaboutasingleorbifoldcompactication.
ThemainmembervariableisvectorSectors,i.
e.
avectorofMtimesNCSectorobjects,oneforeachsectorofaM*Norbifold.
Therstelementcorrespondstotheuntwistedsectorandtheresttothevarioustwistedsectors.
ClassCOrbifoldGroup.
ACOrbifoldGroupobjectbasicallycontainsthespacegroupanditsgaugeembed-dingasobjectsofclassCSpaceGroup,CShiftVectorandCWilsonLines.
Furthermore,itcontainsavectorofallinequivalentconstructingelements(vector)andacorrespondingvectorofcentralizerelements(vector>).
12ClassCPrint.
TheCPrintclasscontainsallprintingcommands.
FortheconstructorCPrint(OutputTypeoutputtype,ostream*out)oneneedstospecifytheOutputType,beingeitherTstandard,Tmathematica,orTlatex,andaostreamobjecttosetthedestinationoftheoutput,eithertothescreenusing&coutortoaleusinganofstreamobject.
ClassCSector.
ACSectorobjectcontainsallinformationaboutanuntwistedortwistedsector.
Itismainlyspeciedbythelocaltwistvg(orinotherwordsbykandlsincevg=kv1+lv2).
Astheoscillatorexcitationsandtheright-movingpartofthestringonlydependonthelocaltwist,seeEq.
(3),theyareidenticalforallstringsfromagivensector.
Hence,thisdataisstoredinCSector.
ClassCSpaceGroup.
ACSpaceGroupobjectcontainsthedetailsaboutthespacegroupofanorbifoldmodel,asexplainedinSection2.
AllconstructingandcentralizerelementsarestoredinCSpaceGroupElementobjects.
Additionally,itincludesthegeometricalinformationofthecompactspace,suchasthe6Dlattice,itssymmetriesandtheorderoftheassociatedWilsonlines.
ClassCState.
ACStateobjectisbasicallyanorbifold-invariantcombinationofamasslessright-movingCHalfStateobjectandamasslessleft-movingCHalfStateobject.
AppendixA.
1.
ExamplesourcecodeWepresentasampleprogramthatcomputesandanalyzesthespectrumofthe6–IIorbifoldmodelof[9].
Inthesourcecodedistribution,thecorrespondingleissrc/examples/samplemain01.
cpp.
1#include2#include"cprompt.
h"3usingnamespacestd;45intmain(intargc,char*argv[])6{7ifstreamin("modelKRZ_A1.
txt");8if((!
in.
is_open(in.
good()))9exit(1);1011CPrintPrint(Tstandard,&cout);12stringProgramFilename="";1314COrbifoldGroupOrbifoldGroup;15if(OrbifoldGroup.
LoadOrbifoldGroup(in,ProgramFilename))//loadfromfile16{17coutModelfile\"modelKRZ_A1.
txt\"loaded.
"Orbifold\"KRZ_A1\"created.
\n"PrintshiftandWilsonlines:"Printspectrum,firstwithandthenwithoutU(1)charges:"Analyzemodel:"AllVEVConfigs;34boolSM=true;//lookforSM35boolPS=true;//lookforPSmodels36boolSU5=true;//lookforSU(5)models37//analyzetheconfiguration"KRZ_A1.
StandardConfig"of"KRZ_A1"38//andsavetheresultto"AllVEVConfigs"39CAnalyseModelAnalyze;40Analyze.
AnalyseModel(KRZ_A1,KRZ_A1.
StandardConfig,SM,PS,SU5,41AllVEVConfigs,Print);42if(SM||PS||SU5)//ifoneofthethreepossibilitiesistrue43{44coutModelhas3generationsplusvector-likeexotics:",seeAppendixB.
2.
7.
Notethatinagivenvev-congurationonecandeneseverallabelsforeacheld.
Finally,inmathematicatypesetting,forexample,thelabelq1isdisplayedasfldq1.
AppendixB.
1.
2.
SetsofeldsOnecanaccessseveraleldssimultaneouslynotonlybytheireldlabelsbutalsousingsetsofelds.
Thesesetsarestoredinthecurrentlyusedvev-congurationoftheorbifoldmodel.
(Consequently,onecannotaccessasetinadierentvev-congurationthanintheonewhereitwascreated.
)Formoredetailsonvacua,seeAppendixB.
2.
6.
Notethatsetsareonthesamefootingaseldlabels1.
I.
e.
onecanbuildintersectionslike:A-BfortheintersectionoftwosetsAandB,*-Afortheintersectionofallelds*andasetA,A-qfortheintersectionofasetAandalleldsofnameqorq-AfortheintersectionofalleldsofnameqandasetA.
Thecommandstocreateandmanipulatesetsaredisplayedinanyorbifoldmodeldirectoryofthepromptusingthecommandhelpsets.
(B.
1)Thecommandsare:Commandcreateset(SetLabel).
CreateanemptysetwithnameSetLabelandsaveitinthecurrentlyusedvev-conguration.
Optionally,thiscommandallowsfortheparametersfrommonomialsorfrommonomial(MonomialLabel)inwhichcasealleldsfromeitherallmonomialsoronlyfrommonomialMonomialLabelwillbeinsertedintothenewset.
SeeAppendixB.
1.
3formoredetailsonmonomials.
Commanddeleteset(SetLabel).
DeletethesetSetLabelofthecurrentlyusedvev-conguration.
Commanddeletesets.
Deleteallsetsofthecurrentlyusedvev-conguration.
Commandinsert(fields)intoset(SetLabel).
InsertfieldsintothesetSetLabel.
Optionally,theparameterif(condition)canbeusedtoinsertonlythosefieldsintothesetSetLabelthatsatisfythecondition.
Fordetailsonif(condition)seeAppendixB.
1.
4.
1Both,eldsandsetsofelds,willbedenotedasfieldsintheexplanationsofthefollowingsections.
15commanddescriptioncreateset(Test)createanemptysetnamedTestinsert(F1F2F3F4F5)intoset(Test)insertFi,i=1,5intothesetTestremove(*)fromset(Test)if(#osci.
!
=0)removeeldswithnon-zeronumberoperatorN(i.
e.
F5)printsetsprintallsetsTableB.
2:Shortexamplefortheuseofset-commandsinthedirectory/Z3StandardEmbedding>ofthe3standardembeddingmodel(usingthestandardlabelsFiofthevev-congurationTestConfig1).
Commandprintset(SetLabel).
PrintthecontentofthesetSetLabel.
Commandprintsets.
Printallsetsdenedinthecurrentlyusedvev-conguration.
Onecanusetheoptionalparameterifnotemptytoprintonlythenon-emptysets.
Commandremove(fields)fromset(SetLabel).
RemovefieldsfromthesetSetLabel.
Optionally,theparameterif(condition)canbeusedtoremoveonlythoseeldsthatsatisfythecondition.
Command#fieldsinset(SetLabel).
CountthenumberofeldsinthesetSetLabel.
AshortexampleshowingsomeofthebasiccommandsforsetsisgiveninTab.
B.
2.
AppendixB.
1.
3.
Gaugeinvariantmonomials(Holomorphic)gaugeinvariantmonomials(short:monomials)areusedtodescribesolutionstotheD=0supersymmetrycondition[67,68,69,70].
A(sub-)setofsolutionscanbefoundusingthecommandfindD-flat(fields)describedinAppendixB.
2.
6.
Moredetailsandexamplescanbeseenusingthecommandhelpmonomials(B.
