white惠普z800

惠普z800  时间:2021-03-27  阅读:()
ANeuralFieldModeloftheSomatosensoryCortex:Formation,MaintenanceandReorganizationofOrderedTopographicMapsGeorgiosIs.
Detorakis,NicolasP.
Rougier*INRIACNRS:UMR7503UniversiteHenriPoincare-NancyIUniversiteNancyIIInstitutNationalPolytechniquedeLorraine,Nancy,FranceAbstractWeinvestigatetheformationandmaintenanceoforderedtopographicmapsintheprimarysomatosensorycortexaswellasthereorganizationofrepresentationsaftersensorydeprivationorcorticallesion.
Weconsiderboththecriticalperiod(postnatal)whererepresentationsareshapedandthepost-criticalperiodwhererepresentationsaremaintainedandpossiblyreorganized.
Wehypothesizethatfeed-forwardthalamocorticalconnectionsareanadequatesiteofplasticitywhilecortico-corticalconnectionsarebelievedtodriveacompetitivemechanismthatiscriticalforlearning.
Wemodelasmallskinpatchlocatedonthedistalphalangealsurfaceofadigitasasetof256Merkelendingcomplexes(MEC)thatfeedacomputationalmodeloftheprimarysomatosensorycortex(area3b).
Thismodelisatwo-dimensionalneuralfieldwherespatiallylocalizedsolutions(a.
k.
a.
bumps)drivecorticalplasticitythroughaHebbian-likelearningrule.
Simulationsexplaintheinitialformationoforderedrepresentationsfollowingrepetitiveandrandomstimulationsoftheskinpatch.
Skinlesionsaswellascorticallesionsarealsostudiedandresultsconfirmthepossibilitytoreorganizerepresentationsusingthesamelearningruleanddependingonthetypeofthelesion.
Forseverelesions,themodelsuggeststhatcortico-corticalconnectionsmayplayanimportantroleincompleterecovery.
Citation:DetorakisGI,RougierNP(2012)ANeuralFieldModeloftheSomatosensoryCortex:Formation,MaintenanceandReorganizationofOrderedTopographicMaps.
PLoSONE7(7):e40257.
doi:10.
1371/journal.
pone.
0040257Editor:AndreaSerino,UniversityofBologna,ItalyReceivedJanuary28,2012;AcceptedJune4,2012;PublishedJuly12,2012Copyright:2012Detorakis,Rougier.
Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalauthorandsourcearecredited.
Funding:Theauthorshavenofundingorsupporttoreport.
CompetingInterests:Theauthorshavedeclaredthatnocompetinginterestsexist.
*E-mail:Nicolas.
Rougier@inria.
frIntroductionEarlyobservationsofLeytonandSherrington[1](asreportedbyLemonin[2])ontheadultanthropoidapesdemonstratedtheabilityofthemotorcortextorecoverfromextensivecorticallesions.
Theauthorshypothesizedconsequentlytheexistenceofaneuralsubstrateand/oramechanismforsuchextensiverecovery.
However,aboutfortyyearslater,HubelandWieselpublishedaveryinfluentialpaper[3]thatpromotedtheideaoffixedcorticalrepresentationsfollowingthepost-nataldevelopmentalperiod.
ThishypothesishasprevailedforalongtimeuntilthestudiesofMerzenich,Kaasetal.
[4–6]providedexperimentalevidenceforsomatosensorycortexreorganizationfollowingaperipheralnerveinjuryoramputationintheadultmonkey.
Severalneurophysio-logicalstudies[7–9]havesinceconfirmedthislatterhypothesisandthecortexisnowconsideredasadynamicstructurethatisabletoreorganizeitsrepresentationsduringthewholelife-timeandnotonlyduringthecriticalperiod.
Ithasbeenconfirmedforthecaseoflesion(e.
g.
strokes)[9,10],ablation[11,12](e.
g.
tumorssurgery),bodyinjury(e.
g.
accident)orseveredegeneracy'softhalamocorticalandcortico-spinalprojections[13,14].
EvenenvironmentalfactorsmaydeeplyimpactcorticalrepresentationsasithasbeendemonstratedbyDanieletal.
in[15].
However,thenatureoftheunderlyingmechanismssupportingsuchcorticalplasticityisstilllargelyunknownevenifsomehypotheseshaveemerged.
Inthisregard,FeldmanandBrecht[16]publishedanextensivereviewofsynapticmechanismsthatcouldberesponsibleforplasticityintheneocortexatboththesynapticphysiologicallevel(long-termpotentiation(LTP),long-termdepression(LTD),spiketimingdependentplasticity(STDP),homeostasis,meta-plasticity,GABAergiccellsandcircuits)andthestructurallevel(thalamocor-ticalandhorizontalcross-columnaraxons).
HickmottandMerzenich[17]proposedasimilarstudyaboutthepropertiesoflocalcircuitunderlyingcorticalreorganizationandidentifiedtwogeneralclassesofmechanisms,oneinvolvesarapidchangeintheefficiencyofexistingsynapseswhiletheotherentailsadelayedphasepromotingthesproutingofnewconnections.
Thislatterstudyisinfactquiteconsistentwiththeformertwo-levelsanalysis.
Itistobenotedthatsomeofthesemechanismswerealreadyhypothesizedtobeinvolvedincorticalplasticity.
Forexample,neuronalaxonsproutingwasalsoreportedbyFlorenceetal.
[18]asapotentialcandidate,LTPandLTDin[19–22],formationofnewsynapses[4,23]andinhibitoryandexcitatorymechanismsin[24,25].
Someothercandidateshavebeenidentifiedaswellastheroleoftheinterhemisphericmodulationofsomatosensoryreceptivefields[26].
Today,nodefinitivehypothesishasemergedandmostprobablytheanswerisacombinationofdifferentmechanismsatdifferenttimescaleproportionallytotheconsideredperiodofdevelopment(prenatal/postnatalcriticalperiod/adultperiod).
Onedifficultyinidentifyingsuchamechanismisthatonemustgiveaccountonboththeinitialformationoforderedtopographicmaps(asithasbeenobservedinprimarysensoryareasV1,A1andS1forexample),themaintenanceofsuchmapsduringthewholelifetime,thereorganizationfollowingatraumaoraninjuryandPLoSONE|www.
plosone.
org1July2012|Volume7|Issue7|e40257thepossiblerefinementaccordingtoexperience(e.
g.
expandingrepresentationsinordertoincreaseaccuracy).
Sincetheanatom-icalorganizationofthecortexfollowsaregularandhierarchicalstructure[27,28]whoseelementarycircuitistheminicolumn(eveniftheymaydisplayconsiderabledifferences[29]),thislatterstructureorthemacrocolumn(whichgathersfrom60to80minicolumns[30])maybothrepresentnaturalcandidatestobeinvestigatedfurther.
Moreprecisely,weknowthateachcorticallayerreceivesinputfromfourdistinctsources,onefromextra-corticalareasandthreefromintra-corticalareas.
First,excitatoryneuronsofasinglelayerreceiveinputfromotherneuronsofthesamelayer.
Second,excitatoryneuronsoftheinputlayer,L4,receiverecurrentfeedbackinputfromL2/3.
Thusapositiverecurrentloopemergeswhichseemstoaccountforgainmodulationforactiveselectionandre-combinationoftherelativelysmallafferentsignals[31].
Thirdisthebackgroundnoiseofthecorticalcircuitthathasbeenproposedtocontributestothemodulationofthegainofthecircuitbyenhancingtheresponsivenessofcorticalpyramidalneurons,[32,33].
Last,butnotleast,excitatoryneuronsofL4receivedirectinputfromthethalamusandiftheyaccountapproximatelyforonly15%ofthesynapses,BrunoandSakmann[34]demonstratedinvivotheymaynonethelessdrivethecortexwithouttheneedforintra-corticalamplificationandrevealedthethalamocorticalpathwayasahighlyefficientone.
Inaddition,thalamicneuronsdevelopdirectmono-synapticconnectionsontoL4corticalexcitatoryneuronsindependentlyofthemorphologicalcharacteristicsoftheseneurons.
Furthermore,Khazipovetal.
[35]describedtheontologicaldevelopmentofthecortexandtherespectivecontributionofdifferentmechanisms.
Thematurationofthebrainisdividedintwomajorperiods,pre-andpostnatal.
Atthebeginningoftheprenatalperiod,geneticinformationleadstotheearlyformationoftheneuralnetworksfollowedbyaspontaneouselectricalactivityperiodthatleadstotheformationofthecolumnarorganization[36,37].
Thisprocesscontinuesafterbirthandstopswhenthecriticalperiodstarts.
Then,corticalcircuitsaredrivenmainlybyexperienceandsynapticplasticity(e.
g.
Hebbianlearning)takesplace.
Afterthecriticalperiodcomestoanendtheadultbraincanstilllearnandcorticalcircuitsareabletoreorganizethemselvesandrefinetheirreceptivefields.
Atthispoint,wethinkthatcomputationalneurosciencemayplayakeyrolebyprovidingcomputationalmodelsthatcanbeusedtotestthisorthatfunctionalhypothesis.
Ithasbeenalreadythecasewiththeself-organizingmapsasproposedbyT.
Kohonen[38,39]inthelateeightiesthathelpedtopromotetheideaofacompetitionamongunitsleadingtotheformationoforderedrepresentations(althoughwithoutthepossibilityofre-organizingthem).
Atthesametime,G.
Edelmanwasproposingtothecommunityhistheoryofneuralgroupselection[40]andmorespecifically,hewasproposingacomputationalmodelofplasticityintheorganizationofthecorticalmaps[41]whereneuronalgroupsserveasthebasicunitformaporganization.
However,thismodeldidnotemphasizetheimportanceofthethalamocorticalpathwayasweexplainedearlierandwethinkwemightneedtoreconsideritsroleintheformationofandmaintenanceofthesensoryrepresenta-tions.
Weproposeinthisarticletoinvestigate(computationally)theformationoftopographicmapsinthesomatosensorycortexaswellasthereorganizationofrepresentationsaftersensorydeprivationorcorticallesion.
Weconsiderboththecriticalperiod(postnatal)whererepresentationsareshapedandthepost-criticalperiodwhererepresentationsaremaintainedandpossiblyreorganized.
Wehypothesizethatfeed-forwardthalamocorticalconnectionsareanadequatesiteofplasticitytogiveaccountforboththeformationandthemaintenanceoftopographicrepresentationsandpartlyforthereorganizationofrepresentationsfollowingasensoryorcorticallesion.
Wethereforefocusontheorganizationandreorganizationofthesomatosensorycortex(area3b)innervatedbythemechanoreceptorsofthehand.
Amodelofskinanditsassociatedmechanoreceptors(Merkelendingcomplexes)isfirstintroducedandthecorticalmodel,basedonthedynamicneuralfieldtheory,ispresentedtogetherwithitsdynamicsthatallowtodrivelearningthroughaHebbian-likelearningrule.
