IES51peizi

51peizi  时间:2021-03-23  阅读:()
ReferencesPreface0.
1.
M.
Bouger,Traited'OptiquesurlaGradationdelaLumi`ere,AcademieRoyaledesSciences,A.
Paris,MDCCLX(1760)–seealso:M.
Bouger,Opticaltractatongradinglight,withcommentariesbyA.
A.
Gershun,translatedfromFrenchtoRussianbyN.
A.
TosltoyandP.
P.
PheophilovundereditorshipofA.
A.
Gershun,(AcademyofSciencesofUSSR,Leningrad,1950)0.
2.
J.
H.
Lambert,Photometriasivedemensuraetgradibusluminus,colorumetumbrae(Klett,Augsburg,1760)0.
3.
A.
J.
Fresnel,OevresCompl`etes,vol.
10(Paris,1866),pp.
640–6480.
4.
C.
Fabry,IntroductionGenerale`alaPhotometrie,Editiondelarevued'optiquetheoretiqueetinstrumentale,Paris(1927)0.
5.
A.
A.
Gersun,SvetovoePole(GTTI,Moscow,1936)(TheLightField,translatedbyP.
MoonandG.
Timoshenko.
J.
Math.
Phys.
19(1939),p.
51)0.
6.
J.
Strong,ProceduresinExperimentalPhysics(Prentice-Hall,EnglewoodCliffs,1942)0.
7.
J.
W.
T.
Walsh,Photometry,3rdedn.
(Constable,London,1958;Dover,NewYork,1965)0.
8.
G.
Bauer,StrahlungsmessungimoptichenSpektralbereich(Vieeweg,Braunschweig,1962)(MeasurementsofOpticalRadiation,translatedbyK.
S.
Ankersmit,FocalPress,NewYork,1965)0.
9.
P.
M.
Tikhodeev,LightMeasurements(Photometria)(Gosenergoizdat,Moscow,1962)0.
10.
A.
A.
Wolkenstein,VisualPhotometryofLowLuminance(Energia,Moscow,1965)0.
11.
R.
A.
Sapoznikov,TheoreticalPhotometry(Energia,Moscow,1967)0.
12.
M.
M.
Gurevich,IntroductiontoPhotometry,Energia,Leningrad,1968(2ndedition,1983)0.
13.
R.
A.
Smith,F.
E.
Jones,R.
P.
Chasmar,TheDetectionandMeasurementofInfraredRadiation,2ndedn.
(ClarendonPress,Oxford,1968)0.
14.
H.
A.
A.
Keitz,LightCalculationsandMeasurements,2ndedn.
(St.
MartinsPress,NewYork,1971)0.
15.
A.
Stimson,PhotometryandRadiometryforEngineers(Wiley,NewYork,1974)0.
16.
A.
A.
Wolkenstein,E.
V.
Kuvaldin,PhotoelectricPulsedPhotometry:Theory,Methods,andInstruments(Mashinostroenie,Leningrad,1975)0.
17.
C.
L.
Wyatt,RadiometricCalibration:TheoryandMethods(Academic,Orlando,1978)0.
18.
F.
Grum,R.
J.
Becherer,OpticalRadiationMeasurements.
Radiometry,vol.
1(AcademicPress,NewYork,1979)M.
Bukshtab,AppliedPhotometry,Radiometry,andMeasurementsofOpticalLosses,SpringerSeriesinOpticalSciences163,DOI10.
1007/978-94-007-2165-4,SpringerScienceCBusinessMediaB.
V.
2012653654References0.
19.
A.
F.
Kotyuk(ed.
),MeasurementsofEnergyExtentsofLaserRadiation(Radio-Sviaz,Moscow,1981);A.
F.
Kotyuk,B.
M.
Stepanov(eds.
),MeasurementsofSpectral-FrequencyandCorrelationParametersofLaserRadiation,(Radio-Sviaz,Moscow,1982)0.
20.
R.
W.
Boyd,RadiometryandtheDetectionofOpticalRadiation(Wiley,NewYork,1983)0.
21.
M.
A.
Bukshtab,MeasurementsofLowOpticalLosses(Energoatomizdat,Leningrad,1988)0.
22.
F.
Hengsberger(ed.
),AbsoluteRadiometry:ElectricallyCalibratedThermalDetectorsofOpticalRadiation(Academic,NewYork,1989)0.
23.
W.
J.
Smith,ModernOpticalEngineering,2ndedn.
(McGraw-Hill,NewYork,1990)0.
24.
R.
Frieden,Probability,StatisticalOpticsandDataTesting:AProblemSolvingAp-proach(Springer,NewYork,1991)0.
25.
Impulsnayaphotometria.
Publicationsofconferencesforpulsedphotometryandradiom-etry,vols.
1–9,Mashinostroenie,Leningrad,1969–19860.
26.
A.
T.
Friberg(ed.
),SelectedPapersonCoherenceandRadiometry,vol.
MS69(SPIEOpticalEngineeringPress,Bellingham,1993)0.
27.
H.
P.
Baltes(ed.
),InverseSourceProblemsinOptics(Springer,Berlin/NewYork,1978)0.
28.
TheBasisofPhysicalPhotometry,2ndedn.
,CommissionInternationaldel'Eclairage,PublicationNo.
18.
2,CentralBureauoftheCIE,Vienna,19830.
29.
C.
L.
Wyatt,RadiometricSystemDesign(Macmillan,NewYork,1987)0.
30.
D.
P.
DeWitt,G.
D.
Nutter,TheoryandPracticeofRadiationThermometry(Wiley,NewYork,1988)0.
31.
L.
B.
Wolff,S.
A.
Shafer,G.
E.
Healey(eds.
),Physics-BasedVision:PrinciplesandPractice,Radiometry(JonesandBartlett,Boston,1992)0.
32.
W.
R.
McCluney,IntroductiontoRadiometryandPhotometry(ArtechHouse,Norwood,1994)0.
33.
M.
Bass(ed.
),HandbookofOptics,vol.
I:Fundamentals,Techniques,andDesign;vol.
II:Devices,Measurements,andProperties,2ndedn.
(McGraw-Hill,NewYork,1995)0.
34.
E.
Wolf(ed.
),ProgressinOptics,vol.
XXXVI(Elsevier,Amsterdam,1996)0.
35.
E.
L.
Dereniak,G.
D.
Boreman,InfraredDetectorsandSystems(Wiley,NewYork,1996)0.
36.
C.
DeCusatis(ed.
),HandbookofAppliedPhotometry(AIPPress,Woodbury,1997)0.
37.
W.
L.
Wolfe,IntroductiontoRadiometry,TutorialsinOpticalEngineering,vol.
TT29(SPIE,Bellingham,1998)0.
38.
K.
J.
Gasvic,OpticalMetrology,3rdedn.
(Wiley,NewYork,2002)0.
39.
G.
H.
Rieke,DetectionofLight:FromtheUltraviolettotheSubmillimeter,2ndedn.
(CambridgeUniversityPress,Cambridge,1994,2003)0.
40.
A.
C.
Parr,R.
U.
Datla,J.
L.
Gardner(eds.
),OpticalRadiometry:ExperimentalMethodsinthePhysicalSciences(Academic,SanDiego,2005)0.
41.
A.
Valberg,LightVisionColor(Wiley,Chichester,2005)0.
42.
R.
G.
W.
Brown,J.
P.
Dakin(eds.
),HandbookofOptoelectronics(Taylor&Francis,Abingdon,2006)0.
43.
H.
Gross(ed.
),HandbookofOpticalSystems,vol.
1,FundamentalsofTechnicalOptics(Wiley,NewYork,2005);H.
Gross,F.
Blechinger,B.
Achtner(ed.
),HandbookofOpticalSystems,vol.
4,SurveyofOpticalInstruments(Wiley,NewYork,2008)0.
44.
J.
Laane(ed.
),FrontiersofMolecularSpectroscopy(Elsevier,Amsterdam,2008)0.
45.
J.
M.
Palmer,B.
G.
Grant,TheArtofRadiometry(SPIEPress,Bellingham,2009)Chapter11.
1.
M.
Born,E.
Wolf,PrinciplesofOptics:ElectromagneticTheoryofPropagation,InterferenceandDiffractionofLight,6thedn.
(Pergamon,Oxford,1984);7thedn.
(CambridgeUniversityPress,Cambridge,2003)References6551.
2.
G.
V.
Rosenberg,Thelightray:contributiontothetheoryofthelighteld.
Sov.
Phys.
Usp.
20(1),55–79(1977)1.
3.
A.
Sommerfeld,Optics(Academic,NewYork,1954)1.
4.
A.
A.
Gershun,PublicationsonPhotometryandLightMeasurements:SelectedPapersonPhotometryandIlluminationEngineering(Gostekhizdat,Moscow,1958)1.
5.
PrinciplesofLightMeasurements,CIEPublicationNo.
18,1970;InternationalLightingVocabulary,CIEPublicationNo.
17,1970;InternationalElectrotechnicalVocabulary,Chapter845,Lightning,19821.
6.
R.
W.
Ditchburn,Light(Wiley,NewYork,1963)1.
7.
F.
A.
Jenkins,H.
E.
White,FundamentalsofOptics,4thedn.
(McGraw-Hill,NewYork,1976)1.
8.
G.
S.
Landsberg,Optics(Nauka,Moscow,1976)1.
9.
G.
G.
Stokes,Ontheintensityofthelightreectedfromandtransmittedthroughapileofplates.
Proc.
R.
Soc.
Lond.
11,545–556(1862)1.
10.
Rayleigh,3rdBaron,Onthereectionoflightfromregularlystratiedmedium,Proc.
R.
Soc.
A93,565–577(1917)1.
11.
T.
Smith,Thetreatmentofreectionasaspecialcaseofrefraction.
Trans.
Opt.
Soc.
27,312–323(1925)1.
12.
M.
Gurevich,¨UbereineRationelleKlassikationderLichtenstreuendenMedien.
Phys.
Z31,753(1930)1.
13.
F.
Benford,Radiationinadiffusingmedium.
J.
Opt.
Soc.
Am.
36(9),524–554(1946)1.
14.
L.
B.
Tuckerman,Ontheintensityofthelightreectedfromortransmittedthroughapileofplates.
J.
Opt.
Soc.
Am.
37(10),818–825(1947)1.
15.
P.
Kubelka,Newcontributionstotheopticsofintenselylightscatteringmaterials.
Part1.
J.
Opt.
Soc.
Am.
38(5),448–457;errata38,10671.
16.
Abeles,Recherchessurlapropagationdesondeselectromagn'etiquessinuso¨dalesdanslesmilieuxstraties.
Applicationsauxcouchesminces.
Ann.
Phys.
(Paris)5,596–640(1950)1.
17.
A.
F.
Huxley,Atheoreticaltreatmentofthereexionoflightbymultilayerstructures.
J.
Exp.
Biol.
48,227–245(1968)1.
18.
H.
G.
Olf,Stokes'spileofplatesrevisited.
J.
Opt.
Soc.
Am.
A5(10),1620–1625(1988)1.
19.
A.
Perot,C.
Fabry,Methodeinterrentiellepourlamesuredeslongeursd'ondedanslespectresolaire.
C.
R.
Acad.
Sci.
131,700(1900)1.
20.
A.
Kastler,AtomesaI'Interieurd'unInterferometrePerot-Fabry.
Appl.
Opt.
1(1),17–24(1962)1.
21.
F.
Gires,P.
Tournois,Interferom`etreutilisablepourlacompressiond'impulsionslu-mineusesmoduleesenfrequence.
C.
R.
Acad.
Sci.
258(6),6112–6115(1964)1.
22.
F.
E.
Nicodemus,Directionalreectanceandemissivityofanopaquesurface.
Appl.
Opt.
4(7),767–773(1965)1.
23.
R.
C.
Jones,Terminologyinphotometryandradiometry.
J.
Opt.
Soc.
Am.
53(11),1314–1315(1963)1.
24.
D.
B.
Judd,Terms,denitions,andsymbolsinreectometry.
J.
Opt.
Soc.
Am.
57(4),445–452(1967)1.
25.
W.
H.
Steel,Luminosity,throughput,oretendueAppl.
Opt.
13(4),704–705(1974)Chapter22.
1.
H.
G.
Heard,LaserParameterMeasurementsHandbook(Wiley,NewYork,1968)2.
2.
S.
R.
Gunn,Calorimetricmeasurementsoflaserenergyandpower.
J.
Phys.
E6(2),105–113(1973)656References2.
3.
R.
Ulbricht,DieBestimmungdermittlerenr¨aumlichenLichtintensit¨atdurchnureineMessung.
Electrotech.
Z.
21,595–597(1900)2.
4.
A.
C.
Hardy,O.
W.
Pineo,Theerrorsduetothenitesizeofholesandsampleinintegratingspheres.
J.
Opt.
Soc.
Am.
21(8),504–506(1931)2.
5.
F.
Rotter,Viewintotheintegratingspherethroughtheobservationwindow.
Appl.
Opt.
10(12),2629–2638(1971)2.
6.
Y.
Ohno,Integratingspheresimulation:applicationtototaluxscalerealization.
Appl.
Opt.
33(13),2637–2647(1994)2.
7.
Y.
Ohno,RealizationofNISTluminousuxscaleusinganintegratingspherewithanexternalsource,Proceedingsofthe23ndsessionofCIE(CommissionInternationaledel'Eclairage),vol.
1,No.
1,Division2,1995,pp.
87–902.
8.
M.
A.
Bukhshtab,Methodofdeterminationofsmallscatteringcoefcients.
J.
Appl.
Spectrosc.
46(5),523–528(1987)2.
9.
A.
A.
Wolkenstein,D.
I.
Andreev,B.
I.
Isaenko,Opticalmethodofdeterminingthelightintensity,radianceandluminousux.
J.
Tech.
Phys.
22(12),2026–2037(1952)2.
10.
D.
Beaglehole,Asensitivesinglebeamdeviceforcontinuousreectanceortransmit-tancemeasurements.
Appl.
Opt.
7(11),2218–2220(1968)2.
11.
G.
E.
Pride,AreectancemeasuringattachmentfortheBeckmanspectrophotometer.
J.
Opt.
Soc.
Am.
36(9),510–512(1946)2.
12.
R.
F.
Weeks,Simplewiderangespecularreectometer.
J.
Opt.
Soc.
Am.
48(11),775–777(1958)2.
13.
J.
E.
Shaw,W.
R.
Blevin,Instrumentfortheabsolutemeasurementofdirectspectralreectancesatnormalincidence.
J.
Opt.
Soc.
Am.
54(3),334–336(1964)2.
14.
J.
T.
Gier,R.
V.
Dunkle,J.
T.
Bevans,Measurementofabsolutespectralreectivityfrom1.
0to15microns.
J.
Opt.
Soc.
Am.
44(7),558–562(1954)2.
15.
J.
S.
Preston,G.
W.
Gordon-Smith,Anewdeterminationofluminancefactorofmagne-siumoxide.
Proc.
Phys.
Soc.
B65,76(1952)2.
16.
J.
C.
Maxwell,Onthetheoryofcompoundcolours,andtherelationsofthecoloursofthespectrum.
Proc.
R.
Soc.
Lond.
10,404–409(1859–1860)2.
17.
H.
E.
Eves,Aproposedstandardmethodofcolorimetry.
J.
Opt.
Soc.
Am.
5(6),469–478(1921)2.
18.
L.
T.
Troland,Reportofcommitteeoncolorimetryfor1920–1921.
J.
Opt.
Soc.
Am.
6(8),527–596(1922)2.
19.
I.
G.
Priest,Thecomputationofcolorimetricpurity,PartI.
J.
Opt.
Soc.
Am.
9(5),503–520(1924);PartII.
J.
Opt.
Soc.
Am.
13(2),123–132(1926)2.
20.
D.
B.
Judd,Ageneralformulaforthecomputationofcolorimetricpurity.
J.
Opt.
Soc.
Am.
21(11),729–750(1931)2.
21.
D.
B.
Judd,Chromaticitysensitivitytostimulusdifferences.
J.
Opt.
Soc.
Am.
22(2),72–108(1932)2.
22.
D.
B.
Judd,The1931I.
C.
I.
Standardobserverandcoordinatesystemforcolorimetry.
J.
Opt.
Soc.
Am.
23(10),359–374(1933)2.
23.
A.
C.
Hardy,Methodofandapparatusforcomparingandrecordingofradianenergy,U.
S.
Patent1,806,198,19May19312.
24.
E.
Q.
Adams,X-Zplanesinthe1931I.
C.
I.
Systemofcolorimetry.
J.
Opt.
Soc.
Am.
32(3),168–173(1942)2.
25.
R.
S.
Hunter,Photoelectrictristimuluscolorimetrywiththreelters.
J.
Opt.
Soc.
Am.
32(9),509–538(1942)2.
26.
CommitteeonColorimetry,Quantitativedataandmethodsforcolorimetry.
J.
Opt.
Soc.
Am.
44(11),633–688(1944)2.
27.
T.
Young,LecturesonNaturalPhilosophy,vol.
2(Johnson,London,1807)2.
28.
V.
C.
Smith,J.
Pokorny,Spectralsensitivityofthefovealconephotopigmentsbetween400and500nm.
Vis.
Res.
15,161–171(1975)2.
29.
R.
M.
Boynton,Theoryofcolorvision.
J.
Opt.
Soc.
Am.
50(10),929–944(1960)2.
30.
R.
M.
Boynton,HumanColorVision,Holt(Rinehart&Winston,NewYork,1979)References6572.
31.
R.
M.
Boynton,Historyandcurrentstatusofaphysiologicallybasedsystemofphotom-etryandcolorimetry.
J.
Opt.
Soc.
Am.
A13(8),1609–1621(1996)2.
32.
G.
Golz,D.
I.
A.
MacLeod,ColorimetryforCRTdisplays.
J.
Opt.
Soc.
Am.
A20(5),769–781(2003)2.
33.
CIETechnicalReport15:2004,Colorimetry,3rdedn.
,Vienna,20042.
34.
D.
B.
Judd,G.
Wyszecki,ColorinBusiness,Science,andIndustry,3rdedn.
(Wiley,NewYork,1975)2.
35.
G.
Wyszecki,W.
Stiles,ColorScience:ConceptsandMethods,QuantitativeDataandFormulae,2ndedn.
(Wiley,NewYork,2000)2.
36.
D.
Malacara,ColorVisionandColorimetry:TheoryandApplications(SPIE,Belling-ham,2004)2.
37.
A.
R.
Robertson,W.
D.
Wright,Internationalcomparisonofworkingstandardsforcolorimetry.
J.
Opt.
Soc.
Am.
55(6),694–706(1965)2.
38.
J.
S.
Christie,G.
McConnell,Anewexiblespectrophotometerforcolormeasurements,inColor77,TheThirdCongressoftheInternationalColourAssociation,ed.
F.
W.
Billmeyer,G.
Wyszecki,paperA38,(1978),p.
3092.
39.
J.
Campos,A.
Pons,A.
Corrons,Descriptionofaprecisioncolorimeter.
J.
Phys.
E20,882–884(1987)2.
40.
I.
Nimeroff,Propagationoferrorsinspectrophotometriccolorimetry.
J.
Opt.
Soc.
Am.
43(6),531–533(1953);Propagationoferrorsintristimuluscolorimetry.
J.
Opt.
Soc.
Am.
47(8),697–702(1957)2.
41.
L.
D.
Taylor,D.
Slocum,Methodandspectrophotometerforexchangingcolormeasure-mentanddiagnosticinformationoveranetwork,U.
S.
PatentAppl.
No.
2004/0233429A1,25Nov20042.
42.
Y.
Ohno,J.
Hardis,Four-colormatrixmethodforcorrectionoftristimuluscolorimeters,parts1,2,inProceedingsof5th,6thIS&TColorImagingConferences,(1997),pp.
301–305,(1998),pp.
65–682.
43.
G.
Eppeldauer,Spectralresponsebasedcalibrationmethodoftristimuluscolorimeters.
J.
Res.
Natl.
Inst.
Stand.
Technol.
103(6),615–619(1998)2.
44.
Y.
Ohno,CIEfundamentalsforcolormeasurements,IS&TNIP16conference,Vancou-ver,20002.
45.
M.
A.
Bukshtab,Conceptofabsolutecolormeasurementsandabsolutecolorspectropho-tometry,20072.
46.
A.
H.
Taylor,Themeasurementofthediffusereectionfactorsandanewabsolutereectometer.
J.
Opt.
Soc.
Am.
4(1),9–23(1920)2.
47.
C.
H.
Sharp,W.
F.
Little,Measurementsofreectionfactors.
Trans.
Illum.
Eng.
Soc.
15(9),802(1920)2.
48.
E.
Karrer,TheuseoftheUlbrichtsphereinmeasuringreectionandtransmission.
J.
Opt.
Soc.
Am.
5(1),96–120(1921)2.
49.
J.
A.
Jacquez,H.
F.
Kuppenheim,Theoryofintegratingsphere.
J.
Opt.
Soc.
Am.
45(6),460–470(1955)2.
50.
B.
J.
Hisdal,Reectanceofperfectdiffuseandspecularsamplesintheintegratingsphere.
J.
Opt.
Soc.
Am.
55(9)1122–1128(1965);Reectanceofnonperfectsurfacesintheintegratingsphere.
J.
Opt.
Soc.
Am.
55(10),1155–1160(1965)2.
51.
D.
G.
Goebel,Generalizedintegrating-spheretheory.
Appl.
Opt.
6(1),125–128(1967)2.
52.
M.
W.
Finkel,Integratingspheretheory.
Opt.
Commun.
2(2),25–28(1970)2.
53.
H.
L.
Tardy,Flat-sampleandlimited-eldeffectsinintegratingspheremeasurements.
J.
Opt.
Soc.
Am.
A5(2),241–245(1988)2.
54.
H.
L.
Tardy,Matrixmethodforintegrating-spherecalculations.
J.
Opt.
Soc.
Am.
A8(9),1411–1418(1991)2.
55.
M.
A.
Bukshtab,Measurementtechniquesforhighreectanceandlowscatteringoflasermirrors,Ph.
D.
Dissertation,TheVavilov'StateOpticalInstitute,Leningrad,19832.
56.
AbsoluteMethodsforReectionMeasurements,CIEPublicationTC-2.
3,1979,No.
44658References2.
57.
D.
K.
Edwards,J.
T.
Gier,K.
E.
Nelson,B.
D.
Roddick,Integratingsphereforimperfectlydiffusesamples.
J.
Opt.
Soc.
Am.
51(11),1279–1285(1961)2.
58.
V.
P.
Rvachev,M.
Yu.
Sakhnovskii,Theoryandapplicationofanintegratingphotometerforthestudyofobjectswitharbitraryscatteringfunctions.
Opt.
Spectrosc.
18(3),274–278(1965)2.
59.
P.
F.
O'Brien,Networkrepresentationoftheintegratingsphere.
J.
Opt.
Soc.
Am.
45(5),343–345(1956)2.
60.
M.
A.
Bukhshtab,Improvingtheaccuracyofabsolutemeasurementsinphotometricsphere.
Opt.
Spectrosc.
54(1),90–93(1983)2.
61.
M.
A.
Bukshtab,Spectrally-nonselectivemethodofabsolutereectancemeasurements,inImpulsnayaPhotometria,vol.
7(Mashinostroenie,Leningrad,1981),pp.
22–242.
62.
M.
A.
Bukhshtab,G.
M.
Gorodinskii,Photometricspherehavingconstantraypaths.
J.
Opt.
Technol.
49(6),396–397(1982)2.
63.
J.
G.
Symons,E.
A.
Christie,M.
K.
Peck,Integratingsphereforsolartransmittancemeasurementofplanarandnonplanarsamples.
Appl.
Opt.
21(15),2827–2832(1982)2.
64.
J.
Kessel,Transmittancemeasurementsintheintegratingsphere.
Appl.
Opt.
25(16),2752–2756(1986)2.
65.
A.
Roos,C.
G.
Ribbing,Interpretationofintegratingspheresignaloutputfornon-Lambertiansamples.
Appl.
Opt.
27(18),3833–3837(1988)2.
66.
A.
Roos,Interpretationofintegratingspheresignaloutputfornonidealtransmittingsamples.
Appl.
Opt.
30(4),468–474(1991)2.
67.
K.
Grandin,A.
Roos,Evaluationofcorrectionfactorsfortransmittancemeasurementsinsinglebeamintegratingspheres.
Appl.
Opt.
33(25),6098–6104(1994)2.
68.
J.
W.
Pickering,C.
J.
M.
Moes,H.
J.
C.
Sterenborg,S.
A.
Prahl,M.
J.
C.
vanGemert,Twointegratingsphereswithaninterveningscatteringsample.
J.
Opt.
Soc.
Am.
A9(4),621–631(1992)2.
69.
J.
W.
Pickering,S.
A.
Prahl,N.
vanWieringen,J.
F.
Beek,H.
J.
C.
M.
Sterenborg,M.
J.
C.
vanGemert,Double-integrating-spheresystemformeasuringofopticalpropertiesoftissue.
Appl.
Opt.
32(4),399–410(1993)2.
70.
A.
H.
Taylor,Errorsinreectometry.
J.
Opt.
Soc.
Am.
25(2),51–52(1935)2.
71.
O.
H.
Olson,D.
A.
Pontarelli,Asymmetryofanintegratingsphere.
Appl.
Opt.
3(6),631–633(1963)2.
72.
W.
Budde,Integratingsphereforthephotometryofthesky.
Appl.
Opt.
3(8),939–941(1964)2.
73.
F.
J.
J.
Clarke,J.
A.
Compton,Correctionmethodsforintegratingspheremeasurementofhemisphericalreectance.
ColorRes.
Appl.
11(4),253–262(1986)2.
74.
A.
Roos,C.
G.
Ribbing,M.
Bergkvist,Anomaliesinintegratingspheremeasurementsonstructuredsamples.
Appl.
Opt.
27(18),3828–3832(1988)2.
75.
C.
C.
Habeger,Angularradiancevariationinanintegratingsphere.
J.
Opt.
Soc.
Am.
A11(7),2130–2136(1994)2.
76.
L.
Levi,Ascreenlessintegratingsphere.
Appl.
Opt.
6(6),1138(1967)2.
77.
H.
L.
Tardy,Fluxconcentratorsinintegratingsphereexperiments:potentialforincreaseddetectorsignal.
Appl.
Opt.
24(22),3914–3916(1985)2.
78.
K.
A.
Snail,L.
M.
Hanssen,Integratingspheredesignswithisotropicthroughput.
Appl.
Opt.
28(10),1793–1799(1989)2.
79.
D.
B.
Chenault,K.
A.
Snail,L.
M.
Hanssen,Improvedintegrating-spherethroughputwithalensandnonimagingconcentrator.
Appl.
Opt.
34(34),7959–7964(1995)2.
80.
L.
M.
Hanssen,Effectsofrestrictingthedetectoreldofviewwhenusingintegratingspheres.
Appl.
Opt.
28(11),2097–2103(1989)2.
81.
L.
M.
Hanssen,Effectsofnon-Lambertiansurfacesonintegratingspheremeasurements.
Appl.
Opt.
35(19),3597–3606(1996)2.
82.
J.
E.
Clare,Comparisonoffouranalyticmethodsforthecalculationofirradianceinintegratingspheres.
J.
Opt.
Soc.
Am.
A15(12),3086–3096(1998)References6592.
83.
B.
G.
Crowther,Computermodelingofintegratingspheres.
Appl.
Opt.
35(30),5880–5886(1996)2.
84.
M.
Szylowski,M.
Mossman,D.
Barclay,L.
Whitehead,Novelber-basedintegratingsphereforluminousuxmeasurements,Rev.
Sci.
Instrum.
77,Article063102(2006)2.
85.
B.
Rizk,Privatelifeofanintegratingsphere:theradianthomogeneityofthedescentimager–spectralradiometercalibrationsphere.
Appl.
Opt.
45(13),2095–2101(2001)2.
86.
A.
V.
Prokhorov,S.
N.
Mekhontsev,L.
Hanssen,MonteCarlomodelingofanintegratingspherereectometer.
Appl.
Opt.
42(19),3832–3842(2003)2.
87.
D.
Hidovic-Rowe,J.
E.
Rowe,M.
Lualdi,Markovmodelsofintegratingspheresforhyperspectralimaging.
Appl.
Opt.
45(21),5248–5256(2006)2.
88.
C.
K.
Gatebe,J.
J.
Butler,J.
W.
Cooper,M.
Kowalewski,M.
D.
King,Characterizationoferrorsintheuseofintegrating-spheresystemsinthecalibrationofscanningradiometers.
Appl.
Opt.
46(31),7640–7651(2007)2.
89.
R.
L.
Lucke,Lambertianradianceandtransmissionofanintegratingsphere.
Appl.
Opt.
46(28),6966–6970(2007)2.
90.
S.
Potvin,J.
Genest,Reducingtheeffectofintegratingspherespecklewhencharacter-izingtheinstrumentlineshapeofaFourier-transformhyperspectralimager.
Appl.
Opt.
48(30),5849–5852(2009)2.
91.
R.
L.
Lucke,J.
Grun,C.
Manka,S.
Nikitin,Specularintegratingtubeforscattered-lightspectroscopy.
Appl.
Opt.
49(21),4063–4066(2010)2.
92.
S.
Park,S.
-N.
Park,D.
-H.
Lee,Correctionofself-screeningeffectinintegratingsphere-basedmeasurementoftotalluminousuxoflarge-areasurface-emittinglightsources.
Appl.
Opt.
49(20),3831–3839(2010)2.
93.
R.
Daniel,R.
Almog,Y.
Sverdlov,S.
Yagurkroll,S.
Belkin,Y.
Shacham-Diamand,Developmentofaquantitativeopticalbiochipbasedonadoubleintegratingspheresystemthatdeterminesabsolutephotonnumberinbioluminescentsolution:applicationtoquantumyieldscalerealization.
Appl.
Opt.
48(17),3216–3224(2009)Chapter33.
1.
E.
Wolf,Coherenceandradiometry.
J.
Opt.
Soc.
Am.
68(1),7–17(1978)3.
2.
E.
Wolf,IntroductiontotheTheoryofCoherenceandPolarizationofLight(CambridgeUniversityPress,Cambridge,2007)3.
3.
M.
J.
Beran,G.
B.
ParrentJr.
,TheoryofPartialCoherence(SocietyofPhoto-OpticalInstrumentationEngineers,Bellingham,1974)3.
4.
L.
Mandel,E.
Wolf,Spectralcoherenceandtheconceptofcross-spectralpurity.
J.
Opt.
Soc.
Am.
66(6),529–535(1976)3.
5.
E.
Collett,E.
Wolf,IscompletespatialcoherencenecessaryforthegenerationofhighlydirectionallightbeamsOpt.
Lett.
2(2),27–29(1978)3.
6.
A.
Walther,Radiometryandcoherence.
J.
Opt.
Soc.
Am.
part1:57(9),1256–1259(1967);part2,63(12),1622–1623(1973)3.
7.
M.
J.
Bastiaans,TransportequationfortheWignerdistributionfunctioninaninhomoge-neousdispersivemedium.
Opt.
Acta26(11),1333–1344(1979)3.
8.
L.
A.
Apresyan,Yu.
A.
Kravtsov,Photometryandcoherence:waveaspectsofthetheoryofradiationtransport.
Sov.
Phys.
Usp.
27(4),301–313(1984)3.
9.
L.
Mandel,E.
Wolf,Coherencepropertiesofelds.
Rev.
Mod.
Opt.
37(4),231–287(1965)3.
10.
E.
Wolf,Newtheoryofradiativeenergytransferinfreeelectromagneticelds.
Phys.
Rev.
D13(4),869–886(1976)3.
11.
E.
W.
Marchand,E.
Wolf,Radiometrywithsourcesofanystateofcoherence.