2)inanyorbifoldmodeldirectory.
AppendixB.
1.
4.
IfconditionsManycommandsthatdealwitheldsallowfortheparameterif(condition)(orseveralcopiesthereof)sothatonlythoseeldsarechosenthatfulllalltheconditions.
AnexplicitexamplewasalreadygiveninTab.
B.
2.
Ingeneral,aconditionconsistsofthreeparts:thelefthandsidegivesthevariable(e.
g.
Qifortheeldsi-thU(1)charge,vevfortheeldsvacuumexpectationvalueor#osci.
forthenumberofoscillators),themiddlegivesthecomparisonoperator(e.
g.
==forequalor!
=forunequal)andtherighthandsidegivesavalue(e.
g.
arationalnumberor0).
Moredetailsandexamplescanbeseenusingthecommandhelpconditions(B.
3)inanyorbifoldmodeldirectory.
16AppendixB.
1.
5.
ProcessesThefollowingcommandsstartnewprocessesthatruninthebackgroundsothatonecancontinuetoworkwiththeprompt:/>createrandomorbifoldfrom(OrbifoldLabel)/A/couplings>createcoupling(fields)/A/vev-config>findD-flat(fields)/A/gaugegroup>findaccidentalU1sEachprocesshasanID,thesocalledPID.
SimilartotheLinuxcommandlineonecanseeallrunningprocessesusingthecommandpsandterminateaprocesswithPIDAusingkill(A).
Onecanalsokillallactiveprocessesusingthecommandkill(all).
Inascriptthecommandwait(X)mightbeusefulinordertocheckeveryXsecondsifallprocesseshavenishedandtocontinuewiththenextcommandsafterwards.
Moredetailscanbeseenusingthecommandhelpprocesses(B.
4)inanyorbifoldmodeldirectory.
AppendixB.
1.
6.
VectorsManycommandsneedavectorofrationalnumbersasaparameter.
ExamplesincludethecommandssetshiftV(i)=andsettorsionb=.
Inthesecasesthereareseveralpossibilitiesofhowtowritethevector.
Forexample,thefollowingformsofaarepossible:(1/31/10/10/1)=(1/3100)=(1/3,1,0,0)=(1/3,1,02)=1/3(1302)(B.
5)Inaddition,fortherstfourformsoftheexample-vector,onecanleavethebracketsaway.
AppendixB.
1.
7.
OutputformathematicaorinlatexstyleOftenitisusefultotransferdatafromtheorbifoldertomathematica,forexample,inordertouseSTRINGVACUA[71],SINGULAR[72],NonAbelianHilbert[69,70]orDiscreteBreaking[73,74].
Therefore,manycommandsallowfortheparameter@mathematica(B.
6)sothattheoutputofthecommandwillbeprintedinamathematicacompatiblestyle(ifavailable).
Forexample,printlistofcharges@mathematica(B.
7)inthedirectory/spectrum>.
Similarly,theparameter@latexcanbeusedinordertogettheoutputinlatexcode(again,ifavailable).
Inaddition,onecansetthedefaulttypesettingtomathematica,latexorbacktostandardusingthecommands@typesetting(mathematica),@typesetting(latex)or@typesetting(standard),(B.
8)respectively.
Finally,theparameternooutputcanbeusedtosuppresstheoutputofthecurrentcommand.
17AppendixB.
1.
8.
SystemcommandsandvariablesSystemcommandsstartwiththesymbol@andareusedtochangetheoutput'sstyleanddestination.
Moreover,thepromptallowsforsomepre-denedvariableswhichareparticularlyusefullinscripts.
Theystartandendwiththesymbol$.
Command@typesetting(Type).
Changetheoutput'stypesetting,seeAppendixB.
1.
7.
Command@beginprinttofile(A).
StartprintingoutputtoleAandnottothescreen.
Incontrast,onecanusetheparametertofile(A)sothattheoutputofonlythecurrentcommandisprintedtole,e.
g.
printsummarytofile(Summary.
txt).
Command@endprinttofile.
Stopprintingoutputtole.
Command@status.
Displaythedestinationoftheoutput(e.
g.
screen)andthestyleofthetypesetting(i.
e.
standard,latexormathematica).
Variables.
Therearethreepre-denedvariables:$OrbifoldLabel$,$VEVConfigLabel$and$Directory$.
Whenexecuted,avariableisreplacedbyacorrespondingstring,beingthelabelofthecurrentorbifoldmodel,thelabelofthecurrentvev-congurationorthepathofthecurrentdirectory,respectively.
Theyareparticularlyusefullinscripts,e.
g.
usedastofile($OrbifoldLabel$.
txt).
AppendixB.
2.
ThedirectoriesThestructureofthepromptconsistsofamaindirectory/>andsubdirectoriesthatcorrespondtoorbifoldmodels.
Eachorbifoldmodeldirectoryhasfurthersubdirectories/model>,/gaugegroup>,/spectrum>,/couplings>and/vev-config>.
Theyoercommandsoftherespectivecategory.
Inthissectionwegiveanalphabeticallyorderedglossaryofdirectory-commandsandexplaintheiruseindetail.
AppendixB.
2.
1.
Themaindirectory/>Inthemaindirectoryonecanbasicallycreate,loadandsaveorbifoldmodels.
Commandcreateorbifold(OrbifoldLabel)withpointgroup(M,N).
Createanemptyorbifoldmodeldirectoryforanorbifoldofspeciedpointgrouporders(useN=1forMorbifolds).
Commandcreaterandomorbifoldfrom(OrbifoldLabel).
Randomlycreateneworbifoldmodels.
De-tailsaregiveninSection4.
1.
2.
Moredetailsandexamplescanbeseenusingthemaindirectory's/>commandhelpcreaterandom.
(B.
9)Commanddeleteorbifold(OrbifoldLabel).
DeletetheorbifoldmodeldirectoryOrbifoldLabel.
Commanddeleteorbifolds.
Deleteallorbifoldmodeldirectories.
Commandloadorbifolds(Filename).
LoadallorbifoldmodelsfromthemodellenamedFilename.
Commandloadprogram(Filename).
LoadascriptfromleFilenameandexecutethecommandscon-tainedinthatle.
Commandsaveorbifolds(Filename).
SaveallorbifoldmodelsofthemaindirectorytoamodellenamedFilename.
18AppendixB.
2.
2.
Thedirectory/model>Inthedirectory/model>theinputdata(e.
g.
pointgroup,twists,shifts,Wilsonlines,etc.
)ofthecurrentorbifoldmodelcanbedisplayedandchanged.
Commandcreatesuborbifoldwithfactor(i).
StartingfromanorbifoldwithspacegroupS,onecancreateaso-calledsuborbifoldbasedonasubgroupS′S.
ForMorbifoldsthesubgroupS′Sisspeciedbyonenumber,ibeingadivisorofM.
DenotetheMtwistgeneratorofthespacegroupbyg∈S.
Then,thesubgroupS′Sisbasedonthetwistgeneratorgi∈S′SwhichgeneratesM/i.
Onecanusetheoptionalparameterand(j)tochoosegi∈S′Sandgj∈S′S(withi,jcoprimeandi,jdivideM)togeneratorM/i*M/j.
InthecaseofM*Norbifolds(withtwistgeneratorsg1,g2∈S)onehastospecifytwonumberscreatesuborbifoldwithfactor(i,j)(whereidividesMandjdividesN)forthenewgeneratorgi1gj2ofthesubgroupS′S.