Resultsconcerningtheinitialformationandmaintenanceoforderedrepresentationareanalyzedaswellasresultsconcerningthereorganizationofrepresentationsfollowingacorticalorskinlesion.
Inlightoftheseexperiments,wediscussthecriticalroleoffeed-forwardthalamocorticalconnectionsinthereorganizationprocessaswellasthepotentialroleoflateralconnections.
MethodsSkinModelWemodeledtheMerkelendingcomplexes(MEC)thatarededicatedtosustainedtouchsensationandpressure,neglectingothermodalities(e.
g.
temperature,pain).
FollowingdataprovidedbyPareetal.
in[42],weconsideredasmallskinpatchlocatedonthedistalphalangealsurfaceofadigit(seefigure1)thataccountsroughlyforhalfofthedigitsurfaceinarea3b,restofthesurfacebeingsharedamongproximalandmiddlesurfaceofthesamedigit[43].
Theskinpatchisapproximatelyofsize1mm2,usingareceptordensityof250/mm2[44].
Ithasbeenmodeledasaplanarsurface{1,1|{1,1(arbitraryunits)andweconsidered256MEC'sthatarearrangedinaregulargridoverthewholesurfacewithalocationjitterof5%.
Thisresultsinaquasi-uniformdistributionconsistentwithactualdistributionofMECasreportedin[42]andillustratedinfigure1C.
EachreceptorisfullydescribedbyitsCartesiancoordinates,namely(Rxi,Ryi),wherei[f1,256g.
Weassumethatwhenastimulusisappliedatagivenlocation(x,y)oftheskinpatch,themechanicpropertyoftheskinextendsthepressureleveltonearbylocations[45]suchthattheresponsesofanyreceptor(Rx,Ry)isgivenby:s(Rx,Ry)~exp{121s((Rx{x)2z(Ry{y)2)r!
1Inprimates,thissomatosensoryinformationflowsthroughseveralrelays,whichlieinthespinalcordandthethalamus,beforereachingthecortex.
Moreprecisely,dorsalrootganglion(DRG)receivesinformationfromskinandtransmitsittothedorsalcolumnnuclei(DCN).
DCN,inturn,transmitsinformationfromDRGtotheventralposteriorlateral(VPL)nucleusofthethalamus,crossingthemidlineatthemedullaviathemediallemniscus[46].
Theserelaystationsplayakeyroleinstimulicontrastsharpeningbutwedecidedtoignorethemsinceweconsideredthattheexperimentalsetupprovidesenoughcontroloverthestimulusandensurespropersharpness.
Hence,theoutputofallreceptorsaredirectlyfedtothecorticalmodel(seefigure2).
Skinlesionsweremadebysilencingreceptorsoveraspecificareaoftheskinsurface.
Insteadoftransmittingpropervalues,disabledreceptorstransmitanullvaluewhichmorelikelycorrespondstosensorydeprivation.
Therearethreetypesoflesions(namelytypeI,II&III)asillustratedinfigure2Thesethreetypescorrespondtothreedistincttopologicalsituations.
Thefirsttypeleadstoaskinpatchthatistopologicallyequivalenttotheintactone.
ThesecondtypeintroducesaseparationoftheintactANeuralFieldModeloftheSomatosensoryCortexPLoSONE|www.
plosone.
org2July2012|Volume7|Issue7|e40257skinpatchintotwodistinctareasandbecauseastimuluscannotspanthetwopatchesatonce,thesetwoskinpatchesareindeedindependent.
Thethirdtypeintroducesaholeinthetopologyoftheskinandisthemostchallengingtorecoverfrom.
CorticalModelAsmallvolumeoftheprimarysomatosensorycortex(SI)wasmodeledusingtheneuralfieldtheory[47–50]whichconsidersagivencorticalvolumeVtobeaspatialcontinuumwheremacro-statevariables(suchasthemeanfiringrate)ofapopulationatpositionxisgivenbyanequationoftype:Figure1.
Skinmodeling.
AApalmarschematicofthehand((https://commons.
wikimedia.
org/wiki/File:Hand_left.
svg)HanddrawingbyCy21availableoncommons.
wikimedia.
orgunderaCreativeCommonsAttribution-ShareAlike3.
0Unportedhttps://creativecommons.
org/licenses/by-sa/3.
0/deed.
enlicense.
)BLocationandrelativesizeofthemodeledskinpatch.
CMagnificationofskinpatchindicatingthetopologyofreceptors.
doi:10.
1371/journal.
pone.
0040257.
g001Figure2.
Amodelofthesomatosensorycortex.
Theskinpatchismodeledasasetof256mechanicreceptors(whitediscsinthefigure)withaquasi-uniformdistributionthatfeedthecorticalpatch.
Bluecirclesrepresentanexampleofastimulusappliedontheskinpatchandthebluesquarerepresentsthestimulationarea.
Thecorticalpatchismodeledusinganeuralfieldwithaspatialdiscretizationofsize32632elementsusinggloballateralexcitationandinhibition.
Redcirclesrepresenta(schematic)typicalcorticalresponseafterlearning.
Thethreesquaresundereachpatchrepresentthedifferentcasesoflesionthathavebeenstudiedwherethegraypartrepresentsthelesionedarea.
doi:10.
1371/journal.
pone.
0040257.
g002ANeuralFieldModeloftheSomatosensoryCortexPLoSONE|www.
plosone.
org3July2012|Volume7|Issue7|e402571tLu(x,t)Lt~{u(x,t)zVw(x,y)f(u(y,t{Dx{yDv))dyzi(x,t)whereu(x,t)representstheactivity(e.
g.
themembranepotential)atpositionxandtimet,i(x,t)representsthesynapticinput,wisaweightfunctionmeasuringthestrengthofconnectionbetweenpositionsxandy,fisthefiringratefunctionofasingleneuron,visthevelocityofanactionpotentialandtisthetemporaldecay.
Giventhesmallsizeofcorticalvolume,weneglectedvelocityeffects(v~z,see[5]forastudy)andweconsideredthefieldtobehomogeneousandisotropic,leadingtothefollowingsimplifiedequation:1tLu(x,t)Lt~{u(x,t)zaVwl(Dx{yD)f(u(y,t))dyzi(x,t)2whereaisascalingfactorandwlistheweightfunctionoflateralconnections.
Moreover,weuseasimplerectificationforthefiringfunctionfsinceitisthesimplestfunctionthatcanprovidestabilityforasuchfield[52,53]:f(x)~x,ifx§00,ifxv0&3Wealsoconsideredtheinputtobeameasureofthedifferenceofagivenstimuluss(t)(thatcorrespondtothen~256outputsoftheskinreceptors)withasetoffeed-forwardweightswf(x)suchthatforanypositionx,wehave:i(x,t)~1{Ds(t){wf(x)DnG(x;mc,sc)4whereG(x;mc,sc)isacorrectiveGaussianfunction.
Itiscorrectiveinthesenseoftoricconnectionssinceourmodeldoesnotenforceanytorictopology(itisnotimplementedonatorus).
Wethereforemultipliedi(x,t)byafixed-shapeGaussianfunctioninordertocorrectanykindofboundaryconditionsside-effect.
ThroughoutsimulationsthevarianceofthecorrectiveGaussianfunctionwassc~2:1,andthemean,mc~0.
Finally,thelateralconnectionweight,wl,reflectstheusualpatternofshort-rangeexcitation(we)andlong-rangeinhibition(wi):wl(x)~we(x){wi(x)~Keexp{x22s2e{Kiexp{x22s2i5withKe,Kibeingtheamplitudes,se,sibeingthevariancesoftheexcitatoryandinhibitoryGaussianfunctionsrespectively,suchthatgenerallyweconsidersi&se.
Corticallesionsweremadebysilencingunitsoveraspecificareaofthecorticalsurfacesuchthatdeadunit'sactivitywasalwayszero.
Likeforskinlesions,weconsideredthreetypesoflesions(namelytypeI,II&III)withsametopologicalproperties(seefigure2).
NeuralPopulationDynamicsInhisseminalworkonneuralfields[47],Amaristudiedtheequilibriumsolutions,stabilityandformationofdynamicpatternsprovidingtheconditionsforsuchbehaviorsintheone-dimensionalcase.
Sincethen,alotofworkhasbeendoneinthedirectionofextendingtheinitialtheorytootherconditions[48],higherdimensions[49,54]anddifferentbehaviors(seethereviewbyCoombes[50]).
Inthepresentwork,wearemainlyinterestedinthetwo-dimensionalcasesinceweaimatmodelingacorticalsheet.
Morespecifically,weareinterestedinspatiallylocalizedsolutions(a.
k.
a.
bumps)thatmaydrivethecorticalplasticityandwewouldliketheactivityofthefieldtoreflecttosomeextentameasureoftheinput,e.
g.
ameasureofthedistancebetweenthefeed-forwardweightsofthemostactivatedunits(i.
e.
unitsfromthebump)andthecurrentstimulation.
UsingaspecificsetofparametersP~fKe,Ki,se,si,aggivenintable1,thefieldcanachievethefollowingproperty:foranyuniforminputi(x,t)~v,v[0,1,themaximumactivityofthefieldisv.
Theone-dimensionalcaseisillustratedinthefigure3.
Furthermorethesamepropertyholdstrueinthetwodimensionalcaseusingthesamesetofparameters,P.
PlasticityRuleAlearningrulefortheclassicalself-organizingmapalgorithm[38]hasbeenproposedbyRougierandBoniface[55],wheretheoriginaltime-dependent(learningrateandneighborhood)learningfunctionhasbeenreplacedbyatime-invariantlearningrule.
Instead,adynamicneighborhoodfunctionhasbeenintroducedthatdependsexplicitlyonthedistanceofthewinnertothepresentedstimulus.
Ontheonehand,ifthedistanceofthewinningunitisveryclosetothepresentedinput,thedynamicneighborhoodisrenderedverystrongbutnarrow,weakeningthelearningofotherunits.
Ontheotherhand,whenthewinningunitisveryfarfromthepresentedinput,thedynamicneighborhoodexhibitsaverybroadbutweakpattern,promotingweaklearningofeveryunitinthenetwork.
Thisalgorithmhasbeenexperimen-tallyprovedtobeabletoachieveself-organizationinasimilarwayasofaregularself-organizingmap.
Usingthisideaofadynamicneighborhoodbutinthecontextofneuralfields(nonotionofawinningunit),wecanusetheaforementionedmatchpropertytoachievesuchbehavior.
Asexplainedintheintroduction,ourmainhypothesisisthatcorticalplasticitycanbeachievedatthelevelofthalamocorticalconnections,correspondingtothefeed-forwardweightsinourmodel.
Thisimpliesthatthenetworkdoesnotneedtolearnthelateralweights.