J.
Opt.
Soc.
Am.
64(9),1219–1226(1974)660References3.
12.
A.
T.
Friberg,Effectsofcoherenceinradiometry.
Opt.
Eng.
21(6),927–936(1982)3.
13.
E.
Wolf,Newtheoryofpartialcoherenceinthespace-frequencydomain.
PartI:Spectraandcrossspectraofsteady-statesources.
J.
Opt.
Soc.
Am.
72(3),343–344(1982);PartII:Steady-stateeldsandhigher-ordercorrelations.
J.
Opt.
Soc.
Am.
A3(1),76–85(1986)3.
14.
W.
H.
Carter,E.
Wolf,CoherencepropertiesofLambertianandnon-Lambertiansources.
J.
Opt.
Soc.
Am.
65(9),1967–1071(1975)3.
15.
W.
H.
Carter,E.
Wolf,Coherenceandradiometrywithquasi-homogeneousplanarsources.
J.
Opt.
Soc.
Am.
67(6),785–796(1977)3.
16.
R.
G.
Littlejohn,R.
Winston,Correctiontoclassicalradiometry.
J.
Opt.
Soc.
Am.
A10(9),2024–2037(1993)3.
17.
E.
Wolf,Radiometricmodelforpropagationofcoherence.
Opt.
Lett.
19(23),2024–2026(1994)3.
18.
L.
Mandel,E.
Wolf,OpticalCoherenceandQuantumOptics(CambridgeUniversityPress,NewYork,1995)3.
19.
K.
Yoshimori,K.
Itoh,Interferometryandradiometry.
J.
Opt.
Soc.
Am.
A14(12),3379–3387(1997)3.
20.
K.
Yoshimori,K.
Itoh,Onthegeneralizedradiancefunctionforapolychromaticeld.
J.
Opt.
Soc.
Am.
A15(10),2786–2787(1998)3.
21.
K.
Yoshimori,Radiometryandcoherenceinanonstationaryopticaleld.
J.
Opt.
Soc.
Am.
A15(10),2730–2734(1998)3.
22.
M.
A.
Alonso,Radiometryandwide-anglewaveelds.
J.
Opt.
Soc.
Am.
A:I.
Coherenteldsintwodimensions.
18(4),902–909(2001);II.
Coherenteldsinthreedimensions,18(4),910–918(2001);III.
Partialcoherence.
18(10),2502–2511(2001)3.
23.
J.
Turunen,Space-timecoherenceofpolychromaticpropagation-invariantelds.
Opt.
Express16(25),20283–20294(2008)3.
24.
O.
V.
Angelsky,S.
B.
Yermolenko,C.
Yu.
Zenkova,A.
O.
Angelskaya,Polarizationman-ifestationsofcorrelation(intrinsiccoherence)ofopticalelds.
Appl.
Opt.
47(29),5492–5499(2008)3.
25.
D.
G.
Fischer,S.
A.
Prahl,D.
D.
Duncan,MonteCarlomodelingofspatialcoherence:free-spacediffraction.
J.
Opt.
Soc.
Am.
A25(10),2571–2581(2008)3.
26.
M.
Abramowitz,I.
A.
Stegun,HandbookofMathematicalFunctions(Dover,NewYork,1965)3.
27.
D.
C.
O'Shea,W.
R.
Callen,W.
T.
Rhodes,IntroductiontoLasersandTheirApplication(Addison-Wesley,London,1976)3.
28.
J.
Perina,CoherenceofLight,2ndedn.
(ReidelPublishingCo.
,Dordrecht,1985)3.
29.
A.
A.
Sychev,Studyofspectralemittanceofsolid-statelasers,ProceedingsFIAN,vol.
84(Nauka,Moscow,1975),pp.
3–613.
30.
S.
W.
Director,R.
A.
Rohrer,IntroductiontoSystemsTheory(McGraw-Hill,NewYork,1971)3.
31.
I.
S.
Marshak(ed.
),PulsedSourcesofLight(Energia,Moscow,1978)3.
32.
A.
Yariv,QuantumElectronics,3rdedn.
(Wiley,NewYork,1989)3.
33.
M.
I.
Griysnov,Generalizedparametersofpulsedradiation,inImpulsnayaPhotometria,vol.
6(Mashinostroenie,Leningrad,1979),pp.
35–413.
34.
J.
W.
Goodman,StatisticalOptics(Wiley,NewYork,1985)3.
35.
M.
A.
Bukhshtab,Restrictingtheinterferencenoiseinopticalmeasuringsystems.
J.
Opt.
Technol.
49(11),677–678(1982)3.
36.
V.
K.
Nikolaev,KhimichevYuV,AboutInterferenceLossesinTransparentDielectricPlates,vol.
10(ElectronicTechniques(UKS),Moscow,1972),pp.
78–823.
37.
M.
A.
Bukshtab,A.
A.
Wolkenstein,Interferenceerrorsofmeasurementsusinglaserandpulsedquasi-monochromaticradiationandmethodsoftheirlimitation,inImpulsnayaPhotometria,vol.
8(Mashinostroenie,Leningrad,1984),pp.
5–153.
38.
D.
R.
Hall,P.
E.
Jackson(eds.
),ThePhysicsandTechnologyofLaserResonators(IOPPublishing(AdamHilger),Bristol/NewYork,1989)References6613.
39.
M.
A.
Bukshtab,Effectsofspectralirregularitiesofradiationemittedbypulsedlampsinhigh-speedspectroradiometry,inImpulsnayaPhotometria,vol.
9(Mashinostroenie,Leningrad,1986),pp.
77–843.
40.
J.
G.
Edwards,Somefactorsaffectingthepumpingefciencyofopticallypumpedlasers.
Appl.
Opt.
6(5),837–843(1967)3.
41.
A.
Holmes,Exacttheoryofretardationplates.
J.
Opt.
Soc.
Am.
54(9),1115–1120(1964)3.
42.
N.
G.
Theofanous,A.
T.
Arapoyianni,Effectofmultiplereectionsonretardation-basedelectro-opticmeasurements.
J.
Opt.
Soc.
Am.
A8(11),1746–1754(1991)3.
43.
M.
Bukhshtab,Theinuenceofsurfacereectionsoncomputationandmeasurementofretardance.
Meas.
Sci.
Technol.
6(7),910–920(1995);erratum:7,1093(1996)3.
44.
E.
D.
Palik(ed.
),HandbookofOpticalConstantsofSolids,vol.
1(Academic,NewYork,1985)3.
45.
M.
A.
Bukhshtab,G.
J.
Mizell,Phaseretardanceandopticalextinctionsymmetrymea-surementsforsomebirefringentmaterials.
inProceedingsofSPIE,vol.
1994,paperNo.
12(1993)3.
46.
E.
Lommel,DieBeugungserscheinungeneinerkreisrundenOeffnungundeineskreis-rundenSchirmschenstheoretischundexperimentellBearbeitet.
Abh.
Bayer.
Akad.
15,233–328(1885)3.
47.
E.
Wolf,Lightdistributionnearfocusinanerror-freediffractionimage.
Proc.
R.
Soc.
Lond.
Ser.
A204,533–548(1951)3.
48.
J.
Focke,Totalilluminationinanaberration-freediffractionimage.
Opt.
Acta3,161–163(1956)3.
49.
E.
W.
Marchand,E.
Wolf,BoundarydiffractionwaveinthedomainoftheRayleigh-Kirchoffdiffractiontheory.
J.
Opt.
Soc.
Am.
52(7),761–767(1962)3.
50.
W.
R.
Blevin,Diffractionlossesinradiometryandphotometry.
Metrologia6(4),39–44(1970)3.
51.
W.
H.
Steel,M.
De,J.
A.
Bell,Diffractioncorrectionsinradiometry.
J.
Opt.
Soc.
Am.
62(9),1099–1103(1972)3.
52.
L.
P.
Boivin,Diffractioncorrectionsinradiometry:comparisonoftwodifferentmethodsofcalculation.
Appl.
Opt.
14(8),2002–2009(1975)3.
53.
L.
P.
Boivin,Diffractioncorrectionsintheradiometryofextendedsources.
Appl.
Opt.
15(5),1204–1209(1976)3.
54.
L.
P.
Boivin,Radiometricerrorscausedbydiffractionfromcircularapertures:edgeeffects.
Appl.
Opt.
16(2),377–384(1976)3.
55.
L.
P.
Boivin,Reductionofdiffractionerrorsinradiometrybymeansoftoothedapertures.
Appl.
Opt.
17(20),3323–3328(1978)3.
56.
E.
L.
Shirley,R.
U.
Datla,Optimallytoothedaperturesforreduceddiffraction.
J.
Res.
Natl.
Inst.
Stand.
Technol.
101(6),745–753(1996)3.
57.
T.
Gravelsaeter,J.
J.
Stamnes,Diffractionbycircularapertures.
1:Methodoflinearphaseandamplitudeapproximation.
Appl.
Opt.
21(20),3644–3651(1982)3.
58.
D.
J.
Butler,R.
Kohler,G.
W.
Forbes,Diffractioneffectsintheradiometryofcoherentbeams.
Appl.
Opt.
35(13),2162–2166(1996)3.
59.
E.
L.
Shirley,Revisedformulasfordiffractioneffectswithpointandextendedsources.
Appl.
Opt.
37(28),6581–6590(1998)3.
60.
P.
Edwards,M.
McCall,Diffractionlossinradiometry.
Appl.
Opt.
42(25),5024–5032(2003)3.
61.
E.
L.
Shirley,Diffractioneffectsonbroadbandradiation:formulationforcomputingtotalirradiance.
Appl.
Opt.
43(13),2609–2620(2004)3.
62.
E.
L.
Shirley,Diffractioncorrectionsinradiometry:spectralandtotalpowerandasymp-toticproperties.
J.
Opt.
Soc.
Am.
A21(10),1895–1906(2004)3.
63.
S.
Engman,P.
Lindblom,Blazecharacteristicsofechellegratings.
Appl.
Opt.
21(23),4356–4362(1982)3.
64.
J.
Harvey,E.
Nevis,Angulargratinganomalies:effectsofnitebeamsizeonwide-anglediffractionphenomena.
Appl.
Opt.
31(31),6783–6788(1992)662References3.
65.
M.
Rousseau,J.
Mathieu,ProblemsinOptics,J.
Blaker(trans.
)(PergamonPress,NewYork,1973),pp.
178–1833.
66.
M.
G.
Moharam,T.
K.
Gaylord,Diffractionanalysisofdielectricsurface-reliefgratings.
J.
Opt.
Soc.
Am.
72(10),1385–1392(1982);T.
KGaylord,M.
G.
Moharam,Analysisandapplicationsofopticaldiffractionbygratings.
Proc.
IEEE73(5),894–937(1985)3.
67.
S.
M.
Al-Marzoug,R.
J.
W.
Hodgson,Optimizationofmultilayermirrorsat13.
4-nmwithmorethantwomaterials.
Appl.
Opt.
47(12),2155–2160(2008)3.
68.
D.
M.
Pai,K.
A.
Awada,Analysisofdielectricgratingsofarbitraryprolesandthick-nesses.
Opt.
Soc.
Am.
A8(5),755–762(1991)3.
69.
T.
Delort,D.
Maystre,Finite-elementmethodforgratings.
J.
Opt.
Soc.
Am.
A10(12),2592–2601(1993)3.
70.
M.
A.
Alonso,Exactdescriptionoffreeelectromagneticwaveeldsintermsofrays.
Opt.
Express11(23),3128–3135(2003)3.
71.
J.
-F.
Lepage,N.
McCarthy,Analysisofthediffractionalpropertiesofdual-periodapodizinggratings:theoreticalandexperimentalresults.
Appl.
Opt.
43(17),3504–3512(2004)3.
72.
O.
Mata-Mendez,J.
Avendano,F.
Chavez-Rivas,RigoroustheoryofthediffractionofGaussianbeamsbynitegratings:TMpolarization.
J.
Opt.
Soc.
Am.
A23(8),1889–1896(2006)3.
73.
D.
C.
Skigin,R.
A.
Depine,Diffractionbydual-periodgratings.
Appl.
Opt.
46(9),1385–1391(2007)3.
74.
R.
Tharaldsen,RigorousCoupled-WaveAnalysis(2008)3.
75.
M.
A.
Bukshtab,Maxima-shiftinganomalyforstep-functiondiffractiongratingsinreectedlight(2008)3.
76.
H.
Kogelnick,Coupledwavetheoryforthickhologramgratings.
Bell.
Syst.
Tech.
J.
48,2909–2947(1969)3.
77.
C.
B.
Burcardt,Diffractionofaplanewaveatasinusoidallystratieddielectricgrating.
J.
Opt.
Soc.
Am.
56(11),1502–1509(1966)3.
78.
C.
B.
Burcardt,Efciencyofadielectricgrating.
J.
Opt.
Soc.
Am.
57(5),601–603(1967)3.
79.
F.
G.
Kaspar,Diffractionbythick,periodicallystratiedgratingswithcomplexdielectricconstant.
J.
Opt.
Soc.
Am.
63(1),37–45(1973)3.
80.
K.
Knop,Rigorousdiffractiontheoryfortransmissionphasegratingswithdeeprectan-gulargrooves.
J.
Opt.
Soc.
Am.
68(9),1206–1210(1978)3.
81.
K.
Knop,Diffractiongratingsforcolorlteringinthezerodiffractionorder.
Appl.
Opt.
17(22),3598–3603(1978)3.
82.
D.
-K.
Woo,K.
Hane,S.
-K.
Lee,Highorderdiffractiongratingusingv-shapedgroovewithrefractiveandreectivesurfaces.
Opt.
Express16(25),21004–21011(2008)3.
83.
N.
Hodgson,H.
Weber,Opticalresonators:Fundamentals,advancedconceptsandapplications(Springer-Verlag,London,1997)3.
84.
T.
vonLerber,H.
Ludvigsen,A.
Romann,Resonatorbasedmeasurementtechniqueforquanticationofminutebirefringence.
Opt.
Express12(7),1363–1371(2004)3.
85.
P.
Hlubina,D.
Ciprian,Spectral-domainmeasurementofphasemodalbirefringenceinpolarization-maintainingber.
Opt.
Express15(25),17019–17024(2007)Chapter44.
1.
S.
R.
Gunn,Volume-absorbingcalorimetersforhigh-powerlaserpulses.
Rev.
Sci.
Instrum.
45(7),936–943(1974)4.
2.
D.
L.
Franzen,L.
B.
Schmidt,Absolutereferencecalorimeterformeasuringhighpowerlaserpulses.
Appl.
Opt.
15(2),3115–3122(1976)References6634.
3.
W.
H.
Reichelt,E.
E.
StarkJr.
,T.
E.
Stratton,Agascalorimeterforuseat10.
6m.
Opt.
Commun.
11(3),305–308(1974)4.
4.
V.
N.
Matweev,V.
A.
Rubsov,N.
D.
Ustinov,Improvingaccuracyofmeasurementsbyvolume-absorbingcalorimeters,inImpulsnayaPhotometria,vol.
6(Mashinostroenie,Leningrad,1979),pp.
88–914.
5.
A.
A.
Wolkenstein,Newcommercialpulsedphotometers;B.
V.
Byvshev,A.
A.
Wolken-stein,E.
V.
Kuvaldin,V.
I.
Popkov,Newindustrialpulsedphotometers,ImpulsnayaPhotometria(Mashinostroenie,Leningrad,1969),vol.
1,pp.
71–79;(1975),vol.
4,pp.
59–654.
6.
G.
L.
Voronkov,AttenuatorsofOpticalRadiation(Mashinostroenie,Leningrad,1980)4.
7.
W.
Leeb,Variablebeamattenuatorfortheinfrared.
Appl.
Opt.
13(1),17–19(1974)4.
8.
R.
C.
C.
Leite,S.
R.
S.
Porto,Asimplemethodforcalibrationofrubylaseroutput.
Proc.
IEEE51(4),606–607(1963)4.
9.
E.
N.
Anuchin,G.
I.
Kadaner,E.
V.
Kuvaldin,Astudyofelementsofapico-secondpulsedphotometer,inImpulsnayaPhotometria,vol.
6(Mashinostroenie,Leningrad,1979),pp.
120–1224.
10.
M.
A.
Bukshtab,V.
N.
Maksimov,V.
N.
Rezchikov,Aconvenientradiometerforexpandedcwandpulsedlaserandlight-diodepowerandenergymeasurementapplications:…M,inImpulsnayaPhotometria,vol.
7(Mashinostroenie,Leningrad,1981),pp.
95–994.
11.
A.
G.
Biryukov,B.
A.
Maslov,B.
I.
Medvedev,V.
G.
Tyutyunnik,Digitalanddirect-readingpulsedradiometerforlow-energypulsesmakingautomaticdynamicrangeselection,inImpulsnayaPhotometria,vol.
7(Mashinostroenie,Leningrad,1981),pp.
92–954.
12.
A.
A.
Wolkenstein,O.
M.
Mikhailov,PhotometricstudyingofOpalGlasses(Sve-totekhnika,Moscow,1971),No.
2,pp.
3–54.
13.
A.
Starke,A.
Bernhardt,LaserdamagethresholdmeasurementaccordingtoISO11254:experimentalrealizationat1064nm.
inProceedingsofSPIE,vol.
2114(1993)4.
14.
A.
C.
Doynikov,Photometer,inBigRussianEncyclopedia,3rdedn.
vol.
27(SovietEncyclopedia,Moscow,1977),p.
5854.
15.
Yu.
P.
Baranov,M.
A.
Bukshtab,A.
I.
Glazov,S.
V.
Tikhomirov,Amethodofcalibrationoflow-energylaserradiometers,inImpulsnayaPhotometria,vol.
7(Mashinostroenie,Leningrad,1981),pp.
88–914.
16.
R.
J.
Phelan,A.
R.
Cook,Electricallycalibratedpyroelectricoptical-radiationdetector.
Appl.
Opt.
12(10),2494–2500(1973)4.
17.
J.
Geist,W.
R.
Blevin,Chopper-stabilizednullradiometerbaseduponanelectricallycalibratedpyroelectricdetector.
Appl.
Opt.
12(11),2532–2535(1973)4.
18.
J.
Geist,Waveform-independentlock-indetections.
Rev.
Sci.
Instrum.
43(11),1704–1405(1972)4.
19.
E.
P.
Zalewski,J.
Geist,Siliconephotodiodeabsoluteresponseself-calibration.
Appl.
Opt.
19(8),1214–1216(1980)4.
20.
C.
Carreras,A.
Corrons,Absolutespectroradiometricandphotometricscalesbasedonanelectricallycalibratedpyroelectricradiometer.
Appl.
Opt.
20(7),1174–1177(1981)4.
21.
MethodsofCharacterizingthePerformanceofRadiometersandPhotometers(CIEPublication53,Paris,1982)4.
22.
C.
L.
Cromer,G.
Eppeldauer,J.
E.
Harris,T.
C.
Larason,A.
C.
Parr,NationalInstituteofStandardsandTechnologydetector-basedphotometricscale.
Appl.
Opt.
32(16),2936–2948(1993)4.
23.
E.
F.
Zalewski,C.
R.
Duda,Siliconphotodiodedevicewith100%externalquantumefciency.
Appl.
Opt.
22(18),2867–2873(1983)4.
24.
P.
V.
Foukal,C.
Hoyt,H.
Kochling,P.
Miller,Cryogenicabsoluteradiometersaslaboratoryirradiancestandards,remotesensingdetectors,andpyroheliometers.
Appl.
Opt.
29(7),988–993(1990)4.
25.
R.
U.
Datla,K.
Stock,A.
C.
Parr,C.
C.
Hoyt,P.
J.
Miller,P.
V.
Foukal,Characterizationofanabsolutecryogenicradiometerasastandarddetectorforradiant-powermeasurements.
Appl.
Opt.
31(34),7219–7225(1992)664References4.
26.
T.
R.
Gentile,J.
M.
Houston,J.
E.
Hardis,C.
L.
Cromer,A.
C.
Parr,NationalInstituteofStandardsandTechnologyhigh-accuracycryogenicradiometer.
Appl.
Opt.
35(7),1056–1068(1996)4.
27.
T.
C.
Larason,S.
S.
Bruce,C.
L.
Cromer,TheNISThighaccuracyscaleforabsolutespectralresponsefrom406nmto920nm.
J.
Res.
Natl.
Inst.
Stand.
Technol.
101(2),133–140(1996)4.
28.
H.
W.
Yoon,C.
E.
Gibson,P.
Y.
Barnes,RealizationoftheNationalInstituteofStandardsandTechnologydetector-basedspectralirradiancescale.
Appl.
Opt.
41(28),5879–5890(2002)4.
29.
T.
J.
Quinn,J.
E.
Martin,AradiometricdeterminationoftheStefan-Boltzmannconstantandthermodynamictemperaturesbetween240Cand1100C.
Philos.
Trans.
R.
Soc.
Lond.
Ser.
A316,85–189(1985)4.
30.
C.
L.
Cromer,G.
Eppeldauer,J.
E.
Hardis,T.
C.
Larason,Y.
Ohno,A.
C.
Parr,TheNISTdetector-basedluminousintensityscale.
J.
Res.
Natl.
Inst.
Stand.
Technol.
101(2),109–132(1996)4.
31.
F.
E.
Nicodemus,Radiometrywithspectrallyselectivesensors.
Appl.
Opt.
7(8),1649–1652(1968)4.
32.
H.
E.
Bennett,W.
F.
Koehler,Precisionmeasurementofabsolutespecularreectancewithminimizedsystematicerrors.
J.
Opt.
Soc.
Am.
50(1),1–6(1960)4.
33.
A.
A.
Wolkenstein,A.
F.
Kirillov,E.
V.
Kuvaldin,Spectrophotometryutilizingapulsedlightsource,inImpulsnayaPhotometria,vol.
1(Mashinostroenie,Leningrad,1969),pp.
102–1094.
34.
G.
M.
Gorodinskii,M.
A.
Protsenko,O.
M.
Mikhailov,MeasurementofreectionfactorsutilizingphotometerM-89.
Meas.
Tech.
21(3),30–32(1978)4.
35.
V.
A.
Soloviev,N.
K.
Kutliev,V.
K.
Volunschikov,V.
P.
Shabalov,ArepeatabilitystudyofaspectraldistributionofenergyofpulsesemittedbypulsedlampISK-25activatedinasequenceofpulses,inImpulsnayaPhotometria,vol.
9(Mashinostroenie,Leningrad,1986),pp.
84–874.
36.
A.
C.
Hardy,Anewrecordingspectrophotometer.
J.
Opt.
Soc.
Am.
25(9),305–311(1935);J.
L.
Michadson,Constructionofthegeneralelectricrecordingspectrophotome-ter.
J.
Opt.
Soc.
Am.
28(10),365–371(1938)4.
37.
P.
Wu,P.
Gu,J.
Tang,Spectrophotometerformeasuringspectralreectanceandtransmittance.
Appl.
Opt.
33(10),1975–1979(1994)4.
38.
S.
Yu.
Gerasimov,O.
N.
Gusev,A.
I.
Koliadin,T.
A.
Krovko,Aphotometerforprecisionevaluationofspectralattenuationcoefcientsofhighlytransparentopticalglasses.
J.
Opt.
Technol.
51(9),18–19(1983)4.
39.
G.
P.
Semenova,V.
G.
Vorob'ev,Yu.
D.
Pushkin,Reectionattachmenttospectropho-tometerformeasurementofhighabsolutereections.
J.
Opt.
Technol.
43(4),78–79(1976)4.
40.
E.
A.
Evans,S.
Lowenthal,Momentgenerator:newrolefortheintegratingsphere.
J.
Opt.
Soc.
Am.
62(3),411–415(1972)4.
41.
A.
S.
Toporets,AnintegratingsphereattachmenttospectrophotometerS-8formea-surementsofdiffusereectanceandtransmittance.
Opt.
Spectrosc.
10(4),528–532(1961)4.
42.
V.
L.
Shipunov,T.
N.
Chernova,N.
B.
Berdnikov,N.
I.
Potapov,PhotometerFO-1.
J.
Opt.
Technol49(5),57–58(1982)4.
43.
D.
R¨onnow,A.
Roos,Stray-lightcorrectionsinintegrating-spheremeasurementsonlow-scatteringsamples.
Appl.
Opt.
33(25),6092–6097(1994)4.
44.
K.
D.
Mielenz,K.
L.
Eckerle,R.
P.
Madden,J.
Reader,Newreferencespectrophotometer.
Appl.
Opt.
12(7),1630–1641(1973)4.
45.
J.
C.
Zwinkels,D.
S.
Gignac,Designandtestingofanewhigh-accuracyultraviolet-visible-near-infraredspectrophotometer.
Appl.
Opt.
31(10),1557–1567(1992)4.
46.
Y.
Ohno,C.
L.
Gromer,J.
E.
Harris,G.
Eppeldauer,Thedetector-basedcandelascaleandrelatedphotometriccalibrationproceduresatNIST.
J.
IES23(1),89–98(1994)References6654.
47.
M.
L.
Rastello,E.
Miraldi,P.
Pisoni,Luminous-uxmeasurementsbyanabsoluteintegratingsphere.
Appl.
Opt35(22),4385–4391(1996)4.
48.
J.
Bastie,B.
Andasse,R.
Foucart,Luminousuxmeasurementswithagoniophotometer:studyoftimeeffectsondatacollection.
inProceedingsofthe22ndSessionofCIE(CommissionInternationaledel'Eclairage),vol.
1,no.
1,(1991),pp.
45–474.
49.
D.
Sheffer,U.
P.
Oppenheim,A.
D.
Devir,Absolutereectometerforthemidinfraredregion.
Appl.
Opt.
29(1),129–132(1990);Absolutemeasurementsofdiffusereectanceinthe'/dconguration.
Appl.
Opt.
30(22),3181–3183(1991)4.
50.
L.
Hanssen,Integratingspheresystemandmethodforabsolutemeasurementoftransmit-tance,reectance,andabsorptanceofspecularsamples.
Appl.
Opt.
40(19),3196–3204(2001)4.
51.
C.
G.
Venkatesh,R.
S.
Eng,A.
W.
Mantz,Tunablediodelaser-integratingspheresystems:astudyoftheiroutputintensitycharacteristics.
Appl.
Opt.
19(10),1704–1710(1980)4.
52.
L.
Abel-Tiberini,F.
Lemarquis,M.
Lequime,Dedicatedspectrophotometerforlocalizedtransmittanceandreectancemeasurements.
Appl.
Opt.
45(7),1386–1391(2006)4.
53.
A.
Carrasco-Sanz,S.
Martn-Lopez,P.
Corredera,M.
Gonzalez-Herraez,M.
L.
Hernanz,High-powerandhigh-accuracyintegratingsphereradiometer:design,characterization,andcalibration.
Appl.
Opt.
45(3),511–518(2006)4.
54.
I.
Niskanen,J.
R¨aty,K.
-E.
Peiponen,Measurementofrefractiveindexofisotropicparticlesbyincorporatingamultifunctionspectrophotometerandimmersionliquidmethod.
Appl.
Opt.
46(22),5404–5407(2007);Complexrefractiveindexofturbidliquids.
Opt.
Lett.
32(7),862–864(2007)4.
55.
T.
Niwa,Sinteredsiliconnitridememberandceramicball,U.
S.
Patent6,472,075,29Oct20024.
56.
L.
N.
Aksuitov,G.
K.
Kholopov,Methodsofphotometricaccuracymeasurementsofradiationdetectors.
J.
Opt.
Technol.
46(10),42–47(1979)4.
57.
J.
Elster,H.
Geitel,Wied.
Ann.
48,625(1893);Phys.
Z.
14,741(1913)4.
58.
C.
L.
Sanders,Aphotocelllinearitytester.
Appl.
Opt.
1(3),207–211(1962);Accuratemeasurementsofandcorrectionsfornonlinearitiesinradiometers.
J.
Res.
Natl.
Bur.
Stand.
A76,437–453(1972)4.
59.
F.
Rotter,DiePr¨ufungderLinearitetvonStrahlungsempf¨anger.
Z.
InstrumentekdB73(3),S.
66–S.
71(1965)4.
60.
A.
Reule,Testingspectrophotometerlinearity.
Appl.
Opt.
7(6),1023–1028(1968)4.
61.
R.
C.
Hawes,Techniqueformeasuringphotometricaccuracy.
Appl.
Opt.
10(6),1246–1253(1971)4.
62.
K.
D.
Mielenz,K.
L.
Eckerle,Spectrophotometerlinearitytestingusingthedouble-aperturemethod.
Appl.
Opt.
11(10),2294–2303(1972)4.
63.
W.
Budde,MultidecadelinearitymeasurementsonSiphotodiodes.
Appl.
Opt.
18(10),1555–1558(1979);Large-ux-ratiolinearitymeasurementsonSiphotodiodes.
Appl.
Opt.
21(20),3699–3701(1982)4.
64.
A.
R.
Schaefer,E.
F.
Zalewski,J.
Geist,Silicondetectornonlinearityandrelatedeffects.
Appl.
Opt.
22(8),1232–1236(1983)4.
65.
E.
V.
Kuvaldin,V.
I.
Popkov,Evaluationofphotometricaccuracyofphotodetectorsinabroaddynamicrange,inImpulsnayaPhotometria,vol.
4(Mashinostroenie,Leningrad,1975),pp.
169–1704.
66.
L.
Coslovi,F.
Righini,Fastdeterminationofthenonlinearityofphotodetectors.
Appl.
Opt.
19(18),3200–3203(1980)4.
67.
R.
D.
Saunders,J.
B.
Shumaker,Automatedradiometriclinearitytester.
Appl.
Opt.
23(20),3504–3506(1984)4.
68.
J.
C.
Zwinkels,D.
S.
Gignak,Automatedhighprecisionvariableapertureforspectropho-tometerlinearitytesting.
Appl.
Opt.
30(13),1678–1687(1991)4.
69.
R.
G.
Frehlich,Estimationofthenonlinearityofaphotodetector.
Appl.
Opt.
31(28),5926–5929(1992)666References4.
70.
E.
Theocharous,J.
Ishii,N.
P.
Fox,AbsolutelinearitymeasurementsonHgCdTedetectorsintheinfrared.
Appl.
Opt.
43(21),4182–4188(2004)4.
71.
M.
Naftaly,R.
Dudley,Linearitycalibrationofamplitudeandpowermeasurementsinterahertzsystemsanddetectors.
Opt.
Lett.
34(5),674–676(2009)4.
72.
M.
Francon,S.
Mallick,PolarizationInterferometers:ApplicationsinMicroscopyandMacroscopy(Wiley-Interscience,NewYork,1971)4.
73.
D.
Malacara,OpticalShopTesting,2ndedn.
(Wiley,NewYork,1992)4.
74.
M.
Francon,OpticalInterferometry(Academic,NewYork,1966)4.
75.
M.
A.
Bukshtab,NondestructiveEvaluationofSiliconNitrideRollingElementsforBearings(2008)4.
76.
B.
B.
C.
Kyotoku,L.
Chen,M.
Lipson,Sub-nmresolutioncavityenhancedmicrospec-trometer.
Opt.
Express18(1),102–107(2009)4.
77.
Z.
Xia,A.
A.
Eftekhar,M.
Soltani,B.
Momeni,Q.
Li,M.
Chamanzar,S.
Yegnanarayanan,A.
Adibi,Highresolutionon-chipspectroscopybasedonminiaturizedmicrodonutresonators.
Opt.
Express19(13),12356–12364(2011)4.
78.
T.
Ozeki,E.
H.
Hara,Measurementofnonlineardistortioninphotodiodes.
Electron.
Lett.
12(3),80–81(1976)4.
79.
M.
N.
Draa,A.
S.
Hastings,K.
J.
Williams,Comparisonofphotodiodenonlinearitymeasurementsystems.