Again,onecanusetheoptionalparameterand(k,l)tospecifyasecondgeneratorgk1gl2.
Notethatthiscommandisparticularlyusefultoanalyzethe6DorbifoldGUTlimitofanorbifoldmodel.
Forexample,startwiththe6–IIorbifoldMSSMof[40].
Thenthecommandcreatesuborbifoldwithfactor(2)willproducethe6D3orbifoldGUTlimitasanalyzedin[75].
Commandprintavailablespacegroups.
Printalistofallgeometrylescompatiblewiththespeci-edpointgroup.
Thegeometrylesaresearchedbytheorbifolderinthedirectory/localdirectory/Geometry>(ofthelocalPC).
Formoredetailsonthecontentofgeometryles,seeSection4.
4.
1.
Commandprintdiscretesymmetries.
Printthediscrete(Randnon-R)symmetriesasdenedinthegeometryle.
NotethatRsymmetriesneedtobedenedinthegeometryleinordertobeusedinthecomputationofallowedsuperpotentialcouplings.
Commandprintdiscretetorsion.
Printthe(generalized)discretetorsionparametersa,bα,cαanddαβasdenedinRef.
[36].
CommandprintmasslessA-movers.
whereAcanbeleftorright.
Printthemasslessleft-orrightmoversbeforesomeofthemareprojectedoutbytheactionofthecentralizer.
Commandprintorbifoldlabel.
Printtheorbifoldlabel(i.
e.
thenameofthecurrentorbifolddirectory).
Commandprintpointgroup.
Printthepointgroup.
Theoutputreads,forexample,PointgroupisZ3.
Commandprintshift.
Printtheshift(s)as16Dvector(s).
Theoutputreadse.
g.
V1=(1/31/3-2/300000)(00000000).
(B.
10)Commandprintspacegroup.
First,printthepointgroupandtheroot-lattice.
Next,printthegeneratorsofthespacegroup.
Theoutputreadse.
g.
SpacegroupbasedonZ3pointgroupandroot-latticeofSU(3)^3.
(B.
11)Generatorsare:(1,0)(0,0,0,0,0,0)(0,0)(1,0,0,0,0,0)···19where(k,l)(n1,.
.
.
,n6)correspondstotheelementθkωl,nαeαofthespacegroup.
Notethatroto-translationsandfreely-actinginvolutionsareallowedasgeneratorsofthespacegroup.
Forexam-pleinRef.
[34],oneofthegeneratorsofthe(0-2)modelreads(0,1)(0,0,0,0,1/2,0)correspondingtoω,12e5andoneofthegeneratorsofthe(1-1)modelreads(0,0)(0,1/2,0,1/2,0,1/2)correspondingto11,12(e2+e4+e6).
Commandprinttwist.
Printthetwist(s)asfour-dimensionalvector(s).
Theoutputreadse.
g.
v1=(01/31/3-2/3).
(B.
12)CommandprintWilsonlines.
PrinttherelationsamongtheWilsonlines(e.
g.
W1=W2for3),theirorder(e.
g.
order3for3Wi∈Λfor3)andtheWilsonlinesthemselvesas16Dvectors.
Theoutputreads,forexample,Wilsonlinesidentifiedontheorbifold:(B.
13)W1=W2,W3=W4,W5=W6AllowedordersoftheWilsonlines:333333W1=(00000000)(00000000)···Commandprint#SUSY.
Printthenumberofsupersymmetryin4D.
Theoutputreads,forexample,N=1SUSYin4D.
(B.
14)Commandsetheteroticstringtype(type).
Denethe16Dgaugelatticeoftheheteroticorbifoldmodel.
Here,typecanbeE8xE8orSpin32.
Commandsetshiftstandardembedding.
ChooseV=(v1,v2,v3,013)forMorbifoldsorV1=(v11,v21,v31,013),V2=(v12,v22,v32,013)forM*Norbifolds.
(Thenotation013means13timestheentry"0".
)CommandsetshiftV=orsetshiftV(i)=.
DenetheshiftvectorVofMorbifoldmodelsoroneofthetwoshiftvectorsVi(withi=1,2)ofM*Norbifoldmodelsas16Dvector,seeEq.
(1).
FormoredetailsonvectorsseeAppendixB.
1.
6.
Commandsettorsiona=n/d,b=,c=ord=.
Setthe(generalized)discretetorsionparametersasdenedin[36],i.
e.
a,bα,cαanddαβ(forα,β=1,6;dαβ=dβαhas15components).
Notethattheparametersarenotcheckedformodularinvarianceandhencemightcauseinconsistentspectra.
FormoredetailsonvectorsseeAppendixB.
1.
6.
CommandsetWLW(i)=.
DenetheWilsonlineWiasa16Dvector(withi=1,6),seeEq.
(1).
FormoredetailsonvectorsseeAppendixB.
1.
6.
Commandusespacegroup(i).
withi=1,Loadthespacegroupfromthei-thgeometryle,wheretheindexicorrespondstothepositioninthelistofgeometrylesasdisplayedusingthecommandprintavailablespacegroups.
20AppendixB.
2.
3.
Thedirectory/gaugegroup>Inthisdirectoryonecanprintandchangesomedetailsofthegaugegroupforthecurrentlyusedvev-conguration.
Inmoredetail,onecandisplaytheU(1)generatorsandthesimpleroots,changethebasisofU(1)generators,deneaB-LgeneratorandidentifyaccidentalU(1)symmetriesofthesuperpotential.
Notethatallgauge-group-editingcommandsarenotavailableinthevev-congurationStandardConfig1.
CommanddeleteaccidentalU1s.
DeletetheaccidentalU(1)chargesofallelds.
CommandfindaccidentalU1s.
Takethesuperpotential(asfarasithasbeencreatedinthedirectory/couplings>,seeAppendixB.
2.
5)andidentifyitsaccidentalU(1)symmetries.
Thecommandstartsanewprocessthatrunsinthebackoftheprompt.
Theresultsaresavedinthecurrentlyusedvev-conguration.
Presumably,theaccidentalU(1)symmetrieswillbebrokenexplicitlybyhigherorderterms,butneverthelessmightbeofphenomenologicalrelevance,e.
g.
forthestrongCPproblem[27]andprotondecay[31].
Optionally,onecanusetheparameterfieldswithzerocharge(fields)inordertondonlythoseaccidentalU(1)symmetriesunderwhichtheeldsoffieldsareuncharged.
Onatechnicallevel,thisisachievedbyinserting,duringthisanalysis,eacheldoffieldsasalineartermintothesuperpotential.
CommandloadaccidentalU1s(Filename).
LoadaccidentalU(1)chargesfromalenamedFilename.
Commandprintanomalousspacegroupelement.
Printdetailsondiscreteanomaliesusingthediscretesymmetriesdenedinthegeometryleandidentifytheso-calledanomalousspacegroupelement[76].
Commandprintanomalyinfo.
Printdetailsongaugeandgravitationalanomaliesandchecktheiruni-versalityrelations.
Indetail,inthecaseofN=1SUSYin4D,besidethepurenon-Abeliananomalies,therelations2124trQi=16|ti|2trQ3i=12trQi=12|tj|2trQ2jQi=const.
0ifi=1,i.
e.
i=anom0otherwise(B.
15)(withij)areveried,wheretiisa16Dvectorcorrespondingtothei-thU(1)generatorsothataeldwithshiftedleft-movingmomentumpshcarriesthechargeQi=psh·tiandtrsumsoverthecontributionsfromallmasslessleft-chiralelds.
