2008MicrochipTechnologyInc.
DS21034E-page1MCP3202Features12-Bitresolution±1LSBmaximumDNL±1LSBmaximumINL(MCP3202-B)±2LSBmaximumINL(MCP3202-C)Analoginputsprogrammableassingle-endedorpseudo-differentialpairsOn-chipsampleandholdSPIserialinterface(modes0,0and1,1)Singlesupplyoperation:2.
7V-5.
5V100kspsmaximumsamplingrateatVDD=5V50kspsmaximumsamplingrateatVDD=2.
7VLowpowerCMOStechnology500nAtypicalstandbycurrent,5Amaximum550Amaximumactivecurrentat5VIndustrialtemprange:-40°Cto+85°C8-pinMSOP,PDIP,SOICandTSSOPpackagesApplicationsSensorInterfaceProcessControlDataAcquisitionBatteryOperatedSystemsFunctionalBlockDiagramDescriptionTheMicrochipTechnologyInc.
MCP3202isasuccessiveapproximation12-bitAnalog-to-Digital(A/D)Converterwithon-boardsampleandholdcircuitry.
TheMCP3202isprogrammabletoprovideasinglepseudo-differentialinputpairordualsingle-endedinputs.
DifferentialNonlinearity(DNL)isspecifiedat±1LSB,andIntegralNonlinearity(INL)isofferedin±1LSB(MCP3202-B)and±2LSB(MCP3202-C)versions.
CommunicationwiththedeviceisdoneusingasimpleserialinterfacecompatiblewiththeSPIprotocol.
Thedeviceiscapableofconversionratesofupto100kspsat5Vand50kspsat2.
7V.
TheMCP3202deviceoperatesoverabroadvoltagerange(2.
7V-5.
5V).
Low-currentdesignpermitsoperationwithtypicalstandbyandactivecurrentsofonly500nAand375A,respectively.
TheMCP3202isofferedin8-pinMSOP,PDIP,TSSOPand150milSOICpackages.
PackageTypesComparatorSampleandHold12-BitSARDACControlLogicCS/SHDNVSSVDDCLKDOUTShiftRegisterCH0ChannelMuxInputCH1DINMCP320212348765CH0CH1VSSCS/SHDNVDD/VREFCLKDOUTDINPDIP,MSOP,SOIC,TSSOP2.
7VDualChannel12-BitA/DConverterwithSPISerialInterfaceMCP3202DS21034E-page22008MicrochipTechnologyInc.
NOTES:2008MicrochipTechnologyInc.
DS21034E-page3MCP32021.
0ELECTRICALCHARACTERISTICSAbsoluteMaximumRatingsVDD–VSS7.
0VAllInputsandOutputsw.
r.
t.
VSS0.
6VtoVDD+0.
6VStorageTemperature65°Cto+150°CAmbienttemperaturewithpowerapplied.
.
.
.
.
.
.
–65°Cto+150°CMaximumJunctionTemperature(TJ)150°CESDProtectionOnAllPins(HBM)4kVNotice:Stressesabovethoselistedunder"AbsoluteMaximumRatings"maycausepermanentdamagetothedevice.
Thisisastressratingonlyandfunctionaloperationofthedeviceatthoseoranyotherconditionsabovethoseindicatedintheoperationallistingsofthisspecificationisnotimplied.
Exposuretomaximumratingconditionsforextendedperiodsmayaffectdevicereliability.
ELECTRICALCHARACTERISTICSElectricalCharacteristics:Unlessotherwisenoted,allparametersapplyatVDD=5.
5V,VSS=0V,TA=-40°Cto+85°C,fSAMPLE=100kspsandfCLK=18*fSAMPLE.
ParameterSymMin.
Typ.
Max.
UnitsConditionsConversionRate:ConversionTimetCONV——12clockcyclesAnalogInputSampleTimetSAMPLE1.