Opt.
Express19(13),12635–12645(2011)4.
80.
ASTME313–00:StandardPracticeforCalculatingYellownessandWhitenessIndicesfromInstrumentallyMeasuredColorCoordinates(2001)PartIIII.
1.
B.
I.
Stepanov(ed.
),MethodofDesignCalculationsforOpticalQuantumGenerators,vol.
1(Nauka&Technika,Minsk,1966)II.
2.
H.
E.
Bennett,J.
M.
Bennett,inPhysicsofThinFilms,ed.
byG.
Xass,R.
E.
Thun,vol.
4(Academic,NewYork,1967),pp.
41–57II.
3.
H.
E.
Bennett,J.
O.
Porteus,Relationbetweensurfaceroughnessandspecularreectanceatnormalincidence.
J.
Opt.
Soc.
Am.
51(2),123–129(1961)II.
4.
C.
A.
Depew,R.
D.
Weir,Surfaceroughnessdeterminationbythemeasurementofreectance.
Appl.
Opt.
10(4),969–970(1971)II.
5.
H.
W.
Kogelnik,T.
Li,Laserbeamsandresonators.
Appl.
Opt.
5(10),1550–1567(1966)II.
6.
C.
J.
Hood,H.
J.
Kimble,J.
Ye,Characterizationofhigh-nessemirrors:loss,phaseshifts,andmodestructureinanopticalcavity.
Phys.
Rev.
A64,Article033804(2001)II.
7.
G.
Kortum,ReectanceSpectroscopy(Springer,NewYork/Berlin/Heidelberg,1969)II.
8.
A.
E.
Siegman,Lasers(UniversityScience,MillValley,1986)II.
9.
J.
F.
Ready,EffectsofHigh-PowerLaserRadiation(Academic,NewYork,1971)II.
10.
Y.
Pao(ed.
),OptoacousticSpectroscopyandDetection(Academic,NewYork,1977)II.
11.
Yu.
A.
Ananiev,OpticalResonatorsandDivergenceofLaserRadiation(Nauka,Moscow,1979)II.
12.
D.
Kliger,UltrasensitiveLaserSpectroscopy(Academic,NewYork,1983)II.
13.
V.
A.
Shutilov,FundamentalPhysicsofUltrasound(GordonandBreach,NewYork,1988)II.
14.
J.
A.
Sell(ed.
),PhotothermalInvestigationsofSolidsandFluids(Academic,NewYork,1989)II.
15.
P.
Hess(ed.
),Photoacoustic,PhotothermalandPhotochemicalProcessesinGases(Springer,NewYork,1989)II.
16.
F.
V.
Bunkin,A.
A.
Kolomensky,V.
G.
Mikhalevich,LasersinAcoustics(Harwood,NewYork,1991)References667II.
17.
A.
Mandelis(ed.
),ProgressinPhotothermalandPhotoacousticScienceandTechnology,vol.
1(Elsevier,NewYork,1992)II.
18.
V.
E.
Gusev,A.
A.
Karabutov,LaserOptoacoustics(InstituteofPhysics,NewYork,1993)II.
19.
M.
W.
Sigrist(ed.
),AirMonitoringbySpectroscopicTechniques.
ChemicalAnalysisSeries,vol.
127(Wiley,NewYork,1994)II.
20.
H.
A.
Macleod,Thin-FilmOpticalFilters,3rdedn.
(InstituteofPhysicsPublishing,Tucson,2001)II.
21.
I.
L.
Fabelinskii,MolecularScatteringofLight(Plenum,NewYork,1968;Nauka,Moscow,1965)II.
22.
H.
C.
vandeHulst,LightScatteringbySmallParticles(Dover,NewYork,1981)II.
23.
R.
M.
A.
Azzam,N.
M.
Bashara,EllipsometryandPolarizedLight(Elsevier,Amsterdam,1996)II.
24.
S.
Chandrasekhar,RadiativeTransfer(Dover,NewYork,1960)II.
25.
R.
Siegel,J.
R.
Howell,ThermalRadiationHeatTransfer(Hemisphere,NewYork,1981)II.
26.
M.
Francon,LaserSpeckleandApplicationsinOptics(Academic,NewYork,1979)II.
27.
W.
Demtroder,LaserSpectroscopy:BasicConceptsandInstrumentation,2ndedn.
(Springer,Berlin,1996)II.
28.
K.
Petermann,LaserDiodeModulationandNoise(Kluwer,Dordrecht,1988)II.
29.
D.
V.
O'Connor,D.
Phillips,Time-correlatedSinglePhotonCounting(Academic,NewYork/London,1984)II.
30.
P.
R.
Grifths,J.
A.
deHaseth,FourierTransformInfraredSpectrometry.
ChemicalAnalysisSeries,vol.
83(Wiley,NewYork,1986)II.
31.
W.
Koechner,Solid-StateLaserEngineering,3rdedn.
(Springer,Heidelberg,1992)II.
32.
J.
Ye,T.
W.
Lynn,Applicationsofopticalcavitiesinmodernatomic,molecular,andopticalphysics,inAdvancesinAtomicMolecularandOpticalPhysics,ed.
byB.
Bederson,H.
Walther,vol.
49(Elsevier,Amsterdam,2003),pp.
1–83II.
33.
A.
W.
Snyder,J.
D.
Love,OpticalWaveguideTheory(Chapman&Hall,London,1983),p.
1996II.
34.
R.
M¨arz,IntegratedOptics:DesignandModeling(ArtechHouse,Norwood,1995)II.
35.
N.
Kashima,PassiveOpticalComponentsforOpticalFiberTransmission(ArtechHouse,Boston,1995)II.
36.
S.
B.
Alexander,OpticalCommunicationReceiverDesign.
TutorialsinOpticalEngineer-ing,vol.
TT22(SPIE,Bellingham,1997)II.
37.
G.
P.
Agrawal,Fiber-OpticCommunicationSystems,2ndedn.
(Wiley,NewYork,1997)II.
38.
D.
Derickson(ed.
),FiberOpticTestandMeasurement(PrenticeHall,EnglewoodCliffs,1998)II.
39.
U.
Wiedmann,P.
Gallion,G.
-H.
Duan,Ageneralizedapproachtoopticallow-coherencereectometryincludingspectrallteringeffects.
J.
LightwaveTechnol.
16(7),1343–1347(1998)II.
40.
F.
Mayinger,OpticalMeasurementTechniques(Springer,Berlin,1994);O.
Feldmann,F.
Mayinger,OpticalMeasurements:TechniquesandApplications(Springer,Berlin,2001)II.
41.
R.
D.
vanZee,J.
P.
Looney(eds.
),Cavity-EnhancedSpectroscopies.
ExperimentalMeth-odsinthePhysicalSciences,vol.
40(Elsevier,NewYork,2002)II.
42.
A.
Yariv,P.
Yeh,OpticalWavesinCrystals:PropagationandControlofLaserRadiation(Wiley,NewYork,2002);Photonics:OpticalElectronicsinModernCommunication,6thedn.
(OxfordUniversityPress,Oxford,2006)II.
43.
C.
R.
Wylie,AdvancesinEngineeringMathematics(McGraw-Hill,NewYork,1960)II.
44.
A.
Papoulis,ProbabilityandStatistics(Prentice-Hall,EnglewoodCliffs,1990)II.
45.
G.
B.
Arfken,H.
J.
Weber,MathematicalMethodsforPhysicists,4thedn.
(Academic,SanDiego/London,1995)668ReferencesChapter55.
1.
K.
C.
Kao,T.
V.
Davis,SpectrophotometricstudiesofultralowlossopticalglassesI:singlebeammethod.
J.
Sci.
Instrum.
21(11),1063–1068(1968)5.
2.
M.
W.
Jones,K.
C.
Kao,SpectrophotometricstudiesofultralowlossopticalglassesII:doublebeammethod.
J.
Sci.
Instrum.
22(4),331–335(1969)5.
3.
P.
J.
R.
Laybourn,W.
A.
Gambling,D.
T.
Jones,Measurementofattenuationinlos-lossopticalglasses.
Optoelectronics3(8),137–144(1971);J.
P.
Dakin,W.
A.
Gambling,Transmissionmeasurementsinopticalglasswithanimprovedtwin-beamspectropho-tometer.
Opto-Electron.
5(4),335–344(1973)5.
4.
A.
I.
Kolyadin,A.
A.
Malygina,Useofleast-squaremethodfordeterminingtheextinctioncoefcientofhigh-transmissionglass.
J.
Opt.
Technol.
44(11),656–658(1977)5.
5.
S.
Bosch,J.
Roca,Amethodforthemeasurementofreectancesofsphericalsurfaces.
Meas.
Sci.
Technol.
4,190–192(1993)5.
6.
G.
Boivin,J.
-M.
Theriault,Reectometerforprecisemeasurementofabsolutespecularreectanceatnormalincidence.
Rev.
Sci.
Instrum.
52(7),1001–1002(1981)5.
7.
A.
Bittar,J.
D.
Hamlin,High-accuracytruenormal-incidenceabsolutereectometer.
Appl.
Opt.
23(22),4054–4057(1984)5.
8.
K.
Al-Marzouk,M.
Jacobson,R.
Parcs,M.
Rodgers,Newabsolutereectometer.
Opt.
Eng.
21(6),976–978(1982)5.
9.
V.
R.
Weidner,J.
J.
Hsia,NBSspecularreectometerspectrophotometer.
Appl.
Opt.
19(8),1268–1273(1980)5.
10.
C.
Castelini,G.
Emiliani,E.
Masetti,P.
Poggi,P.
P.
Polato,Characterizationandcalibrationofavariableangleabsolutereectometer.
Appl.
Opt.
29(4),538–543(1990)5.
11.
J.
M.
Bennett,E.
J.
Ashley,Calibrationofinstrumentsmeasuringreectanceandtrans-mittance.
Appl.
Opt.
11(8),1749–1755(1972)5.
12.
A.
Ya.
Hairullina,L.
Ch.
Neverovich,Asetupformeasurementsofback-scatteringfromlasermirrors(InstituteofPhysicsANBSSR,Minsk,1974),SelectedReprint5.
13.
P.
J.
Laybourn,J.
P.
Dakin,W.
A.
Gambling,Aphotometertomeasurelightscatteringinopticalglass.
Optoelectronics2(1),36–42(1970)5.
14.
J.
M.
Elson,J.
P.
Rahn,J.
M.
Bennett,Relationshipofthetotalintegratedscatteringfrommultilayercoatedopticstoangleofincidence,polarization,correlationlength,androughnesscross-correlationproperties.
Appl.
Opt.
22(20),3207–3220(1983)5.
15.
A.
C.
Toporets,Lightreectionbyroughsurface.
J.
Opt.
Technol.
46(1),35–48(1979)5.
16.
W.
R.
Blevin,J.
Geist,Infraredreectometrywithacavity-shapedpyroelectricdetector.
Appl.
Opt.
13(10),2212–2217(1974)5.
17.
P.
Roche,E.
Pelletier,Characterizationofopticalsurfacesbymeasurementofscatteringdistribution.
Appl.
Opt.
23(20),3561–3566(1984)5.
18.
B.
A.
Mehmetli,K.
Takahashi,S.
Sato,Directmeasurementofreectancefromalu-minumalloysduringCO2laserwelding.
Appl.
Opt.
35(18),3237–3242(1996)5.
19.
B.
T.
McGuckin,D.
A.
Haner,R.
T.
Menzies,C.
Esproles,A.
M.
Brothers,Directionalreectancecharacterizationfacilityandmeasurementmethodology.
Appl.
Opt.
35(24),4827–4834(1996)5.
20.
D.
G.
Goebel,B.
P.
Caldwell,H.
K.
HammondIII,Useofanauxiliaryspherewithaspectroreectometertoobtainabsolutereectance.
J.
Opt.
Soc.
Am.
56(6),783–788(1966)5.
21.
S.
M.
Jaffe,W.
M.
Yen,Phase-lockedopticalchoppers.
Rev.
Sci.
Instrum.
64(2),342–345(1993)5.
22.
W.
Smith,Reectometerforlasermirrorswithaccuracybetterthan104.
Appl.
Opt.
17(16),2476–2477(1978)5.
23.
R.
E.
Lindquist,A.
W.
Ewald,Opticalconstantsfromreectanceratiosbyageometricconstruction.
J.
Opt.
Soc.
Am.
53(2),247–249(1963)References6695.
24.
W.
R.
Hunter,Opticalconstantsofmetalsintheextremeultraviolet.
I.
Amodiedcritical-angletechniqueformeasuringtheindexofrefractionofmetalsintheextremeultraviolet.
J.
Opt.
Soc.
Am.
54(1),15–19(1964)5.
25.
R.
F.
Potter,Analyticaldeterminationofopticalconstantsbasedonthepolarizedreectanceatadielectric-conductorinterface.
J.
Opt.
Soc.
Am.
54(7),904–906(1964)5.
26.
E.
Schmidt,Simplemethodforthedeterminationofopticalconstantsofabsorbingmaterials.
Appl.
Opt.
8(9),1905–1908(1969)5.
27.
T.
E.
Darcie,M.
S.
Whalen,Determinationofopticalconstantsusingpseudo-Brewsterangleandnormalincidencereectancemeasurements.
Appl.
Opt.
23(8),1130–1131(1984)5.
28.
K.
Ogusu,K.
Suzuki,H.
Nishio,SimpleandaccuratemeasurementoftheabsorptioncoefcientofanabsorbingplatebyuseoftheBrewsterangle.
Opt.
Lett.
31(7),909–911(2006)5.
29.
D.
Rokamp,F.
Truffer,S.
Bolay,M.
Geiser,Forwardscatteringmeasurementdevicewithahighangularresolution.
Opt.
Express15(5),2683–2690(2007)5.
30.
F.
D.
J.
Brunner,A.
Schneider,P.
G¨unter,Aterahertztime-domainspectrometerforsimultaneoustransmissionandreectionmeasurementsatnormalincidence.
Opt.
Express17(23),20684–20693(2009)Chapter66.
1.
D.
M.
Gates,C.
C.
Shaw,D.
Beaumont,Infraredreectanceofevaporatedmetallms.
J.
Opt.
Soc.
Am.
48(2),88–89(1958)6.
2.
L.
G.
Schultz,F.
R.
Tangherlini,Opticalconstantsofsilver,gold,copper,andaluminum.
II.
Theindexofrefractionn.
J.
Opt.
Soc.
Am.
44(5),362–368(1954)6.
3.
V.
I.
Kuprenuk,V.
E.
Sherstobitov,AsimplemethodofreectancemeasurementsformetalmirrorsatwavelengthD10.
6m.
J.
Appl.
Spectrosc.
25(5),926–928(1974)6.
4.
D.
Kelsall,Absolutespecularreectancemeasurementsofhighlyreectingopticalcoatingsat10.
6m.
Appl.
Opt.
9(1),85–90(1970)6.
5.
S.
Chandra,R.
S.
Rohde,Ultrasensitivemultiple-reectionsinterferometer.
Appl.
Opt.
21(9),1533–1535(1982)6.
6.
H.
Hanada,CharacteristicsofaFabry-Perotinterferometerwithtworetroreectorsandtwobeamsplitters.
J.
Opt.
Soc.
Am.
A9(12),2167–2172(1992)6.
7.
A.
L.
Vitushkin,L.
F.
Vitushkin,Designofamultipassopticalcellbasedontheuseofshiftedcornercubesandright-angleprisms.
Appl.
Opt.
37(9),162–166(1998)6.
8.
J.
U.
White,Longopticalpathoflargeaperture.
J.
Opt.
Soc.
Am.
32(5),285–288(1942)6.
9.
T.
H.
Edwards,Multiple-traverseabsorptioncelldesign.
J.
Opt.
Soc.
Am.
51(1),98–102(1961)6.
10.
G.
P.
Semenova,V.
G.
Vorob'ev,Yu.
D.
Pushkin,Spectrophotometricattachmentforabsolutemeasurementsofhighspecularreectances.
J.
Opt.
Technol.
43(4),78–79(1976)6.
11.
O.
Arnon,P.
Baumeister,Versatilehigh-precisionmultiple-passreectometer.
Appl.
Opt.
17(18),2913–2916(1978)6.
12.
R.
P.
Blickensderfer,G.
E.
Ewing,R.
Leonard,Alongpath,lowtemperaturecell.
Appl.
Opt.
7(11),2214–2217(1968)6.
13.
D.
Horn,G.
C.
Pimentel,2.
5-kmLow-temperaturemultiple-reectioncell.
Appl.
Opt.
10(8),1892–1898(1971)6.
14.
P.
L.
Hanst,Spectroscopicmethodsforairpollutionmeasurement,inAdvancesinEnvironmentalScienceandTechnology,ed.
byJ.
N.
Pitts,R.
L.
Metcalf(Wiley&Sons,NewYork,1971),p.
91670References6.
15.
E.
O.
Schulz-DuBois,Generationofsquarelatticeoffocalpointsbyamodiedwhitecell.
Appl.
Opt.
12(7),1391–1393(1973)6.
16.
D.
M.
Bakalyar,J.
V.
James,C.
C.
Wang,AbsorptiontechniqueforOHmeasurementsandcalibration.
Appl.
Opt.
21(16),2901–2905(1982)6.
17.
P.
L.
Hanst,A.
S.
Lefohn,B.
W.
GayJr.
,Detectionofatmosphericpollutantsatparts-per-billionlevelsbyinfraredspectroscopy.
Appl.
Spectrosc.
27(3),188–198(1973)6.
18.
P.
L.
Hanst,AirpollutionmeasurementbyFouriertransformspectroscopy.
Appl.
Opt.
17(9),1360–1366(1978)6.
19.
H.
J.
Bernstein,J.
Herzberg,Rotation-vibrationspectraofdiatomicandsimplepoly-atomicmoleculeswithlongabsorbingpaths.
J.
Chem.
Phys.
16(1),30–39(1948)6.
20.
W.
R.
Watkins,Pathdifferencing:animprovementtomultipassabsorptioncellmeasure-ments.
Appl.
Opt.
15(1),16–19(1976)6.
21.
J.
U.
White,Verylongopticalpathsinair.
J.
Opt.
Soc.
Am.
66(5),411–416(1976)6.
22.
S.
M.
Chernin,E.
G.
Barskaya,Opticalmultipassmatrixsystems.
Appl.
Opt.
30(1),51–58(1991)6.
23.
H.
D.
Smith,J.
K.
Marshall,Methodforobtaininglongopticalpaths.
J.
Opt.
Soc.
Am.
30(8),338–342(1940)6.
24.
S.
M.
Chernin,MultipassV-shapedsystemwithalargerelativeaperture:stagesofdevelopment.
Appl.
Opt.
34(34),7857–7863(1995)6.
25.
K.
Sch¨afer,K.
Brockmann,J.
Heland,P.
Wiesen,C.
Jahn,O.
Legras,Multipassopen-pathFourier-transforminfraredmeasurementsfornonintrusivemonitoringofgasturbineexhaustcomposition.
Appl.
Opt.
44(11),2189–2201(2005)6.
26.
D.
C.
Tobin,L.
L.
Strow,W.
J.
Lafferty,W.
B.
Olson,Experimentalinvestigationoftheself-andN2-broadenedcontinuumwithinthe2bandofwatervapor.
Appl.
Opt.
35(24),4724–4734(1996)6.
27.
P.
Hannan,Whitecelldesignconsiderations.
Opt.
Eng.
28(11),1180–1184(1989)6.
28.
J.
-F.
Doussin,D.
Ritz,P.
Carlier,Multiple-passcellforvery-long-pathinfraredspec-trometry.
Appl.
Opt.
38(19),4145–4150(1999)6.
29.
L.
Grassi,R.
Guzzi,Theoreticalandpracticalconsiderationoftheconstructionofazero-geometric-lossmultiple-passcellbasedontheuseofmonolithicmultiple-faceretroreectors.
Appl.
Opt.
40(33),6062–6071(2001)6.
30.
S.
M.
Chernin,Promisingversionofthethree-objectivemultipassmatrixsystem.
Opt.
Express10(2),104–107(2002)6.
31.
D.
R.
Glowacki,A.
Goddard,P.
W.
Seakins,Designandperformanceofathroughput-matched,zero-geometric-loss,modiedthreeobjectivemultipassmatrixsystemforFTIRspectrometry.
Appl.
Opt.
46(32),7872–7883(2007)6.
32.
D.
Herriott,H.
Kogelnik,R.
Kompfner,Off-axispartsinsphericalmirrorinterferome-ters.
Appl.
Opt.
3(4),523–526(1964)6.
33.
D.
R.
Herriott,H.
J.
Schulte,Foldedopticaldelaylines.
Appl.
Opt.
4(8),883–889(1965)6.
34.
J.
Altman,R.
Baumgart,C.
Weitkamp,Two-mirrormultipassabsorptioncell.
Appl.
Opt.
20(6),995–999(1981)6.
35.
P.
L.
Kebabian,Off-axiscavityabsorptioncell,U.
S.
Patent5,291,265,1Mar19946.
36.
J.
B.
McManus,P.
L.
Kebabian,M.
S.
Zahniser,Astigmaticmirrormultipassabsorptioncellsforlong-path-lengthspectroscopy.
Appl.
Opt.
34(18),3336–3348(1995)6.
37.
L.
-Y.
Hao,S.
Qiang,G.
-R.
Wu,L.
Qi,D.
Feng,Q.
-S.
Zhu,CylindricalmirrormultipassLissajoussystemforlaserphotoacousticspectroscopy.
Rev.
Sci.
Instrum.
73(5),2079–2085(2002)6.
38.
J.
A.
Silver,Simpledense-patternopticalmultipasscells.
Appl.
Opt.
44(31),6545–6556(2005);Nearre-entrantdensepatternopticalmultipasscell,U.
S.
Patent7,307,716,11Dec20076.
39.
C.
Dyroff,A.
Zahn,W.
Freude,B.
J¨anker,P.
Werle,MultipasscelldesignforStark-modulationspectroscopy.
Appl.
Opt.
46(19),4000–4007(2007)6.
40.
G.
S.
Engel,E.
J.
Moyer,PrecisemultipassHerriottcelldesign:derivationofcontrollingdesignequations.
Opt.
Lett.
32(6),704–706(2007)References6716.
41.
H.
L.
Welsh,E.
J.
Stansbury,J.
Romanko,T.
Feldman,Ramanspectroscopyofgases.
J.
Opt.
Soc.
Am.
45(5),338–343(1955)6.
42.
A.
Weber,S.
P.
S.
Porto,L.
E.
Cheesman,J.
J.
Barrett,High-resolutionRamanspec-troscopyofgaseswithcw-laserexcitation.
J.
Opt.
Soc.
Am.
57(1),19–28(1967)6.
43.
J.
J.
Barrett,N.
I.
Adams,Laser-excitedrotation-vibrationRamanscatteringinultra-smallgassamples.
J.
Opt.
Soc.
Am.
58(3),311–319(1968)6.
44.
R.
A.
Hill,D.
L.
Hartley,Focused,multiple-passcellforRamanscattering.
Appl.
Opt.
13(1),186–192(1974)6.
45.
R.
A.
Hill,A.
J.
Mulac,C.
E.
Hackett,RetroreectingmultipasscellforRamanscattering.
Appl.
Opt.
16(7),2004–2006(1977)6.
46.
A.
J.
Mulac,W.
L.
Flower,R.
A.
Hill,D.
P.
Aeschliman,PulsedspontaneousRamanscatteringtechniqueforluminousenvironments.
Appl.
Opt.
17(17),2695–2699(1978)6.
47.
G.
M¨uller,E.
Weimer,Multipass-systemef¨urdieRaman-spectroscopie.
Optic56(1),1–19(1980)6.
48.
H.
-J.
Daams,E.
P.
Hassel,Multipasscavity:collinearandself-focusing.
Appl.
Opt.
22(14),2066–2067(1983)6.
49.
W.
R.
Trutna,R.
L.
Byer,Multiple-passRamangaincell.
Appl.
Opt.
19(2),301–312(1980)6.
50.
M.
A.
Bukshtab,CongurableTunableResonantMultipassCellforScatteringandAbsorptionMeasurements,20076.
51.
G.
A.
Waldherr,H.
Lin,Gainanalysisofanopticalmultipasscellforspectroscopicmeasurementsinluminousenvironments.
Appl.
Opt.
47(7),901–907(2008)6.
52.
R.
Viola,High-luminositymultipasscellforinfraredimagingspectroscopy.
Appl.
Opt.
45(12),2805–2809(2006)6.
53.
J.
Reid,M.
El-Sherbiny,B.
K.
Garside,E.
A.
Ballik,Sensitivitylimitsofatunablediodelaserspectrometer,withapplicationtothedetectionofNO2atthe100-pptlevel.
Appl.
Opt.
19(19),3349–3354(1980)6.
54.
D.
T.
Cassidy,J.
Reid,Harmonicdetectionwithtunablediodelasers:two-tonemodula-tion.
Appl.
Phys.
B29(4),279–285(1982)6.
55.
P.
Werle,B.
J¨anker,High-frequency-modulationspectroscopy:phasenoiseandrefractiveindexuctuationsinopticalmultipasscells.
Opt.
Eng.
35(7),2051–2057(1996)6.
56.
C.
R.
Webster,Brewster-platespoiler:anovelmethodforreducingtheamplitudeofinterferencefringesthatlimittunable-laserabsorptionsensitivities.
J.
Opt.
Soc.
Am.
B2(9),1464–1470(1985)6.
57.
J.
A.
Silver,A.
C.
Stanton,Opticalinterferencefringereductioninlaserabsorptionexperiments.
Appl.
Opt.
27(10),1914–1916(1988)6.
58.
A.
Fried,J.
R.
Drummond,B.
Henry,J.
Fox,Reductionofinterferencefringesinsmallmultipassabsorptioncellsbypressuremodulation.
Appl.
Opt.
29(7),900–902(1990)6.
59.
J.
B.
McManus,P.
L.
Kebabian,NarrowopticalinterferencefringesforcertainsetupconditionsinmultipassabsorptioncellsoftheHerriotttype.
Appl.
Opt.
29(7),898–900(1990)6.
60.
H.
C.
Sun,E.
A.
Whittaker,Noveletalonfringerejectiontechniqueforlaserabsorptionspectroscopy.
Appl.
Opt.
31(24),4998–5002(1992)6.
61.
D.
E.
Cooper,J.
P.
Watjen,Two-toneopticalheterodynespectroscopywithatunablelead-saltdiodelaser.
Opt.
Lett.
11(10),606–608(1986);D.
E.
Cooper,C.
B.
Carlisle,High-sensitivityFMspectroscopywithalead-saltdiodelaser.
Opt.
Lett.
13(9),719–721(1988)6.
62.
G.
Durry,T.
Danguy,I.
Pouchet,Openmultipassabsorptioncellforinsitumonitoringofstratospherictracegaswithtelecommunicationlaserdiodes.
Appl.
Opt.
41(3),424–433(2002)6.
63.
S.
Hocquet,D.
Penninckx,E.
Bordenave,C.
Gouedard,Y.
Jaouen,FM-to-AMconver-sioninhigh-powerlasers.
Appl.
Opt.
47(18),3338–3349(2008)672References6.
64.
X.
Dangpeng,W.
Jianjun,L.
Mingzhong,L.
Honghuan,Z.
Rui,D.
Ying,D.
Qinghua,H.
Xiaodong,W.
Mingzhe,D.
Lei,T.
Jun,WeaketaloneffectinwaveplatescanintroducesignicantFM-to-AMmodulationsincomplexlasersystems.
Opt.
Express18(7),6621–6627(2010)Chapter77.
1.
A.
B.
Melnikov,Determinationoftransmittanceoflow-denseplasmabytheintracavitymethod.
J.
Appl.
Spectrosc.
6(6),821–823(1967)7.
2.
H.
P.
Brandli,MethodformeasuringofsmallopticallossesusingaHe-Nelaser.
Rev.
Sci.
Instrum.
39(4),583–587(1968)7.
3.
V.
S.
Burakov,V.
V.
Djukovsky,A.
A.
Stavrov,Anincreaseofthedynamicrangeoftheintra-cavitymeasurementsofopticaldensities.
QuantumElectron.
5(1),13–19(1978)7.
4.
V.
Sanders,High-precisionreectivitymeasurementtechniqueforlow-losslasermir-rors.
Appl.
Opt.
16(1),19–20(1977)7.
5.
J.
S.
Shirk,T.
D.
Harris,J.
W.
Mitchell,Laserintracavityspectrophotometer.
Anal.
Chem.
52(11),1701–1705(1980)7.
6.
A.
L.
Bloom,GasLasers(NewYork,Wiley,1968)7.
7.
N.
Konjevic,M.
Kokovic,He-Nelaserforintra-cavityenhancedabsorptionmeasure-ment.
Spectrosc.
Lett.
7(12),615–620(1974)7.
8.
V.
I.
Makhorin,A.
I.
Popov,E.
D.
Protsenko,Inuenceofintra-resonatorlossesonpowerofaHe-Nelaserat3.
39mregion.
J.
Appl.
Spectrosc.
27(3),418–422(1977)7.
9.
A.
S.
Burmistrov,A.
I.
Popov,Studyofasensitivityoftheintra-cavitymethodofdeterminationoflowopticallossesinacwgaslaser.
J.
Appl.
Spectrosc.
37(2),205–209(1982)7.
10.
A.
V.
Lebedev,A.
I.
Popov,Computationofasensitivityofmethodoflowopticalabsorptionstudyinacwlaserwithinternalcavityandnarrowspectrum.
J.
Appl.
Spectrosc.
44(2),219–225(1986)7.
11.
L.
A.
Pakhomyucheva,E.
A.
Sviridenkov,A.
F.
Sychkov,L.
V.
Titova,S.
S.
Kurilov,Thelinearstructureofspectrumsgeneratedbysolid-statelasers.
Lett.
JETF12(2),60–63(1970)7.
12.
B.
M.
Baev,V.
P.
Dyubov,E.
A.
Sviridenkov,Increasingofsensitivityoftheintra-cavitylaserspectroscopyusingNd:glasslaser.
QuantumElectron.
12(12),2490–2491(1985)7.
13.
N.
C.
Peterson,M.
J.
Kurylo,W.
Braun,A.
M.
Bass,R.
A.
Keller,Enhancementofabsorptionspectrabydye-laserquenching.
J.
Opt.
Soc.
Am.
61(6),746–750(1971);R.
A.
Keller,E.
F.
Zalewski,N.
C.
Peterson,Enhancementofabsorptionspectrabydie-laserquenching,II.
J.
Opt.
Soc.
Am.
62(3),319–326(1972)7.
14.
V.
I.
Baev,T.
P.
Belikova,E.
A.
Sviridenkov,A.
F.
Sychkov,Intra-cavityspectroscopywithcwandquasi-cwlasers.
JTF74(1),43–56(1978)7.
15.
A.
A.
Kachanov,T.
V.
Plakhotnik,Intracavityspectrometerwitharingtraveling-wavedyelaser:reductionofdetectionlimit.
Opt.
Commun.
47(4),257–261(1983)7.
16.
A.
V.
Adamushko,M.
V.
Belokon,A.
I.
Rubinov,Intracavityspectrometerbasedoncwdyelasers.
J.
Appl.
Spectrosc.
28(3),417–420(1978)7.
17.
D.
A.
Smith,D.
I.
Shernoff,Simplemeasurementofgainandlossinultralowlossopticalresonators.
Appl.
Opt.
24(12),1722–1723(1985)7.
18.
N.
Dutta,R.
T.
Warner,G.
J.
Wolga,Sensitivityenhancementofaspin-ipRamanlaserabsorptionspectrometerthroughuseofanintracavityabsorptioncell.
Opt.
Lett.
1(5),155–157(1977)7.
19.
G.
O.
