clusteringdl380g7
dl380g7 时间:2021-03-27 阅读:(
)
ORIGINALRESEARCHAnintelligentenergyoptimizationapproachforMPIbasedapplicationsinHPCsystemsBhavyasreeUnniNaziaParveenAnkitKumarB.
S.
BindhumadhavaReceived:4November2012/Accepted:26March2013/Publishedonline:16April2013CSIPublications2013AbstractEnergy-awarecomputingisgainingmoreandmoreattentioninhighperformancecomputing(HPC)environment.
Asanoutcomeofthis,variousenergy-awaretechniquesareexistingandmanyarebeingproposed.
Butitisdifculttohaveatechniquewhichsavesenergywithoutcompromisingtheperformance.
ThispapertalksaboutanovelenergyoptimizationapproachforMessagePassingInterface(MPI)applicationsrunningonHPCsystems.
OurapproachreliesonapplyingDynamicVoltageFrequencyScaling(DVFS)atnodelevelbyanoptimiza-tionagent.
WheneverMPIprocessesareidleorbusywithI/Ooperations,thecorrespondingCPUcoresrunathigherfrequencies,whichresultsinwastageofpower.
Duringthistime,CPUcoresfrequenciescanbereducedusingDVFSsothattheenergycanbesaved.
OurapproachisbasedonaMulti-agentbasedintelligentenergymanagementframe-work,whichusesanoptimizationagentforimplementingenergyoptimizationalgorithm.
Thekeyadvantageoftheproposedapproachisthattheperformancewillnotbecompromisedwhileachievingenergysavings.
KeywordsHPCEnergy-awarecomputingMPIDVFSMulti-agentsystemAutonomiccomputing1IntroductionEnhancingtheperformancewasthekeyconcernintheareaofhighperformancecomputing(HPC)duringpastyears,whereasenergymanagementwasinsecondplace.
ButnowthescenariohasreversedandtheenergymanagementhasemergedasthemostconsiderableaspectinHPCworld.
HPCsystemsconsumepowerinseveralmegawatts[1]andthishighpowerconsumptionmayleadtoproblemslikereducedreliability,increasedcost,lessstabilityetc.
Hencereducingpowerconsumptionforhighendcomputingbecomesacrucialissueatbothsystemlevelandapplica-tionlevel.
Generally,HPCsystemsareofdistributedmemoryarchitectureandMPIstandard[2]isoneofthemostcommonlyusedparallelprogrammingparadigminthistypeofmemoryarchitecture.
OurapproachisbasedonapplyingDVFSatnodelevelbyourenergyoptimizationtool,whichdependsonfollowingtwoconditions.
Firstoneis,wheneverthemasterprocessisexecutingandtheslaveprocessesareinwaitingstate.
Secondoneis,whenallprocessesarecarryingouttheI/Ooperations.
Inboththeconditions,thecorrespondingCPUcoresrunathigherfrequenciesthatsimplywastestheCPUcycleswhichinturn,resultsininefcientuseofpower.
Hence,ifwecanreducethepowerconsumptionduringthistime,thispowerwastagecanbeminimized.
Ourapproachusesthisprincipletominimisethepowerwastage.
Dynamicpowerconsumptionofprocessorispropor-tionaltotheproductofsquareofvoltageandfrequency[3].
Duringtheidleperiod,thedynamicpowerconsumptioncanbereducedbyusingDVFStechnique.
Themajorissues,whenthefrequencyofprocessoristobevariedandonwhichnodesarebeingaddressedbyourenergyB.
Unni(&)N.
ParveenA.
KumarB.
S.
BindhumadhavaRealTimeSystemsandSmartGridGroup,CentreforDevelopmentofAdvancedComputing,C-DACKnowledgepark,Bangalore,Indiae-mail:bhavyasreeu@cdac.
inN.
Parveene-mail:naziap@cdac.
inA.
Kumare-mail:ankitk@cdac.
inB.