5clockcyclesThroughputRatefSAMPL————10050kspskspsVDD=VREF=5VVDD=VREF=2.
7VDCAccuracy:Resolution12bitsIntegralNonlinearityINL——±0.
75±1±1±2LSBLSBMCP3202-BMCP3202-CDifferentialNonlinearityDNL—±0.
5±1LSBNomissingcodesovertemperatureOffsetError—±1.
25±3LSBGainError—±1.
25±5LSBDynamicPerformance:TotalHarmonicDistortionTHD—-82—dBVIN=0.
1Vto4.
9V@1kHzSignal-to-NoiseandDistortion(SINAD)SINAD—72—dBVIN=0.
1Vto4.
9V@1kHzSpuriousFreeDynamicRangeSFDR—86—dBVIN=0.
1Vto4.
9V@1kHzAnalogInputs:InputVoltageRangeforCH0orCH1inSingle-EndedModeVSS—VDDVInputVoltageRangeforIN+inPseudo-DifferentialModeIN+IN-—VDD+IN-SeeSections3.
1and4.
1InputVoltageRangeforIN-inPseudo-DifferentialModeIN-VSS-100—VSS+100mVSeeSections3.
1and4.
1LeakageCurrent—.
001±1μASwitchResistanceRSS—1k—SeeFigure4-1SampleCapacitorCSAMPLE—20—pFSeeFigure4-1DigitalInput/Output:DataCodingFormatStraightBinaryHighLevelInputVoltageVIH0.
7VDD——VLowLevelInputVoltageVIL——0.
3VDDVNote1:Thisparameterisestablishedbycharacterizationandnot100%tested.
2:Becausethesamplecapwilleventuallylosecharge,effectiveclockratesbelow10kHzcanaffectlinearityperformance,especiallyatelevatedtemperatures.
SeeSection6.
2"MaintainingMinimumClockSpeed"formoreinformation.
MCP3202DS21034E-page42008MicrochipTechnologyInc.
TEMPERATURECHARACTERISTICSHighLevelOutputVoltageVOH4.
1——VIOH=-1mA,VDD=4.
5VLowLevelOutputVoltageVOL——0.
4VIOL=1mA,VDD=4.
5VInputLeakageCurrentILI-10—10AVIN=VSSorVDDOutputLeakageCurrentILO-10—10AVOUT=VSSorVDDPinCapacitance(AllInputs/Outputs)CIN,COUT——10pFVDD=5.
0V(Note1)TA=+25°C,f=1MHzTimingParameters:ClockFrequencyfCLK——1.
80.
9MHzMHzVDD=5V(Note2)VDD=2.
7V(Note2)ClockHighTimetHI—2MHzClockLowTimetLO—2MHzCSFallToFirstRisingCLKEdgetSUCS100——nsDataInputSetupTimetSU50——nsDataInputHoldTimetHD50——nsCLKFallToOutputDataValidtDO——200nsSeeTestCircuits,Figure1-2CLKFallToOutputEnabletEN——200nsSeeTestCircuits,Figure1-2CSRiseToOutputDisabletDIS——100nsSeeTestCircuits,Figure1-2Note1CSDisableTimetCSH500——nsDOUTRiseTimetR——100nsSeeTestCircuits,Figure1-2Note1DOUTFallTimetF——100nsSeeTestCircuits,Figure1-2Note1PowerRequirements:OperatingVoltageVDD2.
7—5.
5VOperatingCurrentIDD—375550AVDD=5.
0V,DOUTunloadedStandbyCurrentIDDS—0.
55ACS=VDD=5.
0VElectricalSpecifications:Unlessotherwiseindicated,VDD=+2.
7Vto+5.
5V,VSS=GND.
ParametersSymMinTypMaxUnitsConditionsTemperatureRangesSpecifiedTemperatureRangeTA-40—+85°COperatingTemperatureRangeTA-40—+85°CStorageTemperatureRangeTA-65—+150°CThermalPackageResistancesThermalResistance,8L-MSOPθJA—211—°C/WThermalResistance,8L-PDIPθJA—89.