Therefore,wetrainedthefieldusingamodifiedOjalearningrule[56]withthefollowingequation:Lwf(x,t)Lt~cs{wf(x)|{z}pre-synapticterm|Le(x)|{z}post-synapticterm6wherecisthelearningrateandLe(x)isthetotalexcitationreceivedatthepointxwhichisgivenbythetwodimensionalspatialconvolutionbetweentheexcitatorypartofthelateralweightfunctionandthefieldactivity.
Moreprecisely,wehave:Le(x)~T0Vf(u(y,t))we(Dx{yD)dydt7whereweistheexcitatorypartofthelateralweightfunctionasitisgivenbyequation(5).
Theideaistoexplicitlymodulatelearningaccordingtothesumofexcitationreceivedatapointxwhiletheinhibitiononlyservesduringthecompetitionstage.
Atthisstage,itisimportanttonotethatweunifiedtheinhibitoryandexcitatoryneuralpopulationintoasinglepopulationandusedpositive/ANeuralFieldModeloftheSomatosensoryCortexPLoSONE|www.
plosone.
org4July2012|Volume7|Issue7|e40257negativeweightstoreflectexcitatory/inhibitoryactionofaneuronontoanother.
Itwouldbeperfectlyequivalenttouseadualpopulationbutusingasinglepopulationmakescomputationfaster.
Inthiscontext,Lereflectsthecontributionofexcitatoryneurons.
Thelearningruleiscomposedofapre-synaptictermandapost-synapticterm.
Thepre-synaptictermreflectstheexplicitcomparisonbetweenthestimuluspatternandthepatternofthefeed-forwardthalamocorticalsynapsethatentertheneuron.
ThisallowstogracefullyenforcebothHebbian(LTP)andanti-Hebbian(LTD)learning,controllingthegrowthofthesynapse.
Thepost-synaptictermmodulatesthepre-synaptictermaccordingtothetotalsumofexcitation(insteadofthepost-synapticactivityasitwouldbeintheoriginalOjarule).
Asillustratedinfigure4,theactivationataspecificsiteandtheamountofexcitationreceivedatthesamesitearehighlycorrelatedbutarenonethelessdifferent:theextentofexcitationgoesbeyondtheextentofactivation.
Fromamoremathematicalpointofview,wecanalsonotethatLeappearstobesmooth(C)whileuisnot(C0).
Wehavestartedtheformalanalysisofthatpropertysincewethinkthatthismakesacriticaldifferencefortheself-organizationprocedure.
Thissignalprovidesthemodelwiththenecessaryinformationonneighbor-hoodtopology.
Furthermore,thesupportofu(xsuchthatu(x,t)isnotnull)isconstantandindependentoftheinput(thisisapropertyoftheneuralfields)anditmaythusnotprovideenoughinformationforproperself-organization(wenumericallytestedalearningruleusinguinsteadofLewithoutsuccess).
Fromabiologicalpointofview,thismeansthataneuronwhosemembranepotentialisbelowfiringthresholdmaynonethelesslearnsifithasreceivedenoughexcitation.
Atearlystageofthetraining,becauseoftherandomnessofthefeed-forwardweights,anystimuluscancauseaweakresponseofthemodelatarandomplacewithinthefield(seefigure5A).
Asthelearningprocessisongoingandthefeed-forwardweightsconvergeaccordingtoequation(6),theresponseofthemodelbecomesstrongerandoccupiesaspecificspatiallocation(seefigure5B).
SimulationDetailsThesetofstimulithatisusedduringtrainingisinitiallygeneratedbyequation(4)overasubset{0:75,0:752oftheskinpatch{1:0,1:02.
Stimulilocationsaresetonaregulargrid(seefigure4)inordertoensurepropercoverageofthepatch.
Duringtraining,astimulusisuniformlydrawnfromwithinthistrainingset.
Unlessstatedotherwise,thesamestimulisetisusedforallsimulations.
Theneuralfieldhasbeendiscretizedinto32|32spatialelementsandtheintegrationofequation(2)isperformedusingtheforwardEuler'smethod(timestepdtisgivenintable1).
Feed-forwardweightswfarerandomlyinitializedintherange0,1.
Duringallsimulationsweused10000epochs.
Ineachepoch,thestimulusispresentedtothemodelandthefieldisintegratedoverafixedtimewindowwhilethelearningruleisappliedtothefeed-forwardweights.
Spatialconvolutioninequations(2)and(7)iscalculatedusingafastFouriertransform(FFT)inordertoacceleratethisoperation.
Thentheactivityofthefieldisresettozero.
Thisrepresentstheremovalofpressurefromtheskinpatch(wecouldwaitforthefieldtogobacktothesteadystatebutitisnumericallyfastertoresetit).
Thefeed-forwardweightsaverageevolutionEiofaneuroniwasmeasuredbyusingthefollowingequation:EEi~DEwifnew{EwifoldD8whereE:representstheexpectedvalue(i.
e.
themeanvalueofthearray)andD:Drepresentstheabsolutevalue.
LesionsoftypeI,IIandIII(skinorcortex)havebeenimplementedusingthreemasksdisplayedinfigure2.
Forskinlesion,inputwasnullifiedatlesionsitesbeforebeingtransmittedtotheneuralfieldwhileforcorticallesions,lesionedunitswerenullifiedateachtimestep.
Table1.
Modelparameters.
KeKisesimcscsdtatc3.
652.
400.
11.
00.
02.
10.
150.
20.
11.
00.
05KeandKiareamplitudeoftheexcitatoryandinhibitoryweightfunctions.
seandsiarethevariancesofexcitatoryandinhibitoryweightfunctions.
ThemeanandthevarianceofthecorrectiveGaussianfunctionaregivenbymandsc,respectively.
Thevarianceofstimulusisgivenbysandthemeanisvariable,althoughweexplaininthetexthowwecomputeit.
dtisEuler'smethodtimestep.
aisaconstantandtisthetimeconstantofequation(2).
cisthelearningrateoflearningrulegivenbyequation(6).
doi:10.
1371/journal.
pone.
0040257.
t001Figure3.
Threesolutionsofthesameone-dimensionalneuralfield.
Fieldresponse(redcurve)forthreedifferentuniforminputs(bluecurve).
Ineachcase,themaximumactivityofthefieldmatchestheinput.
Thespatialdiscretizationofthefieldis100units.
AResponsetoinput0:25.
BResponsetoinput0:50.
CResponsetoinput0:75.
doi:10.
1371/journal.
pone.
0040257.
g003ANeuralFieldModeloftheSomatosensoryCortexPLoSONE|www.
plosone.
org5July2012|Volume7|Issue7|e40257Thereceptivefieldofeachneuronhasbeencomputedfromasetofn|n(n~64inthiswork)regularlydistributedstimulusrioverthesubset{0:75,0:752thathavebeenpresentedsequen-tiallytothemodel.
Eachindividualneuronactivityhasbeenrecordedandaggregatedintoa(n,n)matrixofactivities.
ThesizeofthereceptivefieldhasbeenidentifiedwiththenormalizedsumofnonnullvalueswhilethecenterhasbeencomputedasthecenterofmassCofthereceptivefieldgivenbythefollowingequation:C~Pn2i~0ViriPn2i~0Vi9whereridenotestherespectivepositionofstimuliusedtocomputeRFandViistheactivityatpositionri.
Usingself-organizationinformationfromtheintactmodel,wetranslatedthosecentersintotheskinreferencesuchthattopographicalinforma-tioncorresponds,thiseasesthelectureofthefigurewithoutchangingtheresults.
SimulationswereperformedonaHPZ800Workstation.
ThesourcecodeofallsimulationsiswritteninPython(Numpy,ScipyandMatplotlib)anditisavailableon-lineathttp://www.
loria.
fr/,rougier/coding/software/DNF-SOM.
tgz.
Duringasimulationof10000trainingepochs(sweeps),simulationprogramconsumes,190MBofphysicalmemoryandrequires,13minutesofCPUtimeuntilreachingfinalepoch.
ResultsForthesakeofsimplicitywehavesplitfiguresinto6panels,startingfromtheevolutionofaRFoftheneuron(25,15)(exceptthecorticallesionoftypeIIwhereweusedtheneuron(15,25))fromtheepochnumber0andreachingepoch10000throughepochs50,1500and3500.
Thenweillustratethepreferredlocationoftheneuronsbycomputingthecenterofmassaccordingtoequation(9)andthesizeofeachRFofeachneuroninordertodepictdiscsontheskingridwhichindicatethepreferredlocationandthesizeofeachRF.
Inthethirdpanelweillustratetheresponseofthemodelto100differentstimuli,whichcoveruniformlythe{0:75,0:752area(seefigure4).
Inthecaseofskinlesionsthestimuliarelargerthanthelesionandthereforetriggertheneighboringreceptors(asinglestimulusspansalargeportionFigure4.
Locationsoftrainingandvalidationstimuliontheskinpatch.
ATrainingisperformedonasetof16616stimulithatareuniformlydistributedoverthe{0:75,0:752area(skinpatchnormalizedareais{1:0,1:02)suchthatanystimulusisentirelylocatedontheskinpatch(seeexamplestimulusonupperleftcorner).
BValidation(asreportedinCpanelsinresultfigures)isperformedonasetof10610stimulithatareuniformlydistributedoverthe{0:75,0:752area.
doi:10.
1371/journal.
pone.
0040257.
g004Figure5.
Responseofthemodelandlateralexcitation.
Theresponseofthemodelandtheamountoflateralexcitationataspecificsite(centerofactivity).
Plotsrepresenttheresponseprofilecorrespondingtothedashedlines.
ABeforelearning.
BAfterlearning.
doi:10.
1371/journal.
pone.
0040257.
g005ANeuralFieldModeloftheSomatosensoryCortexPLoSONE|www.
plosone.
org6July2012|Volume7|Issue7|e40257oftheskin).
Thesestimuliarepresentedtothemodelandsimultaneouslytheactivityofthefieldisrecorded.
Inthefourthpanel,wepointouttheevolutionofthefeed-forwardweightsoftheaforementionedneuronandinthetwolastpanelsweusetwohistogramsofthesizeofRFsofthewholeneuralfield.
Thisoverallorganizationallowsustoillustrateconsistentlyimportantalter-ationsthattakeplaceduringcorticalandskinlesions.
Thehistogramsweremadeusing100bins.
Likewise,wemeasuredthemeanandthestandarddeviation(SD)ofthesizeofRFsbeforeandaftercorticallesionsandsensorydeprivations.
EmergenceofOrderedTopographicMapsDuringtheearlystageofthelearningprocess,theresponseofthefieldtoastimulusisnotnulleventhoughfeed-forwardweightshavebeensettorandomvalues.
Itdisplaysinsteadalocalizedbutweakactivityasillustratedinfigure5A.
Thisisduetoneuralfieldpropertiesthatguaranteesuchbehaviordependingontheamountoflateralexcitationandinhibition.
Thisweakactivitybumpishighlycorrelatedwiththepresenceoflateralexcitationatthelocationoftheformer.