CommandprintB-Lgenerator.
PrinttheU(1)BLgeneratorasa16Dvector.
CommandprintFIterm.
PrinttheFayet-Iliopoulosterm(i.
e.
trQanomasinEq.
(B.
15)),ifthereisananomalousU(1).
Commandprintgaugegroup.
Printtheobservableandhiddenpartofthegaugegroupforthecurrentlyusedvev-conguration.
Commandprintsimpleroot(i).
Printthei-thsimplerootas16Dvector.
Commandprintsimpleroots.
Print(achoiceof)simplerootsofallnon-Abeliangaugegroupfactorsas16Dvectors.
2Intheorbifolder,theconventionforthequadraticDynkinindexissuchthat=1forthefundamentalrepresentationofSU(N)groups.
21CommandprintU1generator(i).
Printthei-thU(1)generatoras16Dvector.
CommandprintU1generators.
PrintallU(1)generatorsas16Dvectors.
CommandsaveaccidentalU1s(Filename).
SavetheaccidentalU(1)chargestoalenamedFilename.
CommandsetB-L=.
DeneU(1)BLasa16Dvector.
SinceintheorbifolderallU(1)generatorsaredemandedtobeorthogonaltoeachother,butU(1)BLisingeneralnotorthogonaltohyper-charge,B-Lisstoredasanadditionalvector.
OnecanusetheoptionalparameterallowforanomalousB-LifU(1)BLisallowedtomixwiththeanomalousU(1).
FormoredetailsonvectorsseeAppendixB.
1.
6.
CommandsetU1(i)=.
ChangethebasisofU(1)generatorsbyspecifyinga16Dvectorasthei-thgenerator.
Thenewgeneratormustbeorthogonaltoallsimplerootsandtothej-thU(1)generator,forjiwillbechangedautomaticallysuchthat,attheend,allgeneratorsareorthogonaltoeachother.
FormoredetailsonvectorsseeAppendixB.
1.
6.
AppendixB.
2.
4.
Thedirectory/spectrum>Thisdirectoryoersaccesstoallinformationaboutthemasslessspectrum.
Indetail,foreachmass-lesseldonecanobtaintheSUSYmultiplettype(i.
e.
forN=1supersymmetryin4D:left-chiral,right-chiral,vectorandmodulus),thelocalization(correspondingtoitsconstructingspacegroupele-ment),theshiftedleft-movingmomentumpsh,thenon-Abelianrepresentation,theU(1)charges,theB-Lcharge(ifdened),theshiftedright-movingmomentumqsh,theoscillatorexcitations,theRcharges,mod-ularweights(ifdened),thelabeloftheeldandnallyitsvev.
Notethatcomplexconjugaterepresenta-tionsareprintedasnegativeintegers;forexample,-3denotestheconjugatefundamentalrepresentation3ofSU(3).
Commandfindpotentialblowupmodes(fields).
Printalistofpotentialblow-upmodesconsideringfieldsonly,i.
e.
printallfieldsforeachxedbrane/point.
Commandfindrandomblowupmodes(fields).
printarandomlistofblow-upmodesfields,oneperxedbrane/point.
TheresultcanbesavedtoasetSetLabelusingtheoptionalparametersavetoset(SetLabel).
Commandprint(fields).
Printsomedetailsoffields.
Thereisoneoptionalparameter,withinternalinformation,thatdisplayssomeinternalinformationabouthowtheelds'datacanbeaccessedintheC++sourcecodeoftheorbifolder.
Commandprintallstates.
Printdetailsofallelds(includingleft-chiralsuperelds,vectorsupereldsofthe(non-Abelian)gaugebosons,moduliandtheirCPT-partners).
Commandprintlistofemptyfixedbranes.
Printalistofallxedbranes/pointsthatpotentiallycouldcarryleft-chiraleldsbutareemptyforthecurrentorbifoldmodel.
22Commandprintlistofcharges(fields).
Printgaugeanddiscretechargesoffields.
Forexample,(-1/3-1/32/300000)(00000000)(-1/32/3-1/3)(2001)"F10"(B.
16)(-1/32/3-1/300000)(00000000)(-1/32/3-1/3)(2001)"F10"(2/3-1/3-1/300000)(00000000)(-1/32/3-1/3)(2001)"F10"fortheeldF10ofthe3orbifoldwithstandardembedding.
Eachlineconsistsofthreeparts:rstthe16Dshiftedleft-movingmomentumpsh(printedastwoeight-dimensionalvectorsinthecaseofE8*E8),theRcharges:(R1,R2,R3)=(13,23,13)intheexample,thechargeswithrespecttothediscretenon-Rsymmetries:(k,n1+n2,n3+n4,n5+n6,)=(2,0,0,1)intheexample,thelabelofthecorrespondingeld,where,ingeneral,theRandnon-Rsymmetriesmustbespeciedinthegeometryle,seeSection4.
4.
1.
Notethatitcanbeveryhelpfultousetheoptionalparameter@mathematicaforthiscommandinordertotransfertheinformationabouttheeldstomathematica,seeAppendixB.
1.
7.
Commandprintsummary.
Printthegaugegroupandasummarytableofthemasslessmatterelds.
Im-portantoptionalparametersare:ofsectorsoffixedpointsoffixedpoint(X)wherethexedpointXcanbespeciedinthreeways:i)usingk,l,n1,n2,n3,n4,n5,n6,ii)usinglocofFiwhereFiisthelabelofatwistedeldandiii)byaxedpointlabelasspeciedinthedirectory/vev-config/labels>.
ofsectorT(k,l)wherekandllabeltheθkωltwistedsector.
UseofsectorT(0,0)fortheuntwistedsector.
Inallthesecasesonecanuseinadditionthefollowing,optionalparameters:withlabels:printthecurrentlyusedlabelsoftheeldsasspeciedinthedirectory/vev-config/labels>.
noU1s:donotprinttheU(1)chargesoftheelds.
typeofSUSYmultiplet,e.
g.
vector,gravity,modulusoranykindforalltypes;ifnotspeciedtheleft-chiraleldsareprintedonly.
Moredetailsandexamplescanbeseenusingthecommandhelpprintsummary(B.
17)inthedirectory/spectrum>.
23Commandtextable(fields).
Printalatextablewithinformationaboutfields.
Thetablecontainsthe(gauge)chargeswithrespecttotheobservablesectorofthecurrentlyusedvev-congurationandthediscretechargesasspeciedinthegeometryle(seeSection4.
4.
1).
Onecanusetheoptionalparameterprintlabels(i,j,.
.
)inordertolistthei-th,j-th.
.
.
label(s)oftheelds.
AppendixB.
2.
5.
Thedirectory/couplings>Thedirectory/couplings>allowstoidentifyandanalyzeallowedtermsofthesuperpotential(i.
e.
termsthatareinvariantunderallgaugeanddiscretesymmetries).
The(ingeneralmoduli-dependent)coecientsarenotcomputed.
Furthermore,onecananalyzemassmatrices(e.
g.
ofvector-likeexotics).
Notethatcouplingsandmassmatricesarestoredinthecurrentlyusedvev-conguration.
Hence,theycanonlybeaccessedinthevev-congurationwheretheyhavebeendened.
Forsimplicity,theabbrevia-tionsmmformassmatrixandmmsformassmatricesapplytoallcommands.
Commandautocreatemassmatrix(AB).
CreatethecouplingsrelevantfortheeectivemassmatrixMijAiBj.