Brink,AnalternatemodelofCWdyelaserintracavityabsorption.
Opt.
Commun.
32(1),123–128(1980)References6737.
20.
E.
N.
Antonov,A.
A.
Kachanov,V.
R.
Mironenko,T.
V.
Plakhotnik,Dependenceofthesensitivityofintracavitylaserspectroscopyongenerationparameters.
Opt.
Commun.
46(2),126–130(1983)7.
21.
S.
J.
Harris,Intracavitylaserspectroscopy:anoldeldwithnewprospectsforcombus-tiondiagnostics.
Appl.
Opt.
23(9),1311–1318(1984)7.
22.
F.
Stoeckel,G.
H.
Atkinson,Timeevolutionofabroadbandquasi-cwdyelaser:limitationsofsensitivityinintracavitylaserspectroscopy.
Appl.
Opt.
24(21),3591–3597(1985)7.
23.
A.
O'Keefe,D.
A.
G.
Deacon,Cavityring-downopticalspectrometerforabsorptionmeasurementsusingpulsedlasersources.
Rev.
Sci.
Instrum.
59(12),2544–2551(1988)7.
24.
R.
Engeln,G.
Meijer,AFouriertransformcavityringdownspectrometer.
Rev.
Sci.
Instrum.
67(8),2708–2714(1996)7.
25.
P.
Zalicki,R.
N.
Zare,Cavityring-downspectroscopyforquantitativeabsorptionmea-surements.
J.
Chem.
Phys.
102(7),2708–2717(1995)7.
26.
K.
K.
Lehman,D.
Romanini,Thesuperpositionprincipleandcavityring-downspec-troscopy.
J.
Chem.
Phys.
105(23),10263–10277(1996)7.
27.
J.
T.
Hodges,J.
P.
Looney,R.
D.
vanZee,Responseofaring-downcavitytoanarbitraryexcitation.
J.
Chem.
Phys.
105(23),10278–10288(1996)7.
28.
J.
T.
Hodges,J.
P.
Looney,R.
D.
vanZee,Laserbandwidtheffectsinquantitativecavityring-downspectroscopy.
Appl.
Opt.
35(21),4112–4116(1996)7.
29.
M.
Billardon,M.
E.
Couprie,J.
M.
Ortega,M.
Velghe,Fabry-Peroteffectsintheexponentialdecayandphaseshiftreectivitymeasurementmethods.
Appl.
Opt.
30(3),344–351(1991)7.
30.
R.
D.
vanZee,J.
T.
Hodges,J.
P.
Looney,Pulsed,single-modecavityringdownspec-troscopy.
Appl.
Opt.
38(18),3951–3960(1999)7.
31.
J.
L.
Remo,Reectionlossesforsymmetricallyperturbedcurvedreectorsinopenresonators.
Appl.
Opt.
20(17),2997–3002(1981)7.
32.
H.
Naus,I.
H.
M.
vanStokkum,W.
Hogervorst,W.
Ubachs,Quantitativeanalysisofdecaytransientsappliedtoamultimodepulsedcavityringdownexperiment.
Appl.
Opt.
40(24),4416–4426(2001)7.
33.
T.
vonLerber,M.
W.
Sigrist,Cavity-ring-downprincipleforber-opticresonators:experimentalrealizationofbendinglossandevanescent-eldsensing.
Appl.
Opt.
41(18),3567–3575(2002)7.
34.
K.
K.
Lehmann,Ring-downcavityspectroscopycellusingcontinuouswaveexcitationfortracespeciesdetection,U.
S.
Patent5,528,040,18June19967.
35.
B.
A.
Paldus,C.
C.
Harb,T.
G.
Spence,B.
Wilke,J.
Xie,J.
S.
Harris,R.
N.
Zare,Cavity-lockedringdownspectroscopy.
J.
Appl.
Phys.
83(8),3991–3997(1998)7.
36.
J.
W.
Hahn,Y.
S.
Yoo,J.
Y.
Lee,J.
W.
Kim,H.
-W.
Lee,Cavityringdownspectroscopywithacontinuous-wavelaser:calculationofcouplingefciencyandanewspectrometerdesign.
Appl.
Opt.
38(9),1859–1866(1999)7.
37.
J.
W.
Kim,Y.
S.
Yoo,J.
Y.
Lee,J.
B.
Lee,J.
W.
Hahn,Uncertaintyanalysisofabsoluteconcentrationmeasurementwithcontinuous-wavecavityringdownspectroscopy.
Appl.
Opt.
40(30),5509–5516(2001)7.
38.
J.
Y.
Lee,H.
-W.
Lee,J.
W.
Kim,Y.
S.
Yoo,J.
W.
Hahn,Measurementofultralowsuper-mirrorbirefringencebyuseofthepolarimetricdifferentialcavityringdowntechnique.
Appl.
Opt.
39(12),1941–1945(2000)7.
39.
G.
Totschnig,D.
S.
Baer,J.
Wang,F.
Winter,H.
Hofbauer,R.
K.
Hanson,Multiplexedcontinuous-wavediode-lasercavityringdownmeasurementsofmultiplespecies.
Appl.
Opt.
39(12),2009–2016(2000)7.
40.
N.
J.
vanLeeuwen,J.
C.
Diettrich,A.
C.
Wilson,Periodicallylockedcontinuous-wavecavityringdownspectroscopy.
Appl.
Opt.
42(18),3670–3677(2003)7.
41.
A.
Schocker,K.
Kohse-H¨oinghaus,A.
Brockhinke,Quantitativedeterminationofcom-bustionintermediateswithcavityring-downspectroscopy:systematicstudyinpropeneamesnearthesoot-formationlimit.
Appl.
Opt.
44(31),6660–6672(2005)674References7.
42.
R.
W.
P.
Drever,J.
L.
Hall,F.
V.
Kowalski,J.
Hough,G.
M.
Ford,A.
J.
Munley,H.
Ward,Laserphaseandfrequencystabilizationusinganopticalresonator.
Appl.
Phys.
B31(2),97–105(1983)7.
43.
K.
An,C.
Yang,R.
R.
Dasari,M.
S.
Feld,Cavityring-downtechniqueanditsapplicationtothemeasurementofultraslowvelocities.
Opt.
Lett.
20(9),1068–1070(1995)7.
44.
M.
Rakhmanov,Doppler-induceddynamicsofeldsinFabry–Perotcavitieswithsuspendedmirrors.
Appl.
Opt.
40(12),1942–1949(2001)7.
45.
S.
M.
Ball,R.
L.
Jones,Broad-bandcavityring-downspectroscopy.
Chem.
Rev.
103(12),5239–5262(2003)7.
46.
A.
A.
Ruth,J.
Orphal,S.
E.
Fiedler,Fourier-transformcavity-enhancedabsorptionspec-troscopyusinganincoherentbroadbandlightsource.
Appl.
Opt.
46(17),3611–3616(2007)7.
47.
J.
M.
Langridge,T.
Laurila,R.
S.
Watt,R.
L.
Jones,C.
F.
Kaminski,J.
Hult,Cavityenhancedabsorptionspectroscopyofmultipletracegasspeciesusingasupercontinuumradiationsource.
Opt.
Express16(14),10178–10188(2007)7.
48.
K.
K.
Lehmann,P.
S.
Johnston,P.
Rabinowitz,Brewsterangleprismretroreectorsforcavityenhancedspectroscopy.
Appl.
Opt.
48(16),2967–2978(2009)7.
49.
C.
Petermann,P.
Fischer,Activelycoupledcavityringdownspectroscopywithlow-powerbroadbandsources.
Opt.
Express19(11),10164–10173(2011)Chapter88.
1.
V.
V.
Appolonov,A.
I.
Barchukov,V.
K.
Konukhov,MeasurementsofscatteringoflasermirrorsreectingmainCO2laserbeams.
QuantumElectron.
4(16),103–105(1973)8.
2.
O.
De-Lange,Long-distancedirectionaltransmissionoflightsignals.
Proc.
IEEE1(10),1350(1963)8.
3.
L.
S.
Kornienko,B.
G.
Skuibin,Aboutapossibilityofmeasurementsofselectiveopticallosses.
Opt.
Spectrosc.
40(3),571–573(1976)8.
4.
E.
S.
Voropai,A.
M.
Sardgevsriy,P.
A.
Torpachev,Methodoflowlossmeasurements.
J.
Appl.
Spectrosc.
34(1),150–155(1981)8.
5.
J.
Brochard,PhCahuzac,Applicationdestechniquesd'absorptionsatureeal'ertitudedelarelaxiondesvitessesd'atomesme'tastablessousl'effetdeschoese'lastiques.
J.
Phys.
BAt.
Mol.
Phys.
9(12),2027–2034(1976)8.
6.
A.
J.
Rock,M.
R.
Biazzo,Atechniqueformeasuringsmallopticallossusinganoscillatingsphericalinterferometer.
BellSyst.
Tech.
J.
43(4),1563–1579(1964)8.
7.
N.
K.
Berger,E.
N.
Bondarchuk,V.
V.
Dembovetskiy,Methodoflaser-mirrorreectancemeasurements,Avtometria,Moscow,1977,No.
1,pp.
109–1118.
8.
PhCahuzac,G.
Golman,Mesuredespouvoirsre'ecteurse'leve'sal'aided'unecaviteoptiqueareexionmultiples.
Nouv.
Rev.
Optique7(6),363–367(1976)8.
9.
J.
M.
Herbelin,J.
A.
McKay,M.
A.
Kwok,R.
H.
Ueunten,D.
S.
Ureving,D.
J.
Spencer,D.
J.
Benard,Sensitivemeasurementofphotonlifetimeandtruereectancesinanopticalcavitybyaphase-shiftmethod.
Appl.
Opt.
19(1),144–147(1980)8.
10.
J.
M.
Herbelin,J.
A.
McKay,Developmentoflasermirrorsofveryhighreectivityusingthecavityattenuatedphase-shiftmethod.
Appl.
Opt.
20(19),3341–3344(1980)8.
11.
M.
A.
Kwok,J.
M.
Herbelin,R.
H.
Ueunten,Cavityphase-shiftmethodforhighre-ectancemeasurementsatmid-infraredwavelength.
Opt.
Eng.
21(6),979–982(1982)8.
12.
Seereference[7.
29]8.
13.
D.
Z.
Anderson,J.
C.
Frisch,C.
S.
Masser,Mirrorreectometerbasedonopticalcavitydecaytime.
Appl.
Opt.
23(8),1238–1245(1984)8.
14.
G.
Rempe,R.
J.
Thompson,H.
J.
Kimble,R.
Lalezari,Measurementofultralowlossesinanopticalinterferometer.
Opt.
Lett.
17(5),363–365(1992)References6758.
15.
M.
A.
Bukhshtab,Resonatortechniqueforabsolutereectionandtransmissionmeasure-ments.
J.
Appl.
Spectrosc.
37(5),1330–1335(1982)8.
16.
Y.
LeGrand,A.
LeFloch,Measurementofresidualreectivitiesusingthetwoeigenstatesofapassivecavity.
Appl.
Opt.
27(23),4925–4930(1988)8.
17.
D.
Jacob,F.
Bretenaker,P.
Pourcelot,PhRio,M.
Dumont,A.
Dore,Pulsedmeasurementofhigh-reectivitymirrorphaseretardance.
Appl.
Opt.
33(15),3175–3178(1994)8.
18.
E.
R.
Crosson,P.
Haar,G.
A.
Marcus,H.
A.
Schwettman,B.
A.
Paldus,T.
G.
Spence,R.
N.
Zare,Pulse-stackedcavityring-downspectroscopy.
Rev.
Sci.
Instrum.
70(1),4–10(1999)8.
19.
W.
H.
Knox,N.
M.
Pearson,K.
D.
Li,Ch.
A.
Hirlimann,Interferometricmeasurementsoffemtosecondgroupdelayinopticalcomponents.
Opt.
Lett.
13(7),574–576(1988)8.
20.
K.
Naganuma,K.
Mogi,H.
Yamada,Group-delaymeasurementusingtheFouriertransformofaninterferometriccrosscorrelationgeneratedbywhitelight.
Opt.
Lett.
15(7),393–395(1990)8.
21.
A.
P.
Kov`acs,K.
Osvay,ZsBor,R.
Szip¨ocs,Group-delaymeasurementonlasermirrorsbyspectrallyresolvedwhitelightinterferometry.
Opt.
Lett.
20(7),788–790(1995)8.
22.
W.
H.
Knox,InsitumeasurementofcompleteintracavitydispersioninanoperatingTi:sapphirefemtosecondlaser.
Opt.
Lett.
17(7),514–516(1992)8.
23.
W.
H.
Knox,Dispersionmeasurementsforfemtosecond-pulsegenerationandapplica-tions.
Appl.
Phys.
B58,225–235(1994)8.
24.
K.
Naganuma,Y.
Sakai,Interferometricmeasurementofwavelengthdispersionoffemtosecondlasercavities.
Opt.
Lett.
19(7),487–489(1994)8.
25.
M.
A.
Bukhshtab,Lowphasedispersionmeasurementsoflasercavitycomponentsbyspectro-photometricresonatingtechnique,inOSAAnnualMeeting–ILS-XConference,Dallas,1994,p.
1458.
26.
M.
A.
Bukhshtab,Spectrophotometricresonantmeasurementofwavelengthphasedis-persiononfemtosecondlasercavitiesandsingleelementsduringtheirfabrication.
Opt.
Commun.
123(4–6),430–436(1996)8.
27.
Y.
LeGrand,A.
LeFroch,Sensitivedichroismmeasurementusingeigenstatedecaytimes.
Appl.
Opt.
29(9),1244–1246(1990)8.
28.
A.
Miks,J.
Novak,P.
Novak,Colorimetricmethodforphaseevaluation.
J.
Opt.
Soc.
Am.
A23(4),894–901(2006)8.
29.
T.
G.
Spence,C.
C.
Harb,B.
A.
Paldus,R.
N.
Zare,B.
Willke,R.
L.
Byer,Alaser-lockedcavityring-downspectrometeremployingananalogdetectionscheme.
Rev.
Sci.
Instrum.
71(2),347–353(2000)8.
30.
J.
B.
Paul,L.
Lapson,J.
G.
Anderson,Ultrasensitiveabsorptionspectroscopywithahigh-nesseopticalcavityandoff-axisalignment.
Appl.
Opt.
40(27),4904–4910(2001)8.
31.
K.
D.
Skeldon,G.
M.
Gibson,C.
A.
Wyse,L.
C.
McMillan,S.
D.
Monk,C.
Longbottom,M.
J.
Padgett,Developmentofhigh-resolutionreal-timesub-ppbethanespectroscopyandsomepilotstudiesinlifescience.
Appl.
Opt.
44(22),4712–4721(2005)8.
32.
S.
D.
Dyer,K.
B.
Rochford,A.
H.
Rose,Fastandaccuratelow-coherenceinterferometricmeasurementsofberBragggratingdispersionandreectance.
Opt.
Express5(11),262–266(1999)8.
33.
M.
J.
Thorpe,R.
J.
Jones,K.
D.
Moll,J.
Ye,R.
Lalezari,Precisemeasurementsofopticalcavitydispersionandmirrorcoatingpropertiesviafemtosecondcombs.
Opt.
Express13(3),882–888(2005)8.
34.
N.
Uehara,A.
Ueda,K.
Ueda,H.
Sekiguchi,T.
Mitake,K.
Nakamura,N.
Kitajima,I.
Kataoka,Ultralow-lossmirrorofparts-in-106levelat1064nm.
Opt.
Lett.
20(6),530–532(1995)8.
35.
K.
An,B.
A.
Sones,C.
Fang-Yen,R.
R.
Dasari,M.
S.
Feld,Opticalbistabilityinducedbymirrorabsorption:measurementofabsorptioncoefcientsatthesub-ppmlevel.
Opt.
Lett.
22(18),1433–1435(1997)8.
36.
C.
J.
Hood,H.
J.
Kimble,J.
Ye,Characterizationofhigh-nessemirrors:loss,phaseshifts,andmodestructureinanopticalcavity.
Phys.
Rev.
A64,Article033804(2001)676References8.
37.
G.
Li,Y.
Zhang,Y.
Li,X.
Wang,J.
Zhang,J.
Wang,T.
Zhang,Precisionmeasurementofultralowlossesofanasymmetricopticalmicrocavity.
Appl.
Opt.
45(29),7628–7631(2006)8.
38.
M.
Borselli,T.
J.
Johnson,O.
Painter,Accuratemeasurementofscatteringandabsorptionlossinmicrophotonicdevices.
Opt.
Lett.
32(20),2954–2956(2007)8.
39.
G.
Farca,S.
I.
Shopova,A.
T.
Rosenberger,Cavity-enhancedlaserabsorptionspec-troscopyusingmicroresonatorwhispering-gallerymodes.
Opt.
Express15(25),17443–17448(2007)8.
40.
J.
Poirson,F.
Bretenaker,M.
Vallet,A.
LeFloch,AnalyticalandexperimentalstudyofringingeffectsinaFabry–Perotcavity.
Applicationtothemeasurementofhighnesses.
JOSAB14(11),2811–2817(1997)8.
41.
C.
R.
Bucher,K.
K.
Lehmann,D.
F.
Plusquellic,G.
T.
Fraser,Doppler-freenonlinearabsorptioninethylenebyuseofcontinuous-wavecavityringdownspectroscopy.
Appl.
Opt.
39(18),3154–3164(2000)8.
42.
I.
Debecker,A.
K.
Mohamed,D.
Romanini,High-speedcavityringdownspectroscopywithincreasedspectralresolutionbysimultaneouslaserandcavitytuning.
Opt.
Express13(8),2906–2915(2005)8.
43.
Y.
He,B.
J.
Orr,Continuous-wavecavityringdownabsorptionspectroscopywithaswept-frequencylaser:rapidspectralsensingofgas-phasemolecules.
Appl.
Opt.
44(31),6752–6761(2005)8.
44.
J.
Courtois,A.
K.
Mohamed,D.
Romanini,High-speedoff-axisCavityRing-DownSpectroscopywithare-entrantcongurationforspectralresolutionenhancement.
Opt.
Express18(5),4845–4858(2010)8.
45.
M.
C.
Kuoa,Y.
R.
Lina,W.
A.
A.
Syeda,J.
T.
Shya,PrecisioncontinuouswavecavityringdownspectroscopyofCO2at1064nm.
Opt.
Spectrosc.
108(1),29–36(2010)8.
46.
C.
Froehly,A.
Lacourt,J.
C.
Vienot,Timeimpulseresponseandtimefrequencyresponseofopticalpupils:experimentalconrmationsandapplications.
Nouv.
Rev.
Opt4(4),183–196(1973)8.
47.
A.
M.
Weiner,D.
E.
Leaird,D.
H.
Reitze,E.
G.
Paek,Femtosecondspectralholography.
IEEEJ.
QuantumElectron.
28(10),2251–2261(1992)8.
48.
L.
Lepetit,G.
Cheriaux,M.
Joffre,Lineartechniquesofphasemeasurementbyfemtosecondspectralinterferometryforapplicationsinspectroscopy.
J.
Opt.
Soc.
Am.
B12(12),2467–2474(1995)8.
49.
D.
Meshulach,D.
Yelin,Y.
Silberberg,Whitelightdispersionmeasurementsbyone-andtwo-dimensionalspectralinterference.
IEEEJ.
QuantumElectron.
33(11),1969–1974(1997)8.
50.
A.
B¨orzs¨onyia,A.
P.
Kovacsa,M.
G¨orbea,K.
Osvaya,Advancesandlimitationsofphasedispersionmeasurementbyspectrallyandspatiallyresolvedinterferometry.
Opt.
Commun.
281(11),3051–3061(2008)8.
51.
I.
Pupeza,X.
Gu,E.
Fill,T.
Eidam,J.
Limpert,A.
TRunnermann,F.
Krausz,T.
Udem,Highlysensitivedispersionmeasurementofahigh-powerpassiveopticalresonatorusingspatial-spectralinterferometry.
Opt.
Express18(25),26184–26195(2010)8.
52.
A.
Schliesser,C.
Gohle,T.
Udem,T.
W.
HRansch,Completecharacterizationofabroadbandhigh-nessecavityusinganopticalfrequencycomb.
Opt.
Express14(13),5975–5983(2006)Chapter99.
1.
H.
Daglish,C.
North,Watchinglightwavesdecline.
NewSci.
48(721),14–15(1970)9.
2.
D.
A.
Pinnow,T.
C.
Rich,Developmentofacalorimetricmethodformakingprecisionopticalabsorptionmeasurements.
Appl.
Opt.
12(5),984–992(1973)References6779.
3.
L.
H.
Scolnic,Areviewoftechniquesformeasuringsmallopticallossesininfraredtransmittingmaterials,inOpticalPropertiesofHighlyTransparentSolids,ed.
byS.
S.
Mitra,B.
Bendow(NewYork,Plenum,1975),pp.
405–4349.
4.
H.
B.
Rosenstock,M.
Hass,D.
A.
Gregory,J.
A.
Harrington,Analysisoflasercalorimetricdata.
Appl.
Opt.
16(11),2837–2842(1977)9.
5.
H.
B.
Rosenstock,D.
A.
Gregory,J.
A.
Harrington,Infraredbulkandsurfaceabsorptionbynearlytransparentcrystals.
Appl.
Opt.
15(9),2075–2079(1976)9.
6.
H.
S.
Carslaw,J.
C.
Jaeger,ConductionofHeatinSolids(OxfordUniversityPress,London,1969)9.
7.
P.
J.
Severin,Calorimetricmeasurementsofweaklyabsorbingmaterials:theory.
Appl.
Opt.
18(10),1546–1554(1976);P.
J.
Severin,H.
vanEsveld,Calorimetricmeasurementsoftheabsorptioncoefcientofberqualityglass:experiment.
Appl.
Opt.
20(10),1833–1839(1981)9.
8.
P.
A.
Miles,Staticprolecalorimetryoflasermaterials.
Appl.
Opt.
16(11),2897–2901(1977)9.
9.
M.
Hass,J.
W.
Davidson,H.
B.
Rosenstock,J.
Babiskin,Measurementofverylowabsorptioncoefcientbylasercalorimetry.
Appl.
Opt.
14(5),1128–1129(1975)9.
10.
J.
E.
Midwinter,OpticalFibersforTransmission(Wiley,NewYork,1979)9.
11.
D.
Bunimovich,L.
Nagli,A.
Katzir,Absorptionmeasurementsofmixedsilverhalidecrystalsandbersbylasercalorimetry.
Appl.
Opt.
33(1),117–119(1994)9.
12.
J.
A.
Harrington,M.
Braunstein,J.
E.
Rudisill,Measuringtheinfraredabsorptioninthin-lmcoatings.
Appl.
Opt.
16(11),2843–2846(1977)9.
13.
E.
G.
Bernal,Heatowanalysisoflaserabsorptioncalorimetry.
Appl.
Opt.
14(2),314–321(1975)9.
14.
H.
Ahrens,H.
Welling,H.
E.
Scheel,Measurementofopticalabsorptionindielectricreectors.
Appl.
Phys.
1,69–71(1973)9.
15.
N.
K.
Sahoo,K.
V.
S.
R.
Apparao,LasercalorimeterforUVabsorptionmeasurementofdielectricthinlms.
Appl.
Opt.
31(28),6111–6116(1992)9.
16.
P.
A.
Temple,Experimentalandtheoreticalconsiderationsinthinlmlasercalorimetry.
Opt.
Eng.
23(3),326–330(1984)9.
17.
R.
A.
Hoffman,Apparatusforthemeasurementofopticalabsorptivityinlasermirrors.
Appl.
Opt.
13(6),1405–1410(1974)9.
18.
D.
Bunimovich,E.
Belotserkovsky,L.
Nagli,A.
Katzir,Measurementsofabsorptioncoefcientsusingnoncontactber-opticlasercalorimetry.
Appl.
Opt.
34(4),743–745(1995)9.
19.
R.
C.
C.
Leite,R.
S.
Moore,J.
R.
Whinnery,LowabsorptionmeasurementsusinganHe-Nelaser.
Appl.
Phys.
Lett.
5(7),141–143(1964);J.
P.
Gordon,R.
C.
C.
Leite,R.
S.
Moore,S.
P.
S.
Porto,J.
R.
Whinnery,Long-transienteffectsinlaserswithinsertedliquidsamples.
J.
Appl.
Phys.
36(1),3–8(1965)9.
20.
ChHu,J.
R.
Whinnery,Newthermoopticalmeasurementmethodandacomparisonwithothermethods.
Appl.
Opt.
12(1),72–79(1973)9.
21.
J.
Stone,Measurementoftheabsorptionoflightinlow-lossliquids.
J.
Opt.
Soc.
Am.
62(3),327–333(1972);Thermoopticaltechniqueforthemeasurementofabsorptionlossspectruminliquids.
Appl.
Opt.
12(8),1828–1830(1973)9.
22.
D.
Solimini,Accuracyandsensitivityofthethermallensmethodformeasuringabsorption.
Appl.
Opt.
5(12),1931–1939(1966)9.
23.
S.
J.
Sheldon,L.
V.
Knight,J.
M.
Thorne,Laser-inducedthermallenseffect:anewtheoreticalmodel.
Appl.
Opt.
21(9),1663–1669(1982)9.
24.
C.
A.
Carter,J.
M.
Harris,Comparisonofmodelsdescribingthethermallenseffect.
Appl.
Opt.
23(3),476–481(1984)9.
25.
S.
E.
Bialkowski,A.
Chartier,Diffractioneffectsinsingle-andtwo-laserphotothermallensspectroscopy.
Appl.
Opt.
36(27),6711–6721(1997)9.
26.
J.
F.
Power,E.
D.
Salin,Mode-mismatchedlaserinducedthermallenseffectdetectionviaspatialfourieranalysisofbeamproles.
Anal.
Chem.
60(9),838–842(1988);J.
F.
Power,678ReferencesPulsedmodethermallenseffectdetectionintheneareldviathermallyinducedprobebeamspatialphasemodulation:atheory.
Appl.
Opt.
29(1),52–63(1990)9.
27.
A.
C.
Boccara,D.
Fournier,W.
Jackson,N.
M.
Amer,Sensitivephotothermaldeectiontechniqueformeasuringabsorptioninopticallythinmedia.
Opt.
Lett.
5(9),377–379(1980)9.
28.
W.
B.
Jackson,N.
M.
Amer,A.
C.
Boccara,D.
Fournier,Photothermaldeectionspec-troscopyanddetection.
Appl.
Opt.
20(8),1333–1344(1981)9.
29.
M.
Commandre,P.
Roche,J.
-P.
Borgogno,G.
Albrand,Absorptionmappingforcharacterizationofglasssurfaces.
Appl.
Opt.
34(13),2372–2379(1995)9.
30.
M.
Commandre,E.
Pelletier,MeasurementsofabsorptionlossesinTiO2lmsbyacollinearphotothermaldeectiontechnique.
Appl.
Opt.
29(28),4276–4280(1990)9.
31.
M.
Commandre,P.
Roche,Characterizationofopticalcoatingsbyphotothermaldeec-tion.
Appl.
Opt.
35(25),5021–5034(1996)9.
32.
A.
Gatto,M.
Commandre,Multiscalemappingtechniqueforthesimultaneousestima-tionofabsorptionandpartialscatteringinopticalcoatings.
Appl.
Opt.
41(1),225–234(2002)9.
33.
V.
Loriette,C.
Boccara,Absorptionoflow-lossopticalmaterialsmeasuredat1064nmbyaposition-modulatedcollinearphotothermaldetectiontechnique.
Appl.
Opt.
42(4),649–656(2003)9.
34.
R.
Chow,J.
R.
Taylor,Z.
L.
Wu,Absorptancebehaviorofopticalcoatingsforhigh-average-powerlaserapplications.
Appl.
Opt.
39(4),650–658(2000)9.
35.
B.
Li,S.
Martin,E.
Welsch,Insitumeasurementonultravioletdielectriccomponentsbyapulsedtop-hatbeamthermallens.
Appl.
Opt.
39(25),4690–4697(2000)9.
36.
S.
F.
Pellicori,H.
L.
Hettich,Reversiblespectralshiftincoatings.
Appl.
Opt.
27(15),3061–3062(1988)9.
37.
H.
Takashashi,Temperaturestabilityofthin-lmnarrowbandpassltersproducedbyion-assisteddeposition.
Appl.
Opt.
34(4),667–675(1995)9.
38.
E.
Welsch,D.
Ristau,Photothermalmeasurementsonopticalthinlms.
Appl.
Opt.
34(31),7239–7253(1995)9.
39.
L.
Gallaisand,M.
Commandre,Photothermaldeectioninmultilayercoatings:modelingandexperiment.
Appl.
Opt.
44(25),5230–5238(2005)9.
40.
H.
Hao,B.
Li,Photothermaldetuningforabsorptionmeasurementofopticalcoatings.
Appl.
Opt.
47(2),188–194(2008)9.
41.
B.
Li,H.
Blaschke,D.
Ristau,Combinedlasercalorimetryandphotothermaltechniqueforabsorptionmeasurementofopticalcoatings.
Appl.
Opt.
45(23),5827–5831(2006)9.
42.
B.
Li,S.
Martin,E.
Welsch,Pulsedtop-hatbeamthermal-lensmeasurementforultravioletdielectriccoatings.
Opt.
Lett.
24(20),1398–1340(1999)9.
43.
S.
E.
Bialkowski,Accountingforabsorptionsaturationeffectsinpulsedinfraredlaser-excitedphotothermalspectroscopy.
Appl.
Opt.
32(18),3177–3189(1993)9.
44.
A.
Hordvic,Measurementtechniquesforsmallabsorptioncoefcients:recentadvances.
Appl.
Opt.
16(11),2827–2833(1977)9.
45.
M.
Itoh,I.
Ogura,Absorptionmeasurementsoflaseropticalmaterialsbyinterferometriccalorimetry.
J.
Appl.
Phys.
53(7),5140–5145(1982)9.
46.
A.
A.
Gilionis,P.
Yu.
Krauialis,A.
K.
Maldutis,Yu.
I.
Reksnis,S.
B.
Sakalauskas,Evalu-ationofopticalcharacteristicsofsolidmaterialsbythermoopticalmethodusingpulsedlaserradiation,inThesesoftheIVthConferenceonNonresonanceLightInteractionswithMediums,Leningrad,GOI,1978,pp.
183–1849.
47.
P.
-K.
Kuo,M.
Munidasa,Single-beaminterferometryofathermalbump.
Appl.
Opt.
29(36),5326–5331(1990)9.
48.
A.
Cournoyer,P.
Baulaigue,E.
Lazarides,H.
Blancher,L.
Bertrand,R.
Occelli,PhotothermalmeasurementswithaJamininterferometer.
Appl.
Opt.
36(21),5252–5261(1997)9.
49.
S.
Hild,H.
L¨uck,W.
Winkler,K.
Strain,H.
Grote,J.
Smith,M.
Malec,M.
Hewitson,B.
Willke,J.
Hough,K.
Danzmann,Measurementofalow-absorptionsampleofOH-reducedfusedsilica.
Appl.
Opt.
45(28),7269–7272(2006)References6799.
50.
D.
Ottaway,J.
Betzwieser,S.
Ballmer,S.
Waldman,W.
Kells,Insitumeasurementofabsorptioninhigh-powerinterferometersbyusingbeamdiametermeasurements.
Opt.
Lett.
31(4),450–452(2006)9.
51.
L.
B.
Glebov,V.
G.
Dokuchaev,Measurementsoflowabsorptionextentsbyapolarizationcalorimetricmethod.
J.
Opt.
Technol.
51(2),52–54(1984)9.
52.
D.
A.
Cremers,R.
A.
Keller,Thermooptic-baseddifferentialmeasurementsofweaksoluteabsorptionswithaninterferometer.