5—°C/WThermalResistance,8L-SOICθJA—149.
5—°C/WThermalResistance,8L-TSSOPθJA—139—°C/WELECTRICALCHARACTERISTICS(CONTINUED)ElectricalCharacteristics:Unlessotherwisenoted,allparametersapplyatVDD=5.
5V,VSS=0V,TA=-40°Cto+85°C,fSAMPLE=100kspsandfCLK=18*fSAMPLE.
ParameterSymMin.
Typ.
Max.
UnitsConditionsNote1:Thisparameterisestablishedbycharacterizationandnot100%tested.
2:Becausethesamplecapwilleventuallylosecharge,effectiveclockratesbelow10kHzcanaffectlinearityperformance,especiallyatelevatedtemperatures.
SeeSection6.
2"MaintainingMinimumClockSpeed"formoreinformation.
2008MicrochipTechnologyInc.
DS21034E-page5MCP3202FIGURE1-1:SerialTiming.
FIGURE1-2:TestCircuits.
CSCLKDINMSBINtSUtHDtSUCStCSHtHItLODOUTtENtDOtRtFLSBMSBOUTtDISNULLBITVIHTDISCSDOUTWaveform1*DOUTWaveform290%10%*Waveform1isforanoutputwithinternalconditionssuchthattheoutputishigh,unlessdisabledbytheoutputcontrol.
Waveform2isforanoutputwithinternalconditionssuchthattheoutputislow,unlessdisabledbytheoutputcontrol.
VoltageWaveformsfortDISTestPoint1.
4VDOUTLoadcircuitfortR,tF,tDO3kCL=100pFTestPointDOUTLoadcircuitfortDISandtEN3k100pFtDISWaveform2tDISWaveform1CSCLKDOUTtEN12B11VoltageWaveformsfortENtENWaveformVDDVDD/2VSS34DOUTtRVoltageWaveformsfortR,tFCLKDOUTtDOVoltageWaveformsfortDOtFVOHVOLMCP3202DS21034E-page62008MicrochipTechnologyInc.
NOTES:2008MicrochipTechnologyInc.
DS21034E-page7MCP32022.
0TYPICALPERFORMANCECHARACTERISTICSNote:Unlessotherwiseindicated,VDD=5V,VSS=0V,fSAMPLE=100ksps,fCLK=18*fSAMPLE,TA=+25°C.
FIGURE2-1:IntegralNonlinearity(INL)vs.
SampleRate.
FIGURE2-2:IntegralNonlinearity(INL)vs.
VDD.
FIGURE2-3:IntegralNonlinearity(INL)vs.
Code(RepresentativePart).
FIGURE2-4:IntegralNonlinearity(INL)vs.
SampleRate(VDD=2.
7V).
FIGURE2-5:IntegralNonlinearity(INL)vs.
VDD.
FIGURE2-6:IntegralNonlinearity(INL)vs.
Code(RepresentativePart,VDD=2.
7V).
Note:Thegraphsprovidedfollowingthisnoteareastatisticalsummarybasedonalimitednumberofsamplesandareprovidedforinformationalpurposesonly.
Theperformancecharacteristicslistedhereinarenottestedorguaranteed.
Insomegraphs,thedatapresentedmaybeoutsidethespecifiedoperatingrange(e.
g.
,outsidespecifiedpowersupplyrange)andthereforeoutsidethewarrantedrange.
-1.
0-0.
8-0.
6-0.
4-0.
20.
00.
20.
40.
60.
81.
00255075100125150SampleRate(ksps)INL(LSB)PositiveINLNegativeINL-1.
0-0.
8-0.
6-0.
4-0.
20.
00.
20.
40.
60.
81.
03.
03.
54.
04.
55.