Optionally,onecanspecifythethelabelofthoseeldswhosevevsgenerateMijusingthepa-rametersinglet(N)(withdefaultvalueN=n)andthemaximalorderXinsingletsNusingtheparametermaxorder(X).
Commandcreatecoupling(fields).
Findtheallowedsuperpotential-couplingsbetweenfieldsandstoretheresultinthecurrentlyusedvev-conguration.
Forexample,alltrilinearcouplingsarecreatedusingthecommandcreatecoupling(B.
18)Optionally,onecanrestrictfieldsusingtheparameterallowedfields(.
.
.
),e.
g.
thecommandcreatecoupling(nnn)allowedfields(SetA)createsalltrilinearcouplingsofeldsnfromSetA.
Commandfind(fields).
Displaysalistofallowedcouplingsinvolvingtheeldsfields.
Commandfindeffective(fields).
Asfind(fields),butonlytheeectivecouplings,i.
eafterreplac-ingeldswithnon-zerovevbytheirvevs.
Commandloadcouplings(Filename).
LoadcouplingsfromleFilenameintothecurrentlyusedvev-conguration.
Thiscommandisdisabledinthewebinterface.
Commandmassmatrix(AB).
CreatethemassmatrixMijAiBj(fromthecurrentsuperpotential)andsaveitinthecurrentlyusedvev-conguration.
Commandprinteffectivesuperpotential.
Similartothecommandprintsuperpotentialbutprintonlytheeectivecouplings,i.
eafterreplacingeldswithnon-zerovevbytheirvevs.
Commandprintlistofmassmatrices.
Printallmassmatricesofthecurrentlyusedvev-conguration.
Commandprintmassmatrix(i).
Printthei-thmassmatrix.
Theoptionalparametermaxorder(X)speciestheorderXintheeldsuptowhichamatrixentryshallbeprintedexplicitly.
Commandprintsuperpotential.
Printthesuperpotentialofthecurrentlyusedvev-conguration.
Commandprintvanishingcouplings.
PrintallcasesofvanishingcouplingsaslistsofhighestweightsinDynkinlabels.
Seethecommandremovevanishingcouplings.
24Commandremovevanishingcouplings.
Removecouplingsthatvanishbecauseofsymmetry/anti-sym-metryofrepeatedidenticalelds,e.
g.
letbeanSU(2)doublet,thenthegaugeinvariantcoupling=ijij=0vanishes.
Thiscommandrequiresadditionaluserinput.
Commandsavecouplings(Filename).
Saveallcouplingsofthecurrentlyusedvev-congurationtoale.
OnecanoptionallysaveonlycouplingsoforderXusingtheparameteroforder(X).
Thiscommandisdisabledinthewebinterface.
AppendixB.
2.
6.
Thedirectory/vev-config>Inthisdirectoryonecandeneseveralvev-congurations.
Eachofthemischaracterizedbyachoiceofhiddenandobservablegaugegroup,alabelingoftheeldsandbytheirvev.
Inaddition,onecananalyzephenomenologicalpropertiesandsupersymmetriccongurations(F=D=0)inthisdirectoryanddeterminetheunbrokengaugegroupofagivenvev-conguration.
Foreachorbifoldmodeltherearetwostandardvev-congurations:StandardConfig1andTestConfig1.
Therstonecannotbechanged,butthelatteronecanbeandisusedasdefault.
InbothcongurationsthefullgaugegroupisselectedastheobservablesectorandeldsarelabeledF1,F2,F3,allwithzerovev.
Notethatthelabelsoftheelds(seeAppendixB.
1.
1),setsofelds(seeAppendixB.
1.
2),monomials(seeAppendixB.
1.
3),allowedcouplingsandmassmatrices(createdinthedirectory/couplings>)aresavedinavev-conguration.
Hence,thesedatacanonlybeaccessedinthevev-congurationwheretheyhavebeendened.
Inaddition,notethatallconguration-editingcommandsarenotavailableinthevev-congurationStandardConfig1.
Commandanalyzeconfig.
Automaticallycheckwhetherthecurrentvev-congurationoftheorbifoldmodelallowsforvacuawithStandardModel,Pati-SalamorSU(5)gaugegroup,SU(3)C*SU(2)L*U(1)Y,SU(4)*SU(2)L*SU(2)RorSU(5),(B.
19)respectively,threegenerationsofquarksandleptonsandvector-likeexotics.
InthecasetheorbifolderisnotabletoidentifyoneofthesepossibilitiesforthecurrentorbifoldmodeloneobtainstheoutputNovev-configurationidentified.
Otherwise,correspondingnewvacuawillbecreatedandconvenientlabelswillbeassignedtoallmatterelds(e.
g.
q1,q2andq3forthethreegenerationsofquarkdoublets).
Thecommandallowsfortwooptionalparameters:printSU(5)simplerootstoprintthesimplerootsofanintermediateSU(5)groupthathasbeenusedinordertoidentifythehyperchargegeneratorandXgenerationswithX=0,1,2,3,.
.
.
tospecifythe(net)numberofgenerations.
CommandcomputeF-terms.
ComputetheF-termsusingthesuperpotentialthatwascreatedforthecur-rentlyusedvev-conguration(inthedirectory/couplings>.
Theoptionalparametermaxorder(X)allowstosetanupperlimitXontheorderofsuperpotentialcouplings.
Commandcreateconfig(ConfigLabel).
Createanewvev-conguration.
Optionally,onecanspecifytheoriginofthenewvev-congurationusingtheparameterfrom(AnotherConfigLabel).
Ifthisparameterisnotusedtheoriginofthenewvev-congurationisthestandardvev-congurationStandardConfig1.
Commanddeleteconfig(ConfigLabel).
Deletethevev-congurationConfigLabel.
25CommandfindD-flat(fields).
IdentifygaugeinvariantmonomialsoffieldsassolutionstotheD=0supersymmetrycondition,seeAppendixB.
1.
3.
Thiscommandallowsfortwoparameters:i)withFItoallowformonomialswithnon-vanishinganomalousU(1)chargeinordertocanceltheFItermandii)savetoset(SetLabel)tosavethoseeldsinasetcalledSetLabelthatareinvolvedinthenewmonomials.
Commandfindunbrokengaugegroup.
Dependingonthevevassignmentspeciedinthecurrentlyusedvev-conguration,identifybrokenandunbroken(Abelianandnon-Abelian)gaugegroupfactors.
Inaddi-tion,theU(1)chargesofalleldsarere-computedinthenewU(1)basis.
Thereisoneoptionalparameter:printinfotodisplaysomedetails.
Commandprintgaugegroup.
Printthechoiceofobservableandhiddensectorofthecurrentlyusedvev-conguration,wherethehiddensectorgaugegroupfactorsaremarkedbybrackets,e.
g.
[SU(4)].
Commandprintconfigs.
Printanoverviewofallvacuadenedforthisorbifoldmodel.
Thecurrentlyusedvev-congurationishighlightedbyanarrow->infront,e.
g.
->"TestConfig1".
Commandrenameconfig(OldConfigLabel)to(NewConfigLabel).
Changethenameofavev-congura-tionfromOldConfigLabeltoNewConfigLabel.
Commandselectobservablesector:parameters.
Assignachoiceofobservableandhiddengaugegroupsinthecurrentvev-conguration.
Admissibleparametersare:gaugegroup(i,j,.
.
.
),wheretheindicesi,j=1,2,.
.
