LEO惠普t200
惠普t200 时间:2021-03-26 阅读:(
)
Compositionandstructurecontrolofultralightgraphenefoamforhigh-performancemicrowaveabsorptionYiZhang,YiHuang*,HonghuiChen,ZhiyuHuang,YangYang,PeishuangXiao,YingZhou,YongshengChen**CentreforNanoscaleScienceandTechnology,KeyLaboratoryofFunctionalPolymerMaterials,CollaborativeInnovationCenterofChemicalScienceandEngineering(Tianjin),SchoolofMaterialsScienceandEngineering,NankaiUniversity,Tianjin,300071,ChinaarticleinfoArticlehistory:Received18February2016Receivedinrevisedform21April2016Accepted27April2016Availableonline28April2016abstractMacroscopiclossyfoamhasbeenexpectedtobethemostpromisingcandidateforlightweighthigh-performancemicrowaveabsorption(MA).
However,inferiorMAbehaviorsofconventionalfoamsre-portedpreviouslyaredisappointing.
Theemerginggraphenefoam(GF)hasbrokenthisparadoxicalstateofaffairs.
Here,seriesofGFswithvariouschemicalcompositionsandphysicalstructureshavebeenpreparedviaafacileandcontrollablemethodandtheirMAperformanceisinvestigatedin2e18GHz.
Thein-depthanalysesoftheGF'scomposition,structureandMApropertydemonstratethattheMAper-formanceoftheGFisstronglycorrelatedwiththeC/Oratio,conjugatedcarbondomainsizeandgra-pheneframework'smicrostructure.
Amaximumabsorptionvalueof34.
0dBaswellas14.
3GHzqualiedbandwidthwithreectionlossbelow10dBisachievedfortheGFwithanultralowbulkdensityof1.
6mg/cm3,ofwhichtheaverageabsorptionintensityandthespecicMAefciencyaremuchhigherthanthoseofthebestavailableMAmaterialsinpreviousliterature.
Thecomposition&structureeperformancerelationshipofMAfoamsisrevealed.
ThebalancebetweensmallinterfacialimpedancegapandhighlosscharacteristichaswideimplicationsinimprovingtheMAperformanceoftheGFandotherporousmaterials.
2016ElsevierLtd.
Allrightsreserved.
1.
IntroductionWiththerapidarisingofinformationtechnology,microwaveabsorptionmaterialsareplayinganincreasinglysignicantroleinelectronicreliability,healthcare,andnationaldefensesecurity[1e4].
Forexample,themicrowaveabsorption(MA)materialsappliedintheemerginghigh-speedcommunicationapparatuslikesatellitescouldimprovethereceiver'ssignalqualitybysuppressingthenoise[5].
Besides,MAmaterialsintheradarstationandtherelaystationcouldprotectinsideworkersfromoverdoseexposuretohigh-powermicrowave[6].
Mostimportantly,withthegradualmaturationofnoveladvancedanti-stealthradarssuchasultrawidebandradar,phasedarrayradar,multi-staticradarandpassiveradar,high-performancecounter-detectionMAmaterialsserveasaveryefcientrouteinincreasingthesurvivabilityofmilitaryunitsviareducingtheirradarcross-section[7].
TheidealMAmaterialsareprimarilyrequiredtoestablishanexcellentdouble-winrelation-shipbetweenintenseabsorptionabilityandbroadabsorptionbandwidth.
Inaddition,MAmaterialswithultralightweightandthinthicknesswillbeadvantageousintheeldsofaerospace,aviation,groundvehiclesandfast-growingnext-generationgreenminiatureelectronics[1,8,9].
Theinterfacialimpedancegapandradiationenergylosschar-acteristicsareconsideredasthetwocoreprinciplesthatdeterminetheMAperformanceofamaterial[10e13].
Themicrowaveprop-agationforatypicalhomogenousmaterial'sMAprocessdependsonseveralfactors,includingdielectricpermittivityε,magneticpermeabilitymandelectricalconductivityd,whichareacompre-hensivereectionofsignicantcomponentandstructuralcharac-teristics[4,14e16].
Fordecades,researchershavemadeconsiderableeffortsto-wardsdesigningandfabricatingvariousMAmaterialsbyadjustingtheelectricalconductivity,dielectricconstantandmagneticpermeabilityinthepursuitoflowinterfacialimpedancegapaswellashighlossratioofincidentmicrowave[10,11,13,17,18].
In*Correspondingauthor.
**Correspondingauthor.
E-mailaddresses:yihuang@nankai.
edu.
cn(Y.
Huang),yschen99@nankai.
edu.
cn(Y.
Chen).
ContentslistsavailableatScienceDirectCarbonjournalhomepage:www.
elsevier.
com/locate/carbonhttp://dx.
doi.
org/10.
1016/j.
carbon.
2016.
04.
0700008-6223/2016ElsevierLtd.
Allrightsreserved.
Carbon105(2016)438e447mostcases,separatesolidparticleabsorbents,suchasferrites[19,20],metalpowders[20,21],ceramics[22],carbonnano/micromaterials[23,24]andtheirhybrids[2,15,25,26],areexten-sivelyadoptedasllersintomicrowave-transparentorganicorinorganicadhesivestofabricateMAcomposites.
BesidesmediocreMAperformance,mostofthemhavealsobeenkeptfarfrompracticalapplicationforsomeshortcomings,suchashighdensity,poorstabilityandlargeloadingcontent[1,12,27].
Ithasbeendemonstrated,forinstance,70wt%ormoremagneticironparti-cleswithaveryhighdensityof8g/cm3arerequiredintypicalMAcomposites[17,20].
Three-dimensional(3D)macroscopicporouslossymaterialshavebeenexpectedtobethemostpromisingcandidateforlight-weighthigh-performancebroadbandMAapplication[28e32].
ComparedwithconventionaluniformsolidMAmaterials,theMAfoam,withsomanyhomogenously-dispersedinternalpores,notonlyshowslowerbulkdensitybutalsogivesmuchsmallereffectivepermittivity,whichmakesitlessresistivetothedetectiveincidentmicrowaveinawidefrequencyrange[16,33].
Untilnow,consid-erableattentionshavebeenpaidtosynthesisandapplicationofporousbulkmaterialsformicrowavesuppression,suchasconductivepolymerfoam[28,34,35],siliconcarbidefoam[36,37],carbonfoam[7,29,38,39]andcarbonnanotubesponge[40].
How-ever,formostMAfoamsreportedpreviously,theirMAbehaviorscouldnotbecomparedwiththoseoftraditionalsolidMAmaterials[7,35,36].
Furthermore,itisstillabigchallengetorevealthecomposition&structureeperformancerelationshipofMAfoamsduetotheircomplicatedirregularstructuresandpreparationtechniques,whichseverelyhinderstheirpracticalapplication.
Recently,signicantprogresstoward3Dmacroscopicinter-connectedgraphenenetworkshasopenedupanewroutefortheexploitationofporousbulkmaterialforlightweightandbroadbandhigh-performanceMAapplication[38,41e49].
Inthepreviouscommunication,wepreliminarilyprovedtheoutstandingmicro-waveabsorbingperformanceofmacroscopicGFs,whichshowedthatGFsmayhavegreatpotentialinMAapplication[32].
However,thereremainsmuchuncertaintyintheGF'sMApropertydepen-denceonitsmorphologyandcomposition.