Thisallowsmostactiveunitstolearnthepresentedstimulusproportionallytotheirlateralexcitation(seeequation(6)).
Oncethefieldhasbeentrained,theresponsetoanystimulusisstronger(seefigure5B)aswellastheamountoflateralexcitation.
Thisresultsinanincreasedlearningrateforastimulusthatisalreadyknowntothemodelandthus,itdoesnotchangedrasticallythefeed-forwardweightsanymore.
Thisisakeypointofthemodelsincewe'llseeinnextsubsectionhowthisactivelearningrulemayhelptorecoverfromlesions.
TheevolutionovertimeoftheRFoftheneuron(number(25,15))isillustratedinfigure6A.
Initially,theneuronismostlysilent,butafter1500,3500and10000presentedstimuli,onecanseethedevelopmentoftheRFthatisfinallypreciselytunedtoaspecificsetofstimuluslocation.
Thisevolutionoccursintwophases.
Inthefirstphase,theRFisextendedandcoversalargepartoftheskin,theninasecondphase,asthetrainingprocessgoeson,theRFshrinksandcoversonlyasmallpartoftheskin.
Eachneuronnowrespondspreferentiallytoaspecificskinregion.
Moreover,figure6Cshowstheresponseofthemodel(aftertraining)to10610differentstimuli.
Itisquiteclearthatatopographicmaphasemerged.
Eachblockinthisfigurerepresentsaresponseofthemodeltoaspecificstimulus(e.
g.
theblockattheupperleftcornerrepresentstheresponseofthemodeltoastimulusattheupperleftcorneroftheskingrid)providingawaytoverifyself-organizationandalsoprovidesaframeofreferenceofthereceptivefieldlocationontheskinpatch.
Similarresultsareillustratedinfigure6Bwhereweusedequation(9)inordertocomputethelocationofeachreceptivefieldontheskinpatch.
TheradiusofeachcirclehasbeencalculatedbyusingthesizeofeachRF.
Inaddition,thedistributionofRFsizescanundergoalterationsduringtraining.
Panel6EshowsthedistributionofRFsizesbeforeanylearningoccursinthemodel.
Asonecanexpected,thereisnoRFsatallsincetheneuronshavenotyetlearnedanything.
However,oncelearningisfinished,onecanseeinfigure6Fthenormal-likedistributionoftheRFsizes.
Thereisahigh-valuecomponentnearzerowhichindicatesalargenumberofverysmallRFsizesthatisduetoside(border)effectsoftheneuralfield.
OtherRFsizesfollowanormal-likedistributionwithmean0:02246(SD~0:01190).
ThisindicatesthatthereisabetteracquisitionofRFsatthecenterofthefieldthanattheperiphery.
Combiningalltheaforementionedresultswecanconcludethatthemodelhasachievedproperself-organization.
Subsequently,theemergenceofsuchanorderedmaptendstoconfirmtheinitialhypothesisthatthalamocorticalconnectionsareanadequatesiteofplasticityforboththeformationandthemaintenanceoftopographicrepresentations.
Inthiscontext,lateralconnectionsmainlyserveassupportforcompetitionatthecorticallevelfortheemergenceofauniquebumpofactivitythatdriveslearning.
Finally,figure7displaystheRFsofalltheneuronsafter10000presentedstimuli.
Onecanclearlyseethatorderedrepresentationshaveemergedoverthewholefield.
ReorganizationafteraSkinLesionWefirststudiedthecaseofsensorydeprivationresulting,forexample,fromdamagedsensorynervesorphysicaldamagestothereceptors.
Thishasbeenmodeledbysilencingaspecificamountofskinreceptors(25%intypeIandtypeIIskinlesionsand9%fortypeIIIskinlesion)suchthatonlyasubpartofpreviouslysensoryinformationismadeavailabletothecortex.
AlesionwasmadeontothreespecificareaswhicharereferredaslesiontypeI,typeII,andtypeIII(seefigure2forpreciseshape).
Weonlyreport,inthissection,resultsfromtypeIIlesionsincewefoundqualitativelyequivalentresultsregardingtypeIandtypeIIIlesions(seefigures8and9,respectively,fordetails).
Followingaskinlesion,themodelhasbeenretrainedover10000epochsusingthesamesetofstimuliasbeforebutwithmissingvaluesfromdisabledreceptors.
Panel10Ashowsthetemporalevolutionofthereceptivefieldofunit(25,15)andfigure10Cshowstheoverallreorganizationofrepresentationsthathasoccurredaccordingtotheresponseofthemodelto10|10differentstimuli.
Thisismostclearlyillustratedinfigure10Bthatdisplaysthepreferredlocationofunitsthatdonotintersectwiththeskinlesionedarea.
ComparingtheRFsillustratedinthisfigurewiththeonesonfigure6B,onecanconcludethatthesizesofRFswhichwerepreviouslyinnervatedbythelesionedskinareaarenowlarger.
Thisisbecauseneuronslosttheirpreferredinputandthereforethebalanceofexcitationandinhibitionisdisrupted.
ThereforeneuronsexpandthesizeoftheirRFsinordertoacquirenewinputs.
Thisresilientbehaviorcanbeeasilyexplainedbecausethalamusprovidesdivergentinputstothecortex.
NeuronsthatwerepreviouslytunedtodeadreceptorswillexpandtheirRFsinordertoreachneighboringreceptors.
Thisexpansiontakesplaceimmediatelyafterthesensorydeprivationasshowninfigure10Band10AwheretheRFofneuron(25,15)underwentanexpansionimmediatelyaftersensorydeprivation(epoch50).
Panels10Eand10Fshowsthehistogramsbeforeandaftersensorydeprivation,respectively.
Theformercorrespondstotheintactmodelwhichwediscussedinprevioussubsectionandthelatercorrespondstothesensorydeprivationcaseafterretrainingofthemodel.
Thereisasmallshiftofthemainpeakofthedistributionfromthevalueof0:02246towards0:02227,butwithanoticeablespreadingoftheRFs(SD=0:02256)sizeindicatinganewdistributionofRFtowardsbothsmallerandlargerreceptivefields(whilethelargecomponentatzerobecauseofbordereffectsremains).
ThisalterationinthedistributiontendstoshowthatevenifmostRFshaveshrunk,asignificantportionhaveexpandedinsize.
Furthermore,fromfigure10Adescribingthetemporalevolu-tionofunit(25,15),wecanseethatreorganizationoccursintwomajorphases.
Atthebeginning,eachneuroninnervatedbydeprivedskinareaundergoesanexpansionofitsRFsimulta-neouslywithaspatialshiftinginordertocaptureanewskinarea(firstphase).
Thislastsalmostduringthewholeretrainingprocess.
NeartheendoftrainingprocesstheaffectedneuronhasshrunkitsRF(secondphase).
Similartothisfinding,Foellerin[21]proposesathree-phasesmodeloftheRFsreorganization.
InthefirstphaseandduetoreductionofinhibitoryconnectionstheRFsexpandtheirsize.
Duringthesecondphase,afurtherincreaseofRFssizeANeuralFieldModeloftheSomatosensoryCortexPLoSONE|www.
plosone.
org7July2012|Volume7|Issue7|e40257istakingplacebecauseofhomeostaticplasticityofGABAcircuits.
Finally,inthethirdphase,ashrinkageofRFsaroundtheirnewcentersoccurringasitisdrivenbyre-establishedinhibitoryconnections.
Wecanmergethetwofirstphasesintooneinourmodelsincewedonotinvolveanykindofneurobiologicalmechanismandthereforeasuchdetailedtimescaleisnotnecessary.
However,therefinementoftheRFsisnotsoexquisitebecause,accordingtoourmainhypothesis,lateralconnectionsremainfixedandnon-plasticthroughoutallsimulations.
ThismeansthatneuronsareabletoreceiveproperexcitationandinhibitionFigure6.
Intactmodel.
AEvolutionofthereceptivefieldofneuron(25,15)duringlearning.
Theneuronisinitiallysilent(epoch0)butlearnsquicklytoanswertoalargerangeofstimuli(epoch1500)untilfinallysettlingonanarrowerrangeofstimuli.
BReceptivefieldsofthewholemodel.
Eachbluecirclerepresentsaneuron.
Thecenterofthecircleindicatesthe(converted)receptivefieldcenterandtheradiusexpressesthe(relative)sizeofthereceptivefield.
CResponseofthemodel(afterlearning)toasetof10610regularlyspacedstimuli.
Eachsquarerepresentaresponsetoaspecificstimulus.
DThisrepresentsthemeanevolutionofthalamo-corticalweightsofneuron(25,15)duringlearning(i.
e.
E(25,15)).
E&FHistogramofreceptivefieldsizes(100bins)before(E)andafter(F)learning.
ThefinaldistributionisGaussian-shapedcenteredaroundameanvalueof0:02246.
Isistobenotedthehighnumberofverysmallreceptivefieldsizethatcorrespondtoneuronsontheborderofthefieldthataremostlysilentduringthewholesimulation.
doi:10.
1371/journal.
pone.
0040257.
g006ANeuralFieldModeloftheSomatosensoryCortexPLoSONE|www.
plosone.
org8July2012|Volume7|Issue7|e40257conservingthecompetitivenatureofthereorganizationprocess.
Nevertheless,abetterrefinementcouldbepossiblebyusingalearningrulealsoforthelateralconnections.
Furthermoreandasithasbeenexplained,theprecisetypeoflesiondoesnotimpactresultinasignificantway.
Neuronsthatwerepreferentiallytunedtoadisabledskinareatendstohavetheirreceptivefieldsshiftingawayfromthesiteofthelesiontoneighboringlocations.
However,fortypeIIandtypeIIIlesions,thereisanadditionaltopologicalconstraintontothoseneuronsbecausetheycanstillbepartofanactivebumpinthefield(andtunetheirreceptivefieldaccordingly).
TheycanbethusattractedeithertotheleftortotherightpartofthelesionsitefortypeIIandtoanyborderofthelesionsitefortypeIII.
Thisexplainsthatsomeneuronsdonotexpressanykindofresilienceandhavetheirpreferredlocationstillonthelesionedareaevenafterextensiveretraining(figures10Band9B).
Thisalsoexplainstheincreasedoscillationsinaverageevolutionoffeed-forwardweights,Ei(figures10Dand9D).
ReorganizationafteraCorticalLesionWealsoaddressedthecaseofreorganizationbycausingacorticallesion,i.
e.
silencingsomeneuronsintheneuralfield.
Inlivingtissue,suchdamagescanbecausedbyastroke,ahematomaorbyasurgeryeitherfortherapeuticorexperimentalpurposes.
Subsequently,wecausedthreedifferenttypesofcorticallesions(i.
e.
typeI,IIandIII)byapplyingamasktotheself-organizedrepresentationalmapaswepreviouslydescribedinmethodssection.