.
refertothedierentnon-Abeliangaugegroupfactorssortedasdisplayedbyprintgaugegroup.
Theindicesprovidedarechosenaspartoftheobservablesector.
fullgaugegroupAllnon-Abeliangroupfactorsareassignedasobservablesector.
nogaugegroupsNonon-Abeliangroupfactorisassignedaspartoftheobservablesector.
U1s(i,j,.
.
.
),wheretheindicesi,j=1,2,.
.
.
refertothedierentU(1)gaugesymmetries.
Theindicesprovidedarechosenaspartoftheobservablesector.
allU1sAllU(1)sareassignedaspartoftheobservablesector.
noU1sNoU(1)istakenfortheobservablesector.
Forexample,assumingthatthegaugegroupisE6*SU(3)*E8,theinstructionselectobservablesector:gaugegroup(1,2)selectsE6*SU(3)astheobservableandE8asthehiddengaugegroups.
Commanduseconfig(ConfigLabel).
Changethecurrentlyusedvev-congurationtoConfigLabel.
Commandvev(fields)Changethevevsoffieldstonewvalues.
Forexample,vev(*)=0turnsothevevofallelds,vev(SetA)=randassignsrandomvevstotheeldsofthesetSetAandvev(n1)=0.
1setsthevevofn1to0.
1.
AppendixB.
2.
7.
Thedirectory/vev-config/labels>Inthisdirectoryonecandene,foreachvev-conguration,appropriatelabelsfortheelds.
Themaincommandsareprintlabelsandcreatelabels.
Inbothcases,asummarytableofmasslesseldsisprinted,sortedbythoserepresentationsandU(1)chargesthatbelongtotheobservablesectorofthecurrentlyusedvev-conguration.
Theobservablesectorcanbechangedusingthecommandselectobservablesector:.
.
.
inthedirectory/vev-config>,seeAppendixB.
2.
6.
26Commandchangelabel(Ai)to(Bj).
ChangethelabeloftheeldAitoBj.
Commandassignlabel(Label)tofixedpoint(k,l,n1,n2,n3,n4,n5,n6).
AssignLabeltothexedbrane/pointspeciedby(k,l,n1,n2,n3,n4,n5,n6).
Commandcreatelabels.
First,asummarytableofmasslesseldsisdisplayed.
Thentheuserisaskedtospecifyanameforeachlineofthetable.
Commandloadlabels(Filename).
LoadlabelsfromthelenamedFilename.
Thiscommandisdisabledinthewebinterface.
Commandprintlabels.
Printasummarytableofthecurrentlyusedlabelsdisplayingthegaugerepre-sentationswithrespecttotheobservablesectoronly.
Commandsavelabels(Filename).
SavethelabelstothelenamedFilename.
Thiscommandisdisabledinthewebinterface.
Commanduselabel(i).
Changethecurrentlyusedlabelstothei-thlabeling.
References[1]L.
J.
Dixon,J.
A.
Harvey,C.
Vafa,andE.
Witten,"StringsonOrbifolds,"Nucl.
Phys.
B261(1985)678–686.
[2]L.
J.
Dixon,J.
A.
Harvey,C.
Vafa,andE.
Witten,"StringsonOrbifolds.
2.
,"Nucl.
Phys.
B274(1986)285–314.
[3]L.
E.
Ibanez,H.
P.
Nilles,andF.
Quevedo,"OrbifoldsandWilsonLines,"Phys.
Lett.
B187(1987)25–32.
[4]D.
J.
Gross,J.
A.
Harvey,E.
J.
Martinec,andR.
Rohm,"TheHeteroticString,"Phys.
Rev.
Lett.
54(1985)502–505.
[5]D.
J.
Gross,J.
A.
Harvey,E.
J.
Martinec,andR.
Rohm,"HeteroticStringTheory.
1.
TheFreeHeteroticString,"Nucl.
Phys.
B256(1985)253.
[6]L.
J.
Dixon,D.
Friedan,E.
J.
Martinec,andS.
H.
Shenker,"Theconformaleldtheoryoforbifolds,"Nucl.
Phys.
B282(1987)13–73.
[7]S.
HamidiandC.
Vafa,"Interactionsonorbifolds,"Nucl.
Phys.
B279(1987)465.
[8]S.
F¨orste,H.
P.
Nilles,P.
K.
Vaudrevange,andA.
Wingerter,"Heteroticbraneworld,"Phys.
Rev.
D70(2004)106008,hep-th/0406208.
[9]T.
Kobayashi,S.
Raby,andR.
-J.
Zhang,"Searchingforrealistic4dstringmodelswithaPati-Salamsymmetry:OrbifoldgranduniedtheoriesfromheteroticstringcompacticationonaZ(6)orbifold,"Nucl.
Phys.
B704(2005)3–55,hep-ph/0409098.
[10]W.
Buchm¨uller,K.
Hamaguchi,O.
Lebedev,andM.
Ratz,"Supersymmetricstandardmodelfromtheheteroticstring,"Phys.
Rev.
Lett.
96(2006)121602,hep-ph/0511035.
[11]K.
-S.
ChoiandJ.
E.
Kim,"Quarksandleptonsfromorbifoldedsuperstring,".
LectureNotesonPhysics696,Berlin-Heidelberg,Germany:Springer(2006)406p.
[12]H.
P.
Nilles,S.
Ramos-Sanchez,M.
Ratz,andP.
K.
Vaudrevange,"FromstringstotheMSSM,"Eur.
Phys.
J.
C59(2009)249–267,0806.
3905.
Tobepublishedin'SupersymmetryontheEveoftheLHC',aspecialvolumeofEPJCdedicatedtothememoryofJuliusWess.
[13]P.
K.
Vaudrevange,"GrandUnicationintheHeteroticBraneWorld,"0812.
3503.
[14]S.
Ramos-Sanchez,"TowardsLowEnergyPhysicsfromtheHeteroticString,"Fortsch.
Phys.
10(2009)907–1036,0812.
3560.
[15]F.
Quevedo,"Lecturesonsuperstringphenomenology,"hep-th/9603074.
[16]D.
BailinandA.
Love,"Orbifoldcompacticationsofstringtheory,"Phys.
Rept.
315(1999)285–408.
[17]O.
Lebedev,H.
P.
Nilles,S.
Raby,S.
Ramos-Sanchez,M.
Ratz,P.
K.
S.
Vaudrevange,andA.
Wingerter,"AMini-landscapeofexactMSSMspectrainheteroticorbifolds,"Phys.
Lett.
B645(2007)88–94,hep-th/0611095.
[18]O.
Lebedev,H.
P.
Nilles,S.
Raby,S.
Ramos-Sanchez,M.
Ratz,etal.
,"TheHeteroticRoadtotheMSSMwithRparity,"Phys.
Rev.
D77(2008)046013,0708.
2691.
[19]O.
Lebedev,H.
P.
Nilles,S.
Ramos-Sanchez,M.
Ratz,andP.
K.
Vaudrevange,"Heteroticmini-landscape(II).
CompletingthesearchforMSSMvacuaina6orbifold,"Phys.
Lett.
B668(2008)331–335,0807.
4384.
27[20]O.
Lebedev,H.
-P.
Nilles,S.
Raby,S.
Ramos-Sanchez,M.
Ratz,etal.
,"LowEnergySupersymmetryfromtheHeteroticLandscape,"Phys.
Rev.
Lett.
98(2007)181602,hep-th/0611203.
[21]J.
E.
Kim,J.