Therefore,itisverysignicanttodevelopafacileandcontrollablemethodtoprepareadditive-freelarge-sizedGFsandestablishtherelationshipbe-tweentheMApropertyandtheGF'sintrinsicstructureandcomponent,whichisessentialinanin-depthunderstandingofitsMAmechanismandmoreimportantlydevelopingauniversalstrategytoeffectivelyenhancetheMApropertyofbulkporousmaterials.
Herein,wedemonstratedesignandfabricationofvariousGFswithdifferentinternalmorphologiesandcompositionsandinvestigatetheirMAperformancein2e18GHz,whichisinten-sivelyoccupiedforsatellitecommunications,remotesensing,ra-dardetectionsandweaponsguidanceandtracking.
TheMAperformanceoftheGFfoamisfoundtobestronglycorrelatedtotheC/Oratio,sp2carbondomainsizeandgrapheneframeworkmicrostructure.
Amaximumabsorbingvalueof34.
0dBaswellas14.
3GHzqualiedbandwidthcanbeobtainedfortheGFwithanultralowdensityof1.
6mg/cm3,whichisclosetothedensityofambientair(1.
2mg/cm3)andmuchlowerthanthoseofthecar-bonfoam(166mg/cm3)[29]andtheSiCfoam(~256mg/cm3)[37].
Moreimportantly,theGFpresentsthebestaverageabsorptionintensitycomparedwithothertypicalMAmaterialsin2e18GHz.
ThespecicMAefciencyisnearlytwoordersofmagnitudehigherthanthoseofthebestavailableMAmaterialseverreported.
ThemechanismfortheMAperformancedepen-denceonthecompositionandstructureoftheGFisrevealed.
Thewell-matchedinterfacialimpedancecombinedwithhighlossabilitygivesrisetotheenhancedMAperformance.
2.
Experimental2.
1.
SynthesisofGFTherawmaterial,single-layergrapheneoxide(GO),waspre-paredusingamodiedHummersmethodasdescribedelsewhereandhasthelateralsizemainlyabove10mm[42].
TheinitialconcentratedGOethanolsolutionwasdilutedintothreeGOethanolreactionsolutionswithconcentrationsof0.
3,0.
6and0.
9mg/mL,respectively.
Aftersolvothermalreaction,solventex-changeandfreezedrying,threeoriginalGFswithdifferentgra-phenevolumefractionswereobtained.
TheGFsmadefrom0.
3to0.
9mg/mLGOethanolsolutionswereannealedat600Cfor1hinargonatramprateof10Cmin1toobtainthetargetGFslabeledasC0.
3andC0.
9,individually.
TheremainingGFsstartingfrom0.
6mg/mLGOsolutionweredividedintovesmallbatches,fourofwhichwereannealedatdifferenttemperaturesof200,400,600and800Cfor1hinargonatramprateof10Cmin1separatelytoobtainthetargetGFswithdifferentcompositions.
TheunannealedGFismarkedasT0andtheannealedproductsaremarkedasT200,T400,T600andT800inascendingtemperaturesequences.
Forconvenience,thesampleT600isalsonamedC0.
6intheGF'sstructurecomparison.
TofurtherstudytheGF'sMApropertydependenceonitsinterconnectedconductivenetworkofgraphenesheets,someofthesampleC0.
6wasbrokenintopowdersviamechanicalstirringat1800rpm.
2.
2.
CharacterizationTheRamanspectrumoftheGFwasobtainedonaRenishawinViaRamanspectrometerusinglaserexcitationat514.
5nm.
TheX-Raydiffraction(XRD)measurementoftheGFwascarriedoutonaRigakuD/Max-2500diffractometerwithCuKaradiation.
ThemorphologyoftheGFwasobservedbyScanningElectronMicro-scopy(SEM)(LEO1530VPoperatedat3.
0kV).
Theelectricalcon-ductivityoftheGFwasmeasuredbyahomemadextureaspreviouslyreported.
TheTransmissionelectronmicroscopy(TEM)investigationwasperformedonaFEITecnaiG2F20operatedat200kV.
ThethermogravimetricanalysiswasobtainedusingaNETZSCHSTA409PCanalyzer,withaheatingrateof10Cmin1fromroomtemperatureto850Cintheair.
TheX-rayPhotoelec-tronSpectroscopy(XPS)wasexaminedwithaGENESIS60SX-rayphotoelectronspectrometerusinganAlKa(hn1486.
6eV)radi-ationandthebindingenergieswerecalibratedbyusingthecontainmentcarbonpeak(C1s284.
6eV).
AfterallGFsweredriedinvaccumat75Cfor24h,theirFouriertransforminfrared(FT-IR)spectraandcombustionelementalanalysisweretheninvestigatedatTensor27FT-IRSpectrometer(Bruker,Germany)andVariomicroelementalanalyzer(Elementar,Germany),respectively.
BasedontheArchmethod,theMAperformancewasevaluatedin2e18GHzusinganAngilentHP8757Escalarquantitynetworkanalyzer.
FourGFscutinto90mm90mm10mmwerear-rangedintoacubiccontainerwithinternaldimensionsof180mm180mm15mmformeasurementsinthefrequencybandof2e18GHz.
ThepowdersamplewithamassequivalenttotheMAtestsampleC0.
6waslooselyplacedinthecontainerfortheMAmeasurement.
AllGFswerebackedwithahighlyconductivealuminumplatetoreecttheentireincidentmicrowavebacktothereceivingantenna.
Therelativecomplexpermittivityandpermeabilityweremeasuredinthefrequencyrangeof2e18GHzusinganAngilentHP8722ESvectornetworkanalyzer.
Parafnwasusedasthesup-portingmatrixduetoitsminorcomplexelectromagneticparam-etersapproximatingthoseofair.
Thetoroidaltestsample(3mmi.
d.
,7mmo.
d.
and2mmthickness)wasfabricatedbyvacuum-Y.
Zhangetal.
/Carbon105(2016)438e447439impregnatingtheGFwithparafn.
Theincidentmicrowavedirec-tionwasperpendiculartothetestsample.
3.
Resultsanddiscussion3.
1.
ThedependenceofMAperformanceontheGF'schemicalcompositionThemacroscopicadditive-freeGFforMAtestswaspreparedmainlythroughasolvothermalreaction,followedbysolventremovalandthermalreduction.
Byvaryingannealingtemperaturesinthethermalreductionfromroomtemperatureto800C,vetypesofpie-shapedGFsstartingfromthesameGOconcentrationof0.
6mg/mLwereobtainedtostudytheMAperformancedepen-denceonthechemicalcomposition.
Forconvenience,theunan-nealedGFislabeledasT0andtheotherannealedproductswerelabeledasT200,T400,T600andT800intemperaturesequences.
Duetothepyrolysisofthelabileoxygen-containinggroupsandthecarbondefects,theGFundergoesanobviousweightlossduringthethermalreduction.
AsshowninFig.
1a,theGF'sbulkdensityde-clinesbyover50%withtheannealingtemperaturerisingfromroomtemperatureto800C.
Giventhelowintrinsicdensityofgraphenesheets,theporosityhigherthan99%canbeobtainedforvetypesofGFs,exceedingthoseofmostmacroscopicfoams[29e31,43].
TounderstandchemicalcompositiontransformationoftheGFannealedatdifferenttemperatures,elementalanalysis,XPS,Ramanspectroscopyandthermogravimetricanalysiswereperformedforeverysample.
ElementalanalysisoffersthemostdirectevidencefortheelementcomponentoftheGFsample.
Freeofadditives,alltheGFsamplesaremainlycomposedofcarbonandoxygenassameastheinitialGO.
AsshowninFig.