Theselesionswereofanextentof25%ofthetotalamountofneurons.
WeappliedatypeIlesionclosetotheborderofcorticalsheet,atypeIII,localizedablationandatypeIIband-shapedlesioninthemainlandofcorticalsheet(seefigure2forpreciselesionshapes).
Thus,afterretrainingofthenetworkusing10000stimulipatternsforeachoftheselesioncases,anewrepresentationalmaphasemergedasitisdepictedinfigure11fortypeIlesion.
ComparingtheRFssizebeforeandaftercorticallesion,theyhavebeenclearlyaltered.
Afterlesion,RFstendtobecomelargerandconsequentlytorespondtolargerskinareas.
Moreprecisely,RFssizeafterlesionisalmosttwicebiggercomparedtopre-lesionones.
Asitisshowninfigure11Atheevolutionofneuron(25,15)afteracorticallesionoftypeIhasbeenaltered.
Immediatelyfollowingthelesion(epoch50),RFhasexpandeditselfandcovertheskinpatchwhichwaspreviouslyrepresentedbylesionedneurons.
ThetemporalevolutionoftheRFindicatesthatthisneuronhaschangeditspreferredinputinordertopromotetherecovery.
Inadditionandasitisillustratedinfigure11B,RFsofalmostallneuronshavebeenchanged.
Theradiiofthebluediscshavebeenincreasedinsize,especiallyaroundthelesionsite.
Takingalsointoaccounttheresultscomingfromthehistogramsoffigures11Eand11Fconcerningthepre-lesionandthepost-lesioncases,respectively,onecanseetheoveralldistributionofRFssizehaschangedinfavorofalargernumberoflargeRFs.
ThemeanvalueofRFsaftercorticallesionisequalto0:02235andtheSDisequalto0:02179indicatingasignificantspreadofRFsizes.
ThisisquiteconsistentwithSober[12]whoreportedsimilarresultswiththenoticeabledifference,thatweeksafteralesion,cortexisabletocompletelyrecover,havingitsneuronsRFssharpened.
Thisisbecauseofre-establishmentofinhibitoryconnectionsand/orsproutingofneuralaxonsasithasbeenproposedbyFlorence[57].
Consequently,therefinementofRFsariseintwophases.
Duringthefirstphase,thereisanexpansionofRFstowardslostterritoriesfollowedbyashrinkageofthesecondphase.
Inourcomputationalexperimentsthereisnosuchshrinkageduringthesecondphasebecauseofthefixedsetoflateralconnectionsasitisdepictedinfigures11A,12Aand13A.
Thisleadsustoascertainthatthelateralconnectionsarecrucialtothedevelopmentofstablerepresentationalmaps.
NeuronsarenotabletopreciselyrefinetheirRFssincethereisnobalancemechanismbetweenexcitationandinhibitionwithincorticalcircuits.
Sur[58]hasshownthatintralaminarexcitatoryconnec-tionsarethemajorfactorforexpansionofRFs.
Inconsequence,RFsinfigures11Aand11Bhavesuccessfullyexpandedthemselvesleadingtolargerskinarearepresentationbuthavefailedatshrinkingthemselvesbecauseofthenon-plasticlateralconnec-tions.
Furthermore,itisremarkabletoseethatneuronshavemigratedtocoverthewholeskinsurfaceagain(figures11A,11B)andnon-functionalrepresentations(justafterlesion)havebeenFigure7.
Receptivefieldsoftheintactmodel.
AOfthewholecorticalsheet.
BMagnificationofthewhitebox.
doi:10.
1371/journal.
pone.
0040257.
g007ANeuralFieldModeloftheSomatosensoryCortexPLoSONE|www.
plosone.
org9July2012|Volume7|Issue7|e40257recapturedbyneighboringunits.
Themodelisabletorespondagaintostimuliappliedonareasinnervatingneuronswithinthelesionedcorticalarea(figureC).
Thisindicatesthatotherneuronstookoverandrecoveredfromlesionbymigratingtheirrepresentationstowardsthelostones,makingthecorticalpatchfunctionalbutdegraded.
RecoveryfromcorticallesionsoftypeIIandIIIisdisplayedinfigures12and13andshowthedegradedresponseofthemodelwithonlyapartialrecoveryoflostterritories.
Furthermore,figures12A,12Band13A,13BclearlyshowthatmostRFshavebeenshiftedandexpandedspatiallywithoutanykindofrefinementexceptforasmallnumberwhichhaveunderwentashrinkageasitispointedoutbyfigures12Fand13F.
ThisFigure8.
SkinlesiontypeI(grayarea).
AEvolutionofthereceptivefieldofneuron(25,15)duringretrainingafteraskinlesionoftypeI.
BReceptivefieldsofthewholemodel.
CResponseofthemodel(afterretraining)toasetof10610regularlyspacedstimuli.
DThisrepresentsthemeanevolutionofthalamo-corticalweightsofneuron(25,15)duringretraining(i.
e.
E(25,15).
E&FHistogramofreceptivefieldsizes(100bins)before(E)andafter(F)skinlesion.
TheinitialdistributionisGaussian-shapedcenteredaroundameanvalueof0:02246.
However,thefinaldistributionisaPoison-likecenteredaroundameanvalueof0:2241withalongtailindicatingthattherearealotofneuronswhoseRFshaveunderwentanexpansion.
AtthesametimeanalmostequivalentamountofneuronshasmovedtowardsmallerRFsizesunderlyingthatashrinkageofRFshastakenplace.
doi:10.
1371/journal.
pone.
0040257.
g008ANeuralFieldModeloftheSomatosensoryCortexPLoSONE|www.
plosone.
org10July2012|Volume7|Issue7|e40257behaviorcanbeexplainedquitesimplyintermsoftopology.
ThefirsttypeofcorticallesionistopologicallyequivalenttotheintactonewhiletypeIIlesionintroducesaseparationofthecorticalpatchintotwodistinctpatchesandtypeIIIintroducesaholeinthetopology.
Inbothcases,neuronsfromeithersidesofthelesioncannotcooperatebecausetheirinfluenceismostlyinhibitory(duetotheirrespectivedistancefromeachother).
Thismeansthattheactivepopulationresultingfromthecompetitioncannotexistonanybordersofthelesion.
Thisbringssevereconstraintstotheself-organizationprocessthatcanonlybepartiallyovercomewithoutrelearninganewtopologythroughthemodificationsoflateralconnections.
Figure9.
SkinlesiontypeIII(grayarea).
AEvolutionofthereceptivefieldofneuron(25,15)duringretrainingafteraskinlesionoftypeIII.
BReceptivefieldsofthewholemodel.
CResponseofthemodel(afterretraining)toasetof10610regularlyspacedstimuli.
DThisrepresentsthemeanevolutionofthalamo-corticalweightsofneuron(25,15)duringretraining(i.
e.
E(25,15).
E&FHistogramofreceptivefieldsizes(100bins)before(E)andafter(F)skinlesion.
TheinitialdistributionisGaussian-shapedcenteredaroundameanvalueof0:02246.
Although,thefinaldistributionisaPoison-likecenteredaroundameanvalueof0:2248withalongtailindicatingthattherearealotofneuronswhoseRFshaveunderwentanexpansion.
AtthesametimeanalmostequivalentamountofneuronshasmovedtowardsmallerRFsizesunderlyingthatashrinkageofRFshastakenplace.
doi:10.
1371/journal.
pone.
0040257.
g009ANeuralFieldModeloftheSomatosensoryCortexPLoSONE|www.
plosone.
org11July2012|Volume7|Issue7|e40257DiscussionWehaveintroducedacomputationalmodelofprimarysomatosensorycortexthatisabletodeveloptopographicmaps,maintainandreorganizetheminthefaceoflesions.
Weusedneuralfieldsasamathematicalandcomputationalframeworkandfocusedonarea3binnervatedbyhandmechanoreceptors.
ThecombinationofsuchneuralfieldwithasimpleHebbian/anti-Hebbianlikelearningruleadvocatesforanunsupervised,distributed,robustandbiologicallyplausiblemodelofa(simplified)somatosensorycorticalmodelwherethalamocorticalconnectionsarethemainsitesofplasticity.
ThemajorfindingofourmodelisFigure10.
SkinlesiontypeII(grayarea).
AEvolutionofthereceptivefieldofneuron(25,15)duringretrainingafteraskinlesionoftypeII.
Immediatelyfollowingskinlesion(epoch50),RFtendstoexpand.
Thisphenomenonpersistsuntilthefinalepochisreachedwhereashrinkagetakesplace.
BReceptivefieldsofthewholemodel.
CResponseofthemodel(afterretraining)toasetof10610regularlyspacedstimuli.
DThisrepresentsthemeanevolutionofthalamo-corticalweightsofneuron(25,15)duringretraining(i.
e.
E(25,15)).
E&FHistogramofreceptivefieldsizes(100bins)before(E)andafter(F)skinlesion.
TheinitialdistributionisGaussian-shapedcenteredaroundameanvalueof0:02246.
However,thefinaldistributionisaPoisson-likecenteredaroundameanvalueof0:2241withalongtailindicatingthattherearealotofneuronswhoseRFshaveunderwentanexpansion.
AtthesametimeanalmostequivalentamountofneuronshasmovedtowardsmallerRFsizesunderlyingthatashrinkageofRFshasalsotakenplace.
doi:10.
1371/journal.
pone.
0040257.
g010ANeuralFieldModeloftheSomatosensoryCortexPLoSONE|www.
plosone.
org12July2012|Volume7|Issue7|e40257thatatopographicmapcanemergeasaconsequenceoftheinteractionbetweenthalamusandcorticalexcitatoryafferentconnections.
Thesefeed-forwardconnectionsarecapableofcausingthereorganizationofatopographicmapeveninthepresenceofacorticallesionorasensorydeprivation.
Brunoin[34]hasshownthatexcitatorythalamocorticalconnectionscansynchronizethemselvesinordertodrivecorticalneuronswithoutmakinguseofanykindofcorticalamplificationmechanism.
Thisenhancedourhypothesis,whichstatesthatthemaineffortoftheemergenceandreorganizationofatopographicmapcanbepromotedbythalamocorticalconnections.
Thisalsoholdsforallthreeinvestigatedcases.
First,theformationandemergence(one)ofatopographicmap.
Second,sensorydeprivation(two-congenitalandcontracted).
Andintheend,corticallesions(fourFigure11.
CorticallesiontypeI(redarea).
AEvolutionofthereceptivefieldofneuron(25,15)duringretrainingafteracorticallesionoftypeI.
Immediatelyfollowingthelesion(epoch50),RFtendstoexpand.
Thisphenomenonpersistsuntilthefinalepochisreached.
BReceptivefieldsofthewholemodel.
CResponseofthemodel(afterretraining)toasetof10610regularlyspacedstimuli.
Theactivityofthemodelisnowboundtotheunlesionedarea.