Appl.
Opt.
21(9),1654–1662(1982)9.
53.
A.
Rosencwaig,A.
Gersho,Theoryofthephotoacousticeffectwithsolids.
J.
Appl.
Phys.
47(1),64–69(1976)9.
54.
A.
Hordvic,H.
Schlossberg,Photoacoustictechniquefordeterminingopticalabsorptioncoefcientsinsolids.
Appl.
Opt.
16(1),101–107(1977)9.
55.
A.
Rosencwaig,PhotoacousticsandPhotoacousticSpectroscopy(Wiley,NewYork,1980)9.
56.
V.
P.
Zharov,V.
S.
Letokhov,inLaserOptoacousticSpectroscopy,ed.
byA.
M.
Bonch-Bruevich(Moscow,Nauka,1984;Springer,Berlin,1986)9.
57.
Y.
C.
Teng,B.
S.
H.
Royce,Absoluteopticalabsorptioncoefcientmeasurementsusingphotoacousticspectroscopyamplitudeandphaseinformation.
J.
Opt.
Soc.
Am.
70(5),557–560(1980)9.
58.
V.
P.
Novikov,M.
A.
Novikov,Pulsedphotoacousticmethodformeasurementofbulkabsorptionincrystals.
J.
Appl.
Spectrosc.
40(3),499–502(1984)9.
59.
A.
A.
Betin,O.
V.
Mitropolskii,V.
P.
Novikov,M.
A.
Novikov,StudyofopticallossesinIRopticalmaterialsbylaserphotoacousticmethod.
S.
J.
QuantumElectron.
12(9),1856–1862(1985)9.
60.
S.
A.
Vinokurov,Surfaceandbulkabsorptionatphotoacousticmeasurements.
J.
Opt.
Technol.
50(10),14–16(1983)9.
61.
M.
Itoh,H.
Saito,Pulsedphotoacoustictechniquetomeasuretheabsorptioncoefcientsofthehighlytransparentopticalmaterials.
Opt.
Commun.
44(4),229–231(1983)9.
62.
M.
Y.
Raja,D.
W.
Reicher,S.
R.
J.
Brueck,J.
R.
McNeil,D.
E.
Oates,High-sensitivitysurface-photoacousticspectroscopy.
Opt.
Lett.
15(1),66–68(1990)9.
63.
E.
L.
Kerr,J.
G.
Atwood,Thelaserilluminatedabsorptivityspectrophone:amethodformeasurementofweakabsorptivityingasesatlaserwavelengths.
Appl.
Opt.
7(5),915–921(1968)9.
64.
J.
G.
Parker,Opticalabsorptioninglass:investigationusinganacoustictechnique.
Appl.
Opt.
12(12),2974–2977(1973)9.
65.
L.
-G.
Rosengren,Optimaloptoacousticdetectordesign.
Appl.
Opt.
14(8),1960–1976(1975)9.
66.
J.
F.
McClelland,R.
N.
Kniseley,Photoacousticspectroscopywithcondensedsamples.
Appl.
Opt.
15(11),2658–2663(1976)9.
67.
A.
C.
Tam,C.
K.
N.
Patel,Opticalabsorptionsoflightandheavywaterbylaseroptoa-cousticspectroscopy.
Appl.
Opt.
18(19),3348–3358(1979)9.
68.
L.
B.
Kreuzer,Ultralowgasconcentrationinfraredabsorptionspectroscopy.
J.
Appl.
Phys.
42(7),2934–2943(1971)9.
69.
P.
C.
Claspy,C.
Ha,Y.
-H.
Pao,OptoacousticdetectionofNO2usingapulseddyelaser.
Appl.
Opt.
16(11),2972–2973(1977)9.
70.
C.
F.
DeweyJr.
,R.
D.
Kamm,C.
E.
Hackett,Acousticamplierfordetectionofatmo-sphericpollutants.
Appl.
Phys.
Lett.
23(11),633–635(1973)9.
71.
M.
W.
Sigrist,Lasergenerationofacousticwavesinliquidsandgases.
J.
Appl.
Phys.
60(7),R83(1986)9.
72.
P.
L.
Meyer,M.
W.
Sigrist,AtmosphericpollutionmonitoringusingCO2-laserphotoa-cousticspectroscopyandothertechniques.
Rev.
Sci.
Instrum.
61(7),1779–1807(1990)9.
73.
R.
P.
Fiegel,P.
B.
Hays,W.
M.
Wright,Photoacoustictechniqueforthemeasurementofabsorptionlineproles.
Appl.
Opt.
28(7),1401–1408(1989)9.
74.
M.
A.
Gondal,Laserphotoacousticspectrometerforremotemonitoringofatmosphericpollutants.
Appl.
Opt.
36(15),3195–3201(1997)680References9.
75.
M.
Harris,G.
N.
Pearson,D.
V.
Willetts,K.
Ridley,P.
R.
Tapster,B.
Perrett,Pulsedindirectphotoacousticspectroscopy:applicationtoremotedetectionofcondensedphases.
Appl.
Opt.
39(6),1032–1040(2000)9.
76.
M.
Fiedler,P.
Hess,Frequencydomainanalysisofacousticresonancesexcitedwithsinglelaserpulses,inPhotoacousticandPhotothermalPhenomena,ed.
byJ.
C.
Mur-phy,J.
W.
Maclachlan-Spicer,L.
C.
Aamodt,B.
S.
H.
Royce.
SpringerSeriesinOpticalSciences,vol.
62(Springer,Berlin,1990),pp.
344–3469.
77.
A.
Miklos,C.
Brand,A.
Winkler,P.
Hess,Effectivenoisereductiononpulsedlaserexcitationofmodesinahigh-Qphotoacousticresonator.
J.
Phys.
IV4(7),781–784(1994)9.
78.
C.
Brand,A.
Winkler,P.
Hess,A.
Miklos,Z.
Bozoki,J.
Sneider,Pulsed-laserexcitationofacousticmodesinopenhigh-Qphotoacousticresonatorsfortracegasmonitoring:resultsforC2H4.
Appl.
Opt.
34(18),3257–3266(1995)9.
79.
P.
Repond,M.
W.
Sigrist,PhotoacousticspectroscopyontracegaseswithcontinuouslytunableCO2laser.
Appl.
Opt.
35(21),4065–4085(1996)9.
80.
G.
Busse,D.
Herboeck,DifferentialHelmholtzresonatorasanoptoacousticdetector.
Appl.
Opt.
18(23),3959–3961(1979)9.
81.
J.
Peizi,K.
Klein,O.
Nordhaus,ExtendedHelmholtzresonatorinlow-temperaturephotoacousticspectroscopy.
Appl.
Opt.
21(1),94–99(1982)9.
82.
S.
Schafer,A.
Miklos,P.
Hess,Quantitativesignalanalysisinpulsedresonantphotoa-coustics.
Appl.
Opt.
36(15),3202–3211(1997)9.
83.
A.
Miklos,C.
-H.
Lim,W.
-W.
Hsiang,G.
-C.
Liang,A.
H.
Kung,A.
Schmohl,P.
Hess,Photoacousticmeasurementofmethaneconcentrationswithacompactpulsedopticalparametricoscillator.
Appl.
Opt.
41(15),2985–2993(2002)9.
84.
J.
Henningsen,N.
Melander,Sensitivemeasurementofadsorptiondynamicswithnonresonantgasphasephotoacoustics.
Appl.
Opt.
36(27),7037–7045(1997)9.
85.
A.
Schmohl,A.
Miklos,P.
Hess,Effectsofadsorption–desorptionprocessesontheresponsetimeandaccuracyofphotoacousticdetectionofammonia.
Appl.
Opt.
40(15),2571–2578(2001)9.
86.
A.
Miklos,P.
Hess,Z.
Bozoki,Applicationofacousticresonatorsinphotoacoustictracegasanalysisandmetrology.
Rev.
Sci.
Instrum.
72(4),1937–1955(2001)9.
87.
M.
E.
Webber,M.
Pushkarsky,C.
N.
Patel,Fiber-amplier-enhancedphotoacousticspec-troscopywithnear-infraredtunablediodelasers.
Appl.
Opt.
42(12),2119–2126(2003)9.
88.
Z.
Bozoki,A.
Mohacsi,G.
Szabo,Z.
Bor,M.
Erdelyi,W.
Chen,F.
K.
Tittel,Near-infrareddiodelaserbasedspectroscopicdetectionofammonia:acomparativestudyofphotoacousticanddirectopticalabsorptionmethods.
Appl.
Spectrosc.
56(6),715–719(2002)9.
89.
H.
O.
McMahon,Thermalradiationfrompartiallytransparentreectingbodies.
J.
Opt.
Soc.
Am.
40(6),376–380(1950)9.
90.
D.
Weber,Low-temperature,directional,spectralemissivityoftranslucentsolids.
J.
Opt.
Soc.
Am.
50(8),808–810(1960)9.
91.
D.
L.
Stewart,Infraredspectralemittancemeasurementsofopticalmaterials.
Appl.
Opt.
5(12),1911–1915(1966)9.
92.
R.
P.
Heinisch,R.
N.
Schmidt,Developmentandapplicationofaninstrumentforthemeasurementofdirectionalemittanceofblackbodycavities.
Appl.
Opt.
9(8),1920–1925(1970)9.
93.
E.
M.
Sparrow,P.
D.
Kruger,R.
P.
Heinisch,Cavitymethodsfordeterminingtheemittanceofsolids.
Appl.
Opt.
12(10),2466–2471(1973)9.
94.
F.
A.
Benford,Anabsolutemethodfordeterminingcoefcientsofdiffusereection.
Gen.
Electr.
Rev.
23,72–75(1920)9.
95.
F.
Benford,Theintegratingfactorofthephotometricsphere.
J.
Opt.
Soc.
Am.
25(10),332–339(1935)References6819.
96.
P.
Elterman,Integratingcavityspectroscopy.
Appl.
Opt.
9(9),2140–2142(1970)9.
97.
E.
S.
Fry,G.
W.
Kattawar,R.
M.
Pope,Integratingcavityabsorptionmeter.
Appl.
Opt.
31(12),2055–2065(1992)9.
98.
R.
M.
Pope,E.
S.
Fry,Absorptionspectrum380–700nmofpurewater.
II.
Integratingcavitymeasurements.
Appl.
Opt.
36(33),8710–8722(1997);seealso:T.
I.
Quickenden,C.
G.
Freeman,R.
A.
J.
Litjens,SomecommentsonthepaperbyE.
S.
Fryonthevisibleandnear-ultravioletabsorptionspectrumofliquidwater.
Appl.
Opt.
39(16),2740–2742(2000)9.
99.
J.
T.
O.
Kirk,Modelingtheperformanceofanintegrating-cavityabsorptionmeter:theoryandcalculationsforasphericalcavity.
Appl.
Opt.
34(21),4397–4408(1995)9.
100.
D.
M.
Hobbs,N.
J.
McCormick,Designofanintegratingcavityabsorptionmeter.
Appl.
Opt.
38(3),456–461(1999)9.
101.
J.
T.
O.
Kirk,Point-sourceintegrating-cavityabsorptionmeter:theoreticalprinciplesandnumericalmodeling.
Appl.
Opt.
36(24),6123–6128(1997)9.
102.
R.
A.
Leathers,T.
V.
Downes,C.
O.
Davis,Analysisofapoint-sourceintegrating-cavityabsorptionmeter.
Appl.
Opt.
39(33),6118–6127(2000)9.
103.
G.
M.
Hale,M.
R.
Querry,Opticalconstantsofwaterinthe200-nmto200-Mmwavelengthregion.
Appl.
Opt.
12(3),555–563(1973)9.
104.
R.
R¨ottgers,W.
Sch¨onfeld,P.
-R.
Kipp,R.
Doerffer,Practicaltestofapoint-sourceintegratingcavityabsorptionmeter:theperformanceofdifferentcollectorassemblies.
Appl.
Opt.
44(26),5549–5560(2005)9.
105.
D.
J.
Gray,G.
W.
Kattawar,E.
S.
Fry,Designandanalysisofaow-throughintegratingcavityabsorptionmeter.
Appl.
Opt.
45(35),8990–8998(2006)9.
106.
J.
A.
Musser,E.
S.
Fry,D.
J.
Gray,Flow-throughintegratingcavityabsorptionmeter:experimentalresults.
Appl.
Opt.
48(19),3596–3602(2009)9.
107.
S.
Tranchart,I.
HadjBachir,J.
-L.
Destombes,Sensitivetracegasdetectionwithnear-infraredlaserdiodesandanintegratingsphere.
Appl.
Opt.
36(35),7070–7074(1996)9.
108.
J.
L.
Keef,J.
F.
Clare,K.
J.
Thome,Analyticalsolutionforintegratingspherespectralefciencyinclusiveofatmosphericattenuation.
Appl.
Opt.
47(2),253–262(2008)9.
109.
A.
D.
Clarke,Integratingsandwich:anewmethodofmeasurementofthelightabsorptioncoefcientforatmosphericparticles.
Appl.
Opt.
21(16),3011–3020(1982)9.
110.
E.
S.
Fry,J.
Musser,G.
W.
Kattawar,P.
-W.
Zhai,Integratingcavities:temporalresponse.
Appl.
Opt.
45(36),9053–9065(2006)9.
111.
J.
Hodgkinson,D.
Masiyano,R.
P.
Tatam,Usingintegratingspheresasabsorptioncells:path-lengthdistributionandapplicationofBeer'slaw.
Appl.
Opt.
48(30),5748–5758(2009)9.
112.
N.
Bosschaart,M.
C.
G.
Aalders,D.
J.
Faber,J.
J.
A.
Weda,M.
J.
C.
vanGemert,T.
G.
vanLeeuwen,Quantitativemeasurementsofabsorptionspectrainscatteringmediabylow-coherencespectroscopy.
Opt.
Lett.
34(23),3746–3748(2009)9.
113.
A.
A.
Kosterev,Yu.
A.
Bakhirkin,R.
F.
Curl,F.
K.
Tittel,Quartz-enhancedphotoacousticspectroscopy.
Opt.
Lett.
27(21),1902–1904(2002)9.
114.
A.
A.
Kosterev,F.
K.
Tittel,D.
V.
Serebryakov,A.
L.
Malinovsky,I.
V.
Morozov,Applica-tionsofquartztuningforksinspectroscopicgassensing.
Rev.
Sci.
Instrum.
76,Article063102(2005)9.
115.
K.
Liu,J.
Li,L.
Wang,T.
Tan,W.
Zhang,X.
Gao,W.
Chen,F.
K.
Tittel,Tracegassensorbasedonquartztuningforkenhancedlaserphotoacousticspectroscopy.
Appl.
Phys.
B94(3),527–533(2009)9.
116.
V.
Spagnolo,A.
A.
Kosterev,L.
Dong,R.
Lewicki,F.
K.
Tittel,NOtracegassensorbasedonquartz-enhancedphotoacousticspectroscopyandexternalcavityquantumcascadelaser.
Appl.
Phys.
B100(1),125–130(2010)9.
117.
J.
H.
Doty,A.
A.
Kosterev,F.
K.
Tittel,RecentadvancesinResonantOptothermalacousticDetection,in"QuantumSensingandNanophotonicDevicesVIII",ed.
byM.
Razeghi,R.
Sudharsanan,G.
J.
Brown,ProceedingSPIE,2011,vol.
7945,Article79450Q682References9.
118.
N.
Petra,J.
Zweck,A.
A.
Kosterev,S.
E.
Minkoff,D.
Thomazy,Theoreticalanalysisofaquartz-enhancedphotoacousticspectroscopysensor.
Appl.
Phys.
B94(4),673–680(2009)9.
119.
T.
Laurila,H.
Cattaneo,V.
Koskinen,J.
Kauppinen,R.
Hernberg,Diodelaser-basedphotoacousticspectroscopywithinterferometrically-enhancedcantileverdetection.
Opt.
Express13(7),2453–2458(2005)9.
120.
E.
L.
Holthoff,D.
A.
Heaps,P.
M.
Pellegrino,DevelopmentofaMEMS-scalephotoacous-ticchemicalsensorusingaquantumcascadelaser.
IEEESens.
J.
10(3),572–577(2010);R.
G.
Polcawich,P.
M.
Pellegrino,MicroelectromechanicalresonantphotoacousticCell,U.
S.
Patent7304732,4Dec20039.
121.
B.
Sch¨afer,J.
Gloger,U.
Leinhos,K.
Mann,Photo-thermalmeasurementofabsorptancelosses,temperatureinducedwavefrontdeformationandcompactioninDUV-optics.
Opt.
Express17(25),23025–23036(2009)9.
122.
B.
Sch¨afer,M.
Sch¨oneck,A.
Bayer,K.
Mann,AbsolutemeasurementofsurfaceandbulkabsorptioninDUVopticsfromtemperatureinducedwavefrontdeformation.
Opt.
Express18(21),21534–21539(2010)Chapter1010.
1.
K.
I.
Tarasov,Spectrophotometers(Mashinostroenie,Leningrad,1976)10.
2.
V.
G.
Vorob'ev,Sourcesofphotometricscalenonlinearityinoptical-nullspectropho-tometers.
J.
Opt.
Technol.
46(9),512–515(1979)10.
3.
BeckmanCoulterInc.
,DU800UV/VisSpectrophotometerSpecications,2010;H.
H.
Cary,A.
O.
Beckman,Aquartzphotoelectricspectrophotometer.
J.
Opt.
Soc.
Am.
31(11),682–689(1941)10.
4.
W.
Swindell,Electroniccircuitsofvisualradiationdetectors,inAppliedOpticsandOpticalEngineering,ed.
byR.
R.
Shannon,J.
C.
Wyant(AcademicPress,NewYork,1980)10.
5.
M.
R.
Querry,P.
G.
Cary,R.
C.
Waring,Split-pulselasermethodformeasuringattenuationcoefcientsoftransparentliquids:applicationtodeionizedlteredwaterinthevisibleregion.
Appl.
Opt.
17(22),3587–3592(1978)10.
6.
E.
S.
Voropay,V.
I.
Karas,P.
A.
Torpachev,Measurementsofopticallossesusingtwopairsofphotodiode-transimpedanceampliers.
Meas.
Tech.
26(2),33–35(1984)10.
7.
E.
S.
Voropay,V.
I.
Karas,P.
A.
Torpachev,Studyofthepossibilityofmeasurementsofthelightuxwithanamplituderesolutionof105,Metrologia,Moscow,1985,No.
9,pp.
31–3810.
8.
R.
T.
H.
Collis,Lidar.
Appl.
Opt.
9(8),1782–1788(1970)10.
9.
S.
A.
Ahmed,MolecularairpollutionmonitoringbyDyeLasermeasurementofdiffer-entialabsorptionofatmosphericelasticbackscatter.
Appl.
Opt.
12(4),901–903(1973)10.
10.
J.
Gelbwachs,NO2lidarcomparison:uorescencevsbackscattereddifferentialabsorp-tion.
Appl.
Opt.
12(12),2812–2813(1973)10.
11.
U.
Platt,J.
Stutz,DifferentialOpticalAbsorptionSpectroscopy—PrinciplesandAppli-cations(Springer,Heidelberg,2005)10.
12.
T.
Brauers,M.
Hausmann,U.
Brandenburger,H.
-P.
Dorn,Improvementofdifferentialopticalabsorptionspectroscopywithamultichannelscanningtechnique.
Appl.
Opt.
34(21),4472–4479(1995)10.
13.
M.
Bartholdi,G.
C.
Salzman,R.
D.
Hiebert,M.
Kerker,Differentiallightscatteringphotometerforrapidanalysisofsingleparticlesinow.
Appl.
Opt.
19(10),1573–1581(1980)10.
14.
G.
Laufer,A.
Ben-David,Optimizeddifferentialabsorptionradiometerforremotesensingofchemicalefuents.
Appl.
Opt.
41(12),2263–2273(2002)References68310.
15.
V.
Ebert,P.
Vogel,NearshotnoisedetectionofoxygenintheA-bandwithvertical-cavitysurface-emittinglasers.
Appl.
Phys.
B72(1),127–135(2001)10.
16.
J.
R.
Schmidt,S.
T.
Sanders,Differentialabsorptionsensorappliedforliquidoxygenmeasurements.
Appl.
Opt.
44(28),6058–6066(2005)10.
17.
I.
Pundt,K.
U.
Mettendorf,Multibeamlong-pathdifferentialopticalabsorptionspec-troscopyinstrument:adeviceforsimultaneousmeasurementsalongmultiplelightpaths.
Appl.
Opt.
44(23),4985–4994(2005)10.
18.
C.
Kern,S.
Trick,B.
Rippel,U.
Platt,Applicabilityoflight-emittingdiodesaslightsourcesforactivedifferentialopticalabsorptionspectroscopymeasurements.
Appl.
Opt.
45(9),2077–2088(2006)10.
19.
J.
Stutz,U.
Platt,Numericalanalysisandestimationofthestatisticalerrorofdifferentialopticalabsorptionspectroscopymeasurementswithleast-squaresmethods.
Appl.
Opt.
35(30),6041–6053(1996)10.
20.
M.
Wenig,B.
J¨ahne,U.
Platt,Operatorrepresentationasanewdifferentialopticalabsorptionspectroscopyformalism.
Appl.
Opt.
44(16),3246–3253(2005)10.
21.
C.
Billet,R.
Sablong,Differentialopticalspectroscopyforabsorptioncharacterizationofscatteringmedia.
Opt.
Lett.
32(22),3251–3253(2007)10.
22.
A.
H.
Carrieri,J.
Copper,D.
J.
Owens,E.
S.
Roese,J.
R.
Bottiger,R.
D.
Everly,K.
C.
Hung,Infrareddifferential-absorptionMuellermatrixspectroscopyandneuralnetwork-baseddatafusionforbiologicalaerosolstandoffdetection.
Appl.
Opt.
49(3),382–393(2010)10.
23.
W.
Heitmann,Attenuationmeasurementinlow-lossopticalglassbypolarizedradiation.
Appl.
Opt.
14(12),3047–3052(1975)10.
24.
W.
Heitmann,Attenuationmeasurementinglassforopticalcommunications:animmer-sionmethod.
Appl.
Opt.
15(1),256–260(1976)10.
25.
F.
Ferri,A.
Bassini,E.
Paganini,Commercialspectrophotometerforparticlesizing.
Appl.
Opt.
36(4),884–891(1997)10.
26.
G.
Bonglioli,P.
Brovetto,Principlesofself-modulatingderivativeopticalspectroscopy.
Appl.
Opt.
3(12),1417–1424(1964)10.
27.
G.
Bonglioli,J.
Trench,Signalrecoveringinwavelengthmodulatedspectrometers.
Opt.
Commun.
10(2),207–210(1974)10.
28.
E.
I.
Moses,C.
L.
Tang,High-sensitivitylaserwavelength-modulationspectroscopy.
Opt.
Lett.
1(4),115–117(1977)10.
29.
A.
T.
Forrester,Photoelectricmixingasaspectroscopictool.
J.
Opt.
Soc.
Am.
51(3),253–259(1961)10.
30.
A.
E.
Siegman,Theantennapropertiesofopticalheterodynereceivers.
Appl.
Opt.
5(10),1588–1594(1966)10.
31.
D.
Fink,Coherentdetectionsignal-to-noise.
Appl.
Opt.
14(3),689–690(1975)10.
32.
L.
Mandel,E.
Wolf,Optimumconditionsforheterodynedetectionoflight.
J.
Opt.
Soc.
Am.
65(4),413–420(1975)10.
33.
T.
Takenaka,K.
Tanaka,O.
Fukumitsu,Signal-to-noiseratioinopticalheterodynedetectionforGaussianelds.
Appl.
Opt.
17(21),3466–3470(1978)10.
34.
H.
P.
Yuen,V.
W.
S.
Chan,Noiseinhomodyneandheterodynedetection.
Opt.
Lett.
8(3),177–179(1983)10.
35.
B.
J.
Rye,Differentialabsorptionlidarsystemsensitivitywithheterodynereception.
Appl.
Opt.
17(24),3862–3864(1978)10.
36.
G.
C.
Bjorklund,Frequency-modulationspectroscopy:anewmethodformeasuringweakabsorptionsanddispersions.
Opt.
Lett.
5(1),15–17(1980)10.
37.
W.
Lenth,C.
Ortiz,G.
C.
Bjorklund,Pulsedfrequency-modulationspectroscopyasameansforfastabsorptionmeasurements.
Opt.
Lett.
6(7),351–353(1981)10.
38.
T.
F.
Gallagher,R.
Kachru,F.
Gounand,G.
C.
Bjorklund,W.
Lenth,Frequency-modulationspectroscopywithapulseddyelaser.
Opt.
Lett.
7(1),28–30(1982)10.
39.
M.
Romagnoli,M.
D.
Levenson,G.
C.
Bjorklund,Frequency-modulation-polarizationspectroscopy.
Opt.
Lett.
8(12),635–637(1983)684References10.
40.
N.
H.
Tran,R.
Kachru,P.
Pillet,H.
B.
vanLindenvandenHeuvell,T.
F.
Gallagher,J.
P.
Watjen,Frequency-modulationspectroscopywithapulseddyelaser:experimentalinvestigationsofsensitivityandusefulfeatures.
Appl.
Opt.
23(9),1353–1360(1984)10.
41.
C.
S.
Gudeman,M.
H.
Begemann,J.
Pfaff,R.
J.
Saykally,Tone-burstmodulatedcolor-center-laserspectroscopy.
Opt.
Lett.
8(6),310–312(1983)10.
42.
H.
Lotem,Extensionofthespectralcoveragerangeoffrequencymodulationspec-troscopybydoublefrequencymodulation.
J.
Appl.
Phys.
54(10),6033–6035(1983)10.
43.
D.
E.
Cooper,T.
F.
Gallagher,Doublefrequencymodulationspectroscopy:highmodula-tionfrequencywithlow-bandwidthdetectors.
Appl.
Opt.
24(9),1327–1334(1985)10.
44.
G.
R.
Janik,C.
B.
Carlisle,T.
F.
Gallagher,Two-tonefrequency-modulationspectroscopy.
J.
Opt.
Soc.
Am.
B3(8),1070–1074(1986)10.
45.
D.
E.
Cooper,J.
P.
Watjen,Two-toneopticalheterodynespectroscopywithatunablelead-saltdiodelaser.
Opt.
Lett.
11(10),606–608(1986)10.
46.
D.
E.
Cooper,R.
E.
Warren,Two-toneopticalheterodynespectroscopywithdiodelasers:theoryoflineshapesandexperimentalresults.
J.
Opt.
Soc.
Am.
B4(4),470–480(1987)10.
47.
M.
Gehrtz,W.
Lenth,A.
T.
Young,HaroldS.
Johnston,High-frequency-modulationspectroscopywithalead-saltdiodelaser.
Opt.
Lett.
11(3),132–134(1986)10.
48.
N.
-Y.
Chou,G.
W.
Sachse,Single-toneandtwo-toneAM-FMspectralcalculationsfortunablediodelaserabsorptionspectroscopy.
Appl.
Opt.
26(17),3584–3587(1987)10.
49.
L.
Wang,H.
Riris,C.
B.
Carlisle,T.
F.
Gallagher,Comparisonofapproachestomodula-tionspectroscopywithGaAIAssemiconductorlasers:applicationtowatervapor.
Appl.
Opt.
27(10),2071–2077(1988)10.
50.
C.
B.
Carlisle,D.
E.
Cooper,H.
Preier,Quantumnoise-limitedFMspectroscopywithalead-saltdiodelaser.
Appl.
Opt.
28(13),2567–2576(1989)10.
51.
J.
A.
Silver,Frequency-modulationspectroscopyfortracespeciesdetection:theoryandcomparisonamongexperimentalmethods.
Appl.
Opt.
31(6)707–717(1992);D.
S.
Bomse,A.
C.
Stanton,J.
A.
Silver,Frequencymodulationandwavelengthmodulationspectroscopies:comparisonofexperimentalmethodsusingalead-saltdiodelaser.
Appl.
Opt.
31(6),718–731(1992)10.
52.
J.
M.
Supplee,E.
A.
Whittaker,W.
Lenth,Theoreticaldescriptionoffrequencymodula-tionandwavelengthmodulationspectroscopy.
Appl.
Opt.
33(27),6294–6302(1994)10.
53.
P.
Kluczynski,O.
Axner,TheoreticaldescriptionbasedonFourieranalysisofwavelength-modulationspectrometryintermsofanalyticalandbackgroundsignals.
Appl.
Opt.
38(27),5803–5815(1999)10.
54.
R.
T.
Ku,E.
D.
Hinkley,J.
O.
Sample,Long-pathmonitoringofatmosphericcarbonmonoxidewithatunablediodelasersystem.
Appl.
Opt.
14(4),854–861(1975)10.
55.
J.
Shewchun,B.
K.
Garside,E.
A.
Ballik,C.
C.
Y.
Kwan,M.
M.
Elsherbiny,G.
Hogenkamp,A.
Kazandjian,Pollutionmonitoringsystemsbasedonresonanceabsorp-tionmeasurementsofozonewitha"tunable"CO2laser:somecriteria.
Appl.
Opt.
15(2),340–346(1976)10.
56.
J.
Reid,J.
Shewchun,B.
K.
Garside,E.
A.
Ballik,Highsensitivitypollutiondetectionemployingtunablediodelasers.
Appl.
Opt.
17(2),300–307(1978)10.
57.
J.
Reid,B.
K.
Garside,J.
Shewchun,M.
El-Sherbiny,E.
A.
Ballik,Highsensitivitypointmonitoringofatmosphericgasesemployingtunablediodelasers.
Appl.
Opt.
17(11),1806–1810(1978)10.
58.
H.
Flicker,J.
P.
Aldridge,H.
Filip,N.
G.
Nereson,M.
J.
Reisfeld,W.
H.
Weber,WaveNum-bercalibrationoftunablediodelasersusingetalons.
Appl.
Opt.
17(6),851–852(1978)10.
59.
A.
R.
Chraplyvy,Diodelaserspectrawithsimultaneousfrequencycalibration.
Appl.
Opt.
17(17),2674–2675(1978)10.
60.
D.
E.
Jennings,Absolutelinestrengthsinv4,12CH4:adual-beamdiodelaserspectrom-eterwithsweepintegration.
Appl.
Opt.
19(16),2695–2700(1980)10.
61.
D.
T.
Cassidy,J.
Reid,High-sensitivitydetectionoftracegasesusingsweepintegrationandtunablediodelasers.
Appl.
Opt.
21(14),2527–2530(1982)References68510.
62.
R.
D.
Schaeffer,J.
C.
Sproul,J.
O'Connell,C.
vanVloten,A.
W.
Mantz,MultipassabsorptioncelldesignedforhightemperatureUHVoperation.
Appl.
Opt.
28(9),1710–1713(1989)10.
63.
M.
Feher,P.
A.
Martin,A.
Rohrbacher,A.
M.
Soliva,J.
P.
Maier,Inexpensivenear-infrareddiode-laser-baseddetectionsystemforammonia.
Appl.
Opt.
32(12),2028–2030(1993)10.
64.
M.
P.
Arroyo,R.
K.
Hanson,Absorptionmeasurementsofwater-vaporconcentration,temperature,andline-shapeparametersusingatunableInGaAsPdiodelaser.
Appl.
Opt.
32(30),6104–6116(1993)10.
65.
M.
P.
Arroyo,S.
Langlois,R.
K.
Hanson,Diode-laserabsorptiontechniqueforsimulta-neousmeasurementsofmultiplegasdynamicparametersinhigh-speedowscontainingwatervapor.
Appl.
Opt.
33(15),3296–3307(1994)10.
66.
S.
C.
Woodworth,D.
T.
Cassidy,M.
J.
Hamp,Sensitiveabsorptionspectroscopybyuseofanasymmetricmultiple-quantum-welldiodelaserinanexternalcavity.