1b,theunannealedGFT0hasthehighestoxygencontent,indicativeofitsmostseverelydamagedconjugatedcarbonbackbones.
Astheannealingtemperaturerises,thecarboncontentgrowscontinuously,whichisoppositefortheoxygencontentintheGFsample.
EvenfortheGFannealedat800C,theexistenceofoxygenmanifeststhatitservesasthetoughbondingelementinchemicallylinkingadjacentgraphenesheets,ensuringthethermallyreducedGF'srobustmechanicalstrength.
ItshouldbenotedthattheC/Oratioincreasingtrendclearlyaccel-eratesupontheannealingtemperaturerisingto400C,whichmayresultinanabruptchangeintheGF'sMAproperty.
TheFT-IRspectrafortheGFsampleswithvariouschemicalcompositionsareshowninFig.
1c.
Theabsorptionpeaksappearat1730,1570and1220cm1,correspondingtotheC]Ostretchingmode,C]CstretchingvibrationofbenzeneringandbreathingvibrationmodeoftheCeOgroups,respectivelyandthebroadpeakat3400cm1isattributedtotheadsorbedwaterinthesampleduetotheGF'shighporosity[42].
Withtheannealingtemperatureincreasing,theC]Ostretchingvibrationpeakgraduallyattenuatesandnearlyvanishesat800C.
Remarkably,theeverlastingCeObreathingvibrationpeak,ontheonehand,demonstratesthatthemutuallyentangledgraphenesheetsarechemicallyreinforcedbytheCeOeCcovalentbondanalogues.
Ontheotherhand,suchde-fects,consideredasthepolarizationdomains,contributetoimprovingthemicrowave-absorbingabilityoftheGF[11,12].
IntheRamanspectra(Fig.
1d),alltheGFsamplesdisplaytwoevidentpeaksat1351cm1and1588cm1,correspondingtotheDandGbandsrespectively.
TheID/IGratioisassociatedwithdefectconcentrationofgraphiticcarbonmaterials[48].
Itcanbeseenthatwithraisingannealingtemperature,theID/IGratioreducesdramaticallyfrom0.
95forT0to0.
75forT800,whichdemonstratestheenlargementofsp2carbondomain.
Morepreciseanalysesofin-planeconjugatedcarbonstructureswereconductedviaXPSchar-acterization(Fig.
S1).
Besidesthemainsp2carbonpeaklocatingat284.
5eV,thehigh-resolutionC1sregionoftheGFcanbedividedinto4otherttingpeaksat285.
8eV,286.
7eV,287.
7eVand288.
8eV,whichareattributedtocarbonspeciesofsp3carbon,CeOeC,C]OandC(C]O)O,individually[42].
Thesp2conjugatedcarbonskeletonaccountsforthevastmajorityofcarbonspeciesinalloftheGFsamples.
Furthersemi-quantitativeanalyses(Fig.
1e)Fig.
1.
(a)Thebulkdensities,(b)theelementalanalysis,(c)theFT-IRspectra,(d)theRamanspectra,(e)thesemi-quantitativesp2carbondomainsanalysesand(f)thether-mogravimetriccurvesfortheGFsannealedatdifferenttemperatures.
(Acolourversionofthisgurecanbeviewedonline.
)Y.
Zhangetal.
/Carbon105(2016)438e447440provethatwiththereductiontemperatureliftingto800Cthisproportionkeepsrisingfrom66.
7at%to80.
4at%intherangefrom200Cto400Cwhichobviouslygrowsfastest.
Thermogravimetricanalyses(Fig.
1f)wereperformedtoexaminethecompositionthermostabilityofvariousGFsamples.
BothT0andT200appearapparentweightlosswhenthetemper-atureapproaches200C.
However,whentheannealingtempera-turegoesabove400C,theresultingGFscouldmaintainstableinairatoperatingtemperatureofover300C.
Duetothehigherthermostabilityofsp2carbonbackbonesthanthoseofoxygen-containinggroups,theseresultssuggestmoreconjugatedcarbondomainsintheGFsannealedathighertemperature,whichareconsistentwiththeresultsofelementalanalysesandXPSanalyses.
Additionally,theexcellentthermostabilitymakessuchGFssuitableforapplicationsathightemperaturesuchastheskinsofhigh-speedaircraftsandhoodsofvehicleengines[50].
ThequaliedMAintensityformostapplicationsisgenerally10dB[15,26].
Fig.
2exhibitsthereectionloss(RL)curvesforGFsviadifferentthermaltreatmentsintherangeof2e18GHz.
WiththeC/Oratioaslowas5.
4andonly66.
7%sp2carboncontent,theoriginalunannealedGF(T0)exhibitsveryinferiormicrowave-absorbingabilityinthetestfrequencybandowningtoseveredisruptionofin-planeconjugatedstructures.
AlthoughtheC/OratioofT200increasesalittleafterthelow-levelthermalreduction,suchpoorrestorationofitsdamagedconjugatedgraphenenetworkdoesnotmakeitsRLcurvedifferobviouslyfromthatofT0.
Aftertheannealingtemperaturerisingto400C,thereappearsasignicantimprovementintheGF'sMAperformance.
ForT400,thestrongestRLreached28.
4dBat13.
9GHzandthequaliedfrequencyrangesfrom5.
6GHzto16.
9GHz.
ThephenomenondemonstratesthatwiththeC/Oratioandsp2carbondomainover6.
2and74%respectively,theGF'spartiallyrecovered3Dporousconductivenetworkofgraphenesheetsbecomessensitivetotheincidentmicrowave.
T600showstheoptimalMAperformance.
InadditiontothemaximumRLof34.
0dBat13.
1GHz,itsqualiedfrequencybandwidthreaches14.
3GHz,covering89.
4%oftheentiremeasuredbandwidth,whichismuchwiderthanthoseofmostMAmaterialsreportedpreviously[7,8].
Withannealingtemperaturearisingcontinuously,thechangeoftheGF'sMAperformancedoesn'tmaintainamonotonicevolution.
Onthecontrary,uponthetemperaturesurpassing600C,theGF'sMApropertystartsweakening,whichsuggeststhatwiththeC/Orisingmorethan12.
4,over-restoredconjugatedcarbonframeworkwillincreasethereectionofthemicrowaveandbecomesharmfulfortheGF'sMAproperty.
Therefore,thereexistsanoptimalreductiontemperature,suchas600Cinthiscase,underwhichtheannealedgrapheneskeletonwithcertainC/Oratioandconjugatedcarbondomainsizeexhibitsthebestwave-absorbingability.
3.
2.
ThedependenceofMAperformanceontheGF'sphysicalstructureThematerial'smicrowaveabsorbingpropertiesrelyonnotonlythechemicalcomposition,butalsothephysicalstructure,espe-ciallythebasicabsorbent'smorphologyandtheinterfacialmicro-structure[3,17,18].
AfacileandcontrollablemethodisdevelopedtofabricateGFswithcontrollablemicrostructure.
ViaadjustingGOconcentrationoftheinitialGOconcentrationfrom0.
3to0.
9mg/mL,threekindsofGFsannealedatthesametemperatureof600Cwereprepared,whicharemarkedasC0.
3,C0.
6andC0.
9inascendingGOconcentrationforconvenience.
Fig.
3ashowsthebulkdensitiesofthreeGFswithdifferentphysicalstructures.
WiththeoriginalGOethanolsolutiongettingdenser,theresultingGF'sdensityrisesfrom0.
9to2.
4mg/cm3.
ThehighergraphenecontentresultsintheweakerGF'sliquidabsorp-tioncapability(Fig.