0VDD(V)INL(LSB)PositiveINLNegativeINLfSAMPLE=100ksps-1.
0-0.
8-0.
6-0.
4-0.
20.
00.
20.
40.
60.
81.
005121024153620482560307235844096DigitalCodeINL(LSB)-2.
0-1.
5-1.
0-0.
50.
00.
51.
01.
52.
0020406080100SampleRate(ksps)INL(LSB)VDD=2.
7VPositiveINLNegativeINL-1.
0-0.
8-0.
6-0.
4-0.
20.
00.
20.
40.
60.
81.
02.
53.
03.
54.
04.
55.
0VDD(V)INL(LSB)PositiveINLNegativeINLfSAMPLE=50ksps-1.
0-0.
8-0.
6-0.
4-0.
20.
00.
20.
40.
60.
81.
005121024153620482560307235844096DigitalCodeINL(LSB)VDD=2.
7VFSAMPLE=50kspsMCP3202DS21034E-page82008MicrochipTechnologyInc.
Note:Unlessotherwiseindicated,VDD=5V,VSS=0V,fSAMPLE=100ksps,fCLK=18*fSAMPLE,TA=+25°C.
FIGURE2-7:IntegralNonlinearity(INL)vs.
Temperature.
FIGURE2-8:DifferentialNonlinearity(DNL)vs.
SampleRate.
FIGURE2-9:DifferentialNonlinearity(DNL)vs.
VDD.
FIGURE2-10:IntegralNonlinearity(INL)vs.
Temperature(VDD=2.
7V).
FIGURE2-11:DifferentialNonlinearity(DNL)vs.
SampleRate(VDD=2.
7V).
FIGURE2-12:DifferentialNonlinearity(DNL)vs.
VDD.
-1.
0-0.
8-0.
6-0.
4-0.
20.
00.
20.
40.
60.
81.
0-50-250255075100Temperature(°C)INL(LSB)PositiveINLNegativeINL-1.
0-0.
8-0.
6-0.
4-0.
20.
00.
20.
40.
60.
81.
00255075100125150SampleRate(ksps)DNL(LSB)PositiveDNLNegativeDNL-1.
0-0.
8-0.
6-0.
4-0.
20.
00.
20.
40.
60.
81.
03.
03.
54.
04.
55.
0VDD(V)DNL(LSB)PositiveDNLNegativeDNLfSAMPLE=100ksps-1.
0-0.
8-0.
6-0.
4-0.
20.
00.
20.
40.
60.
81.
0-50-250255075100Temperature(°C)INL(LSB)PositiveINLVDD=2.
7VfSAMPLE=50kspsNegativeINL-2.
0-1.
5-1.
0-0.
50.
00.
51.
01.
52.
0020406080100SampleRate(ksps)DNL(LSB)VDD=2.
7VPositiveDNLNegativeDNL-1.
0-0.
8-0.
6-0.
4-0.
20.
00.
20.
40.
60.
81.
02.
53.
03.
54.
04.
55.
0VDD(V)DNL(LSB)PositiveDNLNegativeDNLfSAMPLE=50ksps2008MicrochipTechnologyInc.
DS21034E-page9MCP3202Note:Unlessotherwiseindicated,VDD=5V,VSS=0V,fSAMPLE=100ksps,fCLK=18*fSAMPLE,TA=+25°C.
FIGURE2-13:DifferentialNonlinearity(DNL)vs.
Code(RepresentativePart).
FIGURE2-14:DifferentialNonlinearity(DNL)vs.
Temperature.
FIGURE2-15:GainErrorvs.
VDD.
FIGURE2-16:DifferentialNonlinearity(DNL)vs.
Code(RepresentativePart,VDD=2.
7V).
FIGURE2-17:DifferentialNonlinearity(DNL)vs.
Temperature(VDD=2.
7V).
FIGURE2-18:OffsetErrorvs.
VDD.
-1.
0-0.
8-0.