Appl.
Opt.
40(36),6719–6724(2001)10.
67.
W.
Armerding,M.
Spiekermann,J.
Walter,F.
J.
Comes,Multipassopticalabsorptionspectroscopy:afast-scanninglaserspectrometerfortheinsitudeterminationofatmo-spherictrace-gascomponents,inparticularOH.
Appl.
Opt.
35(21),4206–4219(1996)10.
68.
D.
Richter,D.
G.
Lancaster,F.
K.
Tittel,Developmentofanautomateddiode-laser-basedmulticomponentgassensor.
Appl.
Opt.
39(24),4444–4450(2000)10.
69.
R.
Claps,F.
V.
Englich,D.
P.
Leleux,D.
Richter,F.
K.
Tittel,R.
F.
Curl,Ammoniadetec-tionbyuseofnear-infrareddiode-laser-basedovertonespectroscopy.
Appl.
Opt.
40(24),4387–4394(2001)10.
70.
R.
T.
Ku,D.
L.
Spears,High-sensitivityinfraredheterodyneradiometerusingatunable-diode-laserlocaloscillator.
Opt.
Lett.
1(3),84–86(1977)10.
71.
C.
B.
Carlisle,D.
E.
Cooper,Tunable-diode-laserfrequency-modulationspectroscopyusingbalancedhomodynedetection.
Opt.
Lett.
14(23),1306–1308(1989)10.
72.
G.
D.
Houser,E.
Garmire,Balanceddetectiontechniquetomeasuresmallchangesintransmission.
Appl.
Opt.
33(6),1059–1062(1994)10.
73.
P.
C.
D.
Hobbs,Ultrasensitivelasermeasurementswithouttears.
Appl.
Opt.
36(4),903–920(1997);Noisecancellingcircuitryforopticalsystemswithsignaldividingandcombiningmeans,USPatent5,134,276;28July199210.
74.
M.
G.
Allen,K.
L.
Carleton,S.
J.
Davis,W.
J.
Kessler,C.
E.
Otis,D.
A.
Palombo,D.
M.
Son-nenfroh,Ultrasensitivedual-beamabsorptionandgainspectroscopy:applicationsfornear-infraredandvisiblediodelasersensors.
Appl.
Opt.
34(18),3240–3248(1995)10.
75.
D.
M.
Sonnenfroh,M.
G.
Allen,Ultrasensitive,visibletunablediodelaserdetectionofNO2.
Appl.
Opt.
35(21),4053–4058(1996)10.
76.
D.
M.
Sonnenfroh,W.
T.
Rawlins,M.
G.
Allen,C.
Gmachl,F.
Capasso,A.
L.
Hutchinson,D.
L.
Sivco,J.
N.
Baillargeon,A.
Y.
Cho,Applicationofbalanceddetectiontoabsorptionmeasurementsoftracegaseswithroom-temperature,quasi-cwquantum-cascadelasers.
Appl.
Opt.
40(6),812–820(2001)10.
77.
M.
A.
Bukhshtab,Absolutemeasurementsofsmallspecularreectioncoefcients.
Meas.
Tech.
30(3),218–220(1987)10.
78.
M.
A.
Bukshtab,RegardingCorrelationsAmongMeasurementsofLowOpticalLosses(CentralInstitute"Information",Moscow,1987)10.
79.
M.
A.
Bukhshtab,Measurementsoflowopticallossinreectedradiation,Svetotekhnika,Moscow,1987,No.
6,pp.
5–610.
80.
M.
A.
Bukhshtab,V.
N.
Koromislichenko,A.
Y.
Kirillov,Two-channelsystemfordeter-minationofsmallopticallossesoflaserradiationwithanamplituderesolutionofmorethan10,000.
Instrum.
Exp.
Tech.
31(2),443–446(1988)10.
81.
A.
Gh.
Podoleanu,Unbalancedversusbalancedoperationinanopticalcoherencetomographysystem.
Appl.
Opt.
39(1),173–182(2000)10.
82.
O.
Haderka,V.
Michalek,V.
Urbaˇsek,M.
Jeˇzek,Fasttime-domainbalancedhomodynedetectionoflight.
Appl.
Opt.
48(15),2884–2889(2009)686ReferencesChapter1111.
1.
D.
Marcuse,PrinciplesofOpticalFiberMeasurements(AcademicPress,NewYork,1981)11.
2.
M.
K.
Barnoski,S.
D.
Personick,Measurementsinberoptics.
Proc.
IEEE66(4),429–441(1978)11.
3.
D.
B.
Keck,P.
C.
Shultz,F.
Zimar,Attenuationofmultimodeglassopticalwaveguides.
Appl.
Phys.
Lett.
21(5),215–217(1972)11.
4.
A.
R.
Tynes,Integratingcubescatteringdetector.
Appl.
Opt.
9(12),2706–2710(1970)11.
5.
D.
Marcuse,Lossanalysisofsingle-modebersplices.
Bell.
Syst.
Tech.
J.
56,703–718(1977)11.
6.
M.
Tachikura,Internallossmeasurementtechniqueforopticaldevicesequippedwithberconnectorsatbothends,Engineering&LaboratoryNotes,inOpt.
Photon.
News,1995,Vol.
6,No.
2,pap.
511.
7.
A.
Zaganiaris,Simultaneousmeasurementofabsorptionandscatteringlossesinbulkglassesandopticalbersbyamicrocalorimetricmethod.
Appl.
Phys.
Lett.
25(6),345–347(1974)11.
8.
E.
T.
Stone,W.
B.
Gardner,C.
R.
Lovelace,Calorimetricmeasurementofabsorptionandscatteringlossesinopticalbers.
Opt.
Lett.
2(2),48–50(1978)11.
9.
A.
R.
Tynes,A.
D.
Pearson,D.
L.
Bisbee,Lossmechanismsandmeasurementsincladglassbersandbulkglass.
J.
Opt.
Soc.
Am.
61(2),143–153(1971)11.
10.
S.
Huard,D.
Chardon,Measuredel'absorptiond'unebreoptiquepareffetphot-acoustique.
Opt.
Commun.
39(1–2),59–63(1981)11.
11.
G.
Ghosh,S.
Kachi,Y.
Sasaki,M.
Kimura,Newmethodtomeasurescatteringandtotallossesofopticalbres.
Electron.
Lett.
21(16),670–671(1985)11.
12.
X.
Zhou,S.
Zhu,H.
Shen,MuqingLiu,Anewspatialintegrationmethodforluminousuxdeterminationoflight-emittingdiodes.
Meas.
Sci.
Technol.
21,Article105303,6pages(2010)11.
13.
R.
Olshansky,S.
M.
Oaks,Differentialmodeattenuationmeasurementsingraded-indexbers.
Appl.
Opt.
17(11),1830–1835(1978)11.
14.
L.
E.
Busse,G.
H.
McCabe,I.
D.
Aggarwal,Wavelengthdependenceofthescatteringlossinuorideopticalbers.
Opt.
Lett.
15(8),423–424(1990)11.
15.
N.
Mekada,A.
Al-Hamdan,T.
Murakami,M.
Miyoshi,Newdirectmeasurementtechniqueofpolarizationdependentlosswithhighresolutionandrepeatability,inSymposiumonOpticalFiberMeasurements,TechnicalDigest,NISTSpecialPublication864,1994,pp.
189–19211.
16.
R.
C.
Jones,Anewcalculusforthetreatmentofopticalsystems.
VI.
Experimentaldeterminationofthematrix.
J.
Opt.
Soc.
Am.
37(2),110–112(1947)11.
17.
B.
L.
Heffner,Deterministic,analyticallycompletemeasurementofpolarization-dependenttransmissionthroughopticaldevices.
IEEEPhoton.
Technol.
Lett.
4(9),451–454(1992)11.
18.
B.
L.
Heffner,Recentprogressinpolarizationmeasurementtechniques,inSymposiumonOpticalFiberMeasurements,TechnicalDigest,NISTSpecialPublication839,1992,pp.
131–13611.
19.
N.
Gisin,Statisticsofpolarizationdependentlosses.
Opt.
Commun.
114(8),399–405(1995)11.
20.
A.
Elamari,N.
Gisin,B.
Perny,H.
Zbinden,C.
Zimmer,Polarizationdependentlossofconcatenatedpassiveopticalcomponents,inSymposiumonOpticalFiberMeasure-ments,TechnicalDigest,NISTSpecialPublication905,1996,pp.
163–16611.
21.
I.
Molina-Fernandez,J.
Oliva-Rubio,Effectsofphasenoiseinanopticalsix-portmeasurementtechnique.
Opt.
Express13(7),2475–2486(2005)References68711.
22.
M.
Bukhshtab,Interferometricnoiseinbertransmissionsystemsincorporatingbire-fringentsubstances,inSymposiumonOpticalFiberMeasurements,TechnicalDigest,NISTSpecialPublication905,1996,pp.
211–21411.
23.
D.
Schicketanz,Methodandapparatusformeasuringthedistanceofadiscontinuityofglassberfromoneendoftheber,USPatent4,021,121,3May1977;DeutcheAuslegungsschriftNo.
2451654from30October197411.
24.
M.
K.
Barnoski,S.
M.
Jensen,Fiberwaveguides:anoveltechniqueforinvestigatingattenuationcharacteristics.
Appl.
Opt.
15(9),2112–2115(1976)11.
25.
S.
D.
Personick,Photonprobe-anopticalbertime-domainreectometer.
BellSyst.
Tech.
J.
56(3),355–366(1977)11.
26.
R.
I.
MacDonald,Frequencydomainopticalreectometer.
Appl.
Opt.
20(10),1840–1844(1981)11.
27.
W.
Eickhoff,R.
Ulrich,Opticalfrequencyreectometryinsingle-modeber.
Appl.
Phys.
Lett.
39(9),693–695(1981)11.
28.
D.
Uttam,B.
Culshaw,Precisiontimedomainreectometryinopticalbersystemsusingafrequencymodulatedcontinuouswaverangingtechnique.
J.
LightwaveTechnol.
LT-3(5),971–977(1985)11.
29.
F.
P.
Kapron,R.
D.
Maurer,M.
P.
Teter,Theoryofbackscatteringeffectsinwaveguides.
Appl.
Opt.
11(6),1352–1356(1972)11.
30.
E.
Brinkmeyer,Analysisofthebackscatteringmethodforsingle-modeopticalbers.
J.
Opt.
Soc.
Am.
70(8),1010–1012(1980)11.
31.
A.
H.
Hartog,M.
P.
Gold,Onthetheoryofbackscatteringinsingle-modeopticalbers.
J.
LightwaveTechnol.
LT-2(2),76–82(1984)11.
32.
F.
Caviglia,P.
Ricaldone,NoiseerrorinOTDRsplicelossmeasurement,inSymposiumonOpticalFiberMeasurements:TechnicalDigest,NISTSpecialPublication864,1994,pp.
49–5211.
33.
M.
P.
Gold,A.
H.
Harotg,Improved-dynamic-rangesingle-modeOTDRat1.
3m.
Electron.
Lett.
20(7),285–287(1984)11.
34.
H.
Izumita,Y.
Koyamada,S.
Furukawa,I.
Sankawa,PerformancelimitsofcoherentOTDRduetoopticalnonlineareffects,inSymposiumonOpticalFiberMeasurements,TechnicalDigest,NISTSpecialPublication864,1994,pp.
39–4411.
35.
M.
Ghioni,G.
Ripamonti,S.
V.
Vanoli,S.
Pitassi,Multiphotonpulseapproachinphoton-timingOTDRyieldsenhanceddynamicrangeandshortermeasurementtime,inSymposiumonOpticalFiberMeasurements,TechnicalDigest,NISTSpecialPublication792,1990,pp.
31–3411.
36.
G.
Pipamonti,S.
Cova,Opticaltime-domainreectometrywithcentimetreresolutionat10–15Wsensitivity.
Electron.
Lett.
22(15),818–819(1986)11.
37.
D.
Dol,M.
Nazarathy,S.
A.
Newton,5-mm-resolutionoptical-frequency-domainre-ectometryusingacodedphase-reversalmodulator.
Opt.
Lett.
13(8),678–680(1988)11.
38.
D.
Dol,M.
Nazarathy,Opticalfrequencydomainreectometrywithhighsensitivityandresolutionusingopticalsynchronousdetectionwithcodedmodulators.
Electron.
Lett.
25(2),160–162(1989)11.
39.
V.
C.
Y.
So,J.
W.
Jiang,J.
A.
Cargill,P.
J.
Vella,AutomationofanOpticalTimeDomainReectometertomeasurelossandreturnloss.
J.
LightwaveTechnol.
8(7),1078–1082(1990)11.
40.
B.
L.
Danielson,C.
D.
Whittenberg,Guide-wavereectometrywithmicrometerresolu-tion.
Appl.
Opt.
26(14),2836–2842(1987)11.
41.
K.
Takada,I.
Yokohama,K.
Chida,J.
Noda,Newmeasurementsystemforfaultlocationinopticalwaveguidedevicesbasedonaninterferometrictechnique.
Appl.
Opt.
26(9),1603–1606(1987)11.
42.
W.
V.
Sorin,D.
K.
Donald,LongandshortrangemeasurementsusingcoherentFMCWreectometry,inSymposiumonOpticalFiberMeasurements,TechnicalDigest,NISTSpecialPublication792,1990,pp.
27–30688References11.
43.
K.
Takada,A.
Himeno,K.
Yukimatsu,Highsensitivityandsubmillimeterresolutionoptical-timedomainreectometrybasedonlow-coherenceinterference.
J.
LightwaveTechnol.
9(11),1534–1539(1991)11.
44.
K.
Takada,K.
Yukimatsu,M.
Kobayashi,J.
Noda,Rayleighbackscatteringmeasurementofsingle-modebersbylowcoherenceopticaldomainreectometerwith14mspatialresolution.
Appl.
Phys.
Lett.
59(2),143–145(1991)11.
45.
K.
Takada,A.
Himeno,K.
Yukimatsu,Resolution-controllableopticaltimedomainreectometrybasedonlowcoherenceinterference.
J.
LightwaveTechnol.
10(12),1998–2005(1992)11.
46.
E.
A.
Swanson,D.
Huang,M.
R.
Hee,J.
G.
Fujimoto,C.
P.
Lin,C.
A.
Puliato,High-speedopticalcoherencedomainreectometry.
Opt.
Lett.
17(2),151–153(1992)11.
47.
L.
-T.
Wang,K.
Iiyama,F.
Tsukada,N.
Yoshida,K.
Hayashi,Lossmeasurementinopticalwaveguidedevicesbycoherentfrequency-modulatedcontinuous-wavereectometry.
Opt.
Lett.
18(13),1095–1097(1993)11.
48.
S.
K.
Das,A.
F.
Judy,G.
M.
Alameel,R.
M.
Jopson,T.
F.
Adda,Reectancemeasurementinlightwavesystems:acomparisonofvarioustechniques,inSymposiumonOpticalFiberMeasurements,TechnicalDigest,NISTSpecialPublication748,1988,pp.
25–3011.
49.
E.
L.
Buckland,M.
Nishimura,BidirectionalOTDRmeasurementsutilizinganimprovedfolded-pathtechnique,inSymposiumonOpticalFiberMeasurements,TechnicalDigest,NISTSpecialPublication748,1988,pp.
15–1811.
50.
A.
F.
Judy,AnOTDRbasedcombinedend-reectionandbackscattermeasurement,inSymposiumonOpticalFiberMeasurements,TechnicalDigest,NISTSpecialPublication839,1992,pp.
19–2211.
51.
F.
P.
Kapron,B.
P.
Adams,E.
A.
Thomas,J.
W.
Peters,Fiber-opticreectionmeasurementsusingOCWRandOTDRtechniques.
J.
LightwaveTechnol.
7(8),1234–1241(1989)11.
52.
P.
Blanchard,P.
-H.
Zongo,P.
Facq,AccuratereectanceandopticalbrebackscatterparametermeasurementsusinganOTDR.
Electron.
Lett.
26(25),2060–2062(1991)11.
53.
L.
Ducos,P.
Facq,WindowingtechniqueforaccuratemeasurementoflowreectancesbyOTDR,inSymposiumonOpticalFiberMeasurements,TechnicalDigest,NISTSpecialPublication864,1994,pp.
45–4811.
54.
D.
Marcuse,Reectionlossesfromimperfectlybrokenberends.
Appl.
Opt.
14(12),3016–3020(1975)11.
55.
M.
A.
Bukhshtab,V.
N.
Koromislichenko,A.
A.
Ovsiannikov,Methodofdeterminingopticallossesattheendsandendjointsofberlightguides,U.
S.
Patent5,037,197,6Aug199111.
56.
M.
A.
Bukhshtab,V.
N.
Koromislichenko,Lightreectionmethodfortransmission-lossmeasurementsinopticalberlightguides,U.
S.
Patent5,226,102,6July199311.
57.
M.
A.
Bukhshtab,Methodofdeterminingtheopticallossinaber-opticlightguideinreectedradiation,U.
S.
PatentNumber5,331,391,19July199411.
58.
M.
M.
Choy,J.
M.
Gimlett,R.
Welter,L.
G.
Kasovsky,N.
K.
Cheung,Interferometricconversionoflaserphasenoisetointensitynoisebysinglemodeberopticcomponents.
Electron.
Lett.
23(21),1151–1152(1987)11.
59.
L.
Mandel,Phenomenologicaltheoryoflaserbeamuctuationsandbeammixing.
Phys.
Rev.
138(3B),B753–B762(1965)11.
60.
J.
A.
Armstrong,Theoryofinterferometricanalysisoflaserphasenoise.
J.
Opt.
Soc.
Am.
56(8),1024–1031(1966)11.
61.
C.
H.
Henry,Theoryofthelinewidthofsemiconductorlasers.
IEEEJ.
QuantumElectron.
QE-18(2),259–264(1982)11.
62.
R.
W.
Tkach,A.
R.
Chraplyvy,PhasenoiseandlinewidthinanInGaAsPDFBlaser.
J.
LightwaveTechnol.
LT-4(11),1711–1716(1986)11.
63.
M.
Tur,E.
L.
Goldstein,Dependenceoferrorrateonsignal-to-noiseratioinber-opticcommunicationsystemswithphase-inducedintensitynoise.
J.
LightwaveTechnol.
7(12),2055–2058(1989)References68911.
64.
A.
Arie,M.
Tur,E.
L.
Goldstein,Probability-densityfunctionofnoiseattheoutputofatwo-beaminterferometer.
J.
Opt.
Soc.
Am.
A8(12),1936–1942(1991)11.
65.
J.
L.
Gimlett,N.
K.
Cheung,Effectsofphase-to-intensitynoiseconversionbymultiplereectionsongigabit-per-secondDFBlasertransmissionsystems.
J.
LightwaveTechnol.
7(6),888–895(1989)11.
66.
J.
L.
Gimlett,M.
Z.
Iqobal,N.
K.
Cheung,A.
Righetti,F.
Fontana,G.
Grasso,ObservationofequivalentRayleighscatteringmirrorsinlightwavesystemswithopticalampliers.
IEEEPhoton.
Technol.
Lett.
2(3),211–213(1990)11.
67.
C.
Desem,OpticalInterferenceinsubscribermultiplexedsystemswithmultipleopticalcarriers.
IEEEJ.
Sel.
AreasCommun.
8(7),1290–1295(1990)11.
68.
M.
Nazarathy,W.
Sorin,D.
Baney,S.
Newton,Spectralanalysisofopticalmixingmeasurements.
J.
LightwaveTechnol.
7(7),1083–1096(1989)11.
69.
M.
Tur,E.
L.
Goldstein,Probabilitydistributionofphase-inducedintensitynoisegener-atedbydistributed-feedback,lasers.
Opt.
Lett.
15(1),1–3(1990)11.
70.
P.
J.
Legg,D.
K.
Hunter,I.
Andonovic,P.
E.
Barnsley,Inter-channelcrosstalkphenomenainopticaltimedivisionmultiplexedswitchingnetworks.
IEEEPhoton.
Technol.
Lett.
6(5),661–663(1994)11.
71.
E.
L.
Goldstein,L.
Eskildsen,A.
F.
Elrefaie,Performanceimplicationsofcomponentcrosstalkintransparentlightwavenetworks.
IEEEPhoton.
Technol.
Lett.
6(5),657–659(1994)11.
72.
E.
L.
Goldstein,L.
Eskildsen,Scalinglimitationsintransparentopticalnetworksduetolow-levelcrosstalk.
IEEEPhoton.
Technol.
Lett.
7(1),93–94(1995)11.
73.
L.
Eskildsen,P.
B.
Hunsen,Interferometricnoiseinlightwavesystemswithopticalpreampliers.
IEEEPhoton.
Technol.
Lett.
9(11),1538–1540(1997)11.
74.
H.
J.
S.
Dorren,H.
deWaardt,I.
T.
Monroy,StatisticalanalysisofcrosstalkaccumulationinWDMnetworks.
J.
LightwaveTechnol.
17(12),2425–2430(1999)11.
75.
L.
Gilner,Scalabilityofopticalmultiwavelengthswitchingnetworks:crosstalkanalysis.
J.
LightwaveTechnol.
17(1),58–67(1999)11.
76.
Z.
Meng,Y.
Hu,S.
Xiong,G.
Stewart,G.
Whitenett,B.
Culshaw,Phasenoisecharac-teristicsofadiode-pumpedND:YAGlaserinanunbalancedber-opticinterferometer.
Appl.
Opt.
44(17),3425–3428(2005)11.
77.
J.
R.
Folkenberg,M.
D.
Nielsen,N.
A.
Mortensen,C.
Jakobsen,H.
R.
Simonsen,Polariza-tionmaintaininglargemodeareaphotoniccrystalber.
Opt.
Express12(5),956–960(2004)11.
78.
I.
Fatadin,S.
J.
Savory,Impactofphasetoamplitudenoiseconversionincoherentopticalsystemswithdigitaldispersioncompensation.
Opt.
Express18(15),16273–16278(2010)11.
79.
I.
Salinas,I.
Garces,R.
Alonso,J.
Pelayo,F.
Villuendas,ExperimentalstudyontheoriginofopticalwaveguidelossesbymeansofRayleighbackscatteringmeasurement.
Opt.
Express13(2),564–972(2005)11.
80.
P.
Healy,P.
Hensel,Opticaltimedomainreectometrybyphotoncounting.
Electron.
Lett.
16(16),631–633(1980)11.
81.
R.
Feced,M.
Farhadiroushan,V.
A.
Handerek,Zerodead-zoneOTDRwithhigh-spatialresolutionforshorthaulapplications.
IEEEPhoton.
Technol.
Lett.
9(5),1140–1142(1997)11.
82.
M.
Legre,R.
Thew,H.
Zbinden,N.
Gisin,Highresolutionopticaltimedomainreectometerbasedon1.
55mup-conversionphoton-countingmodule.
Opt.
Express15(13),8237–8242(2007)11.
83.
P.
Blanchard,J.
Dubard,L.
Ducos,R.
Thauvin,SimulationmethodofreectancemeasurementerrorusingtheOTDR.
IEEEPhoton.
Technol.
Lett.
10(5),705–706(1998)11.
84.
Y.
-J.
Rao,D.
A.
Jackson,Recentprogressinberopticlow-coherenceinterferometry.
Meas.
Sci.
Technol.
7(7),910–999(1996)11.
85.
A.
J.
Rogers,Polarization-opticaltimedomainreectometry:atechniqueforthemea-surementofelddistributions.
Appl.
Opt.
20,1060–1074(1981)690References11.
86.
J.
G.
Ellison,A.
S.
Siddiqui,Afullypolarimetricopticaltime-domainreectometer.
IEEEPhoton.
Technol.
Lett.
10(2),246–248(1998)11.
87.
B.
Huttner,J.
Reecht,N.
Gizin,R.
Passy,J.
P.
vonderWeid,Localbirefringencemea-surementsinsingle-modeberswithcoherentopticalfrequency-domainreectometry.
IEEEPhoton.
Technol.
Lett.
10(10),1458–1460(1998)11.
88.
M.
Han,Y.
Wang,A.
Wang,Grating-assistedpolarizationopticaltime-domainreec-tometryfordistributedber-opticsensing.
Opt.
Lett.
32(14),2028–2030(2007)11.
89.
M.
G.
Shlyagin,A.
V.
Khomenko,D.
Tentori,Birefringencedispersionmeasurementinopticalbersbywavelengthscanning.
Opt.
Lett.
20(8),869–871(1995)11.
90.
V.
V.
Spirin,F.
J.
Mendieta,S.
V.
Miridonov,M.
G.
Shlyagin,A.
A.
Chtcherbakov,P.
L.
Swart,Localizationofaloss-inducingperturbationwithvariableaccuracyalongatestberusingtransmission-reectionanalysis.
IEEEPhoton.
Technol.
Lett.
16(2),569–571(2004)11.
91.
P.
Hlubina,D.
Ciprian,Spectral-domainmeasurementofphasemodalbirefringenceinpolarization-maintainingber.
Opt.
Express15(25),17019–17024(2007)11.
92.
N.
H.
Zhu,J.
H.
Ke,H.
G.
Zhang,W.
Chen,J.
G.
Liu,L.
J.
Zhao,W.
Wang,Wavelengthcodedopticaltime-domainreectometry.
J.
LightwaveTechnol.
28(6),972–977(2010)11.
93.
V.
Kalavally,I.
D.
Rukhlenko,M.
Premaratne,T.
Win,Multipathinterferenceinpulse-pumpedberRamanampliers:analyticalapproach.
J.
LightwaveTechnol.
28(18),2701–2707(2010)11.
94.
B.
Szafraniec,R.
M¨astle,B.
Nebendahl,E.
Thrush,D.
M.
Baney,Fastpolarization-dependentlossmeasurementbasedoncontinuouspolarizationmodulation.
Appl.
Opt.
48(3),573–578(2009)11.
95.
T.
Geng,G.
Li,Y.
Zhang,J.
Wang,T.
Zhang,Phasenoiseofdiodelaserinself-mixinginterference.
Opt.
Express13(16),5904–5912(2005)11.
96.
P.
K.
Tien,Lightwavesinthinlmsandintegratedoptics.
Appl.
Opt.
10(11),2395–2413(1971)11.
97.
I.
Awai,H.
Onodera,Y.
-K.
Choi,M.
Nakajima,J.
-I.
Ikenoue,Improvedmethodoflossmeasurementforopticalwaveguidesbyuseofarectangularglassprobe.
Appl.
Opt.
31(12),2078–2084(1992)11.
98.
J.
Cardin,D.
Leduc,Determinationofrefractiveindex,thickness,andtheopticallossesofthinlmsfromprism–lmcouplingmeasurements.
Appl.
Opt.
47(7),894–900(2008)11.
99.
T.
A.
Strasser,M.
C.
Gupta,Opticallossmeasurementoflow-lossthin-lmwaveguidesbyphotographicanalysis.
Appl.
Opt.
31(12),2041–2046(1992)11.
100.
S.
Satoh,K.
Susa,I.
Matsuyama,Simplemethodofmeasuringscatteringlossesinopticalbers.
Appl.
Opt.
38(34),7080–7084(1999)11.
101.
D.
F.
Clark,M.
S.
Iqbal,SimpleextensiontotheFabry–Perottechniqueforaccuratemeasurementoflossesinsemiconductorwaveguides.
Opt.
Lett.
15(22),1291–1293(1990)11.
102.
R.
Fazludeen,S.
Barai,P.
K.
Pattnaik,T.
Srinivas,A.
Selvarajan,Anoveltechniquetomeasurethepropagationlossofintegratedopticalwaveguides.
IEEEPhoton.
Technol.
Lett.
17(2),360–362(2005)11.
103.
Y.
-P.
Wang,J.
-P.
Chen,X.
-W.
Li,X.
-H.
Zhang,J.
-X.
Hong,A.
-L.
Ye,SimultaneousmeasurementofvariousopticalparametersinamultilayeropticalwaveguidebyaMichelsonprecisionreectometer.
Opt.
Lett.
30(9),979–981(2005)11.
104.
S.
Taebi,M.
Khorasaninejad,S.
S.
Saini,ModiedFabry–Perotinterferometricmethodforwaveguidelossmeasurement.
Appl.
Opt.
47(35),6625–6630(2008)11.
105.
H.
L.
Rogers,S.
Ambran,C.
Holmes,P.
G.
R.
Smith,J.
C.
Gates,InsitulossmeasurementofdirectUV-writtenwaveguidesusingintegratedBragggratings.
Opt.
Lett.
35(17),2849–2851(2010)IndexAAbsolutecalibration,126,217–239,261,313,507,519,586,600,618Absolutecolormeasurement,86,88–91Absolutemeasurement(s),68,69,71,72,87,88,99–102,105,107,112,255–259,264,268,306,310,333,568,586,602–604,621Absolutereectivity,232Absolutespectralresponse,234,235Absorptance,20,21,27,30,50,51,57,65,111,113,114,157,169,217–219,229,236,261–263,268,311,314,349,362,392,401–403,434,442,470–473,476,478–483,485,488,490,491,495,499–502,504–507,517–522,524,525,536,550,566,567,600Absorptioncoefcient,28,29,32,155,157,262,294,307,370,379,381,382,386,389,394,396,397,427,431,469–471,477–480,482–485,488,491–494,497,499–503,505,506,508,510–515,517,520,522,524,526,527,529–531,548,560,600,601features,387,429,548,559induced,493,504change,499polarimetry,497thermallens,501loss,33,334,353,379,392,398,401,430,439,443,469–536,550,566,597,601–603pathdifference,566peak,381,386sensitivity,443,557spectrum,265,384,396,428,482,556Absorptivity,482,485,509,524Acceptancefunction,385Accumulationtime,398Accuracy,7,26,53,55,59,64–68,98,108,112,144,158,165,187,190,200,229,235,237,244,245,247,254,261,262,268–282,288,293,294,296,299,301,303,311,315,326,338,368–370,374,401,403,413,435,437,438,455,461,467,482,514,520,530,538–540,542,543,545,557,558,566,570,572,592,603–605,611,619,620,624Acoustic,347,422,482–517,600relaxation,513resonantfrequency,511sensor,515transittime,507wave,482,489,505–507,511,600Acousticallyresonant,508,511Acousto-opticdeector(AOD),426Acousto-opticmodulator(AOM),399,400,428,429,491,554Active,98,182,284,367–378,380–382,398,401,419,449,454,456,458,477,485,486,488,514,555Activeintracavitylossmeasurement,377Addedlength,575Addition,166,170,200,251,271,273,274,278–282,324,378,382,509,515,526,527,564,571,644Additive,9,10,54,76,104,118,144,147–149,158,235,271,278,401,418,569,621,644interactions,7multiplereections,416M.
Bukshtab,AppliedPhotometry,Radiometry,andMeasurementsofOpticalLosses,SpringerSeriesinOpticalSciences163,DOI10.
1007/978-94-007-2165-4,SpringerScienceCBusinessMediaB.
V.
2012691692IndexAdditive(cont.