DThisrepresentsthemeanevolutionofthalamo-corticalweightsofneuron(25,15)duringretraining(i.
e.
E(25,15)).
E&FHistogramofreceptivefieldsizes(100bins)before(E)andafter(F)skinlesion.
TheinitialdistributionisGaussian-shapedcenteredaroundameanvalueof0:02246.
However,thefinaldistributionisauniform-likecenteredaroundameanvalueof0:02245(0:02235).
Thisuniform-likedistributionindicatestheexistenceofneuronswhoseRFshaveunderwentanexpansion,butnotashrinkage.
doi:10.
1371/journal.
pone.
0040257.
g011ANeuralFieldModeloftheSomatosensoryCortexPLoSONE|www.
plosone.
org13July2012|Volume7|Issue7|e40257-congenital,boundarycontracted,centeredcontracted,localizedablation).
Thoseresultsarequiteconsistentwiththeexistingliteratureonthecomputationalmodelingofthesomatosensorycortexeventhoughwethinkwebroughtnewinsightsontheinnermechanisms.
OnetheearliestmodeloftheSIhasbeenproposedbyPearsonetal.
[41].
TheydesignedacomputationalmodelofthesomatosensorycortexbasedonadualpopulationofneuronsFigure12.
CorticalLesiontypeII(redarea).
AEvolutionofthereceptivefieldofneuron(15,25)duringretrainingafteracorticallesionoftypeII.
ThisparticularneuronhasnotexpandeditsRFbutithasreplaceditspreferredlocationasitisdepictedatthefinalprofile(epoch10000).
BReceptivefieldsofthewholemodel.
Thecorticallesionisappearedatthepreferredlocationssincethepreviouslycorrespondingneuronsarenowaffectedbythelesion.
TheRFsaroundthelesionhavebeenincreasedinsizecomparingwiththecorrespondingpre-lesionfigure6B.
CResponseofthemodel(afterretraining)toasetof10610regularlyspacedstimuli.
Theactivityofthemodelisnowboundtotheunlesionedarea.
DThisrepresentsthemeanevolutionofthalamo-corticalweightsofneuron(15,25)duringretraining(i.
e.
E(15,25)).
E&FHistogramofreceptivefieldsizes(100bins)before(E)andafter(F)skinlesion.
TheinitialdistributionisGaussian-shapedcenteredaroundameanvalueof0:02246.
However,thefinaldistributionisaUniform-likecenteredaroundameanvalueof0:02233.
Thisuniform-likedistributionindicatestheexistenceofneuronswhoseRFshaveunderwentanexpansion,butnotashrinkageasincorticallesiontypeIcase.
Inthiscaseweillustrateresultsregardingneuron(15,25)becauseneuron(25,15)liesinthelesion.
doi:10.
1371/journal.
pone.
0040257.
g012ANeuralFieldModeloftheSomatosensoryCortexPLoSONE|www.
plosone.
org14July2012|Volume7|Issue7|e40257(excitatory/inhibitory)whichreceivetopographicprojectionsfromtworeceptorsheetscorrespondingtotheglabrousanddorsalsurfacesofthehand.
Followingtherepetitivetappingofthesensorysurface,themodelisabletoshapeitselfintoseveralsegregatedneuronalgroupsthatarededicatedtoasubpartofthewholesensoryspace.
Authorsusedbothintrinsicandextrinsicconnectionsmodificationsalthoughtheyunderlinedthattheydonotknowifthisisreallythecaseinvivo.
Joublinetal.
[59]introducedacombinationofneurophysiologicalrecordingsfromratswithcomputationalsimulations.
ThemodelisdescribedusingasetofWilson-Cowanequationsandthearchitectureismadeofthreelayers(receptorsgrid,subcorticalgridandcortex).
Authorstriedtokeepthemodelclosetorealdatainordertobeabletocomparetheirsimulationswithneurophysiologicaldata.
However,themodelreliesonapre-corticallevelwhoseroleistotopographicallyorderrepresentationsinordertosimplifythesimulation.
Furthermore,theydidn'ttreatlesioncasesandfocusedinsteadonthelearningrulepointingoutthatdifferentlearningrulesunderlyingdifferentformsofplasticity.
XingandGerstein[60–62]usedaspikingneuralnetworkwithinathreelayermodel(i.
e.
receptors,thalamus,cortex)payingattentiontothelateralconnections.
Authorsshowedthatinhibitoryconnectionsarecrucialforlimitingthenumberofactivatedcorticalneurons,whilethebalancebetweenexcitationandinhibitioniscrucialtothestabilityofthenetwork.
Thisisquiteconsistentwithourownresultssincethecompetitiveprocessoccurringwithinthemodelreliesonaprecisebalancebetweeninhibitionandexcitation.
Inthecorticallesioncases,we'vealsoshownthatthemodelcannotachievefullrecoverywithoutmodificationsofthelateralconnec-tions.
Thisisagainquiteconsistentwiththeimportantroleoflateralconnectionsgivenbypreviousmodelseventhoughthosemodelsdidnotaddressspecificallythecaseofcorticalandcutaneouslesions.
WecanconcludewiththemthatlateralconnectionsplayanimportantroleandtherefinementofRFsfollowingalesionmaybeduetothemodificationoflateralconnections.
However,wemaintainthatthalamocorticalafferentconnectionsarethemainsitesofplasticityforbothprimaryself-organizationandlaterreorganization.
Wewouldlikenowtopointoutafewmoreinterestingresults.
FoellerandFeldman[21]aswellasFlorenceetal.
[63],proposedthatRFsarecapableofrefinementandshrinkageduringalong-termreorganizationprocessofatopographicmapinthepresenceofasensorydeprivation.
Ourmodel,duetonon-labilelateralconnections,isnotabletoachievesuchpreciserefinementduringthereorganizationofthetopographicmap.
ThisleadsustoclaimthatlateralconnectionsisamajormoderatorofRFs,especiallyduringthereorganizationprocessofthecorticalsheet.
Neverthe-less,wehavebeenabletoshowtheexpansionofRFs,whichmeansthatRFsareable,duringthereorganizationprocess,torepresentalargerskinarearatherthantheydidbeforelesion.
Butthisisonlyonepartofthewholepictureasitisonlyoneoutoftwo(ormaybethree)reorganizationphases.
Thissecondphaseismissinginourmodel.
DuringthatreorganizationphaseashrinkageofRFstakesplaceduetoadaptationoflateralconnections,thesproutingofnewintra-corticalconnectionsandtheleft-overunaffectedthalamocorticalconnections.
Inadditionlateralconnectionsmustbeanimportantandvaluablemechanismofthebalancebetweenexcitatoryandinhibitoryneuralpopula-tions,which,inturn,steerstothereorganizationofrobusttopographicmaps.
Nevertheless,ourmodelindicatesthatevenwithoutrelearninglateralconnections,corticalsheetisabletofullyorpartiallyrecoverfromacorticallesiondependingonitstype.
LesionoftypeIdoesnotmodifythetopologyofthefieldandallowforarobustandfullrecoverywhilelesionsoftypeIIandIIIaremoreproblematicandleadstopartialrecoveryonly.
Fromaneurophysiologicalpointofviewsuchcorticallesionsmeansthattheskinpatchwhichprovidesafferentinputtothedeadneuronslosesitscorticalrepresentation.
Hence,neuronsthatareunaffect-edbylesionreceiveinputfromthenon-representativeskinpatchandareorganizationoftheSItopographicmaptakesplace.
TheconsequenceinourmodelisanexpansionoftheRFfortheunaffectedneurons(seefigure13B).
However,onewouldexpectunaffectedneuronstocoveralmostthewholeskinpatchoratleastalargerpart.
Instead,itisobviousthatthereisacoveringoftheskinpatchbutstillthereisapartoftheskinwhichremainsuncovered.
Thismeansthatthereisinputfromsomeareasoftheskinbuttheresponsibleneuronsarenowdead.
Afterthereorganizationprocessanewtopographicmaphasformedandhencetheunaffectedneuronshavetakenoverthepreviouslynon-representativeterritoriesoftheskinpatch.
Thisphenomenonisillustratedinfigure13C,wherethemodelisabletorespondtodifferentstimuli.
Therefore,thetuningofRFsofunaffectedneuronsisnotoptimal.
Webelievethatthisiscloselyrelatedtothelackofrelearningoflateralconnections.
Moreprecisely,thecorticallesiondisruptsthebalanceinthelateralconnectionsandwedonotallowthemodeltofixitbyrelearningtheseconnections.
Thisseemstobeacriticalprocessbecauselateralconnectionsarenotabletoconveypropercompetitionanymore.
Atthispoint,wecanpointouttwomajorcharacteristicsofacorticallesion(orablation)thatcouldberesponsibleforaproperreorganizationandrecoveryofacorticalsheet.
First,isthelocationofthelesion,Wherethelesionislocatedandsecondtheextentofthelesion,WhatistheamountofthedeadneuronsBoth,locationandextentareintertwined,inafashionthattheformerpervadesthelaterandviceversa.
Therefore,wecandiscriminatetwodifferentcases.
First,ifthelesionislocatedaroundtheborderoftwoormorecorticalrepresentationsandprovidedtheextentofthelesionisnottoolarge,thenrecoveryiseasilyachievable.
Thisisbecauseofthelargeamountofleftoverneuronsandafferentconnections.
However,iftheextentofthelesionislargeenough,thentherepresentationscannotrecovercompletelyandtheymayevennotrecoveratall.
Second,ifthelesionislocatedwithinasinglerepresentation,recoveryisonlyamatteroftheextentofthelesionitself.
Thatisbecause,ifasignificantamountofneuronsareaffectedbythelesion,thereisnoenoughneuronstodeploytheirRFsandrevivepreviouslylostterritory.
Yet,inalocalizedlesioncasewenoticedthatinthevicinityofthelesionedarea,therearesomeneuronswhichdonotrespondsointensivelyastheothersandthoseneuronsdriveotherneuronsleadingthemtoreorganizethemselves.
Asitisdepictedinfigure4thoseneuronshaveaspecificshapewhichisinheritedbytheneighboringneuronsthatexpandtheirRFsomnidirectionaly.
SimilarfindingshavebeenpointedoutbySoberin[12],whereadisinhibitoryhaloaroundcorticalablationhasbeenfound.
Proximalneuronstothishaloareabletodrivethereorganizationoftheneighborhoodneuronsviatheirintactlateralconnections.
ProximalneuronshavebeenloosedtheirinhibitoryconnectionsduetoablationandthereforetheyhaveomnidirectionallyexpandedRFs.
FurthermoredistantneuronshavenarrowerRFs.
Likewise,thecaseofcorticallesiontypeIIIofourmodelpresentsasimilarbehaviorasithasbeenillustratedbyfigures6Band13Bconsideringthepre-andpostlesionstate,respectively.
RFsinthelaterfigurearelargerthanthoseintheformerfigure.