3b),whichisadirectreectionofthedecreaseintheGF'sporosity[38,42].
However,similartothoseofourotherGFs,thecalculatedgraphenevolumefractionforallthethreeGFsamplesstillkeepsbelow1%,whichtosomeextentcanberegardedasastableindividualcharacteristicoftheadditive-free3Dcross-linkednetworkofgraphenesheets.
Fig.
4givestheSEMimagesoftheGFsmadefromtheGOso-lutionswithdifferentinitialconcentration.
Ascanbeseen,thestartingGOconcentrationhasagreatimpactontheinternalporousmorphologyandcellsizeoftheresultingGF.
WhenthestartingsolutioncontainsveryfewGOsheets(0.
3mg/mL),theresultingGFshowsareticulum-likeopencellstructurewiththeporesizerangingfrom30to90mm,inwhichmostgraphenesheetsconcentrateontheedgeandformthestrutswithmanyenclosedwallsincompletely.
UponraisingtheGOconcentrationofthestartingsolutionto0.
6mg/ml,theGFwithnegligiblechangeinitsinternalporesize,experiencesanenormousmorphologicalevo-lutionfromtheopenreticularstructuretothesemi-closedcellularonewithmuchmorecompletecellwalls.
AstheinitialGOcon-centrationkeepsrisingto0.
9mg/mL,theGFinternalporesbeginshrinkingdistinctly,Itisworthnotingthatalthoughitslong-rangenetworkhasbeenbroken,theC0.
6powderstillpresentsanintri-cate3Dinterconnectedgraphenenetworkwithtremendousmicro-sizedpolygonporeslikeotherintactGFs,whichfurtherdemon-stratestherobustmechanicalpropertyofthe3Dmonolithicstructure.
Aswehavepointedout,theinterfacialmicrostructureoftheabsorbentwillexertsignicantimpactonthemicrowavelossypropagationintheMAmaterial[19,32,48].
Therefore,wefurtherinvestigatetheinuenceofgraphenecontentontheGF0cellwallviaTEMcharacterization(Fig.
5aec).
C0.
3'scellwalliscomprisedof1e5layergraphenesheetswithpoorrestacking,whichshouldbemostbenecialtothetransmissionoftheincidentmicrowavethroughthewholefoam.
WiththeincreasingoftheGOcontentinthestartingsolution,theGF'scellwallsgraduallybecomethicker.
UponraisingGOconcentrationto0.
9mg/mL,theGFevenpresentssomeinternalcellwallsconsistingofashighas8e14layergra-phenesheets,overtwicethethicknessoftheGFwiththelowestinitialGOcontent.
TofurthercharacterizeinternalstructureoftheGF,theX-raydiffraction(XRD)examinationofvariousGFsmadefromdifferentGOsolutionswereperformedwithakegraphiteasthecompari-son(Fig.
5d).
Differentfromthestrongsharppeakforgraphiteat24681012141618-40-35-30-25-20-15-10-50ReflectionLoss(dB)Frequency(GHz)T0T200T400T600T800Fig.
2.
TheRLcurvesfortheGFswithdifferentchemicalcompositionsin2e18GHz.
(Acolourversionofthisgurecanbeviewedonline.
)Y.
Zhangetal.
/Carbon105(2016)438e4474412q26.
5,alltheGFsexhibitratherbroadfeeblepeaks(002),indicatingthatthelong-rangerestackingofgraphenesheetsisveryweak.
NotethatastheinitialGOconcentrationmovesup,addi-tionalwideweakpeaksat25.
0and25.
9emergeforC0.
6andC0.
9,respectively.
TheresultprovesthatC0.
6andC0.
9,withmoregrapheneconstituent,possessmorerestackingstructuresthanC0.
3,whichisconsistentwiththeTEMcharacterization.
TheRLcurvesforalltheGFsamplesin2e18GHzareshowninFig.
6.
TheGFmadefromthe0.
3mg/mLGOsolutiondisplaystheweakestwave-absorbingabilitywiththemaximumabsorptionintensityof15.
0dBat18.
0GHzandthequaliedbandwidthof6.
0GHz.
WiththeinitialGOincreasingfrom0.
3mg/cm3to0.
6mg/cm3,amaximumRLof34.
0dBisachievedat13.
1GHz.
Moresignicantly,thequaliedfrequencybandwidth(14.
3GHz)improveddramatically,coveringmostoftheentiremeasuredbandwidth.
WiththefurtherincreasingoftheconcentrationofGOsolution,theGFexhibitsareducedmicrowaveabsorbingability.
TheresultindicatesthatthereexistsanoptimalinitialGOcon-centrationthatmakestheself-assembledGFpossessthebestMAperformanceandthisvalueismostapproximateto0.
6mg/mLinourcase.
ItshouldbenotedthatthevarianceforalltheGFsamplesingraphenevolumefractiondoesnotsurpass1%,whichdemon-stratesthattheGF'sMAperformanceismuchsensitivelyaffectedbyitsphysicalstructure.
Furthermore,comparedtootherunbrokenGFs,theGFpowderexhibitaverypoorMAperformancewiththenarrowqualiedbandwidthof1.
4GHzandlowoptimalabsorptionstrengthof11.
5dB.
Theexperimentalresultindicatesthatthehighlyintricateinterconnectedlong-rangeconductivenetworkisimperativetotheexcellentMApropertyoftheGF.
3.
3.
ComparisonoftheGF'scomprehensiveMAperformancewithotherMAmaterialsThedetailedMAperformanceofsomerepresentativeMAma-terialsreportedbeforeislistedinTableS1forcomparison.
ItcanbeseenthattheoptimizedGFexhibitsmuchmoreexcellentMAperformancebothinthemaximumabsorbingintensityandinthequaliedbandwidththanmostMAmaterials,includingtheMAfoams.
Becauseofthegreatimportanceoftheabsorbingintensitythroughoutquiteabroadfrequencyrangeinthebroadbandhigh-performanceMAresearch,it'snecessarytointroduceanewconceptoftheaverageabsorptionintensity(AAI)whichisanaloguetoExternalQuantumEfciencyinthephotovoltaiceld.
TheAAIisexpressedasAAIdBZfhflRLdffhfl(1)whereflandfhrespondtothelowestmeasuredfrequencyandthehighestmeasuredfrequency,respectively.
ThehighertheAAIvalueis,thestrongerbroadbandmicrowaveabsorbingabilitythemate-rialpresents.
TheAAIin2e18GHzofseveralrepresentativeMAmaterialsinpreviousliteraturewerecalculatedinFig.
7a.
Owningtothestrongmicrowaveabsorbingbehaviorinthewidefrequencyband,theGFshowsaveryexcellentAAI(17.
9dB),whichishigherthanthebestavailableMAmaterialsreportedpreviously.
Furthermore,lightweightaccountsforagiantproportionindesigningandevaluatingmicrowaveattenuationmaterialsappliedinaerospace,aviationandgroundvehicles[9,35].
Therefore,weadoptthespecicMAefciency(SMAE)integratedwithsignicantMAindicatorssuchasthickness,density,qualiedbandwidthandRLvaluesinthemeasuredfrequencybandtoevaluatethemicro-waveabsorption(MA)performancemorecomprehensively[32]TheSMAEisexpressedasSMAEdB$Hz$cm2$g1ZfhflRLdft$rbulk(2)wherefl,fh,tandrbulkrespondtothelowestqualiedfrequency,thehighestqualiedfrequency,theaveragethicknessandtheaveragebulkdensityoftheMAmaterial,respectively.