)summation,35,37,38,148,163,420,422superposition,130,414transmittanceandreectancemeasurement,407Adiabatic,470,478,509Aggregatedecayrate,395Air-basedinterferometer,636Airgap,221,224,269,279,622–627,630,636inbercontact,629reection,608,624,626Airreference,558Air-sampletransmittance,570Airyformulae,162,385,421Alignment,184,221,237,248,294,301,302,304,324,328,336,361,362,365,381,388,408,416,419,422,436,488,491,494,539,589,593,623–626Ampliedspontaneousemission(ASE),454,646,647Amplitudemodulation,492,546,553,554Analyzer,170–176,178,179,184,249,266,371,440,461,502,503,612Angularfrequency,133,152,379,390,492,552,600,632Angularintensity,8,14,21Angularscattering,315,316Anomaly(anomalies),104,190–214Anti-resonance,439Anti-resonant,439–441,449Aperture-denedgeometry,187Astigmaticelongation,329,330,338,339Astigmaticmirrorcell,346Asymmetriccavity,410,431–447Attenuationcross-section,387difference,540factor,28,33,43,62–75,181,221,223–226,244,251–253,261,273,289,290,309,317,344,369,373,378,402,543,589,593,617–629measurement,62,64,240,252,253,537–587,593spectrum,547Attenuator,181,217,220–227,229,244,248,252,253,270–274,282,293,294,311,312,430,494,539,563,584,603,619Auto-balanced,563Autocorrelationfunction,189,634,635Auxiliaryresonator,369Average,4,49,129,218,295,323,389,403,508,550,597attenuation,612backscatteringloss,620cell-mirrorreectance,333ber-lineloss,614uence,565groupindexofrefraction,625numberofcollisions,526opticaldensity,613pathlength,526,527,529,535polarizationfactor,639power,4,13,154,155,218,228,230,231,349,508,642powerspectrum,642reectance,323,324,326,330,346,349,360,413,415,533,570,623scattering,403transmittance,176,178,628Averaged,1,4,7,9,10,12,13,15,49,56,64,124,129,133,143,148,150,152,164,179,186,223,250,251,276,280,295,304,306,312,317,323,324,326,327,330,331,333,334,361,364,379,393,402,404,405,420,422,425,426,429,443,461,475,511,512,548,563,566,567,582,585,594,606,612,626,628power,50,54,158,437Averagingintegratingsphere,248BBackandforwardscattering,601Background,1–2,315,470,503,520,549,551,553–555emission,546interference,365levelsensitivity,554noise,223,510,548,554,566,567radiation,318,355scattering,292,312Backreected,541,620,649Backscattered,311,610–617,620,621,628,649,651Backscattering,597,611,613,614,617–620,628,629,639factor,311,312plusreection,619Bafingaperture,188,190Bafingmethod,101–104,107Balanced,124,159,232,294,340,428,542,587detection,365,555–567,586Index693Bandwidth,144,183,237,250,279,379,380,382,383,386–388,392,396–399,408,411,413,442,451,482,507,515,543,546–549,551,554,563,566,586,616,633,637,638,640–642,644Beamcross-section,45,156,164,166,240,241,250,257Beamofrays,8Beamsplitter,69–72,121,148–150,158–160,166,168–170,181–183,229–231,241,242,244,245,251,259,260,276,282,294,301,302,306,312,315,327,333,334,337,405–407,432,436,447,451–454,465–467,498,500–502,517,537,539,549,556,558–561,563,564,566–568,571,574,575,578,582,584,595,617Beam-steering,388,495Beat-length,610,649Beer'slaw,386Bentresonator,368,419measurement,433Bidirectional,475,520,593,615reectance,45,315,316,521,593reectancedistributionfunction,45Birefringence,170–180,237,294,372,416,418,439,461,483,489,497,501–503,561,607,610,639–641,647–651Birefringent,175,307,449,450,455,650ber,607,647,649berinterferometer,640plate,170,184,461Bit-errorrate,646Blackbodyradiation,238Blackbodyradiator,227,232,519Bouguer–Lambert–Beer'slaw,469,523,532,536,591Boxcarintegrator,510,511,565,611Brewsterangle,31,296–299,322,350,361,362,368–374,379–381,399,454,543,544,546,568,573calibrator,370,371Broadband,181,183–185,211,215,218,224,236,237,240,382–384,387,395,399,416,438,443,465,541,548intracavitydetection,398Bulkabsorption,167,469,472–479,482,492,498–500,504,505,507Bulkandsurfaceabsorption,507Bulklinearattenuationcoefcient,36,296,413Bulkloss,35,36,250,291,293,298,472,477,505,507,543,544,546,568,571,573–576,601,624Bulkscattering,294Bulktransmittance,166,167,169,244,289–291,582,584CCalibratingcavity,369Calibratingwire,600Calibration,26,50,217–239,291,332,367,408,476,538,593resonator,369Calorimetric,218,402,476,477,482,494,495,516,521,597,599Calorimetry,478,494,505Candela,12–15,50,232,238Carrierfrequency,391,465,547,548,550–552Cavity,21,72,150,218,305,322,367,401,477,555,595coupled,385,389,427enhanced,466,561lengthmatchingfringes,359lockacquisition,398matching,396modemismatch,392proneinterferencefringes,363resonance,378,390,398,423–425,427ringdownspectroscopy,187,384–391shapeddetector,314Cell-relatedfringes,359Centerwavelength,451Characteristictimeinterval,482,484,598Coblentzhemisphere,313Coefcient,10,57,155,232,289–299,321,367,402,469,543,589ofthermalexpansion,509Coherence,9,129–144,227,384,409,482,539,608length,9,179,180,186,384,385,409,416,417,420,539,608,611,615–617,631,634,635,637time,129Coherentcrosstalk,643Coherentreectance,285Coherent-subtraction,549Collinearpropagation,541Collinearwaves,540Color,76–91,214–215,461,564coordinate,76–91,264,266,267,461,462ltering,214Colorimetry,76,85Colorscale,86694IndexColorsensitivity,264Combined,1,12,149,166,168,181,195,220,223–225,235,268,270,273,275,282,287,317–319,322,324,334–336,348,351,364,365,376,388,396,488,494,496,507,515,519,527,528,532,541,549,622,624,634,641–643action,38irradiance,53scattering,317Comparativeinterference,173,179,607Comparisonmethod,95,97–99,254,257Compensating,105,181,221,268,293,301,302,341,346,438,451,465,480,499,538,549,559,584,587Compensation,66,106,108,203,208,240,241,244,258,268,301,341,367,374,454,481,499,503,537,538,551,563Complementaryattenuationfactor,244Complexdegreeofspectralcoherence,133,137,144Complextransmittance,450Concentration-dependentextinction,542Concentricresonator,407Connection,594,618,620,622,626,629loss,591,625point,593Connector,566,603,606,607,618,620,621,629,636loss,591,593Constant,3,52,129,217,297,372,412,470,538,591attenuationcoefcient,28ux,272intensity,25,220irradiance,101radiance,21,23,40,44,96,100,113,312transmittance,60,538Continuously-tunable,512,562Continuousradiation,11,152,154,156Continuous-wave(cw),218,229,231,242,276,350,354,358,374,384,396–398,403,408,418,422,426–428,441,478,495,505,508,510,511,513–515,535,554,561,575,584,597,610,612,616,619reectometry,619Contrast,5,92,98,102,130,144,145,186,241,250,261,271,278,409,413,442,450,457,464,478,479,499,520,554,555,602,610Convectionalheat,482Conventional,7,135,136,151,163,169,170,178,232,241,244,261,265,284,289–319,328,373,375,490,506,546,568,614Correlativeinterferencepattern,168Coupled-berinterferometers,631Coupling,123,126,187,340,354,356,392,396,399,414,427,430,441,447,566,586,595–597,604,616,617,622,636,645,651efciency,224,390,423,594Cross-correlated,455,464Cross-correlation,452,461Cross-planeradiationcomponents,648Cross-referenceinterference,173,176,177,180,184,186Cross-spectraldensityfunction,132–137,141–143Crosstalk,629–651inducedinterference,648–650inducedpenalties,646Cubedetector,592,600–602Cutback,593,594,597,629method,590,620Cylindrically-shapedcavity,528Cylindrical-mirrorcavity,346Cylindrical-sphericalmirrors,346DDamagethreshold,220,221,224,226,229,493Dc-contribution,548Dead-zone,613,618removal,617Decaydigitizingringdown-ratespectrometer,384Decaying,141,384,391–394,423,429mode,396pulseenvelope,392Decay-timedichroism,449Decimalcoefcientofattenuation,29Deconvolution,392,394Derivative,1–3,10,12,49,151,153,154,179,186,227,359–365,408,453,455,546–557,559–561,565,584,609,614–616spectroscopy,359–365,546–555Detectorresponsivity,128,548Dichroism,447–467Difference,19,64,130,218,289,323,371,401,473,537,597Differencesignal,564,565Difference-to-sumsystem,539Index695Differential,268,291,292,294,295,326,333,363,365,420,449,470,471,503,508,513–516,537–549,554,559,560,562–565,573,581,586,591,592,631,632,644absorption,540–542,554,564absorptionspectroscopy,540balanceddetection,365balancedtechnique,564bound,539division,540imbalance,333length,291,292,294,539,573,581,591,592,631loss,540measurement,292,503,538,540,564,565ratio,540,560,586registration,537,548samplelength,294,295signal,333,548spectroscopy,541,549thermocouple,470transmittance,291wavelength,541,547Differentiation,415,479,538Diffraction,8,54,130,221,388,402,485effects,9,54,221,246,248,271gratingequation,192order,192,194,204,206,207,210,211,214phenomena,10,191,192,273Diffuseemitting,224,532Diffuseradiating,224Diffusereectance,31,43,47,52,72,74,75,92,94,95,98,99,101,105,106,108,110,112,113,116,118–121,125,127,219,223,224,233,242,258,259,262,311,313,438,522Diffusescattering,114,116,243,260,437Diffusetransmittance,31,33,42,43,57,105,106,108,112,114–118,120,224,242,256,258,281Digitizationrate,392Direct-absorption,516,560Direct-attenuation,537–587Direct-division,566Directmeasurement,50,66,217,284,297,375,401,628Directtransmission,33,310,431,556,578Directtransmittance,30,33,43,69,71,120,121,240–243,307,309,319,331,437Discriminator,404,405Dispersion,219,295,379,388,390,399,416,447–467,551,650bandwidth,379Displacement,3,35,69,71,149,225,226,240–242,248,286,294,295,301,327,341,344,345,347,349,368,492,493,500Displacement-sensinginterferometer,327Distinguishableinterferencepattern,414Distributedabsorptance,471Distributedfeedback,516,559,562,567,642Distributedscattering,314Dopplereffect,393Dopplershift,393,398Double-balanceddetection,564Double-beam,116Double-reection,63,118,304–306,322,330Dual-aperture,274–276,282Dualdifference,572Dual-interaction,250–252Dualmonochromator,248,292,304,305Dual-pass,250,251,293,307,370,405,450,498,574,628Dual-reection,166,173,305,328,608Dual-resonator,369,514Dual-transmission,174,250,574,576,577Durationoflightpulse,610Dynamicrange,67,68,181,220,223–226,229,232,252,253,260,269–272,276,278,280,282,310–312,314,365,371,379,380,382,405,418,430,495,496,537,539,543,585,603,604,614,619,624,625,629EEffectivediffusereectance,110,121,219Effectiveheterodynequantumefciency,563Effectiveinternalreectance,604Effectivepath-length,529,533Effectivepointsource,146,147Effectivereectance,93,94,102,103,107,108,113,119,219,223,254,257,259,261,376,388,442,639Effectivespectralreectance,223Efciency,10,12,49,76,77,86,91,102,104,107,111,112,127,139–141,145,146,182,191,193,196,200,208,211,224,227,232,233,235,273,358,375,396,399,423,505,511,533,549,563,587,594factor,533Eigenstate,438–441,448,449Eikonalequation,6,7,15696IndexElasticstrain,504–506Electronicallybalanced,565,587Electronicltering,359,363,364,564Electro-opticmodulator(EOM),372,428,467,554,561Eliminationofinterference,414–416Ellipsoidmirror,351,352Embeddedopticalloss,367Emission,4,8,10,11,16,45,60,62,86–88,126,133,135,139,146,149–151,155–158,180–183,186,227–229,232,233,264,268,273,280,281,284,293,326,367,370,371,374–376,378–381,383,391,396,397,401,408,422,423,428,437,442,453–455,495,517,518,520,521,538,540,542,546,560,617,632,642,646factor,50Emissivespectroscopy,517–521Emissivity,23,50,51,72,73,478,517,518,521,599measurement,520Emittance,11,20–24,45,51,67,103,107,108,114,121,122,135,145,225,242,276,315,478,518–521,529,531Emitter,22,23,72,222,224,230,242,307,542,563,565Empty-sphere,528,532,536photonlifetime,526Energyscale,228–231,233Entranceaperture,106,108,113,114,217,219,224,228,229,254,257,259,329,330,343,349,578Equalizer,268,294Equal-timeinterval,183Equilibrium,11,21,23,72,80,123,125,130,229,427,471,518,522,565Equivalentnoisepower,540Equivalentsolidangle,23,94,95,104,109,111,224,532Equivalentwidth,395Erbium-dopedberamplier(EDFA),514,515Error(s),51,165,218,289,321,368,401,476,538,590Etalon,364,381,382,448,558,560,561effect,359,364,384,386,555,563inducedinterferencefringes,364Euler'slaw,23EUV.
SeeExtremeUVExcessnoise,566cancellation,565Excitationpulse,392,395,495Expandedcavity,335,337Expandedcell,335,336Expandinglength,604Expansioncoefcient,494,497,509Exponentialattenuation,218Exponentialdecay,391,393,513Exponentialfunction,392,398,427,469Exponentialwaveform,386,388Extent,8,10,12,15,18,20,21,25,26,30,33,49–62,129,131,154,155,157,158,181,194,217,222,227,242,248,268,276,286,289,317,322,389,494,584External-cavity,429,442,561Extinctioncoefcient,32,296,480Extraordinaryaxis,172Extreme,44,131,176,177,341,346,411,449,636ExtremeUV(EUV),207,208FFabry–Perotcavity,384,389,397,425,457Fabry–Perotetalon,558Fabry–Perotinterferometer,327,379,381,410,421,439,448,498,636Fabry–Perotresonator,319,459,554,595Fabry–Perotscanninginterferometer,440Factor(s),10,50,133,217,285,323,367,401,469,537,589Feedback,158,159,237,429,432,453,481,499,504,516,540,542,558,559,561,562,565,567,642Fiber-basedinterferometer,636,641Fiber-coupled,124,516,517,561,562,566,631Fiberend,586,591,593,602,615,616,618,619,621,624–626,629–631Fiber-lineloss,613Fiberloss,478,586,589–591,598,599,602–604,611,613,617,620,621,624,626–628Fiber-pigtailed,562Fiber-to-beretaloneffect,563Fieldofopticalradiation,3–4,130,141Fieldofopticalvector,4Finesse,359,360,395,396,398–413,417,425,426,440,441,447,466,467,519,554,560,596parameter,360,410,412,413Index697Fine-tuning,550Finitefrequencybandwidth,392First-order,54,121,122,176,179,192,193,200,201,203,204,206,207,210,411,412,551,639Fixedattenuation,269–273Fluctuation,1,51,129,228,336,371,413,469,538,601Fluence,14,156,493,565Flux,3,49,133,224,283,310,402,469,545,592ofradiation,12,21,25,73,152,284,475,521,569,603,610Forward,63,137,317,336,493,601,613,618,626,628direction,63,137excitation,493scattered,317Foucaultgrating,194Fourier-transforminterferometer,335,452Fourier-transformspectrometer,334Four-measurementcycle,579Four-wavecrosstalk-inducedinterference,649,650Fox–Smithinterferometer,449Freespectralrange,359–363,365,381,391,394,421,422,440–443,554,558Frequency,4,49,129,230,293,326,372,408,489,539,600comb,467component,389,392,398,463,465,547,548,642dependent,442,452,453,550,552,611absorptioncoefcient,389ltration,129,363uctuation,150,394,632modulation,232,271,314,326,361,391,408,418,421,422,428,429,490,491,493,506,507,511,516,539,546,548–555,560,564,567,600,601,610,612,616spectroscopy,363,364,548,549,551,555,561,566spectrum,380,393,416,549,642stabilized,394,395Fresnelnumber,402,403,486Fringenoise,364,564,566Fringepattern,360,364,464,466,503,504averaging,362Fringe-relatednoise,557Fringesharpness,360Fringesuppressing,555Fringevisibility,131,159–163,166–170,180,360,365,436Frustratedtotalinternalreection,221Full-widthhalf-max,396,399,514,553,643Fullyisotropicirradiation,112–113Functionoflargestfringevisibility,167GGainandlosscoefcients,379Gainsaturation,370,375,377Gasabsorption,408,508Gaseous,251,328,354,384,442,488,504,508,524–526,531–536,555Gated-pulsemeasurement,509Gaussian,136,137,139,140,145,146,150,364,383,397,483,485,490,496,498,506,549,616,633,635,642–644beamwaist,513noise,632,634pulse,385,391shapepulse,393Generalizedquantity,156Generalizedradiance,135,141–143Generationsuppression,361,370,377Geometricalvignetting,270Geometricextent,13,17–19,24,47,61,599,612Gershun'sinvariant,18Goniometer,73,253,311Goniophotometer,310Gratingefciency,200Gratingperiod,193,194,197,200,203,204,209–211,213Groupdelay,450–455,466,467Guidingmode,589HHalf-intensitywidth,360Half-waveplate,177,298,447,605Heatcapacity,50,229,232,470,485Heattransfer,50,470,471,483,485,597coefcient,469,473equation,471–474Helmholtzresonator,513Hemisphericalirradiation,72,116,120,258Herriottwaveguide,362,365Heterodyne,398,429,464,551,554,555,563Heterodyning,548,551,555,563,564Highefciency,396High-efcient,396Highnesse,359,395,396,398,410,417,440,466698IndexHigh-frequencymodulation,548,549Highloss,338Highreectance,169,186,257,284,323,356,384,401,407,419,438,450,502,585,618High-reecting,180,182,311,312,317,331High-reectiveFabry–Perotcavity,384Highresolution,284,315,339,452,575,601Highspecularreectance,331,401Highthroughput,358,359Hightransmittance,257,502,570,582,631Holographic,499interferometer,507Homodyne,464,555,564,636Homodyning,548,563,564Homogeneous,3,5–8,28–30,33,40,42,74,137–144,146,247,270,469,476,483,523linebroadening,379,380IIdeallysmoothsurface,300Idealmirror,45,46Idle,590,591,623ber,590,591,605,607,611,613,622–628Illuminance,14,15,24–27,45,53–56,59–62,93,94,99,100,109,121,234,238,239,269Illumination–observationgeometry,90,91,213,265Immersing,273,322,568Inaccuracy,232,262,290,303,309,369,411,413,414,421,453,574,591,592,622Inclination,25,26,54,61,64,220,241,286,371Incoherentbeat-noisecrosstalk,643–644Incoherentnoise-freecrosstalk,643Incoherentradiation,416,418Increment,123,282,368,371,373,401,473,530,540,3332Index-matching,545,566Indexofrefraction,7,40,64,67,80,250,290,405,489,573,610Indicatrix,22,23,73,74,94,104,108,109,111–114,116,118,222,224,254,310,311,471Indirectmeasurement,284,401,413Indiscriminating,380Inducedchange,232,497,499Innitenumber,35,81,173,175,431Inhomogeneity,28,29,268,488,592,601,610,651Inhomogeneoustransition,8,379Innerreectivity,35Inner-sampleloss,251,543,574Inner-sphere,93,103,105,108,123,257,522,524,529,532,604ux,57irradiance,108,522reections,103,105In-phase,547,550In-planecomponents,648,649Inputaction,153Insertedloss,345,379,593Instantaneousradiantux,152Integralluminance,15Integralluminousintensity,15Integralradiance,15Integralradiantintensity,156Integratedabsorption,396,522Integrateddecaytime,386Integratednormalemittance,518Integratedscattering,253–261,313,316Integratingcavity"sandwich,"528Integratingsphere,51–53,55–56,92–128,181,222,223,240,242–244,248,253–264,276,302,304,306,310,313,314,316,317,333,437,521–536,584,591,592,601–603Intensity,5,49,129,220,289,322,367,402,475,537,590change,9,140,151,383,387,414,415,442,444,489,493,543,551,556,559,571,586compensating,451dithering,359uctuation,10,151,157,184,336,361,387,401,420,431,538,546,571,575,633,635noise,126,178,359,607,608,629,631–634,636,637noisecontribution,632scale,239,265Intensiveirradiation,252–253Interaction,4,7,9,10,27–47,62,66,151,159,160,163,172,173,213,214,219,235,250–252,268,283,287,291,303–305,307,315,321,322,324–326,328,331,348,350,359,362,367,375–377,403,413,414,417,485,537,551,576,634,648Index699Interference,9,54,130,221,315,333,368,409,475,544,607averaging,165contrast,413effects,10,130,150,163,166,168,170–180,182,184,186,229,389,393,394,416,569,629,631,640,641extrema,151,413,447extremes,186,359,361lter,183,242,372,373,399,413,451,502,544fringenoise,564,566fringereduction,359–365fringes,163,168,175,359–365,410,416,555,557,562–564,566,616fringespoiler,362noise,170,181,186,187,333,338,430,607,609,629–651noisepowerspectrum,642noisereduction,163–170pattern,9,10,54,131,145,147–150,159,162–165,167,168,170,177,180,279,280,315,360,364,409,410,413,414,436,444,451,453,455,607,611,616,636,648phenomena,126,130,159–187,213,389,431,436,441safeguards,420–422term,166,175,179,184,186,584,636,637,642,645Interfering,131,147,148,164,166,168,172,173,175,179,193,214,359,361,414,416,421,422,464,465,496,503,548,549,608,615,616,621,631,633,634,636,642–645,647,649,650receiverbits,646Interferometer,148,149,284,327,334,335,379,381,382,387,410–412,416,421,425,439,440,448–454,463,464,466,482,489,495,496,498–500,503,507,539,615–617,629,631–637,640,641,650Interferometer-based,335,636,641Interferometer-spectrometer,387Interferometricnoise,633Intermediatefrequency,549Internalloss,36,64,65,286,290,294–296,298,299,369,373,376,379,436,522,545,569,575,578,581,589,591,594,597,602,610,621Internalmultiplereections,36,42,63,64,244,289,290,411Internalsphereirradiance,94,99,105,121,123,603Internalspheresurface,97,100,104,107,110,115,222,223,254,256,259,261,522Internaltransmittance,34,63,65,160,166,244,289–299,573,577,578,583InternationalCommissiononIllumination,10,76Intersection,167,168,180,343–345,368Intracavity,324,326,332,333,336,337,351,353,367–378,380,384,398,401,403,405,407–409,419,424,429,430,432,441,447,457,466,508,527absorption,380,383,384,485loss,348,361,368,370–372,375,377,382–384,395,417,430,439,449,596losscalibration,361losssensitivity,395scattering,386spectroscopy,378–400transmission,397Invariableparameter,15–18Inverse-squareandcosinelaw,24–27Inversesquare-distancelaw,55Irradiance,14,51,147,218,304,484,601distribution,99,222,227,258,275Irradiation,23,51,181,222,293,431,470,559,589Isobaricadiabaticliquidexpansion,509Isothermal,469,478,519Isotropicdiffuser,22,24,92,93,96,100,101,104,108,111JJamininterferometer,499,500,503KKirchhoff'slaw,51,125,478,517,518,520LLambertian,22,108,121,123,126,140,141,519,533,534Lambert'slaw,21–23,40,45,123Large-indexmodulation,548Lasercalorimetry,469–482,495Lasercavityringdownspectroscopy,384Lasergenerationsuppression,361700IndexLaserspectroscopy,361,367–400,557,558,561Lasingthreshold,381,384,455Launching,429,589,590,594,595,610ber,591,593,594Law-governeddip,380Lawofadditivesuperposition,130Leakingmode,591,604Least-squaresanalysis,395Length-differential,291,292,294,539,573,581,591,592,631Lengthofcoherence,148,179,388,416,420,431,608,616,631,637Lengthofmultipleinteractions,219Length-to-widthratio,474Lightaddition,271,273,279–282beam,7,49,129,217,292,328,399,405,471,539,605concentrator,602exposure,15ux,54,56,69,310,523,603measurements,11trap,69,236,256,351,353trapcell,351tube,15–18Limitedcoherence,179,180,186,416,608Limitingaperture,189Linearabsorptioncoefcient,29,57,155,157,294,370,379,381,382,431,470,471,477,479,483,488,492–494,497,499–502,504,507,508,510,514,520,523,524,527,592,599,600Linearattenuationcoefcient,29,34,43,159,250,251,285,291,294–296,321,367,370,373,413,543,571,575,576,579–582,585,589,592,612,614Lineardecline,471Lineardynamicrange,217,220,225,229,252,253,270,276,282,310,312,405,413,418,537,539Linearfunction,462,463,470,499,506,610Linearity,51,62,157,248,268–282,381,405,513,543Linearrange,217,252Linearscatteringcoefcient,29,605Lineartransition,380Linewidth,380,387,390,391,393,396,422,430,555,563,586,632,636,637,641,642Liquid,218,292,335,372,379,430,482–489,492,495,496,509,520,524–526,529,541,542,545,546,590,591,598,599,627absorption,485,488,528Lithography,207Localdiscontinuity,620Localization,30,147,181,610Localized,12,13,33–36,49,54,135,149,164,168,475,647Lock-in,491,558amplication,293,318amplier,293,315,382,509,521,541,556,557,616detection,364frequency,408Longitudinal,141,389,398,414,422,439,479,498,599,610,614modebeating,392modes,181,182,380,386,388,391,392,394,428,437,486Long-pathmatrixcells,332–342Lorentzian,364,396,397,512,556,635,642,643Losscalibration,361,370–372,603dichroism,447–467difference,550feature,398Lossless,110,111,441,447Lowabsorptance,65,229,478,482Low-angle,546,598Low-coherence,422interferometry,416,482,615reectometry,416white-lightinterferometry,615Low-indexmodulation,548Lowintensity,318,398,609Lowloss,283–288,292,294,295,309,312,323,328,369,370,375,402,434,449,472,477,478,503,516,532,534,540,544,552,564,566,568,585,586,589,597,603,622factor,401measurement,285,287,292–294,303,317,348,374,380,405,407,410,435,438,477,511,531,537,539Low-reectiveFabry–Perotetalon,448Low-reectiveresonator,583Lowscattering,5,65,172,253,255,308,311,312,401,482,603Luminance,11,13,15,19–24,27,40,45,49,60–61,73–76,84,85,156,189factor,23,74,75Luminousemittance,13,21,27Index701Luminousux,11–14,19,24,40,49,51,53,54,56,60,73,74,227,234,261Luminousintensity,11–16,20–23,25,27,50,55,60,73,144,227,234,238–239,269Luminousquantity,10,11,13MMach–Zehnderinterferometer,616,631,633,636Matchinguid,506,545Mathematicalmodel,76,86,88Matrix-forming,336Maxima,163,177,191–194,197,198,200,202–204,207,208,210,211,213–215,225,359,361,385,391,410–414,421,439,441,443–447,455,458,464,488,490,564,587,595,596,605shiftinganomaly,191–194,197,198,202,203,208Maximum,10,60,138,218,298,325,369,405,476,537,596Maximum-to-minimumintensityratio,448Maxwell'sequations,5,6Maxwell'striangle,76,78Meanloss,402,404Meanopticalloss,404Meanpower,158,270,276Mean-squaredeviation,158,182,183,327uctuation,633,635intensity,417,418reectance,635Measurementchannel,169,181,183,293,540,584cycle,62,69,95,149,272,324,326,445,545,563,571,579,580,584Method,2,49–128,144,217,292,323,367,401,482,537,589Methodology,89,256,268,304,384Methodsofadditionoflight,271Michelsoninterferometer,327,334,335,450–452,454,482,500,501,539,615,616,620Miescattering,601Minima,163,214,215,237,359,361,410,413,439,444–447,455,595,596Minimum,59,149–151,162,167,168,210,225,296,298,313,330,350,361,405,409,415,443–446,448,476,482,496,508,514,515,596,597,605,606,609,633,636M-interactivereection,303Mirror-lenscell,353,354Mirrorwaveguide,342–348,362,365,402,403,415,420Misalignedresonator,435Misalignment,302,304,341,345,368,414,432,555,620,624,626,627Mismatch,87,90,229,232,234,235,392,414,455,584,631error,86Mixedreectance,31,241,254,255Mixedtransmittance,254,260Modal-birefringencemeasurement,649Mode-matching,388,423,425,426,429,446,449,466,611Modulated,152,157,180,194,218,228,231,232,249,279,297,318,362–364,372,391,408,417,418,420,428,431,442,490–492,494,498,499,504–509,511,513,514,541,546–548,552–554,559,560,610,612,615–617,621,641Modulation,69,192,228,297,326,371,408,488,539,600depth,548frequency,69,232,271,314,326,361,363,418,421,422,490,491,493,506,507,511,516,539,548,550,553,554,561,600,601,612,616index,550–554Monochromatic,5–10,12,40,76,78,129,130,132,141,147,149,171,232,233,396,423,461,543,631Monochromator,69,70,181,183,233,242,243,245–248,268,281,292,293,304–306,317,329,382,389,519,547,558,559Mono-exponential,395Monte-Carloanalysis,535Monte-Carlosimulation,124Movingmirror,249,250,398,411,547Multi-beaminterferometer,213,389,634,635Multi-exponential,392decay,395function,392Multimode,342,382,395,399,542,554ber,597Multimodeversussingle-modestudies,392–395Multipass,304,322,336,354,355,359-365,516cavity,327–342,348,354,355,359–361,384,555,561702IndexMultipass(cont.