InthelaterfigureneuronsaroundlesionhavelargerRFsinsize.
ThisisinaccordancewiththeresultsofSoberandtheso-calleddisinhibitoryhalo.
Although,inourmodelwekeepthelateralconnectionsfixedandthereforeinthecaseofacorticallesionthereisnowaytorecoverthem.
Hence,adisturbanceoflateralconnectionstriggersadisturbanceANeuralFieldModeloftheSomatosensoryCortexPLoSONE|www.
plosone.
org15July2012|Volume7|Issue7|e40257ofexcitation/inhibitionbalanceandthusneuronsclosetolesionreceivemostlyexcitatoryconnectionsratherthaninhibitory,whichinturncausestheexpansionoftheRFsaroundlesionandtheshrinkageofthedistantones.
Totestfurtherthishypothesis,wecanobservethatlateralcortico-corticalconnectionsareamajorcomponentofthecompetitivemechanismthatallowstohaveauniqueandcompactactivepopulation.
Theshapeofthispopulationiscriticalforlearningsinceitenforcesthetopologywithinthemodel.
Moreprecisely,wecanpredictthatanymodificationonthesizeoftheactivepopulationwouldhaveaFigure13.
CorticallesiontypeIII(redarea).
AEvolutionofthereceptivefieldofneuron(25,15)duringretrainingafteracorticallesionoftypeIII.
ThisparticularneuronhasexpandeditsRFimmediatelyafterlesionandmoreoverithashasreplacedhispreferredlocationasitisdepictedatthefinalprofile(epoch10000).
BReceptivefieldsofthewholemodel.
Thecorticallesionisappearedatthepreferredlocationssincethepreviouslycorrespondingneuronsarenowaffectedbythelesion.
TheRFsaroundthelesionhavebeenincreasedinsizecomparingwiththecorrespondingpre-lesionfigure6B.
CResponseofthemodel(afterretraining)toasetof10610regularlyspacedstimuli.
DThisrepresentsthemeanevolutionofthalamo-corticalweightsofneuron(25,15)duringretraining(i.
e.
E(25,15)).
E&FHistogramofreceptivefieldsizes(100bins)before(E)andafter(F)skinlesion.
TheinitialdistributionisGaussian-shapedcenteredaroundameanvalueof0:02246.
However,thefinaldistributionisaUniform-likecenteredaroundameanvalueof0:02227.
Thisuniform-likedistributionindicatestheexistenceofneuronswhoseRFshaveunderwentanexpansion,butnotashrinkageasincorticallesiontypeIcase.
doi:10.
1371/journal.
pone.
0040257.
g013ANeuralFieldModeloftheSomatosensoryCortexPLoSONE|www.
plosone.
org16July2012|Volume7|Issue7|e40257directimpactonthereceptivefields.
Forexample,ifweweretodecreasetheinhibitionlevelatthecorticallevelwhileblockinglearning,thesizeoftheactivepopulationwouldgrowandthiswouldresultinlargerreceptivefields.
Thiswouldmeanalossinsensoryrepresentation:thetwopointdiscriminationdistancewouldbeincreased.
Ontheopposite,ifweweretoincreasetheinhibitionlevel,thesizeoftheactivepopulationwouldbecomesmallerandleadtosmallerreceptivefields(andhigherprecision).
Themodelhasbeenkeptdeliberatelysimpleanditcomesasnosurprisethatanumberofknownmechanismshavenotbeentakenintoaccountlikeforexamplehomeostaticmechanismsand/ormetaplasticitywhichhavebeenproposedbyTurrigianoandNelson[64]asmoderatorfactorsoflateralconnections.
Theformerconservesandregulatestheaverageactivityofbraincircuitsbyscalingneuralsynapsesandthelaterpreventsthemfromsaturationeffects[65].
Asfutureworkwelefttheexaminationofhomeostaticmechanismsandmetaplasticityaswebelievethatthismodelisofferedforfurtherinvestigationthroughitsabilitytoadjustitsactivitydependingontheintensityofstimulus.
This,inturn,canpreventnetworksfromsaturationeffectsinthesamewaymetaplasticitymayaffectneuralcircuitsofthebrain.
Anotheraspectwedidnottreatisthephenomenonofspontaneousactivity.
Itisrationaltodiscussaboutthisbecauseitseemstoplayakeyroleinthedevelopmentofatopographicmapwithincortex.
Forinstance,KatzandShatz[66]andKhazipovandLuhmann[35]havefoundamechanismwhichcouldexplaintheearlyformationofL4inbarrelcortexandV1inrats,respectively.
Inbothcasesthetopographicmaphasbeenformedalmostcompletelybeforebirth.
AddingtothatfindingsfromKhazipovetal.
[36],wecanconcludethatafetusinuteromaytakeadvantageofspontaneousmovementsinordertoestablishanearlyformedtopographicmapinL4withinasensorimotorloop.
Wealsoneglectedtop-downmechanismssuchasattentionalmodulatorysignals.
Knightetal.
in[67]haveproposedthattheprefrontalcortexactsasamodulatorofbalanceofexcitationandinhibitionofthebrain.
Thisprovidesastraight-forwardattentionalmechanismsincethisregulationofbalancecanaffectthereceptivefieldsofneurons.
Furthermore,accordingtotheresultsofSchaefer[68],prefrontalcortexseemstoprovidetosomatosensorycorticalareasagatingmechanismwhichisabletorefinereceptivefieldsthroughinhibition/excitationregulationregardingtoattention.
Weneglectedsuchmechanismsinthisworkbecausewebelievethattheyareoutofthescopeduetothelackofaclosedloop(e.
g.
sensorimotorloop).
Wethusleftasfutureworktheinvestigationoftheroleoftop-downmechanismsintopographicmapsformationandreorganization.
Inconclusion,eventhoughthismodeldoesnotconsiderallneurophysiologicalaspectswhichmightplayanimportantroleintheoverallorganizationprocess,webelievethatitcanhelptoinvestigatefurthertheemergenceofsomatotopicmapsduringtheearlymonthsoflife.
Themodelissimpleenoughfromamathematical/computationalpointofviewtoallowforfurtherrefinementthatcouldpotentiallygiveaccountonmoreexperi-mentaldata.
AuthorContributionsConceivedanddesignedtheexperiments:GIDNPR.
Performedtheexperiments:GID.
Analyzedthedata:GIDNPR.
Contributedreagents/materials/analysistools:GIDNPR.
Wrotethepaper:GIDNPR.
References1.
LeytonS,SherringtonC(1917)Observationsontheexcitablecortexofthechimpanzee,orang-utanandgorilla.
QuaterlyJournalofExperimntalPhysiology11:135–222.
2.
LemonR(2008)Anenduringmapofthemotorcortex.
ExperimentalPhysiology93:798–802.
3.
HubelD,WieselT(1959)Receptivefieldsofsingleneuronesinthecat'sstriatecortex.
TheJournalofphysiology148:574–591.
4.
MerzenichM,KaasJ(1982)Reorganizationofmammaliansomatosensorycortexfollowingperipheralnerveinjury.
TrendsinNeurosciences5:434–436.
Figure14.
ReceptivefieldsofmodelafteratypeIIIcorticallesion.
ARFsofthewholecorticalsheetandBamagnificationofsurrounded,bythewhitebox,area.
doi:10.
1371/journal.
pone.
0040257.
g014ANeuralFieldModeloftheSomatosensoryCortexPLoSONE|www.
plosone.
org17July2012|Volume7|Issue7|e402575.
KaasJ,MerzenichM,KillackeyH(1983)Thereorganizationofsomatosensorycortexfollowingperipheralnervedamageinadultanddevelopingmammals.
AnnualReviewofNeuroscience6:325–356.
6.
KaasJ(1991)Plasticityofsensoryandmotormapsinadultmammals.
Annualreviewofneuro-science14:137–167.
7.
StevenM,BlakemoreC(2004)Corticalplasticityintheadulthumanbrain.
Thecognitiveneuro-sciences:1243–1254.
8.
BuonomanoD,MerzenichM(1998)Corticalplasticity:fromsynapsestomaps.
Annualreviewofneuroscience21:149–186.
9.
KolbB,BrownR,Witt-LajeunesseA,GibbR(2001)Neuralcompensationsafterlesionofthecerebralcortex.
NeuralPlasticity8:1–16.
10.
HamdyS,RothwellJ,AzizQ,ThompsonD(2000)Organizationandreorganizationofhumanswallowingmotorcortex:implicationsforrecoveryafterstroke.
Clinicalscience99:151–157.
11.
NishibeM,BarbayS,GuggenmosD,NudoRJ(2010)Reorganizationofmotorcortexaftercontrolledcorticalimpactinratsandimplicationsforfunctionalrecovery.
JNeurotrauma27:2221–2232.
12.
SoberS,StarkJ,YamasakiD,LyttonW(1997)Receptivefieldchangesafterstrokelikecorticalablation:aroleforactivationdynamics.
JNeurophysiol78:3438–43.
13.
JonesE,MangerP,WoodsT(1997)Maintenanceofasomatotopiccorticalmapinthefaceofdiminishingthalamocorticalinputs.
ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica94:11003.
14.
JonesE,PonsT(998)Thalamicandbrainstemcontributionstolarge-scaleplasticityofprimatesomatosensorycortex.
Science282:1121.
15.
DanielB,KvasnakE,FrostigD(2004)Naturalisticexperiencetransformssensorymapsintheadultcortexofcagedanimals.
Nature429:67–71.
16.
FeldmanD(2009)Synapticmechanismsforplasticityinneocortex.
Annualreviewofneuroscience32:33.
17.
HickmottP,MerzenichM(2002)Localcircuitpropertiesunderlyingcorticalreorganization.
Journalofneurophysiology88:1288.
18.
FlorenceS,TaubH,KaasJ(1998)Large-scalesproutingofcorticalconnectionsafterperipheralinjuryinadultmacaquemonkeys.
Science282:1117.
19.
AllenC,CelikelT,FeldmanD(2003)Long-termdepressioninducedbysensorydeprivationduringcorticalmapplasticityinvivo.
Natureneuroscience6:291–299.
20.
PetersenC(2003)Thebarrelcortex–integratingmolecular,cellularandsystemsphysiology.
PugersArchivEuropeanJournalofPhysiology447:126–134.
21.
FoellerE,FeldmanD(2004)Synapticbasisfordevelopmentalplasticityinsomatosensorycortex.
Currentopinioninneurobiology14:89–95.
22.
Rioult-PedottiM,FriedmanD,DonoghueJ(2000)Learning-inducedltpinneocortex.
Science290:533.
23.
KleimJ,HoggT,VandenBergP,CooperN,BruneauR,etal.
(2004)Corticalsynaptogenesisandmotormapreorganizationoccurduringlate,butnotearly,phaseofmotorskilllearning.
TheJournalofneuroscience24:628.
24.