AmaterialwithhighSMAEisanticipatedtohaveahugepotentialinMAapplication.
ThespecicMAefciencyin2e18GHzofseveralrepresentativeMAmaterialsinopenliteraturewerecalculatedinFig.
7b.
Despiteofthelowbulkdensity,thespecicMAefciencyofthecarbonfoam[7]andSiCfoam[37]don'tgoover100dBHzcm2g1,whichismuchinferiortosometypicalsolidMAmaterial,suchastheSWNT/polyurethanecomposite(~1.
5102dBcm2g1)[8],thereducedGO/NBRcomposite(~2.
2102dBHzcm2g1)[23]andthea-Feencapsulatedwithincarbonnanotube/epoxycomposite(~2.
0103dBHzcm2g1)[15].
Remarkably,theexcellentMAperformancecombinedwiththeultralowdensity(1.
6mgcm3)givestheoptimizedGFasuperiorspecicMAefciencyaround1.
7105dBcm2g1,nearlytwoordersofmagnitudehigherthanthoseofthebestavailableMAmaterialsreportedbefore.
C0.
3C0.
6C0.
90.
81.
21.
62.
02.
4BulkDensity(mg/cm3)GFSamplesBulkDensityC0.
3C0.
6C0.
9520560600640680WeightGainGFSamplesPetroleumetherEthanolbaFig.
3.
(a)Thebulkdensityand(b)theliquidabsorptioncapabilitiesoftheGFs.
(Acolourversionofthisgurecanbeviewedonline.
)Y.
Zhangetal.
/Carbon105(2016)438e4474423.
4.
ThemechanismfortheMAperformancedependenceonthecompositionandstructureoftheGFBasedonthegeneralMAprinciple,theinterfacialimpedancegapandradiationenergylossratioareregardedasthetwocriticalfactorsthatdeterminethematerial'sMAperformance[8,18,37,52].
Toatypicalsingle-layerdielectricMAmaterial,suchasgraphene/polymercomposites,theincidentwavepropagationfromfreespaceintothematerialismainlyaffectedbymaterial'sdielectricpermittivityεandelectricalconductivityd[4,37,39,53].
TobetterunderstandtheMAperformancedependenceontheircompositionandmorphology,weinvestigatedvariousGFs'bulkelectricalcon-ductivitiesandrelativepermittivitiesin2e18GHz.
TheelectricalconductivitiesforalltheGFsareshowninFig.
S2.
ItcanbeseenthattheriseineitherofthegraphenevolumefractionandtheannealingtemperaturewillresultinthebulkelectricalconductivityincreaseoftheGF.
Thelong-rangeinducedcurrentsdecayontheconductiveskeletonplaysakeyroleinthesubstan-tiallyenhancedMA.
TheimprovedconductivegrapheneframeworkoftheGFshouldcouplewithmoretime-varyingelectromagneticeldswithinbroaderfrequencybandsandthusconsumemoreradiationenergy[32,37].
It'sworthnotingthatevenforC0.
9andT800,theirbulkconductivitiesstillstaybelow1.
0104S/m,whichcontributestothegoodinterfacialimpedancematchingandthusweakeningadversebackreectionofmicrowave[9,22].
Therealpermittivityε0respondstothestoragecapabilityoftheFig.
4.
Thecross-sectionalSEMimagesof(a,b)C0.
3,(c,d)C0.
6,(e,f)C0.
9,(g,h)C0.
6powders.
Y.
Zhangetal.
/Carbon105(2016)438e447443electriceldinsidetheabsorber[10,54],andasmallerε0shortenstheinterfacialimpedancegap,thusdecreasingthereectionco-efcientoftheabsorber[55].
Inaddition,thedielectriclosstangenttandeε00=ε0representsthematerial'sconversionofthemicro-waveradiationintootherenergyforms[8,10].
Thehigherdielectriclosstangent,themoreelectromagneticwaveenergygetsabsorbed[9,11].
Theinclinationtoanysidewouldn'tgiverisetoagoodMAbehavior[10,35].
Fig.
8givesrealpermittivitiesandrelativedielectriclosstangentvaluesforalltheGFs.
BothT0(Fig.
8a)andC0.
3(Fig.
8b)showverylowrealpermittivitiesanddielectriclosstangents,whichareevenbelowthoseofsinglelow-losspolymerssuchaspoly(dimethylsiloxane)[51]andpoly(ethyleneoxide)[56].
It'sclearlyseenthatboththerealpermittivityanddielectriclosstangentoftheGFgrowbiggermonotonicallywitheitherthegra-phenevolumefractionorreductiontemperatureincreasing.
Theresult,however,isnotconsistentwiththeMAperformancechange,whichdemonstratestheimportanceofthebalancebetweenthelowpermittivityandhighdielectriclosstoasatisfyingmicrowave-absorbingability.
InallGFsamples,theT800andC0.
9,thoughpossessingthestrongenergyconversionabilities,exhibitoverhighrealpermittivityvalues,whichgoesagainstthewell-matchedimpedancebridgeandthusresultsinanattenuatedMApropertyoftheGF.
Bycontrast,overlowdielectriclosstangentsoftheGFsincludingC0.
3,T0andT200duetosparseconductivenetworksandexcessivedefectsofgraphenesheets,revealtheirpoormicrowavedissipationperformanceduringthewavepropagationfrompene-tratingthefoamtoreturningtothereceivingantenna.
TheGFT600orC0.
6,withproperpermittivityandhighdielectriclosstangent,successfullybuildawinewinrelationshipbetweentheinterfacialmatchingandlossproperty,thusexhibitingthebestMAperfor-mance.
Itshouldbenotedthatdespiteofultralowrealpermittivity,theinferiordielectriclosstangentoftheC0.
6powdersuggeststhatboththeultrahighporosityandtremendouslong-rangecross-linkedconductivegraphenenetworkareimperativetotheexcel-lentMAperformanceoftheGF.
ToreecttheintrinsicMAmechanismmoredirectly,wethensimulatedtheRLcurvesforalltheGFs.
Accordingtothetransmission-linetheory,theRLofelectromagneticwaveradiation,R(dB),undernormalwaveincidenceonametal-backedsingle-layerMAmaterialiscorrelatedwiththeincidentimpedanceZinas[8,56].
RdB20logZinZ0ZinZ0(3)whereZ0isthecharacteristicimpedanceoffreespace(377U).
ZinistheinputimpedanceattheinterfaceoffreespaceandtheMAFig.
5.
TheTEMimagesofthebrokenGFcellwallof(a)C0.
3,(b)C0.
6and(c)C0.
9aftersonication.
(d)TheXRDresultsoftheGFsmadefromdifferentinitialGOsolutionsandakegraphiteforcomparison.
TheinsetgivesdetailedpatternsofthreeGFsamples.
(Acolourversionofthisgurecanbeviewedonline.
)24681012141618-40-35-30-25-20-15-10-505ReflectionLoss(dB)Frequency(GHz)C0.
9C0.
6C0.
3C0.
6PowderFig.
6.
TheRLcurvesfortheGFswithdifferentphysicalstructuresareshownin2e18GHz.
(Acolourversionofthisgurecanbeviewedonline.
)Y.
Zhangetal.
/Carbon105(2016)438e447444material,givenas[20,35].
ZinZ0mrεrrtanh2pfdmrm0εrε0pj(4)wherefisthemicrowavefrequency,disthematerialthickness,εristherelativepermittivityandmristherelativepermeability.