S.
Bindhumadhavae-mail:bindhu@cdac.
in123CSIT(June2013)1(2):175–181DOI10.
1007/s40012-013-0012-6optimizationalgorithm.
Wehaveevaluatedouroptimiza-tionalgorithmusingIntelMPIBenchmarks(IMB)[4]andapseudocodewhichhasbeendevelopedbyus.
TheproposedMulti-agentbasedautonomicframeworkiscomposedofautonomiccomponents(agents)interactingwitheachother.
Anautonomiccomputingsystem[5]makesdecisionsonitsownandconstantlychecksandoptimizesitsstatusautomatically,adaptingitselftothechangingconditions.
Ouroptimizationagentisself-opti-mizing,i.
e.
itwillmonitorthesystemcontinuouslyandoptimizesdependingonthesystemstatusautomatically.
Thisframeworkprovidesintelligencetoouroptimizationapproachsothathumaninterventioncanbeavoided.
Inthispaper,wehaveusedbothtechnologiessothatenergyisintelligentlymanagedusingDVFSbyoptimiza-tionagentthatwilltakethedecisionwhenandwheretoapplyDVFSonnodes.
Therestofthepaperisorganizedasfollows.
Section2reviewstherelatedworks.
InSect.
3,weexplainedtheenergyoptimizationproblemandthealgorithmtosolveit.
WehavepresentedtheintelligentenergymanagementframeworkforenergyoptimizationinSect.
4.
InSect.
5,experimentalanalysisisdiscussed.
Finally,Sect.
6describestheconclusionsandfutureworks.
2RelatedworksRecently,therearelotsofresearchesbeingcarriedoutintheeldofpoweroptimizationinHPCsystems.
Inthissection,wefocusonpoweroptimizationintheareaofMPIapplicationsMostofthenodelevelenergymanagementtechniquesarebasedonDVFStechniques[6–8],becauseCPUisthemostpowerconsumingcomponentwithinanode[9].
In[10],DVFStechniqueisappliedtothenodeswithlesscomputationsoastoreducethepower.
TherearesomeresearchworkswhicharebasedontheenergyefcienttaskallocationofMPIjobs.
Y.
Maetal.
[11]explainshowefcientlytaskclusteringwithtaskduplicationcanbedonetoreduceenergyconsumption.
Thepaper[12]discussesabouttaskaggregationtosaveenergy.
SeveralresearchesarebeingcarriedoutinreducingtheCPUfrequencyduringthecommunicationphaseofMPIprograms.
Dongetal.
[13]focusedonscalingdowntheCPUfrequencyduringtheMPIcollectiveoperations.
Chenetal.
[14]presentedanAutomaticEnergyStatusControllingwhichcancontrolCPUfrequencyautomaticallybasedonthecommunicationlatencyinthenodes.
OurpaperisalsoconcernedaboutapplyingDVFStechniquesforenergyoptimizationinMPIapplications,butitmainlyfocusesonthestateoftheprocessesunderexecution.
3ProblemstatementMPIisacommonparallelprogramminginterfacewhichdistributesthetaskamongmultipleprocessors.
Processorsexecutethesetasksandcommunicatewitheachotherbymessagepassing.
MPIisbasedondistributedmemorymodelwhereeveryprocesshasitsownmemoryspacewhichcannotbeaccessedbyotherprocesses.
Basically,twotypesofMPIprogrammingmodelsareavailable,i.
e.
SPMD(SingleProgramMultipleData)andMPMD(MultipleProgramMultipleData)orMaster-Slave.
Ourtechniqueisapplicableintwosituations.
FirstoneisbasedonMPMDmodel,inwhich,usuallywhenthemasterprocessisexecutingitstask,alltheslaveprocessesareinwaitingstate.
Duringthisexecutiontime,alloftheslaveprocessesareidleandarewastingtheCPUcycles.
Eventhoughtheyareinwaitingstate,processorsoperateathighfrequencies.