TremereL,HicksT,RasmussonD(2001)Roleofinhibitionincorticalreorganizationoftheadultraccoonrevealedbymicroiontophoreticblockadeofgabaareceptors.
JournalofNeurophysiology86:94.
25.
DinseH,RagertP,PlegerB,SchwenkreisP,TegenthoffM(2003)Pharmacologicalmodulationofperceptuallearningandassociatedcorticalreorganization.
Science301:91.
26.
ClareyJ,TweedaleR,CalfordM(1996)Interhemisphericmodulationofsomatosensoryreceptivefields:evidenceforplasticityinprimarysomatosensorycortex.
CerebralCortex6:196.
27.
MountcastleV(1978)Anorganizingprincipleforcerebralfunction:theunitmodelandthedistributedsystem.
In:EdelmanG,MountcastleV,editors,TheMindfulBrain,MITPress.
7–50.
28.
KrubitzerL,KaasJ(1990)Theorganizationandconnectionsofsomatosensorycortexinmarmosets.
TheJournalofNeuroscience10:952.
29.
BuxhoevedenD,CasanovaM(2002)Theminicolumnhypothesisinneuroscience.
Brain125:935.
30.
MountcastleV(1997)Thecolumnaroganizationoftheneocortex.
Brain120:701–722.
31.
DouglasR,MartinK(2007)Recurrentneuronalcircuitsintheneocortex.
Currentbiology:CB17:R496.
32.
HoN,DestexheA(2000)Synapticbackgroundactivityenhancestheresponsivenessofneocorticalpyramidalneurons.
Journalofneurophysiology84:1488–1496.
33.
ChanceF,AbbottL,ReyesA(2002)Gainmodulationfrombackgroundsynapticinput.
Neuron35:773–782.
34.
BrunoR,SakmannB(2006)Cortexisdrivenbyweakbutsynchronouslyactivethalamocorticalsynapses.
Science312:1622.
35.
KhazipovR,LuhmannH(2006)Earlypatternsofelectricalactivityinthedevelopingcerebralcortexofhumansandrodents.
TrendsinNeurosciences29:414–418.
36.
KhazipovR,SirotaA,LeinekugelX,HolmesG,Ben-AriY,etal.
(2004)Earlymotoractivitydrivesspindleburstsinthedevelopingsomatosensorycortex.
Nature432:758–761.
37.
YusteR,NelsonD,RubinW,KatzL(1995)Neuronaldomainsindevelopingneocortex:mechanismsofcoactivation.
Neuron14:7–17.
38.
KohonenT(1982)Self-organizedformationoftopologicallycorrectfeaturemaps.
BiologicalCybernetics43:59–69.
39.
KohonenT,SchroederMR,HuangTS,editors(2001)Self-OrganizingMaps.
Springer-VerlagNewYork,Inc.
40.
EdelmanG,MountcastleV,ProgramNR(1978)Themindfulbrain:corticalorganizationandthegroup-selectivetheoryofhigherbrainfunction.
MITPress.
41.
PearsonJ,FinkelL,EdelmanG(1987)Plasticityintheorganizationofadultcerebralcorticalmaps:Acomputersimulationbasedonneuronalgroupselection.
JournalofNeuroscience7:4209–4223.
42.
PareM,SmithA,RiceF(2002)Distributionandterminalarborizationsofcutaneousmechanoreceptorsintheglabrousfingerpadsofthemonkey.
TheJournalofComparativeNeurology445:347–359.
43.
MerzenichM,KaasJ,WallJ,NelsonR,SurM,etal.
(1983)Topographicreorganizationofsomaten-sorycorticalareas3band1inadultmonkeysfollowingrestricteddeafferentation.
Neuroscience8:33–55.
44.
MollR,MollI,FrankeW(1984)Identificationofmerkelcellsinhumanskinbyspecificcytokeratinantibodies:changesofcelldensityanddistributioninfetalandadultplantarepidermis.
Diferentiation28:136–154.
45.
GoodwinA,BrowningA,WheatH(1995)Representationofcurvedsurfacesinresponsesofmechanoreceptiveafferentfibersinnervatingthemonkeysfingerpad.
TheJournalofNeuroscience15:798–810.
46.
HsiaoS,YaoJ(2008)Neuralbasisofhapticperception.
In:MG,editor,Humanhapticperception:basicsandapplications,Birkhauser.
103–112.
47.
AmariS(1977)Dynamicsofpatternformationinlateral-inhibitiontypeneuralfields.
BiologicalCybernetics27:77–87.
48.
KishimotoK,AmariS(1979)Existenceandstabilityoflocalexcitationsinhomogeneousneuralfields.
JournalofMathematicalBiology7:303–318.
49.
TaylorJ(1999)Neuralbubbledynamicsintwodimensions:foundations.
BiologicalCybernetics80:393–409.
50.
CoombesS(2005)Waves,bumps,andpatternsinneuralfieldtheories.
BiolCybern93:91–108.
51.
HuttA,RougierN(2010)Activityspreadandbreathersinducedbyfinitetransmissionspeedsintwo-dimensionalneuralfields.
PhysicalReviewLetterE:Statistical,Nonlinear,andSoftMatterPhysics82.
52.
SalinasE,AbbottL(1996)Amodelofmultiplicativeneuralresponsesinparietalcortex.
Proceedingsofthenationalacademyofsciences93:11956.
53.
HahnloserR,SeungH,SlotineJ(2003)Permittedandforbiddensetsinsymmetricthreshold-linearnetworks.
NeuralComputation15:621–638.
54.
WernerH,RichterT(2001)Circularstationarysolutionsintwo-dimensionalneuralfields.
BiologicalCybernetics85:211–217.
55.
RougierN,BonifaceY(2011)Dynamicself-organisingmap.
Neurocomputing74.
56.
OjaE(1982)Simplifiedneuronmodelasaprincipalcomponentanalyzer.
JournalofMathematicalBiology15:267–273.
57.
FlorenceS,TaubH,KaasJ(1998)Large-scalesproutingofcorticalconnectionsafterperipheralinjuryinadultmacaquemonkeys.
Science282:1117.
58.
SurM,GarraghtyP,BruceC(1985)Somatosensorycortexinmacaquemonkeys:laminardifferencesinreceptivefieldsizeinareas3band1.
Brainresearch342:391–395.
59.
JoublinF,SpenglerJ,WacquantS,DinseH(1996)Acolumnarmodelofsomatosensoryreorganizationalplasticitybasedonhebbianandnon-hebbianlearningrules.
BiologicalCybernetics74:275–286.
60.
XingJ,GersteinG(1996)Networkswithlateralconnectivity.
i.
dynamicpropertiesmediatedbythebalanceofintrinsicexcitationandinhibition.
JournalofNeurophysiology75:184–199.
61.
XingJ,GersteinG(1996)Networkswithlateralconnectivity.
ii.
developmentofneuronalgroupingandcorrespondingreceptivefieldchanges.
JournalofNeurophysiology75:200–216.
62.
XingJ,GersteinG(1996)Networkswithlateralconnectivity.
iii.
plasticityandreorganizationofsomatosensorycortex.
JournalofNeurophysiology75:217–232.
63.
FlorenceS,JainN,KaasJ(1997)Plasticityofsomatosensorycortexinprimates.
In:Seminarsinneuroscience.
Elsevier,volume9,3–12.
64.
TurrigianoG,NelsonS(2000)Hebbandhomeostasisinneuronalplasticity.
Currentopinioninneurobiology10:358–364.
65.
AbrahamW(2008)Metaplasticity:tuningsynapsesandnetworksforplasticity.
NatureReviewsNeuroscience9:387–399.
66.
KatzLC,ShatzCJ(1996)Synapticactivityandtheconstructionofcorticalcircuits.
Science274:1133–1138.
67.
KnightR,RichardStainesW,SwickD,ChaoL(1999)Prefrontalcortexregulatesinhibitionandexcitationindistributedneuralnetworks.
ActaPsychologica101:159–178.
68.
SchaeferM,HeinzeH,RotteM(2005)Task-relevantmodulationofprimarysomatosensorycortexsuggestsaprefrontal-corticalsensorygatingsystem.
Neuroimage27:130–135.
ANeuralFieldModeloftheSomatosensoryCortexPLoSONE|www.
plosone.
org18July2012|Volume7|Issue7|e40257

HostKvm(4.25美)香港和俄罗斯高防机房云服务器

HostKvm 商家我们算是比较熟悉的国内商家,商家主要还是提供以亚洲数据中心,以及直连海外线路的服务商。这次商家有新增香港和俄罗斯两个机房的高防服务器方案。默认提供30GB防御,且目前半价优惠至4.25美元起步,其他方案的VPS主机还是正常的八折优惠。我们看看优惠活动。香港和俄罗斯半价优惠:2021fall,限购100台。通用优惠码:2021 ,八折优惠全部VPS。我们看看具体的套餐。1、香港高...

iON Cloud:七月活动,洛杉矶CN2 GIA线路85折优惠中,价格偏高/机器稳定/更新优惠码

iON Cloud怎么样?iON Cloud是Krypt旗下的云服务器品牌,成立于2019年,是美国老牌机房(1998~)krypt旗下的VPS云服务器品牌,主打国外VPS云服务器业务,均采用KVM架构,整体性能配置较高,云服务器产品质量靠谱,在线率高,国内直连线路,适合建站等用途,支付宝、微信付款购买。支持Windows server 2012、2016、2019中英文版本以及主流Linux发行...

阿里云金秋上云季,云服务器秒杀2C2G5M年付60元起

阿里云(aliyun)在这个月又推出了一个金秋上云季活动,到9月30日前,每天两场秒杀活动,包括轻量应用服务器、云服务器、云数据库、短信包、存储包、CDN流量包等等产品,其中Aliyun轻量云服务器最低60元/年起,还可以99元续费3次!活动针对新用户和没有购买过他们的产品的老用户均可参与,每人限购1件。关于阿里云不用多说了,国内首屈一指的云服务器商家,无论建站还是学习都是相当靠谱的。活动地址:h...

惠普z800为你推荐
敬汉卿姓名被抢注身份通被人注册了我该怎么办对对塔对对塔和魔方格那个是正宗的?地图应用什么地图导航最好用最准确蓝色骨头手机宠物的骨头分别代表几级?关键字关键字和一般标识符的区别haole16.com高手们帮我看看我的新网站WWW.16mngt.com怎么不被收录啊?杨丽晓博客明星的最新博文baqizi.cc誰知道,最近有什麼好看的電視劇555sss.comms真的是500万像素?175qq.comkf.qq.com.地址是什么
备案域名购买 万网域名解析 什么是域名解析 云网数据 新世界机房 vps.net 外贸主机 韩国空间 视频存储服务器 wdcp 正版win8.1升级win10 一元域名 卡巴斯基永久免费版 个人免费空间 个人空间申请 美国十次啦服务器 hkg 美国在线代理服务器 免费智能解析 电信虚拟主机 更多