ThesimulatedMAcurvesin2e18GHzforalltheGFsareshowninFig.
S3.
ThetheoreticalMAcurvesagreewellwiththeexperi-mentalresultsintheaspectoftheMAperformancetrendwithinitialGOconcentrationandthermalreductiontemperature.
Forexample,thecalculatedmicrowaveabsorbingpropertyoftheGFundergoesthesamerstrisingandthenfallingchangewiththeannealingtemperatureelevatingfromroomtemperatureto800C.
However,thetheoreticalcurvedoesnottexactlyonthemeasuredcurveintheabsorptionperformanceandsuchdiscrepancycouldbeattributedtohighlynonuniformporousstructureinsidetheGF[57]andtheedgeeffectoftheGFjunctionintheMAtest[21].
4.
ConclusionInsummary,wehavepreparedseriesofGFswithvariouschemicalcompositionsandphysicalstructuresbycontrollingtheGOconcentrationoftheinitialsolutionandthermal-reductiontemperature.
TheanalysesoftheGFs'compositions,structuresandelectromagneticpropertiessuggestthattheMAperformanceoftheGFisstronglycorrelatedwiththeC/Oratio,conjugatedcarboncontentandthegrapheneskeletonmicrostructure.
Amaximumabsorptionvalueof34.
0dBaswellas14.
3GHzFig.
7.
Comparisonof(a)AAIand(b)SMAEvaluesfortheGF(lightgreypatternedcolumn)inthisworkandtherepresentativematerials(darkgreycolumns).
MoredetaileddatahavebeenlistedinTableS1intheSupportingInformation.
(Acolourversionofthisgurecanbeviewedonline.
)Fig.
8.
Realpartsofthecomplexpermittivitiesof(a)theGFswithdifferentchemicalcompositionsand(b)theGFswithdifferentphysicalstructuresin2e18GHz.
DielectriclosstangentsoftheGFsof(c)theGFswithdifferentchemicalcompositionsand(d)theGFswithdifferentphysicalstructuresin2e18GHz.
(Acolourversionofthisgurecanbeviewedonline.
)Y.
Zhangetal.
/Carbon105(2016)438e447445qualiedbandwidthcanbeachievedfortheGFwithanultralowbulkdensityof1.
6mg/cm3,whichisclosetothedensityofambientair(1.
2mg/cm3).
Particularly,theGFpresentthebestaverageab-sorptionintensitycomparedwithothertypicalMAmaterialsin2e18GHz.
TheoutstandingMAperformancecombinedwithanultralowbulkdensitygivestheGFasuperiorspecicMAefciencynearlytwoordersofmagnitudehigherthanthoseofthebestavailableMAmaterialsreportedbefore.
ThemechanismfortheMAperformancedependenceonthecompositionandstructurerevealsthattheGFwithproperchemicalcompositionandphysicalstruc-turemakingthebalancebetweenexcellentimpedancematchingandhighlosscharacteristiccoulddeliveranexcellentMAproperty.
WiththefacileandcontrollablesynthesisoftheGF,anewapproachtoefcientlyoptimizeandregulateitsMAbehaviorisnowpossible.
Moreimportantly,theprocessingecomposition&structur-eepropertyrelationshipsoftheGFhasopenedupanewstrategytodesignrationallymacroscopicporousmaterialsforlightweighthigh-performanceandbroadbandMAapplicationsuchasthenew-generationultralightheat-resistantMAskinforhigh-speedaircrafts.
AcknowledgmentsTheauthorsgratefullyacknowledgenancialsupportfromtheMOST(Grants2012CB933401),NSFC(Grants21374050,91433101,51472124and51273093),MOE(B12015),PCSIRT(IRT1257)andNSFofTianjinCity(Grant15JCYBJC17700).
AppendixA.
SupplementarydataSupplementarydatarelatedtothisarticlecanbefoundathttp://dx.
doi.
org/10.
1016/j.
carbon.
2016.
04.
070.
References[1]X.
J.
Zhang,G.
S.
Wang,W.
Q.
Cao,Y.
Z.
Wei,J.
F.
Liang,L.
Guo,etal.
,Enhancedmicrowaveabsorptionpropertyofreducedgrapheneoxide(RGO)-MnFe2O4nanocompositesandpolyvinylideneuoride,ACSAppl.
Mater.
Interfaces6(10)(2014)7471e7478.
[2]Y.
Chen,X.
Liu,X.
Mao,Q.
Zhuang,Z.
Xie,Z.
Han,Gamma-Fe2O3-MWNT/poly(p-phenylenebenzobisoxazole)compositeswithexcellentmicrowaveabsorptionperformanceandthermalstability,Nanoscale6(12)(2014)6440e6447.
[3]H.
Zhou,J.
Wang,J.
Zhuang,Q.
Liu,Acovalentrouteforefcientsurfacemodicationoforderedmesoporouscarbonashighperformancemicrowaveabsorbers,Nanoscale5(24)(2013)12502e12511.
[4]Z.
Liu,G.
Bai,Y.
Huang,Y.
Ma,F.
Du,F.
Li,etal.
,Reectionandabsorptioncontributionstotheelectromagneticinterferenceshieldingofsingle-walledcarbonnanotube/polyurethanecomposites,Carbon45(4)(2007)821e827.
[5]A.
Namai,S.
Sakurai,M.
Nakajima,T.
Suemoto,K.
Matsumoto,M.
Goto,etal.
,Synthesisofanelectromagneticwaveabsorberforhigh-speedwirelesscommunication,J.
Am.
Chem.
Soc.
131(3)(2008)1170e1173.
[6]S.
Banik,S.
Bandyopadhyay,S.
Ganguly,Bioeffectsofmicrowaveeabriefreview,Bioresour.
Technol.
87(2)(2003)155e159.
[7]J.
Yang,Z-mShen,Z-b.
Hao,Microwavecharacteristicsofsandwichcompos-iteswithmesophasepitchcarbonfoamsascore,Carbon42(8)(2004)1882e1885.
[8]Z.
Liu,G.
Bai,Y.
Huang,F.
Li,Y.
Ma,T.
Guo,etal.
,Microwaveabsorptionofsingle-walledcarbonnanotubes/solublecross-linkedpolyurethanecompos-ites,J.
Phys.
Chem.
C111(37)(2007)13696e13700.
[9]X.
Li,J.
Feng,Y.
Du,J.
Bai,H.
Fan,H.
Zhang,etal.
,One-potsynthesisofCoFe2O4/grapheneoxidehybridsandtheirconversionintoFeCo/graphenehybridsforlightweightandhighlyefcientmicrowaveabsorber,J.
Mater.
Chem.
A3(10)(2015)5535e5546.
[10]L.
Wang,Y.
Huang,X.
Sun,H.
Huang,P.
Liu,M.
Zong,etal.
,Synthesisandmicrowaveabsorptionenhancementofgraphene@Fe3O4@SiO2@NiOnano-sheethierarchicalstructures,Nanoscale6(6)(2014)3157e3164.
[11]H.
Yang,M.
Cao,Y.
Li,H.
Shi,Z.
Hou,X.
Fang,etal.
,EnhancedDielectricPropertiesandExcellentMicrowaveAbsorptionofSiCPowdersDrivenwithNiONanorings,Adv.
Opt.
Mater.
2(3)(2014)214e219.
[12]D.
Sun,Q.
Zou,Y.
Wang,W.
Jiang,F.
Li,ControllablesynthesisofporousFe3O4@ZnOspheredecoratedgrapheneforextraordinaryelectromagneticwaveabsorption,Nanoscale6(12)(2014)6557e6562.