-H.
Kim,andB.
Kyae,"SuperstringstandardmodelfromZ(12-I)orbifoldcompacticationwithandwithoutexotics,andeectiveR-parity,"JHEP0706(2007)034,hep-ph/0702278.
[22]W.
Buchm¨uller,K.
Hamaguchi,O.
Lebedev,S.
Ramos-Sanchez,andM.
Ratz,"Seesawneutrinosfromtheheteroticstring,"Phys.
Rev.
Lett.
99(2007)021601,hep-ph/0703078.
[23]B.
Dundee,S.
Raby,andA.
Wingerter,"ReconcilingGrandUnicationwithStringsbyAnisotropicCompactications,"Phys.
Rev.
D78(2008)066006,0805.
4186.
[24]R.
Kappletal.
,"LargehierarchiesfromapproximateRsymmetries,"Phys.
Rev.
Lett.
102(2009)121602,0812.
2120.
[25]S.
G.
Nibbelink,J.
Held,F.
Ruehle,M.
Trapletti,andP.
K.
S.
Vaudrevange,"HeteroticZ6-IIMSSMOrbifoldsinBlowup,"JHEP03(2009)005,0901.
3059.
[26]P.
Hosteins,R.
Kappl,M.
Ratz,andK.
Schmidt-Hoberg,"Gauge-topunication,"JHEP07(2009)029,0905.
3323.
[27]K.
-S.
Choi,H.
P.
Nilles,S.
Ramos-Sanchez,andP.
K.
S.
Vaudrevange,"Accions,"Phys.
Lett.
B675(2009)381–386,0902.
3070.
[28]M.
Blaszczyketal.
,"AZ2xZ2standardmodel,"Phys.
Lett.
B683(2010)340–348,0911.
4905.
[29]O.
LebedevandS.
Ramos-Sanchez,"TheNMSSMandStringTheory,"Phys.
Lett.
B684(2010)48–51,0912.
0477.
[30]M.
Blaszczyk,S.
G.
Nibbelink,F.
Ruehle,M.
Trapletti,andP.
K.
S.
Vaudrevange,"HeteroticMSSMonaResolvedOrbifold,"JHEP09(2010)065,1007.
0203.
[31]S.
F¨orste,H.
P.
Nilles,S.
Ramos-Sanchez,andP.
K.
S.
Vaudrevange,"ProtonHexalityinLocalGrandUnication,"Phys.
Lett.
B693(2010)386–392,1007.
3915.
[32]S.
L.
Parameswaran,S.
Ramos-Sanchez,andI.
Zavala,"OnModuliStabilisationanddeSitterVacuainMSSMHeteroticOrbifolds,"JHEP01(2011)071,1009.
3931.
[33]R.
Kappletal.
,"String-derivedMSSMvacuawithresidualRsymmetries,"Nucl.
Phys.
B847(2011)325–349,1012.
4574.
[34]R.
DonagiandK.
Wendland,"Onorbifoldsandfreefermionconstructions,"J.
Geom.
Phys.
59(2009)942–968,0809.
0330.
[35]C.
Vafa,"ModularInvarianceandDiscreteTorsiononOrbifolds,"Nucl.
Phys.
B273(1986)592.
[36]F.
Pl¨oger,S.
Ramos-Sanchez,M.
Ratz,andP.
K.
Vaudrevange,"MirageTorsion,"JHEP0704(2007)063,hep-th/0702176.
[37]"BoostC++libraries.
"http://www.
boost.
org/,2011.
[38]M.
Galassietal.
,GNUScienticLibraryReferenceManual-ThirdEdition(v1.
12),2009.
http://www.
gnu.
org/software/gsl/.
[39]P.
Nilles,S.
Ramos-Sanchez,P.
K.
Vaudrevange,andA.
Wingerter,"Theorbifolderwebpage,"2011.
http://projects.
hepforge.
org/orbifolder/.
[40]W.
Buchm¨uller,K.
Hamaguchi,O.
Lebedev,andM.
Ratz,"SupersymmetricStandardModelfromtheHeteroticString(II),"Nucl.
Phys.
B785(2007)149–209,hep-th/0606187.
[41]A.
E.
Faraggi,D.
V.
Nanopoulos,andK.
-j.
Yuan,"AStandardLikeModelinthe4DFreeFermionicStringFormulation,"Nucl.
Phys.
B335(1990)347.
[42]A.
E.
Faraggi,"Constructionofrealisticstandard-likemodelsinthefreefermionicsuperstringformulation,"Nucl.
Phys.
B387(1992)239–262,hep-th/9208024.
[43]B.
Assel,K.
Christodoulides,A.
E.
Faraggi,C.
Kounnas,andJ.
Rizos,"ClassicationofHeteroticPati-SalamModels,"Nucl.
Phys.
B844(2011)365–396,1007.
2268.
[44]T.
P.
T.
Dijkstra,L.
R.
Huiszoon,andA.
N.
Schellekens,"SupersymmetricstandardmodelspectrafromRCFTorientifolds,"Nucl.
Phys.
B710(2005)3–57,hep-th/0411129.
[45]P.
Candelas,G.
T.
Horowitz,A.
Strominger,andE.
Witten,"VacuumCongurationsforSuperstrings,"Nucl.
Phys.
B258(1985)46–74.
[46]R.
Donagi,Y.
-H.
He,B.
A.
Ovrut,andR.
Reinbacher,"Thespectraofheteroticstandardmodelvacua,"JHEP06(2005)070,hep-th/0411156.
[47]V.
Braun,Y.
-H.
He,B.
A.
Ovrut,andT.
Pantev,"Aheteroticstandardmodel,"Phys.
Lett.
B618(2005)252–258,hep-th/0501070.
[48]V.
BouchardandR.
Donagi,"AnSU(5)heteroticstandardmodel,"Phys.
Lett.
B633(2006)783–791,hep-th/0512149.
[49]L.
B.
Anderson,J.
Gray,A.
Lukas,andB.
Ovrut,"StabilizingAllGeometricModuliinHeteroticCalabi-YauVacua,"Phys.
Rev.
D83(2011)106011,1102.
0011.
[50]L.
B.
Anderson,J.
Gray,A.
Lukas,andE.
Palti,"TwoHundredHeteroticStandardModelsonSmoothCalabi-YauThreefolds,"1106.
4804.
[51]R.
Blumenhagen,M.
Cvetic,P.
Langacker,andG.
Shiu,"TowardrealisticintersectingD-branemodels,"Ann.
Rev.
Nucl.
Part.
Sci.
55(2005)71–139,hep-th/0502005.
[52]F.
Gmeiner,R.
Blumenhagen,G.
Honecker,D.
L¨ust,andT.
Weigand,"Oneinabillion:MSSM-likeD-branestatistics,"28JHEP01(2006)004,hep-th/0510170.
[53]R.
Blumenhagen,B.
Kors,D.
L¨ust,andS.
Stieberger,"Four-dimensionalStringCompacticationswithD-Branes,OrientifoldsandFluxes,"Phys.
Rept.
445(2007)1–193,hep-th/0610327.
[54]M.
R.
DouglasandW.
Taylor,"Thelandscapeofintersectingbranemodels,"JHEP01(2007)031,hep-th/0606109.
[55]F.
GmeinerandG.
Honecker,"MillionsofStandardModelsonZ6-prime,"JHEP07(2008)052,0806.
3039.
[56]C.
Vafa,"EvidenceforF-Theory,"Nucl.
Phys.