Sinceprocessorsrunathighfrequencies,thisleadstohigherpowerconsumption.
Ourideaistoreducetheprocessorsfrequenciesonslavenodesaslongasslaveprocessesareidle,sothatthepowerwastagecanbeminimized.
SecondsituationiswhenprocessescarryouttheI/Ooperation,allthenodesonwhichtheseprocessesrun,operateathigherfrequencies.
ThepercentageofCPUutilizationislowduringexecution.
Hence,ifwecanreducethepowerconsumptionduringthistime,powerwastagecanbeminimized.
3.
1EnergymodelAllthemodernprocessorsareenabledwithDVFStech-nique.
ThissectiondescribesDVFSenabledsystemmodelintermsofenergyconsumption.
DVFSenabledprocessorcanworkonsetsofdifferentvoltageandfrequencyasgivenin(1)and(2).
Vvi;wheremin\i\max1Ffi;wheremin\i\max2viistheithoperatingvoltage.
fiistheithoperatingfrequency.
Theenergyconsumptionofaprocessoristhesumofstaticenergyanddynamicenergyconsumptionandisgivenin(3).
Energyconsumptionintermsofstaticanddynamicpowerisshownin(4).
EEdynamicEstatic3EPdynamicPstatic:Dt4Accordingto[15],totalenergyconsumptionequationcanbemodiedas(5).
EACv2fvIleak:Dt5176CSIT(June2013)1(2):175–181123where,Aisthepercentageofactivegates,Cisthecapacitanceloadofallgates,vistheoperatingvoltage,fistheprocessorfrequency,Ileakistheleakagecurrent,Dtisthetimeduration.
Unlikedynamicpower,staticpowerisnotactivitybased.
Byreducingtheprocessorsfrequencieswhentheyareinidlestate,thestaticpowerconsumptioncannotbedecreased.
Ontheotherhand,shuttingofftheinactivepartofthesystemdoeshelp,butitresultsinlossofstate.
DVFSmaybeusedtoreducethedynamicpowerconsumptionbychangingtheCPUclockfrequency-voltagesettingwithoutaffectingtheexecutiontime.
3.
2EnergyoptimizationalgorithmInthissection,weintroduceanovelenergyoptimizationalgorithmforMPIapplicationsinHPCenvironment.
Thisalgorithmmakesuseoftwofactors,i.
e.
thedifferenceintheexecutiontimeofmasterandslaveprocessesandthetimetakentocompletetheI/Otask.
Theamountofenergythatcanbesaveddependsonthetypeofapplication.
Usually,inHPCenvironmentnodesaregenerallynotsharedamongdifferentapplicationsthatiswholenodeisutilizedbyasinglejob.
TheworkowofthisalgorithmisdepictedinFig.
1.
Firststepofthealgorithmistoidentifythenodeswhichhasbeenallocatedforaparticularapplicationwiththehelpofscheduler.
Thisinformationcanbetakenfromthescheduler.
Inthenextstep,thealgorithmwillverifywhe-theralltheprocessesarecarryingoutI/Ooperations.
Ifitistrue,thenfrequencyofallthenodeswillbereduced.
Otherwise,itwillcheckforthesecondcondition,i.
e.
whethermasterisexecutingwithslavesonwaiting.
Ifthisconditionissatised,thenthenodeonwhichthemasterisrunningisfoundbyinteractingwiththeapplication.
Next,thefrequenciesoftheslaveprocessorsarereducedwhentheyareinwaitingstatebyusingDVFS.
WheneverslavesstartrunningortheI/Ooperationsareover,thefrequenciesoftheprocessorswillbeincreasedbyDVFSinthelaststep.
Thisalgorithmwillcontinuewiththeabovestepsandwillbeterminatedwhentheapplicationnishes.
4IntelligentenergymanagementframeworkforenergyoptimizationWehavedesignedandimplementedanIntelligentEnergyManagementframeworkwhichisbasedonMulti-agentsupportasshowninFig.