[13]T.
Liu,Y.
Pang,M.
Zhu,S.
Kobayashi,MicroporousCo@CoOnanoparticleswithsuperiormicrowaveabsorptionproperties,Nanoscale6(4)(2014)2447e2454.
[14]N.
Youse,X.
Sun,X.
Lin,X.
Shen,J.
Jia,B.
Zhang,etal.
,Highlyalignedgra-phene/polymernanocompositeswithexcellentdielectricpropertiesforhigh-performanceelectromagneticinterferenceshielding,Adv.
Mater.
26(31)(2014)5480e5487.
[15]R.
Che,L.
M.
Peng,X.
F.
Duan,Q.
Chen,X.
Liang,MicrowaveabsorptionenhancementandcomplexpermittivityandpermeabilityofFeencapsulatedwithincarbonnanotubes,Adv.
Mater.
16(5)(2004)401e405.
[16]H.
Zhang,J.
Zhang,H.
Zhang,Numericalpredictionsforradarabsorbingsiliconcarbidefoamsusinganiteintegrationtechniquewithaperfectboundaryapproximation,SmartMater.
Struct.
15(3)(2006)759e766.
[17]Y.
Qing,W.
Zhou,F.
Luo,D.
Zhu,Epoxy-siliconelledwithmulti-walledcar-bonnanotubesandcarbonylironparticlesasamicrowaveabsorber,Carbon48(14)(2010)4074e4080.
[18]J.
Liu,R.
Che,H.
Chen,F.
Zhang,F.
Xia,Q.
Wu,etal.
,MicrowaveabsorptionenhancementofmultifunctionalcompositemicrosphereswithspinelFe3O4CoresandAnataseTiO2shells,Small8(8)(2012)1214e1221.
[19]X.
Shen,F.
Song,J.
Xiang,M.
Liu,Y.
Zhu,Y.
Wang,etal.
,Shapeanisotropy,exchange-couplinginteractionandmicrowaveabsorptionofhard/softnano-compositeferritemicrobers,J.
Am.
Ceram.
Soc.
95(12)(2012)3863e3870.
[20]G.
Sun,B.
Dong,M.
Cao,B.
Wei,C.
Hu,Hierarchicaldendrite-likemagneticmaterialsofFe3O4,g-Fe2O3,andFewithhighperformanceofmicrowaveabsorption,Chem.
Mater.
23(6)(2011)1587e1593.
[21]W.
Li,T.
Wu,W.
Wang,P.
Zhai,J.
Guan,Broadbandpatternedmagneticmi-crowaveabsorber,J.
Appl.
Phys.
116(4)(2014)044110.
[22]C.
H.
Gong,J.
W.
Zhang,C.
Yan,X.
Q.
Cheng,J.
W.
Zhang,L.
G.
Yu,etal.
,Synthesisandmicrowaveelectromagneticpropertiesofnanosizedtitaniumnitride,J.
Mater.
Chem.
22(8)(2012)3370e3376.
[23]V.
K.
Singh,A.
Shukla,M.
K.
Patra,L.
Saini,R.
K.
Jani,S.
R.
Vadera,etal.
,Micro-waveabsorbingpropertiesofathermallyreducedgrapheneoxide/nitrilebutadienerubbercomposite,Carbon50(6)(2012)2202e2208.
[24]Z.
Fan,G.
Luo,Z.
Zhang,L.
Zhou,F.
Wei,Electromagneticandmicrowaveabsorbingpropertiesofmulti-walledcarbonnanotubes/polymercomposites,Mater.
Sci.
Eng.
B132(1e2)(2006)85e89.
[25]T.
Wang,H.
Wang,X.
Chi,R.
Li,J.
Wang,SynthesisandmicrowaveabsorptionpropertiesofFeeCnanobersbyelectrospinningwithdisperseFenano-particlesparceledbycarbon,Carbon74(2014)312e318.
[26]G.
Wang,Z.
Gao,S.
Tang,C.
Chen,F.
Duan,S.
Zhao,etal.
,Microwaveab-sorptionpropertiesofcarbonnanocoilscoatedwithhighlycontrolledmag-neticmaterialsbyatomiclayerdeposition,ACSNano6(12)(2012)11009e11017.
[27]X.
Chen,Y.
Ye,J.
Cheng,Recentprogressinelectromagneticwaveabsorbers,J.
Inorg.
Mater.
26(5)(2011)449e457.
[28]Y.
Yang,M.
C.
Gupta,K.
L.
Dudley,R.
W.
Lawrence,Conductivecarbonnano-berepolymerfoamstructures,Adv.
Mater.
17(16)(2005)1999e2003.
[29]F.
Moglie,D.
Micheli,S.
Laurenzi,M.
Marchetti,V.
MarianiPrimiani,Electro-magneticshieldingperformanceofcarbonfoams,Carbon50(5)(2012)1972e1980.
[30]Z.
Chen,C.
Xu,C.
Ma,W.
Ren,H.
M.
Cheng,Lightweightandexiblegraphenefoamcompositesforhigh-performanceelectromagneticinterferenceshield-ing,Adv.
Mater.
25(9)(2013)1296e1300.
[31]R.
Kumar,S.
R.
Dhakate,T.
Gupta,P.
Saini,B.
P.
Singh,R.
B.
Mathur,Effectiveimprovementofthepropertiesoflightweightcarbonfoambydecorationwithmulti-wallcarbonnanotubes,J.
MaterChem.
A1(18)(2013)5727e5735.
[32]Y.
Zhang,Y.
Huang,T.
Zhang,H.
Chang,P.
Xiao,H.
Chen,etal.
,Broadbandandtunablehigh-performancemicrowaveabsorptionofanultralightandhighlycompressiblegraphenefoam,Adv.
Mater.
27(12)(2015)2049e2053.
[33]Z.
Fang,X.
Cao,C.
Li,H.
Zhang,J.
Zhang,H.
Zhang,Investigationofcarbonfoamsasmicrowaveabsorber:numericalpredictionandexperimentalvali-dation,Carbon44(15)(2006)3368e3370.
[34]H.
Huang,C.
Liu,D.
Zhou,X.
Jiang,G.
Zhong,D.
Yan,etal.
,Cellulosecompositeaerogelforhighlyefcientelectromagneticinterferenceshielding,J.
Mater.
Chem.
A3(9)(2015)4983e4991.
[35]A.
Xie,F.
Wu,M.
Sun,X.
Dai,Z.
Xu,Y.
Qiu,etal.
,Self-assembledultralightthree-dimensionalpolypyrroleaerogelforeffectiveelectromagneticabsorp-tion,Appl.
Phys.
Lett.
106(22)(2015)222902.
[36]X.
W.
Zhu,D.
L.
Jiang,S.
H.
Tan,MicrowaveabsorbingpropertyofSiCreticulatedporousceramics,J.
Inorg.
Mater17(6)(2002)1152e1156.
[37]H.
Zhang,J.
Zhang,H.
Zhang,Computationofradarabsorbingsiliconcarbidefoamsandtheirsilicamatrixcomposites,Comput.
Mater.
Sci.
38(4)(2007)857e864.
[38]M.
Inagaki,J.
Qiu,Q.
Guo,Carbonfoam:preparationandapplication,Carbon87(2015)128e152.
[39]Y.
Li,B.
Shen,X.
Pei,Y.
Zhang,D.
Yi,W.
Zhai,etal.
,Ultrathincarbonfoamsforeffectiveelectromagneticinterferenceshielding,Carbon100(2016)375e385.