6-0.
4-0.
20.
00.
20.
40.
60.
81.
005121024153620482560307235844096DigitalCodeDNL(LSB)-1.
0-0.
8-0.
6-0.
4-0.
20.
00.
20.
40.
60.
81.
0-50-250255075100Temperature(°C)DNL(LSB)PositiveDNLNegativeDNL-2.
0-1.
5-1.
0-0.
50.
00.
51.
01.
52.
02.
53.
03.
54.
04.
55.
0VDD(V)GainError(LSB)fSAMPLE=50kspsfSAMPLE=100kspsfSAMPLE=10ksps-1.
0-0.
8-0.
6-0.
4-0.
20.
00.
20.
40.
60.
81.
005121024153620482560307235844096DigitalCodeDNL(LSB)VDD=2.
7VfSAMPLE=50ksps-1.
0-0.
8-0.
6-0.
4-0.
20.
00.
20.
40.
60.
81.
0-50-250255075100Temperature(°C)DNL(LSB)PositiveDNLVDD=2.
7VfSAMPLE=50kspsNegativeDNL0.
00.
20.
40.
60.
81.
01.
21.
41.
61.
82.
02.
53.
03.
54.
04.
55.
0VDD(V)OffsetError(LSB)fSAMPLE=10kspsfSAMPLE=50kspsfSAMPLE=100kspsMCP3202DS21034E-page102008MicrochipTechnologyInc.
Note:Unlessotherwiseindicated,VDD=5V,VSS=0V,fSAMPLE=100ksps,fCLK=18*fSAMPLE,TA=+25°C.
FIGURE2-19:GainErrorvs.
Temperature.
FIGURE2-20:Signal-to-NoiseRatio(SNR)vs.
InputFrequency.
FIGURE2-21:TotalHarmonicDistortion(THD)vs.
InputFrequency.
FIGURE2-22:OffsetErrorvs.
Temperature.
FIGURE2-23:Signal-to-NoiseandDistortion(SINAD)vs.
InputFrequency.
FIGURE2-24:Signal-to-NoiseandDistortion(SINAD)vs.
SignalLevel.
-1.
0-0.
8-0.
6-0.
4-0.
20.
00.
20.
40.
60.
81.
0-50-250255075100Temperature(°C)GainError(LSB)VDD=5VfSAMPLE=100VDD=2.
7VfSAMPLE=50ksps0102030405060708090100110100InputFrequency(kHz)SNR(dB)VDD=2.
7VfSAMPLE=50kspsVDD=5VfSAMPLE=100ksps-100-90-80-70-60-50-40-30-20-100110100InputFrequency(kHz)THD(dB)VDD=2.
7VfSAMPLE=50kspsVDD=5VfSAMPLE=100ksps0.
00.
20.
40.
60.
81.
01.
21.
41.
61.
82.
0-50-250255075100Temperature(°C)OffsetError(LSB)VDD=5VfSAMPLE=100kspsVDD=2.
7VfSAMPLE=50ksps0102030405060708090100110100InputFrequency(kHz)SINAD(dB)VDD=2.
7VfSAMPLE=50kspsVDD=5VfSAMPLE=100ksps01020304050607080-40-35-30-25-20-15-10-50InputSignalLevel(dB)SINAD(dB)VDD=2.
7VfSAMPLE=50kspsVDD=5VfSAMPLE=100ksps2008MicrochipTechnologyInc.
DS21034E-page11MCP3202Note:Unlessotherwiseindicated,VDD=5V,VSS=0V,fSAMPLE=100ksps,fCLK=18*fSAMPLE,TA=+25°C.
FIGURE2-25:EffectiveNumberofBits(ENOB)vs.
VDD.
FIGURE2-26:SpuriousFreeDynamicRange(SFDR)vs.
InputFrequency.
FIGURE2-27:FrequencySpectrumof10kHzinput(RepresentativePart).