2.
AMulti-agentframework[16]consistsofloosely-coupledcomputationalautonomousagentsthatcanperformactions.
Thesehaveresourcesattheirdisposalandtheypossessknowledge.
Theyaresitu-atedinacommonenvironmentandtheycancommunicatethroughinteractionprotocols.
WehaveusedC-DACMulti-agentFramework(CMAF)[17]toprovidethesupportforagentexecutioninourarchitecture.
Forthisarchitecture,wehaveusedahybrid(reactiveandmobile)typeagent.
Areactiveagentreceivesinput,processesitandproducesoutput.
Amobileagentisacompleteself-containedbodyofcode,whichphysicallymovesfromonecomputertoanother.
Beforemigrating,themobileagentstopsexecutionatthesourceandresumesexecutionafterreachingthedestination.
ThisframeworkmainlyconsistsoftheTargetSystem(TS),whichisHPCSystem'scomputenodesandIntelli-gentEnergyManager(IEM).
TheframeworkisdeployedonHPCsystemwhereIEMisdeployedatHeadNodeandFig.
1FlowchartofenergyoptimizationapproachCSIT(June2013)1(2):175–181177123eachcomputenode(whichworksasTS)hostsanoptimi-zationagentthatexecutestheenergyoptimizationalgo-rithm.
OurIEMcomprisesofthreeparts,i.
e.
JobManager,LauncherandOptimizationagent.
JobManagerinteractswiththeschedulertogetdetailsaboutthejobs,i.
e.
onwhichnodeseachjobhasbeenallocated.
Itcollectsandupdatestheinformationregardingeachjobfromtheschedulerperiodically.
Foreveryjob,itpassesthecorrespondinginformationtotheLauncher.
Basedonthisinformation,Launcherinitiatestheoptimizationagentsonappropriatenodes.
Italsopassesthecorrespondingparameterstoeachagent.
Atnodelevel,thisagentinteractswiththeapplica-tionandcarriesouttheoptimizationaccordingtothealgorithmmentionedinSect.
3.
2.
Theoptimizationagentisterminatedwiththeendofapplication.
5ExperimentalanalysisInthissection,weevaluatedtheenergysavingsobtainedwithourenergyoptimizationalgorithm.
Theperformanceofenergyoptimizationalgorithmvariesaccordingtothenatureofapplicationi.
e.
whetheritisCPUboundorI/Obound,durationofexecution,no.
ofprocessesandnodesetc.
WehavecarriedoutourexperimentswithMPI-I/ObenchmarksofIMBpackageandourpseudocode.
Thefollowingsubsectionsdescribethedetailsoftheexperi-mentationdone.
5.
1ExperimentalenvironmentOurexperimentalplatformisequippedwiththreeHPDL380G7servers,eachhavingtwoIntelXeonE5645processorswithsixcores.
ThesethreesystemsareclusteredusingPBSresourcemanagerandMauischedulerwhereoneactsasaheadnodeandtheothertwoascomputenodes.
EachCPUcorehasmaximumfrequencyof2.
4GHzandminimumfrequencyof1.
6GHz.
EachnodehasRHEL6.
2operatingsystemandusesMPICH2-1.
4.
1libraryforMPI[18].
OurMulti-agentframeworkisloadedintotheheadnodeandcomputenodes.
Powermeasurementhasbeendoneusing''Watt-sUp.
NET''powermeter.
Theenergyconsumptionisestimatedbyintegratingtheactualpowermeasuresovertime.
TheexperimentalsetupforpowermeasurementisshowninFig.
3.
5.
2ExperimentalresultsWehaveevaluatedtheenergyoptimizationalgorithmusingtwoexperimentsinhighperformancemode.
Wecarriedoutrstexperimentwiththepseudocode,whichisbasedonMPMDmodelofMPI.
ItisCPUintensiveanddoesmatrixmultiplication.