[40]M.
Crespo,M.
Gonzalez,A.
L.
Elías,L.
PulickalRajukumar,J.
Baselga,M.
Terrones,etal.
,Ultra-lightcarbonnanotubespongeasanefcientelec-tromagneticshieldingmaterialintheGHzrange,Phys.
StatusSolidiRRL8(8)(2014)698e704.
[41]X.
Cao,Z.
Yin,H.
Zhang,Three-dimensionalgraphenematerials:preparation,structuresandapplicationinsupercapacitors,EnergyEnviron.
Sci.
7(6)(2014)1850e1865.
[42]Y.
Wu,N.
Yi,L.
Huang,T.
Zhang,S.
Fang,H.
Chang,etal.
,Three-dimensionallyY.
Zhangetal.
/Carbon105(2016)438e447446bondedspongygraphenematerialwithsupercompressiveelasticityandnear-zeroPoisson'sratio,Nat.
Commun.
6(2015)6141.
[43]Y.
Li,J.
Chen,L.
Huang,C.
Li,J.
D.
Hong,G.
Shi,Highlycompressiblemacro-porousgraphenemonolithsviaanimprovedhydrothermalprocess,Adv.
Mater.
26(28)(2014)4789e4793.
[44]Z.
Xu,C.
Gao,Grapheneinmacroscopicorder:liquidcrystalsandwet-spunbers,Acc.
Chem.
Res.
47(4)(2014)1267e1276.
[45]J.
J.
Shao,W.
Lv,Q.
H.
Yang,Self-assemblyofgrapheneoxideatinterfaces,Adv.
Mater.
26(32)(2014)5586e5612.
[46]C.
Hu,X.
Zhai,L.
Liu,Y.
Zhao,L.
Jiang,L.
Qu,Spontaneousreductionandas-semblyofgrapheneoxideintothree-dimensionalgraphenenetworkonarbitraryconductivesubstrates,Sci.
Rep.
3(2013)2065.
[47]Z.
Chen,W.
Ren,L.
Gao,B.
Liu,S.
Pei,H.
-M.
Cheng,Three-dimensionalexibleandconductiveinterconnectedgraphenenetworksgrownbychemicalvapourdeposition,Nat.
Mater.
10(6)(2011)424e428.
[48]L.
Zhang,F.
Zhang,X.
Yang,G.
Long,Y.
Wu,T.
Zhang,etal.
,Porous3Dgraphene-basedbulkmaterialswithexceptionalhighsurfaceareaandexcellentconductivityforsupercapacitors,Sci.
Rep.
3(2013)1408.
[49]W.
Lv,C.
Zhang,Z.
Li,Q.
H.
Yang,Self-assembled3Dgraphenemonolithfromsolution,J.
Phys.
Chem.
Lett.
6(4)(2015)658e668.
[50]B.
Wen,M.
Cao,M.
Lu,W.
Cao,H.
Shi,J.
Liu,etal.
,Reducedgrapheneoxides:light-weightandhigh-efciencyelectromagneticinterferenceshieldingatelevatedtemperatures,Adv.
Mater.
26(21)(2014)3484e3489.
[51]L.
Kong,X.
Yin,X.
Yuan,Y.
Zhang,X.
Liu,L.
Cheng,etal.
,Electromagneticwaveabsorptionpropertiesofgraphenemodiedwithcarbonnanotube/poly(-dimethylsiloxane)composites,Carbon73(2014)185e193.
[52]J.
Jiang,D.
Li,D.
Geng,J.
An,J.
He,W.
Liu,etal.
,Microwaveabsorptionpropertiesofcoredouble-shellFeCo/C/BaTiO(3)nanocomposites,Nanoscale6(8)(2014)3967e3971.
[53]Y.
Ren,C.
Zhu,S.
Zhang,C.
Li,Y.
Chen,P.
Gao,etal.
,Three-dimensionalSiO2@Fe3O4core/shellnanorodarray/graphenearchitecture:synthesisandelec-tromagneticabsorptionproperties,Nanoscale5(24)(2013)12296e12303.
[54]H.
Sun,R.
Che,X.
You,Y.
Jiang,Z.
Yang,J.
Deng,etal.
,Cross-stackingalignedcarbon-nanotubelmstotunemicrowaveabsorptionfrequenciesandin-creaseabsorptionintensities,Adv.
Mater.
26(48)(2014)8120e8125.
[55]V.
Weston,Theoryofabsorbersinscattering,IEEETrans.
AntennasPropag.
11(5)(1963)578e584.
[56]X.
Bai,Y.
Zhai,Y.
Zhang,Greentopreparegraphene-basedcompositeswithhighmicrowaveabsorptioncapacity,J.
Phys.
Chem.
C115(23)(2011)11673e11677.
[57]W.
J.
Hoefer,Thetransmission-linematrixmethod-theoryandapplications,IEEETrans.
Microw.
TheoryTech.
33(10)(1985)882e893.
Y.
Zhangetal.
/Carbon105(2016)438e447447
HostKvm是一家成立于2013年的国外主机服务商,主要提供基于KVM架构的VPS主机,可选数据中心包括日本、新加坡、韩国、美国、中国香港等多个地区机房,均为国内直连或优化线路,延迟较低,适合建站或者远程办公等。目前商家发布了夏季特别促销活动,针对香港国际/韩国机房VPS主机提供7折优惠码,其他机房全场8折,优惠后2GB内存套餐月付5.95美元起。下面分别列出几款主机套餐配置信息。套餐:韩国KR...
vpsdime怎么样?vpsdime是2013年成立的国外VPS主机商,以大内存闻名业界,主营基于OpenVZ和KVM虚拟化的Linux套餐,大内存、10Gbps大带宽、大硬盘,有美国西雅图、达拉斯、新泽西、英国、荷兰机房可选。在上个月搞了一款达拉斯Linux系统VPS促销,详情查看:vpsdime夏日促销活动,美国达拉斯vps,2G内存/2核/20gSSD/1T流量,$20/年,此次推出一款Wi...
a400互联是一家成立于2020年商家,主营美国机房的产品,包括BGP线路、CN2 GIA线路的云服务器、独立服务器、高防服务器,接入线路优质,延迟低,稳定性高,额外也还有香港云服务器业务。当前,全场服务器5折,香港VPS7折,洛杉矶VPS5折,限时促销!A400互联官网:https://a400.net/优惠活动全场独服永久5折优惠(续费同价):0722香港VPS七折优惠:0711洛杉矶VPS五...
惠普t200为你推荐
哈利波特罗恩升级当爸为什么赫敏喜欢的是罗恩而不是哈里?真希望他们在一起。西部妈妈网烟台分类妈妈网 分类妈妈网的前2个字什么?嘉兴商标注册嘉兴那里有设计商标的lunwenjiancepaperfree论文检测安全吗777k7.comwww.777tk.com.怎么打不 开www.765.com下载小说地址www.gegeshe.com《我的电台fm》 she网址是多少?javmoo.com0904-javbo.net_avop210hhb主人公叫什么,好喜欢,有知道的吗javbibitreebibi是什么牌子的www.idanmu.com万通奇迹,www.wcm77.HK 是传销么?
东莞服务器租用 拜登买域名批特朗普 pw域名 缓存服务器 免费全能空间 100x100头像 linux空间 双拼域名 日本bb瘦 百兆独享 刀片服务器是什么 老左正传 免费dns解析 新睿云 免费ftp 什么是web服务器 cx域名 服务器机柜 pptpvpn 压力测试工具 更多