B469(1996)403–418,hep-th/9602022.
[57]R.
Donagi,A.
Lukas,B.
A.
Ovrut,andD.
Waldram,"Non-perturbativevacuaandparticlephysicsinM-theory,"JHEP05(1999)018,hep-th/9811168.
[58]R.
Donagi,B.
A.
Ovrut,T.
Pantev,andD.
Waldram,"StandardmodelsfromheteroticM-theory,"Adv.
Theor.
Math.
Phys.
5(2002)93–137,hep-th/9912208.
[59]C.
Beasley,J.
J.
Heckman,andC.
Vafa,"GUTsandExceptionalBranesinF-theory-I,"JHEP01(2009)058,0802.
3391.
[60]C.
Beasley,J.
J.
Heckman,andC.
Vafa,"GUTsandExceptionalBranesinF-theory-II:ExperimentalPredictions,"JHEP01(2009)059,0806.
0102.
[61]B.
S.
Acharya,K.
Bobkov,G.
L.
Kane,J.
Shao,andP.
Kumar,"TheG2-MSSM-AnMTheorymotivatedmodelofParticlePhysics,"Phys.
Rev.
D78(2008)065038,0801.
0478.
[62]T.
Weigand,"LecturesonF-theorycompacticationsandmodelbuilding,"Class.
Quant.
Grav.
27(2010)214004,1009.
3497.
[63]P.
S.
Aspinwall,"Resolutionoforbifoldsingularitiesinstringtheory,"hep-th/9403123.
[64]D.
L¨ust,S.
Reert,E.
Scheidegger,andS.
Stieberger,"Resolvedtoroidalorbifoldsandtheirorientifolds,"hep-th/0609014.
[65]S.
G.
Nibbelink,T.
-W.
Ha,andM.
Trapletti,"ToricResolutionsofHeteroticOrbifolds,"Phys.
Rev.
D77(2008)026002,0707.
1597.
[66]M.
Blaszczyk,N.
G.
C.
Bizet,H.
P.
Nilles,andF.
Ruehle,"AperfectmatchofMSSM-likeorbifoldandresolutionmodelsviaanomalies,"1108.
0667.
[67]F.
Buccella,J.
P.
Derendinger,S.
Ferrara,andC.
A.
Savoy,"Patternsofsymmetrybreaknginsupersymmetricgaugetheories,"Phys.
Lett.
B115(1982)375.
[68]G.
Cleaver,M.
Cvetic,J.
R.
Espinosa,L.
L.
Everett,andP.
Langacker,"ClassicationofatdirectionsinperturbativeheteroticsuperstringvacuawithanomalousU(1),"Nucl.
Phys.
B525(1998)3–26,hep-th/9711178.
[69]R.
Kappl,M.
Ratz,andC.
Staudt,"TheHilbertbasismethodforD-atdirectionsandthesuperpotential,"1108.
2154.
[70]C.
Staudt,"NonAbelianHilbert–asoftwarepackageforconstructinggaugeinvariantmonomialsinMathematica,".
http://einrichtungen.
ph.
tum.
de/T30e/codes/NonAbelianHilbert/.
[71]J.
Gray,Y.
-H.
He,A.
Ilderton,andA.
Lukas,"STRINGVACUA:AMathematicaPackageforStudyingVacuumCongurationsinStringPhenomenology,"Comput.
Phys.
Commun.
180(2009)107–119,0801.
1508.
[72]W.
Decker,G.
-M.
Greuel,G.
Pster,andH.
Sch¨onemann,"Singular3-1-3—Acomputeralgebrasystemforpolynomialcomputations,".
http://www.
singular.
uni-kl.
de.
[73]B.
Petersen,M.
Ratz,andR.
Schieren,"Patternsofremnantdiscretesymmetries,"JHEP0908(2009)111,0907.
4049.
[74]R.
Schieren,"DiscreteBreaking–aMathematicapackageforidentifyingandsimplifyingdiscretesymmetries,".
http://einrichtungen.
physik.
tu-muenchen.
de/T30e/codes/DiscreteBreaking/.
[75]W.
Buchm¨uller,C.
L¨udeling,andJ.
Schmidt,"LocalSU(5)UnicationfromtheHeteroticString,"JHEP0709(2007)113,0707.
1651.
[76]T.
Araki,T.
Kobayashi,J.
Kubo,S.
Ramos-Sanchez,M.
Ratz,andP.
K.
S.
Vaudrevange,"(Non-)Abeliandiscreteanomalies,"Nucl.
Phys.
B805(2008)124–147,0805.
0207.
29

百驰云(19/月),高性能服务器,香港三网CN2 2核2G 10M 国内、香港、美国、日本、VPS、物理机、站群全站7.5折,无理由退换,IP免费换!

百驰云成立于2017年,是一家新国人IDC商家,且正规持证IDC/ISP/CDN,商家主要提供数据中心基础服务、互联网业务解决方案,及专属服务器租用、云服务器、云虚拟主机、专属服务器托管、带宽租用等产品和服务。百驰云提供源自大陆、香港、韩国和美国等地骨干级机房优质资源,包括BGP国际多线网络,CN2点对点直连带宽以及国际顶尖品牌硬件。专注为个人开发者用户,中小型,大型企业用户提供一站式核心网络云端...

Spinservers:美国圣何塞服务器,双E5/64GB DDR4/2TB SSD/10Gbps端口月流量10TB,$111/月

spinservers怎么样?spinservers大硬盘服务器。Spinservers刚刚在美国圣何塞机房补货120台独立服务器,CPU都是双E5系列,64-512GB DDR4内存,超大SSD或NVMe存储,数量有限,机器都是预部署好的,下单即可上架,无需人工干预,有需要的朋友抓紧下单哦。Spinservers是Majestic Hosting Solutions,LLC旗下站点,主营美国独立...

A400互联37.8元/季,香港节点cn2,cmi线路云服务器,1核/1G/10M/300G

A400互联怎么样?A400互联是一家成立于2020年的商家,A400互联是云服务器网(yuntue.com)首次发布的云主机商家。本次A400互联给大家带来的是,全新上线的香港节点,cmi+cn2线路,全场香港产品7折优惠,优惠码0711,A400互联,只为给你提供更快,更稳,更实惠的套餐,香港节点上线cn2+cmi线路云服务器,37.8元/季/1H/1G/10M/300G,云上日子,你我共享。...

fedora15为你推荐
johncusack约翰·库萨克好看的的恐怖片全集咏春大师被ko练咏春拳的杨师傅对阵散打冠军,注:是高龄级别被冠军级别打败了,那如果是咏春冠军叶问呢?更别说是李小梦之队官网史上最强的nba梦之队是哪一年西部妈妈网九芽妈妈网加盟费多少www.kkk.comwww.kkk103.com网站产品质量有保证吗rawtoolsRAW是什么衣服牌子罗伦佐娜维洛娜毛周角化修复液治疗毛周角化有用吗?谁用过?能告诉我吗?百度关键词工具百度有关键字分析工具吗?Google AdWords有的同一服务器网站同一服务器上的域名/网址无法访问lcoc.top服装英语中double topstitches什么意思
希网动态域名 site5 bluevm wordpress技巧 godaddy支付宝 远程登陆工具 日本空间 本网站在美国维护 免费个人空间申请 最好的免费空间 ntfs格式分区 metalink 免费的asp空间 英国伦敦 双11促销 websitepanel 月付空间 apache启动失败 comodo gotoassist 更多