Fig.
2ArchitectureofintelligentenergymanagementframeworkFig.
3Experimentalsetupforpowermeasurement178CSIT(June2013)1(2):175–181123Wehaveexecutedthisprogramontwoserverswith24processesbyrunning12processesoneachserver.
Wehaveexecutedtheprogramunderfourdifferentconditions,i.
e.
allprocessorsoperatingatmax.
frequency(2.
4GHz),allprocessorsoperatingatmin.
frequency(1.
6GHz),allprocessorsatmax.
frequencyandwithourenergyoptimi-zationtechnique,andallprocessorsatmax.
frequencyandwithourenergyoptimizationtechniquecombinedwithvaryingvoltagelevels.
Westeppeddownthevoltagelevelofprocessorsatmaximumfrequencybyonestep.
Inourenergyoptimizationtechnique,wheneverthemasterpro-cessisexecutingandtheslaveprocessesareinwaitingstate,thefrequencyofthenodes,onwhichslavesarerunning,isreducedfrom2.
4to1.
6GHz.
Thefrequencyisincreasedbackto2.
4GHzwhentheslaveprocessesstarttoexecute.
ThepowerconsumptionduringalltheconditionsforthisexperimentisshowninFig.
4.
TheenergyconsumptionandsavingsfortheaboveexperimentsareshownintheTable1.
Byutilizingourenergyoptimizationtechnique,weareabletoreducetheFig.
4PowerconsumptionwithpseudocodeTable1EnergyconsumptionandsavingsunderdifferentconditionsWithmaximumfrequencyWithminimumfrequencyWithenergyoptimizationtechniqueWithenergyoptimizationtechniqueandsteppeddownvoltageAvg.
Power(W)443.
33330.
66402.
11378.
96Energy(Ws)53,643.
355,881.
548,65647,370.
6Energysavings0%-4%9.
3%11.
7%Fig.
5PowerconsumptionwithP_write_privunderdifferentconditionCSIT(June2013)1(2):175–181179123energyconsumptionby9.
3%withoutaffectingtheper-formance.
Weachieved11.
7%energysavingswith3%increaseinexecutiontimebycombiningouroptimizationtechniquewithvaryingvoltagelevelsofprocessors.
ThesecondexperimentwasconductedwithP_write_-privbenchmark.
ItisoneoftheI/ObenchmarkofIMBpackage.
Inthiscase,allparticipatingprocessesperformconcurrentI/Otodifferent,privateles.
Wehaveexecutedthisprogramontwoserverswith24no.
ofprocesses,12oneachserver.
Thisexperimentwascarriedoutwithtwodifferentconditions,i.
e.
allprocessorswithmax.
operatingfrequency(2.
4GHz)andwithourenergyoptimizationtechnique.
WheneverallprocessesareperformingtheI/Oopera-tions,theprocessorfrequenciesofallthenodeswillbereducedfrom2.
4GHzto1.
6GHzinourenergyoptimi-zationtechnique.
TheexperimentresultswiththetwoconditionsduringtheexecutionofP_write_privbenchmarkisshowninFig.
5.
Theenergyconsumptionforbothexperimentsiscalculatedbyintegratingpowerreadingsovertheexecutiontime.
Thecorrespondingenergycon-sumptionandsavingsforthisexperimentareshowninTable2.
Byutilizingourenergyoptimizationtechnique,wecouldreducetheenergyconsumptionby11.
7%withoutaffectingtheperformance.
Asthenumberofprocessesandthenumberofnodesincrease,moreenergycanbesaved.
6ConclusionsandfutureworkInHPCenvironment,enormousamountofenergywastageoccursattheapplicationlevel.
Therefore,theneedforanefcientenergyoptimizationalgorithmisincreasingtre-mendously.
MostofthetechniquesarebasedonDVFS,whichisaproveneffectivewaytoreducepowerwastage.
OurresearchisbasedonminimizingtheenergywastageusingDVFSinMPIapplications.