)cell,322,334,338,342,355–358,360,361,557,558Multipath,187,362,442,516,561celltransmittance,385interference,186,187,359,360,409,455,555Multiple-beaminteraction,250–252,417Multiple-beaminterference,126,150,164,177,271,409,410,455,631,636Multiple-beaminterferometer,631Multiple-facetreector,341,342Multipleinteractions,151,219,303,324,359,367,376,403Multipleinterferers,641–651Multipleopticalelements,36–40Multiplereectioncavity,218,325,328,384,399,521–536Multiplereections,36,52,64,100,112,164,173,175,273,291,324,352,359,375–377,384,402,408,414,430,438,442,639Multiples,36,57,151,218,289,367,401,471,559,594Multiplexed,541wavelengths,647Multiplication-factoralteration,524Multi-wavelengthmeasurement,359Mutualcoherencefunction,130,132,142,143Mutualfringevisibility,168,169Mutualradiationintensity,130Mutualvisibilityfunction,169NNanoscale,206,208,212Napierianopticaldensity,29,290Narrowband,237,383,384,513,541Netattenuator,223,270,273,274Noise,113,150,217,293,332,379,422,476,537,598cancelling,balanceddetection,566cancellation,565domination,394equivalent,375,388,393,538,544,560power,315,540sensitivity,395oorsensitivity,394levelconcentration,558powerspectrum,642reduction,546,559,563subtraction,549Nonabsorbing,19,24,30,40,43,57,111,160,163,259,261,308,409,432,433,475,491,504,506,579Nonattenuating,40sphere,536Nonbirefringentber,648,650Nonconformance,269Nondivergent,323Nonemissive,504Nonimagingconcentrator,123Noninterfering,416Nonisotropic,5,108–112,145Non-Lambertian,123Nonlinear,150,157,203,217,226,252,253,272,328,375,381,395,431,453,454,462,478,493,497,564,614Nonlinearity,51,157,217,235,248,253,268–272,276,280,281,287,323,370,381,513,537,565,591,601Nonlinearly-inverted,546Nonradiativerelaxationtime,512Nonreecting,180,432,613Nonresonant,443,457,475,476,508,509,511,514,515,541,637off-axistechniques,441–443Nonscattering,19,24,30,40,43,72,163,409,432,434Nonstabilized,281Nonuniform,83,109,123,157,222,225,380,387,479,489,492diffuser,94,99distributions,157,222,422irradiance,222irradiation,123,222powerdistribution,157saturation,380spatialdistribution,222spectral-intensitydistribution,387Nonuniformity,51,71,111,112,123,124,222,226,240,248,256,262,268,292,296,302,333,383,544,591Nonuniformlydiffused,99Nonuniformlyreecting,99Normal,7,54,134,223,290,325,368,402,473,543cross-section,16direction,22,23,194incidence,19,30,36,37,64,65,67,69–72,75,101,114,170,201,210,223,245,248,252,259,285,290,299–303,306,307,310–312,325,362,402,405,409,439,461,494,543,568,573,574,577–579,582assumption,299measurement,251,433irradiance,14,55,58,234,524Index703Normalized,80,130,131,133,137,140,144,187,239,264,287,318,387,388,461,515,536,548,611,632,633,636,644,645derivative,548uctuation,287intensity,387probabilitydensityfunction,536signal,548,644tristimulusvalues,76,86Normalizingconstant,77,84Normalreectance,32Normalunitvector,3Numericalaperture(NA),123,124,211,247,399,585,589,610,611Numerical-tting,385Numericalmodeling,207OObliqueangle,285Obliqueincidence,69,219,285,324,575Observability,55,162,180Observableopticalradiation,9,150Observation,1,4,5,10–15,21,22,26,27,41,43–47,54,55,57,59,61,73,75,78,86–91,93,101,103–105,108,109,111,112,123,129–131,133,140,145,147–149,151,188,189,191,197,201,208,210–213,224–226,253,258,264,277,288,299,310–313,316,349,350,363,383,398,417,432,444,450,488,498,504,517,521,541,589,648Observationtime,11,15,148,149,152,508Off-axis,247,248,307,342,349,351,353,358,364,408,430,441–443,521,556,559Onepulsedecay,400Opaque,8,44,45,52,69,93,101,103,108,113,115,116,194,199,242,255,257–259,261,270,274,275,280,310,318,402,433,481,489,524Opposite-directionpair,581Opticalattenuator,261–264Opticalcalibration,261–264Optical-channelbalancing,565Opticalcoherencetomography,482,586Opticaldensity,29,43,221,244,251,272,290,361,436,469,537,613Opticalfrequencydomainreectometry(OFDR),611,612,615,618,619,649Opticallyequalized,451Optical-nullelement,244Opticalpathdifference,193,199,336,363,453,539Opticalpathlength,65,66,175,179,221,303,321,325,360–363,379,383,391,450,458,462,463,485,495,499,501,504,555,568,634,648Optical-pathvariation,633Opticalradiation,3–28,33,40,45,49–62,76,84,88,129,130,133,134,141,144,150–154,159,217,218,226,227,284,431,589,641transfer,5Opticalresonator,576Opticaltimedomainreectometry(OTDR),416,611–615,618,619,621,624,626,628,649Opticalvector,4,7,49Ordinaryaxis,172Orthogonal,6,31,71,170,173,174,184,220,221,236,257,296,312,345,346,349,350,396,416,438–440,449,450,465,502,543,608,644,647,648components,187,362,647,649Oscillatinginterferometer,410Oscillationtransients,398Outer-wallreectivity,525Outofphase,293,541,547Outputcoupler,146,182,251,252,301,302,370,375,376,381,382,402,407,435,457–460,582,583,585Outwardnormalirradiance,524Outwardradiance,523Overtoneabsorptionspectroscopy,562PParallel-prolongationtechnique,323Partiallycoherent,54,126,129–215,228,280,315,385Partitioning,477Passive,284,373,384,401–467,471Passive-cavitygroup-delaydispersion,467Path-differencing,336Pathdifferential,363,541Path-length,214,293,295,332,345,346change,361,362,497,499,504minimumchange,361sensitivity,558Patternaveraging,359Peak,155,158,218,239,364,378,381,386,398,514,552,554,566,567,597,614,633704IndexPeakabsorptance,566Peak-to-deepratio,377Peak-to-peaknoise,561Penetratingaperture,343Penetrationdepth,482Perfectdiffuser,23,44–47,73–75,84,95,105,107,108,258,310Periodicstructure,193Phase,1,12,129,265,315,331,371,410,472,541,596difference,160,161,164,170,173,175,176,180,199,214,266,318,363,461,464,465,550,554,632,633,644,647dispersion,447–467inducedintensitynoise,607,632,633locked,318,559noise,126,584,629,632–634sensitivity,455,458,464shift,149,152,170–173,179,372,373,378,398,409,414,417–431,439,447–450,453,455,483,489,502,550,551,554,607–609,647Phase-to-intensitynoiseconversion,629,631,637Photoacoustic,347,482–517spectroscopy,504–511Photodetector,229,230,234,279,428,476,549,550,563,565,568,641Photodiode,227,228,232,233,235–237,282,294,307,315,365,399,427,429,437,452,495,504,539,554,561,565,567,646Photoelasticconstant,497Photographic,595registration,380,381Photometer,9,11,12,26,217–282,291,293,294,307,313,538,575Photometric,1,3–47,49–129,147,154,163,164,187,227–229,231–239,268,269,272,275,276,280,434accuracy,26,268–282,437,543Photometry,Photomultiplier,247,292–294,316,388,426,561Photoncounting,217,537,617distribution,124,526lifetime,417,419,526–528Photothermal,482–517Piezoelectrictransducer(PZT),327,425,440,454,466,616Pin-hole,248,249,307,315,389,485,488,495,504,544–546Planar,20,133,134,136–141,144,145,284,501,504,506,594Pointsource,25,26,40,55,59,75,109,144,146,147,187,189,222,224,225,234,269,274,315,329,598Polarization-based,542,650Polarizationcoupling,447,597Polarizationdependentlosses,307,605–610Polarizationeffect,131,220Polarizationmaintaining,616Polarizationmeasurements,184–187Polarizationmode-beating,651Polarization-modulation,371,372Polarization-multiplexed,541Polarization-relateductuation,436Polarization-sensitive,220,612Polarization-sensitivedegeneracy,438Polarizationsensitivity,220,438Polarized,19,30–32,41,221,237,266,286,296,312,350,371,417,418,447,449,451,464,491,497,501,502,543,544,601,605,616,647light,250,312,322,349,370,461,464,543,605,616radiation,362Polarizer,170–172,174–178,184–186,237,247,248,250,266,302,307,410,425,440,449,461,464,502,544,561,605,606,616Polarizingbeamsplitter,447,452,566Pollutingspecie,335,556Pollution-detectionspectroscopy,333,335,508Polychromaticlight,266,455Polychromaticradiation,141–143Polychromator,243Polystyrenespheres,482Populationinversion,155Position-modulated,490–492Powerpenalty,629,644–646Powerscale,227–231,233,237Poyntingvector,1,3,4,6,7,9,49Pre-calibrated,252,270,312Pre-calibration,270,566Pressure-modulationtechnique,362Pressuretransducer,508Pressurevariation,362,508Probability,124,127,128,151,158,177,526–529,533,535,536,630,644densityfunction,124,535,536,632–635,646ProlongedWhitecavity,332Propagationefciency,139–141,145,146Propagationloss(es),589–651Index705Propagationofcoherence,141–143Proportionalityfactor,18,20,259,576Pseudo-Brewster,296–299Pulse,11,152,218,307,336,368,403,494,539,597average,218delay,408,464generator,539,540stacking,388,389,430Pulsedlaser,155,157,181,218,228,229,273,280,314,336,358,368,384,392,431,436,437,441,508,511,539,564Pulsedlight,144–159,269,280,388,403Pulsedphotoacoustic,512–514Pulsedradiation,11,13,14,155,180,276,277,280,385,504Pulsedsource,12,180,252,277,278,424Pulse-to-pulsespectraldistribution,181,437Pulsetrain,151–154,383,388,454,512,567Pyroelectric,218,223,232,314QQ-factor,380,403,477,511,514–516Quadrature,464,465,549,633,636–638components,547,550Quality-factortransfer,431–447,571Quarter-waveplate,184,185,410,428,439,440,448,449,464,605Quartz-tuningfork,515,516Quasi-continuousradiation,152Quasi-homogeneous,138,139,141,143–146,247,374Quasi-linear,272Quasi-normalincidence,242,305,579,582RRadiance,13,49,134,222,310,524distribution,61factor,23,46,47,75,258,259scale,238Radiantemittance,13,21,45,96,134,136,138–140Radiantexposure,15,156,276Radiantux,3,4,13,14,18,29,46,58,92,126,152,224,234,258,271,431,469,471,474,475,498,545,580,592,635Radiantintensity,1,12–14,16,20,22,27,49,92,133–137,139,140,156,227,229,233,238,276,310,475Radiantquantities,10Radiativeheattransfer,471Radiometer,9,159,217–288,544Radiometric,3–47,49–215,222,598concept,3,5,10,129,130andphotometricquantities,3–47,229Radiometry,4,50,129–215,563Ramangain,348Ramanscattering,348–359spectroscopy,348Randomerror,65,182,221,228,235,240,251,273,305,331,349,371,373,416,582,585Ratio-balancing,566Ratio-bound,406,572Ratio-meter,181,418,437,575,585Rayleighscattering,313,349,350,358,601,610,619Receiver,7,8,10,11,50,56,76,86,126,224,236,243,549,587,637,641,642,644–647Reciprocity,45,103,114,189Recongurable,355–358Reducedphotometricquantity(s),10Reductionofinterference,166Re-entrantcavityconguration,346Reentrantcondition,441Reference,23,69,158,228,293,326,368,404,471,537,598cavity,334channel,159,170,181–183,249,293,315,333,335,408,451,537,538,540,547,559,564,565,584,612spectrophotometer,245,248,281,282standard,69,76,84–87,89,312,316stimuli,76,79,461transmissionspectrophotometers,245–248Reectance,19,51,150,219,289,321,368,401,475,537,595distribution,45,326uctuation,624Reectedlight,23,67,149,218,297,322,377,406,493,537,591radiation,75,91,149,161,165,167,223,297,309,312,407,435,436,457,577,595,596,603Reection,25,52,160,219,289,321–365,367,401,471,539,591Reection-based,67,456,461,573,577,585,624Reectioncoefcient,526,639Reectionfunction,45,167Reectionloss,221,279,401,544,620706IndexReection-scatteringinteraction,30,362Reectionspectrum,233,264,267,456,459,461,546Reectometer,70,241,302,304–306,416,425,612,614–618,620,622,624,626,628,629Reector,22,70,122,182,183,241,258,321–328,336,340–342,358,399,416,433,435,436,555Registeringspectrophotometer,244Registrationtime,380,382,399Relativeerror,165,287,289,304,321,401Relativeintensity,31,34,46,81,151,296,312,360,363,383,397,411,415,442,448,455,456,634,636,638,639,641Relativeintensitynoise(RIN),636,638Relativemeasurements,69,95–99,376Relativerefractiveindex,19,20,30,31,35,221,286,289,298,321,474Relativestandarddeviation,394Relativeuncertainty,394,397Remote,122,508–511,540,542,555,556,621,625Repeatability,235,248,249,272,273,281,294,296,303,315,319,326,368,395,414,419,420,437,438,461,481,491,493,594,628Replacementpotential,504Residual,87,184,187,268,296,364,429,432,436,439–441,448,521,543,544,551,584,607,639,640amplitudemodulation,554,564noise,362Resolution,36,148,231,304,323,367,403,472,543,601Resonance,356,377,378,384,385,390,396,398,414,423–427,430,431,439,441,442,455,466,506,511,513,514,516modes,385Resonant,302,354,367,404,475,540,595cavity,367,395,396,399,406,409,414,417,420,422,423,427,429,431,438,440,445,447,448,450,452,455,466,506,508,600length,361,475technique,457wavelength,385,397,443Resonatinggas,600Resonatingwaveguidecavity,596Resonator,126,146,250,298,342,367,401–467,477,554,595Responsivity,67,128,232,234,236,548,647Retarder,170–180,184–186,372,448,502,608Ringdown,187,378–382,384–400,426–430,442,443,449,450cavity,187,384–392,394–396,427–430,442,449decay,395,427function,392measurement,386,400signal,392,394,397,429spectroscopy,187,378–382,384–391,394,396,398,427time,386–389,391,392,426,428,430,449timeuncertainty,394Rmsroughness,285,313,314Root-mean-squaredeviation,158,182,327Roundtrip,386,423,427,449,453,454,466time,279,385,396,417,420,423–425,453,454,466SSample,33,64,181,240,289,324,370,402,469,537,590Samplesperformingasnonuniformdiffusers,99Sampling,392,397rate,394,409,512,567Scanning,243,310,334,335,348,359,382,394,396,398,408,409,411,413,427,434,442,486,541,556,558,562,566,605,617interferometer,382,440,482Michelsoninterferometer,482mirrorinterferometry,482Scattered,29,30,33,46,73–75,243,254,261,283,310,312,313,316,317,392,437,438,481,505,522,546,586,589,598,601,603,604,610–612,615–617,620,621light,31,73,92,225,243,250,253,258,310–314,316–318,348,349,359,471,473,507,509,511,591,592,595,597–599,601,602,610–613,616,621,628radiation,33,73,75,261,416,522,546,586,598,601,610,611,615–617Scattering,5,63,157,222,291,328,384,401,469,540,592factor,20,27,30,31,33,40,73,74,92,224,253–255,261,309–313,348,403,434,438,584,603,611,612,619Index7074-scattering,263,601–603indicatrix,73,94,111,113,116,118,222,224,254,311loss,29,229,264,307,312,354,358,386,387,401,402,425,431,508,540,585,592,597–605,614,618,620spectrum,86–88traceanalysis,6142-scattering,264,314Second-order,98,130,173,175Self-calibration,232Semi-sphere,264,313Semitransparent,69–72,182,248,251,252,263,264,276,301,354,356,415,416,432,435,436,458,539,568,582Sensitivitygain,382,383Sensitivitylimitation,382–384Separation,40,57,142,172,307,316,323,329,330,335,337,339,340,342,346,347,360,364,365,370,403,409,410,441,466,472,479,492,505,512,517,537,567–575,578,598,620–622,630,641,642,648Separationlength,490,592Separationofdirectanddiffusetransmittance,116–118Separationoflosses,479Sequence,34,39,68,92,103,149,153–155,160,172,173,224,230,231,244,249,252,275,278,310,323,403,404,406,408,438,445,499,539Sequenceofpulses,152,231,278,499Sequential,69,70,101,114,149,153,166,173,230,243,295,305,317,449,600,617,625measurement,318,356thermalow,479Shadow-boundeffect,191,198Sharpness,360,412,413Short-terminstability,571Shotnoise,565,566,645,647domination,394,548Shot-to-shotnoisevariation,565Sideband,398,428,429,548,550–553Signalaverager,333,559Signal-averaging,363,385Signal-leakagecrosstalk,644Signalmodulation,359,361,398,418Signalnoise,540Signal-to-crosstalkinterference,644Signal-to-interferencenoiseratio(SNRI),643Signal-to-noiseratio,288,294,313,334,342,358,389,399,510,538,548,563,564,567,586Simultaneous,118,243–245,259,271,293,307,356,404,467,474,494,512,542,552,563,584,602Sine-wave,334,559Single-beam,117,118,245,257,271,292,543,568Single-channeluctuation,538Single-exponentialdecayapproximation,392Singleintensity,168,570Single-mirrorreectance,353,432Single-modeber,592radiation,383ringdownspectroscopy,394Single-passdensity,290Single-passefciency,358Single-path,508measurement,399Single-pulse,154,155,158,218,230,231,278,281,289,466,511,512Singlereectancemeasurement,437,577Single-surfacereectivity,298Single-tone,551,552,554,555Single-wavelength,548Small-crosstalkapproximation,645Small-phaseuctuationlimit,637Snell'slaw,17,19,29,45,47,94,160,574Solidangle,8,11–14,16–21,23–26,30,31,40,44–47,50,54,56,59–62,73,75,94,95,104,109,111,124,142,188,224,258,310,312–314,316,518,532,610Spacing,322,339,341,346,359,361,363,365,391,399,410,441,458,465,562,566Spatial,6,49,129,222,292,324,383,401,473,537,612density,6,13,14,328lter,181,183,237,315,546integration,164,225,277,280,359,569intensitydistribution,565interference,148,149lightexposure,15andspectralinterference,463–467Spatially-averaged,250,306factor,304reectance,306Spatialmodulation,417,431Spatialradiantexposure,15708IndexSpatialresolution,148,149,284,310,315,324,351,416,614,616,617,619,651Spatial-sensitivitydeviations,565Spatialseparation,57,403,441,537,568Spatial-spectralinterferometry,463–467Specialtyspectrophotometers,248–250Specieinterference,558Specicheat,470,498,507,509Specimen,292,360,361,367,379,398,427,483,501,508,519,525,529,536,586Spectralabsorptance,219,517,525Spectralbandwidth,144,379,380,616Spectralcalibration,239,526Spectralconversionfactor,261Spectraldependent,233,256,547Spectraldistribution,9,11,63,76,78,80,81,84,85,135,151,194,233,234,437,456,461,462,616Spectralefciencyfunction,10Spectralintensitydistribution,49,386,387Spectralinterference,465Spectralinterferometry,452,464,465Spectrallineshapefunction,396Spectrallocking,561Spectrally-broadened,396Spectrallyresolved,187,350,399,408,465,467Spectrallyselective,108,232,233,240,256,271,386,391,502opticalloss,367Spectrally-unselectiveattenuator,603Spectrallyunselectivesystems,217–222Spectralreferencing,541Spectralreectance,223,264,331,416,520Spectralreectivity,525,529Spectralresolution,184,244,248,334,382,387,399,428,458,459,461,464,512,520,543,546,562,567,650Spectralscattering,263,316Spectral-selective,294,437Spectraltransition,380Spectraltransmittance,71,185,245,249,379,608Spectrograph,379,381,398,542Spectrophotometer,86–89,116,182–185,241,242,244,245,247–249,255,264,268,281,282,290–292,301,317,335,373,374,403,437,537,538,543Spectrophotometricstudyofphasedispersion,455–461Spectrophotometry,11,284,316,576–583Spectroradiometer,238Spectroradiometric,231–235,238Spectroradiometry,11Specularreectance,19,30,31,41,65–69,71,92,94,100,120,121,219,236,241,242,254,255,260,285,289,299–309,318,319,331,401,419,613Spherebalanceequation,524Spherecalibrationfactor,526Sphere-centeredsource,528Sphereirradiance,51,52,56,94,99,104,105,107,108,110,112,113,117–123,126,223,262,526,535,536,601,604Sphericaldensity,14,56–58ofluminousintensity,14ofradiantintensity,58ofradiation,56–58Sphericalilluminance,14,56Sphericalirradiance,14,56,58Sphericalmirrorwaveguide,344Spheroid,313,314Spikesuppression,379Splice,365,563,591,593,613,614,620,625–627,629,636loss,591,614,626Split-pulse,539Spontaneousnoise,379Squaredaveragetransmittance,628Squaredtransmittance,169,423,456,573Stability,62,158,183,232,233,240,251,292,293,337,338,361,370,380,384,388,427,437,477,482,486,495,499,537,544–546,570,584,611,620,622,629Stabilization,151,158,159,180,182,236,242,294,333,396,398,422,427,429,542,561Stabilized,241,245,335,341,371,372,381,388,395,396,438,476,540,544,561,575Standard,10,55,152,227,301,336,394,409,543,606Standarddeviation,182,281,394,395,429,455,575,606Standardized,76,80,86–88,90,230,238,239,264,373,515Standingacousticwave,511Stateofpolarization,21,32,171,248,297,299,316,331,396,439,441,573,605,606,651Statisticaleldofopticalradiation,3–4Statisticallyobservableradiation,6Index709Steady-state,54,132,154,403,423,437,442,444,454,466,470,483,500condition,149,382,383,474ux,151modedistribution,590,591,594,613,622,623phase,380–382transitionStep-function,30,153,191–214,272Step-grating,196Step-thicknessmodulation,200Stimulatedemission,155,367,370,374,379,381Straight-cellsensitivity,368Straightforward,8,39,45,56,57,62,86,101,121,147,155,166,192,286,307,316,318,350,398,407,439,456,519,619conversion,238Straight-linepropagation,527Stray-light,226,248,255Subjectofphotometryandradiometry,7Substance,4,63,131,218,289,322,367,408,469,543,607Substitutionmethod,87,88,95,97–99,117,254Summation,35,37,38,80,83,148,163,278,392,393,396,397,402,404,420,422,456,533,548,631,644Supercontinuum,482Superluminescent,586,617Superpolished,224,419,426,437,585Superposition,12,85,130,131,144,147,148,152,163,274–276,282,338,383,389,398,414,420,441,555,641Supplemental-light,275,276,282,437Surfaceabsorptance,157,472,507Surfaceabsorption,472,476,478,507,517Surface-angulardensity,16,19,21,25Surface-averagedreectance,326,330Surface-averagedtransmittance,576Surfaceloss,473,545,576Surfacemorphology,509Surfacereectance,36,41,63,64,125,150,157,160,163,166,167,169,172,179,180,244,251,273,279,285,290–292,295,296,298,308,405,440,466,475,505,520,545,568,570,572–574,578,580–583Surfaceroughness,285,300,301,326Surfacescattering,65,545,584Surfacetransmittance,65,184,353,580Survivalprobability,527,528Swayablemirror,305Swaying-mirror,304,305Sweepfrequency,559Sweep-integration,559Sweep-tuning,394Symmetric,40,201,206,348,387,389,514Symmetry,8,40,68,167,187,330Synchronization,228,278,575,584Synchronizedmeasurement,584Systematicerror,51,97,100,102–108,228,235,245,248,254,256–259,261,268,280,287,288,292,295,311,323,371,438,440,441,509,538,540,542,604TTaylormethod,101,104,105Technicalnoise,548domination,394Technique,64,159,223,289–319,323,388,401,476,538,590Telecentricmethod,59,60Temperaturechange,232,471,474,479,482,495,497,501Temperaturecoefcient,232,483,494,495Temperaturedistribution,473,474,476,479,481,490,496,600Temperatureresolution,472,480Temperaturerise,469,470,472,473,480,489,493,496,599Temperature-stabilized,516,542,585Temperature-tuning,595Temporal,12,14,49,142,144,146–149,151,155,157,168,180–183,228,270,274,276–279,281,287,381–383,385,387,393,396,401,403,407,412,413,420,421,426,431,437,451,484,502,511–513,535,537,569,611dependence,381,484distortion,547integration,186,280modulation,359response,154,277,412,497,535separation,364,409Thermalconductivity,471,481,490,500,501,506Thermalconstant,476Thermaldeection,490,491,495,497,499Thermaldiffusionlength,471,490,500,506,600Thermaldiffusivity,218,472,512Thermaldrift,396,427,544,584710IndexThermalequilibrium,50,51,72,115,126,140,141,288,470,471,480,512,517,519,521,599Thermalexpansion,494,497,504,509Thermalow,477,479Thermalux,469,479,599,600Thermallensing,307,482–517Thermalnoise,158,217,219,288,644Thermalsource,144,232,233,422,477,481,597Thermalstrain,492,504Thermocouplecalorimetry,505Thermoelectric,217,218Thermo-opticthreshold,495Thermo-stabilized,381,437Thickness,28,34,36,57,63,66,71,149–151,157,159,166,170,171,175,179,192,197,200–204,206–209,212,215,220,224,226,229,241,257,286,296,308,314,331,368,406,413,414,448,452,479,500,518,523,568,597,629,630Three-mirrormultipasscavity,328Threshold,157,158,217–221,224,226,228,229,252,253,270,377,381,384,399,425–427,450,455,491,493,495,564,614,645sensing,370Throughputefciency,563Time-averaged,7,9,49,548Timeconstant,54,129,131,154,217–219,230,270,276,278,391,392,394,412,415,417,420,422,424,470,471,473,513,535,542,597Time-dependentintensity,392Time-division,644Time-domainreectometry,622Time-domainscanninginterferometry,464Time-domainspectrometry,307Timeintegration,361,393,422,557,559,561,611,621Timeofcoherence,147Timesynchronization,584Totalloss,3,29,219,319,376,386,411,413,426,434,450,490,592,613,628Totalreectance,31,35,36,46,52,169,244,301,308,418,517,546,630Totalscattering,30,33,309,313,314,339,348andabsorption,309,439factor,30,33,313,314,348Totaltransmittance,31,35,37,63,64,117,164,169,283,290,308,413,630Tracedetection,361,540,557,560,567Transducer-basedmodulation,362Transformation,10,13,25–28,38,50,51,81,85,88,147,181,217,218,228–231,233–238,241,269,272,276,278,285,287,323,342,344,345,414,444,454,469,502,504,509,511,518,520,625factor,33,44–46,49,50,87,217,224,229,286,537Transform-limited,394Transimpedance,315,539,584Translucent,23,45,56–58,105,108–111,114,116,119,122,181,183,224,242,243,255–263,526,603diffuser,122sphere,57,91,108,110,111,113,258,261–263,475,524–526,528,603,604Transmission,25,57,149,223,293,321,367,401,469,538,590function,45,214loss,298,299,369,378,564,618prole,214,215spectrum,183,184,266,456,544Transmittance,25,57,158,224,289,321,369,401,502,537,595Transmitted,7,55,149,221,291,322,368,402,469,537,593light,23,26,31,34,63–66,106,109,160,161,163–167,169,171,177,178,186,214,221,242,248,256,270,291,293,322,325,333,374,377,390,403,405,406,409,413,417,436,446,448,456–458,484,519,540,554,575,603,605,610,618,623radiation,25,29,44,125,149,150,166,167,170,176,179,182,261,289,387,417,427,429,457,522,596,609Transparent,24,64,150,220,303,321,368,406,469,538,589Transresistanceamplier,565Transversal,336,337,339,360,362misalignment,624Transverse,54,334,336,338,342,349,388–391,405,429,473,483,489,491,494,496–498,505,511,624change,497mode,391,392,394,395,423,429,466modebeating,392,394Traveling-wave,152Triple-stepinterference,173Index711Tristimulus,85,86coordinates,86,264,462values,76,77,78,84–90,264,266,461,462Tunable,181,333,346,356–359,427,430,450,451,453,491,510–512,514,552,554,556,560–562,566diode-laserspectroscopy,557,558multipasscavity,354wavelength,347Two-beam,241,301,539,559,631,634,639,648interference,175,177,453,496,608,612,631,634,636,643interferometer,496,632,633,635Two-channel,159,168–170,181,317,418,540,541,560,563,566,567,575,584,586Two-dimensional,76,134,135,138,141,465,466,517Two-elementmultipasscavity,327Twofoldinterferometricreectometer,616,617Two-point,591attenuationmeasurement,593procedure,591Two-step,481,574Two-tone,364,551–555UUnbalanced,540,548,586,587Unboundedsensitivity,457Unequallyreectingsurfaces,573Uneven-leg,539Uniformdiffuse,91,94,115,120,224,254,256,522,528,529,532irradiance,93,100,102,113,127,128,523reectance,92,127,258,262scattering,254transmittance,43,116Uniformity,66,113,122–124,181,222,226,248,292,296,302,318,358,471,529Uniformlydiffused,42–44,47,94,113,125,254,256,261Uniformlydiffusedlight,99,223,262Uniformlydiffusedradiation,22,40Uniformlyscattering,604Uniformlyscatteringspheres,92–95Uninformative,569Unitpulse,152–154Universalmediumconstant,497Unnoticeableinterferenceeffects,416Unresolved,243,268,272Unsaturatedgain,367,383Unselective,12,216–222,232,603VVanCittert–Zerniketheorem,144,246Variable-anglemeasurement,306Variableopticalattenuator,563Variation,65–67,95,229,231,236,240,272,278,284,295,300,304,323,325,332,338,362,385,389,390,392,393,408,413,415,416,422,451,453,473,489,494,499,506,508,529,538,565,578,584,590,605,633Verication,26,181,184,248,268–282,296,311,326,331,333,354,414,422,463,476,529,536,557,566,617,620Vibrationdirection,170–175,177,179,184,450Vibration-isolated,413Viewingmethod,103–104,107Visibility,131,159–163,166–170,179,180,279,280,360,364,365,409,414,436,569,616Visualphotometer,234Voigt,364t,429form,364line,566WWavefrontdeformation,517sensor,517Wavefrontdistortion,284,517Waveguideconguration,347Waveguideloss,285,402,595,596Waveguide-surfacereectivity,596Wavelength,3,60,136,221,293,331,377,403,478,538,589Wavelength-dependent,223,287,383,384,398,453,548,566Wavelengthderivatives,547Wavelength-division,644Wavelength-divisionmultiplexer,562Wavelength-divisionmultiplexing,248Wavelength-independentscattering,601Wavelengthmodulation,359,546–548,553,560,561712IndexWavelength-modulationspectroscopy,546,547Wavelength-selective,384Wavelengthspectrum,544Wavelengthstabilized,388Wavelengthtuning,359,408,427,547,555–567,597Weak-etaloneffect,364Wedge-shaped,35,164–166,229,230,273,584Wedge-shapedcavity,327Weightedsummation,392Whitecavity,329–334,336,337,339–341,346,361,362Whitecell,336,337,340,361,557,559,561White-light,183,248,282,307,308,451,465interferometry,452,615Wide-anglediffraction,192,213ZZerodelay,451Zero-order,178,179,214Zero-paddedinterferograms,416

火数云 55元/月BGP限时三折,独立服务器及站群限时8折,新乡、安徽、香港、美国

火数云怎么样?火数云主要提供数据中心基础服务、互联网业务解决方案,及专属服务器租用、云服务器、专属服务器托管、带宽租用等产品和服务。火数云提供洛阳、新乡、安徽、香港、美国等地骨干级机房优质资源,包括BGP国际多线网络,CN2点对点直连带宽以及国际顶尖品牌硬件。专注为个人开发者用户,中小型,大型企业用户提供一站式核心网络云端服务部署,促使用户云端部署化简为零,轻松快捷运用云计算!多年云计算领域服务经...

福州云服务器 1核 2G 2M 12元/月(买5个月) 萤光云

厦门靠谱云股份有限公司 双十一到了,站长我就给介绍一家折扣力度名列前茅的云厂商——萤光云。1H2G2M的高防50G云服务器,依照他们的规则叠加优惠,可以做到12元/月。更大配置和带宽的价格,也在一般云厂商中脱颖而出,性价比超高。官网:www.lightnode.cn叠加优惠:全区季付55折+满100-50各个配置价格表:地域配置双十一优惠价说明福州(带50G防御)/上海/北京1H2G2M12元/月...

弘速云(28元/月)香港葵湾2核2G10M云服务器

弘速云怎么样?弘速云是创建于2021年的品牌,运营该品牌的公司HOSU LIMITED(中文名称弘速科技有限公司)公司成立于2021年国内公司注册于2019年。HOSU LIMITED主要从事出售香港vps、美国VPS、香港独立服务器、香港站群服务器等,目前在售VPS线路有CN2+BGP、CN2 GIA,该公司旗下产品均采用KVM虚拟化架构。可联系商家代安装iso系统,目前推出全场vps新开7折,...

51peizi为你推荐
insomniac英文歌中有一句歌词是这样的:“here tonight”,谁知道这首歌曲叫什么名?留学生认证留学生学历认证的意义是什么?www.983mm.comwww.47683.com同ip站点同ip站点很多有没有影响?www.haole012.com阜阳有什么好的正规的招聘网站?125xx.com115xx.com是什么意思广告法中华人民共和国广告法中,有哪些广告不得发布?www.idanmu.com万通奇迹,www.wcm77.HK 是传销么?梦遗姐男人梦遗,女人会吗?b.faloo.com求本好看妖尾同人的小说,最好是后宫和完结了的。
猫咪av永久最新域名 美国加州vps 亚洲大于500m 国外私服 远程登陆工具 ibox官网 京东商城0元抢购 200g硬盘 qq云端 如何安装服务器系统 国外代理服务器 学生机 时间服务器 nic vim命令 极域网 新浪轻博客 中国最年轻博士 护卫神主机管理系统 关闭空间申请 更多