FIGURE2-28:EffectiveNumberofBits(ENOB)vs.
InputFrequency.
FIGURE2-29:PowerSupplyRejection(PSR)vs.
RippleFrequency.
FIGURE2-30:FrequencySpectrumof1kHzinput(RepresentativePart,VDD=2.
7V).
9.
09.
510.
010.
511.
011.
512.
02.
02.
53.
03.
54.
04.
55.
0VDD(V)ENOB(rms)fSAMPLE=50kspsfSAMPLE=100ksps0102030405060708090100110100InputFrequency(kHz)SFDR(dB)VDD=2.
7VfSAMPLE=50kspsVDD=5VfSAMPLE=100ksps-130-120-110-100-90-80-70-60-50-40-30-20-10001000020000300004000050000Frequency(Hz)Amplitude(dB)VDD=5VfSAMPLE=100kspsfINPUT=9.
985kHz4096points8.
08.
59.
09.
510.
010.
511.
011.
512.
0110100InputFrequency(kHz)ENOB(rms)VDD=5VFSAMPLE=100kspsVDD=2.
7VFSAMPLE=50ksps-80-70-60-50-40-30-20-100110100100010000RippleFrequency(kHz)PowerSupplyRejection(dB)-130-120-110-100-90-80-70-60-50-40-30-20-1000500010000150002000025000Frequency(Hz)Amplitude(dB)VDD=2.
7VfSAMPLE=50kspsfINPUT=998.
76Hz4096pointsMCP3202DS21034E-page122008MicrochipTechnologyInc.
Note:Unlessotherwiseindicated,VDD=5V,VSS=0V,fSAMPLE=100ksps,fCLK=18*fSAMPLE,TA=+25°C.
FIGURE2-31:IDDvs.
VDD.
FIGURE2-32:IDDvs.
ClockFrequency.
FIGURE2-33:IDDvs.
Temperature.
FIGURE2-34:IDDSvs.
VDD.
FIGURE2-35:IDDSvs.
Temperature.
FIGURE2-36:AnalogInputleakagecurrentvs.
Temperature.
0501001502002503003504004505002.
02.
53.
03.
54.
04.
55.
05.
56.
0VDD(V)IDD(A)AllpointsatFCLK=1.
8MHzexceptatVDD=2.
5V,FCLK=900kHz05010015020025030035040045050010100100010000ClockFrequency(kHz)IDD(A)VDD=5VVDD=2.
7V050100150200250300350400450500-50-250255075100Temperature(°C)IDD(A)VDD=5VFCLK=1.
8MHzVDD=2.
7VFCLK=900kHz010203040506070802.
02.
53.
03.
54.
04.
55.
05.
56.
0VDD(V)IDDS(pA)CS=VDD0.
010.
101.
0010.
00100.
00-50-250255075100Temperature(°C)IDDS(nA)VDD=CS=5V0.
00.
20.
40.
60.
81.
01.
21.
41.
61.
82.
0-50-250255075100Temperature(°C)AnalogInputLeakage(nA)VDD=5VFCLK=1.
8MHz2008MicrochipTechnologyInc.
DS21034E-page13MCP32023.
0PINDESCRIPTIONSThedescriptionsofthepinsarelistedinTable3.
1.
Additionaldescriptionsofthedevicepinsfollows.
TABLE3-1:PINFUNCTIONTABLE3.
1AnalogInputs(CH0/CH1)Analoginputsforchannels0and1respectively.
Thesechannelscanbeprogrammedtobeusedastwoindependentchannelsinsingleended-modeorasasinglepseudo-differentialinputwhereonechannelisIN+andonechannelisIN–.
SeeSection5.
0"SerialCommunications"forinformationonprogrammingthechannelconfiguration.
3.
2ChipSelect/Shutdown(CS/SHDN)TheCS/SHDNpinisusedtoinitiatecommunicationwiththedevicewhenpulledlowandwillendaconversionandputthedeviceinlowpowerstandbywhenpulledhigh.