Theproposedenergyoptimizationpolicyiseffectiveandcanautomaticallysetthefrequencyofprocessors,whichinturnleadstoreduc-tioninenergyconsumptionwithoutdegradingtheperfor-mance.
WehavealsodevelopedaMulti-agentbasedautonomicframeworkwhichhelpstoimplementouralgorithmonHPCsystems.
Infuture,wewilldeploythisalgorithmusingMulti-agentframeworkonliveHPCsystemsrunningMPIapplications.
AcknowledgmentsTheauthorswouldliketothankR.
K.
SenthilKumar,H.
V.
Raghu,SumitKumarSaurav,ManishaChauhanandB.
Jayanthfortheirvaluablesupportandsuggestionswhileconductingthisresearch.
References1.
GeR,FengX,PylaH,CameronK,FengKW(2007)PowermeasurementtutorialfortheGreen500ListJune27,20072.
TheMessagePassingInterface(MPI)Standard.
http://www-unix.
mcs.
anl.
gov/mpi/3.
GeR,FengX,CameronKW(2005)Performance-constraineddistributedDVSschedulingforscienticapplicationsonpower-awareclusters.
In:ProceedingsofACM/IEEEconferenceonsupercomputing(SC'05)'',20054.
IntelMPIBenchmarks-UsersGuideandMethodology.
http://www.
software.
intel.
com/en-us/articles/intel-mpi-benchmarks/5.
TewariV,MilenkovieM(2006)Standardsforautonomiccom-puting.
In:IntelTechnologyJournal,20066.
WangL,LaszewskiG,DayalJ,WangF(2010)TowardsenergyawareschedulingforprecedenceconstrainedparalleltasksinaclusterwithDVFS.
In:ProceedingsofIEEEsymposiumoncluster,cloudandgridComputing,CCGrid,20107.
LiD,SupinskiBR,SchulzM,CameronK,NikolopoulosDS(2010)HybridMPI/OpenMPpower-awarecomputing.
In:Pro-ceedingsofIEEEsymposiumonparallelanddistributedpro-cessing,IPDPS20108.
CameronKW,GeR,FengX(2005)High-performance,power-awaredistributedcomputingforscienticapplications.
In:IEEEcomputer,vol.
38,20059.
RoderoI,ChandraS,ParasharM,MuralidharR,SeshadriH,PooleS(2010)Investigatingthepotentialofapplication-centricaggressivepowermanagementforHPCworkloads.
In:Pro-ceedingsofIEEEconferenceonhighperformancecomputing,HiPC201010.
EtinskiM,CorbalanJ,LabartaJ,ValeroM,VeidenbaumA(2009)Power-AwareloadbalancingoflargescaleMPIapplica-tions.
In:ProceedingsofIEEEsymposiumonparallelanddis-tributedprocessing,IPDPS2009,doi:10.
1109/IPDPS.
2009.
516097311.
MaY,GongB,ZouL(2009)Energy-EfcientSchedulingAlgorithmofTaskDependentGraphonDVS-UnableClusterSystem.
In:ProceedingsofIEEE/ACMconferencegridcom-puting,doi:10/1109/GRID.
2009.
535305612.
LiD,NikolopoulosDS,CameronK,SupinskiBR,SchulzM(2010)Power-awareMPITaskAggregationPredictionforHigh-EndComputingSystems.
In:ProceedingsofIEEEsymposiumparallelanddistributedprocessingsymposium,IPDPS,201013.
DongY,ChenJ,YangX,YangCY,PengL(2008)LowPowerOptimizationforMPICollectiveOperations.
In:ProceedingsofIEEEconferenceyoungcomputerscientists,ICYCS2008,doi:10.
1109/ICYCS.
2008.
50014.
Y.
ChenandY.
Zeng(2011)''Automaticenergystatuscontrol-lingwithdynamicvoltagescalinginpowerawarehighperfor-mancecomputingcluster''.
Proc.
IEEEConf.
Parallelanddistributedcomputing,applicationsandtechnologies(PDCAT),Oct.
2011,pp.
412–416,doi:10.
1109/PDCAT.
2011.
2415.
KimNS,AustinTetal(2003)Leakagecurrent:Moore'slawmeetsstaticpower.
IEEEComputer,vol.
36,doi:10.
1109/MC.
2003.
1250885Table2EnergyconsumptionandsavingsunderdifferentconditionsWithmax.
frequencyWithourenergyoptimizationtechniqueAvg.
Power(W)317.
8280.
5Energy(Ws)54,35547,970.
7Energysavings0%11.
7%180CSIT(June2013)1(2):175–18112316.
AhmadHF(2002)Multi-agentsystems:overviewofanewpar-adigmfordistributedsystems.
InProceedingsofIEEEsympo-siumhighassurancesystemsengineering17.
VenkiteshS,BindhumadhavaBS,BhandariAA(2006)Imple-mentationofautomatedgridsoftwaremanagementtool:amobileagentbasedapproach.
InProceedingsofinternationalconferenceoninformationandknowledgeengineering18.
MPICH2-1.
4.
1.
http://www.
mcs.
anl.
gov/research/projects/mpich2/documentation/les/mpich2-1.
4.
1-userguide.
pdfCSIT(June2013)1(2):175–181181123
鲨鱼机房(Sharktech)我们也叫它SK机房,是一家成立于2003年的老牌国外主机商,提供的产品包括独立服务器租用、VPS主机等,自营机房在美国洛杉矶、丹佛、芝加哥和荷兰阿姆斯特丹等,主打高防产品,独立服务器免费提供60Gbps/48Mpps攻击防御。机房提供1-10Gbps带宽不限流量服务器,最低丹佛/荷兰机房每月49美元起,洛杉矶机房最低59美元/月起。下面列出部分促销机型的配置信息。机房...
香港ceranetworks提速啦是成立于2012年的十分老牌的一个商家这次给大家评测的是 香港ceranetworks 8核16G 100M 这款产品 提速啦老板真的是豪气每次都给高配我测试 不像别的商家每次就给1核1G,废话不多说开始跑脚本。香港ceranetworks 2核2G 50G硬盘20M 69元/月30M 99元/月50M 219元/月100M 519元/月香港ceranetwork...
10gbiz发布了9月优惠方案,针对VPS、独立服务器、站群服务器、高防服务器等均提供了一系列优惠方面,其中香港/洛杉矶CN2 GIA线路VPS主机4折优惠继续,优惠后最低每月仅2.36美元起;日本/香港独立服务器提供特价款首月1.5折27.43美元起;站群/G口服务器首月半价,高防服务器永久8.5折等。这是一家成立于2020年的主机商,提供包括独立服务器租用和VPS主机等产品,数据中心包括美国洛...
dl380g7为你推荐
neworiental我国最好的英语学校是在哪里?小度商城小度分期靠谱吗?特朗普取消访问丹麦特朗普出国访问什么飞机护送?留学生认证留学生回国认证,是否要求需要在国外待满三年,还是只需要完成所需的三年课程?嘀动网在炫动网买鞋怎么样,是真的吗psbc.com95580是什么诈骗信息不点网址就安全吧!百花百游百花净斑方多少钱一盒www.44ri.comwww.yydcsjw.comwww.kanav001.com翻译为日文: 主人,请你收养我一天吧. 带上罗马音标会更好wwwwww.se333se.com米奇网www.qvod333.com 看电影的效果好不?
海外域名注册 过期已备案域名 132邮箱 主机 安云加速器 uk2 suspended 一元域名 秒杀汇 域名接入 免费吧 nerds 爱奇艺vip免费试用7天 绍兴电信 电信主机 个人免费主页 四川电信商城 空间登录首页 中国电信网络测速 全能空间 更多