TheCS/SHDNpinmustbepulledhighbetweenconversions.
3.
3SerialClock(CLK)TheSPIclockpinisusedtoinitiateaconversionandtoclockouteachbitoftheconversionasittakesplace.
SeeSection6.
2"MaintainingMinimumClockSpeed"forconstraintsonclockspeed.
3.
4SerialDataInput(DIN)TheSPIportserialdatainputpinisusedtoclockininputchannelconfigurationdata.
3.
5SerialDataOutput(DOUT)TheSPIserialdataoutputpinisusedtoshiftouttheresultsoftheA/Dconversion.
Datawillalwayschangeonthefallingedgeofeachclockastheconversiontakesplace.
MCP3202SymbolDescriptionMSOP,PDIP,SOIC,TSSOP1CS/SHDNChipSelect/ShutdownInput2CH0Channel0AnalogInput3CH1Channel1AnalogInput4VSSGround5DINSerialDataIn6DOUTSerialDataOut7CLKSerialClock8VDD/VREF+2.
7Vto5.
5VPowerSupplyandReferenceVoltageInputMCP3202DS21034E-page142008MicrochipTechnologyInc.
NOTES:2008MicrochipTechnologyInc.
DS21034E-page15MCP32024.
0DEVICEOPERATIONTheMCP3202A/DConverteremploysaconventionalSARarchitecture.
Withthisarchitecture,asampleisacquiredonaninternalsample/holdcapacitorfor1.
5clockcyclesstartingonthesecondrisingedgeoftheserialclockafterthestartbithasbeenreceived.
Followingthissampletime,theinputswitchoftheconverteropensandthedeviceusesthecollectedchargeontheinternalsampleandholdcapacitortoproduceaserial12-bitdigitaloutputcode.
Conversionratesof100kspsarepossibleontheMCP3202.
SeeSection6.
2"MaintainingMinimumClockSpeed"forinformationonminimumclockrates.
Communicationwiththedeviceisdoneusinga3-wireSPI-compatibleinterface.
4.
1AnalogInputsTheMCP3202deviceoffersthechoiceofusingtheanaloginputchannelsconfiguredastwosingle-endedinputsorasinglepseudo-differentialinput.
Configurationisdoneaspartoftheserialcommandbeforeeachconversionbegins.
Whenusedinthepseudo-differentialmode,CH0andCH1areprogrammedastheIN+andIN–inputsaspartofthecommandstringtransmittedtothedevice.
TheIN+inputcanrangefromIN–toVREF(VDD+IN–).
TheIN–inputislimitedto±100mVfromtheVSSrail.
TheIN–inputcanbeusedtocancelsmallsignalcom-mon-modenoisewhichispresentonboththeIN+andIN–inputs.
FortheA/DConvertertomeetspecification,thechargeholdingcapacitor(CSAMPLE)mustbegivenenoughtimetoacquirea12-bitaccuratevoltagelevelduringthe1.
5clockcyclesamplingperiod.
TheanaloginputmodelisshowninFigure4-1.
Inthisdiagram,itisshownthatthesourceimpedance(RS)addstotheinternalsamplingswitch(RSS)impedance,directlyaffectingthetimethatisrequiredtochargethecapacitor,CSAMPLE.
Consequently,largersourceimpedancesincreasetheoffset,gain,andintegrallinearityerrorsoftheconversion.
Ideally,theimpedanceofthesignalsourceshouldbenearzero.
ThisisachievablewithanoperationalamplifiersuchastheMCP601whichhasaclosedloopoutputimpedanceoftensofohms.
TheadverseaffectsofhighersourceimpedancesareshowninFigure4-2.
Whenoperatinginthepseudo-differentialmode,ifthevoltagelevelofIN+isequaltoorlessthanIN–,theresultantcodewillbe000h.
IfthevoltageatIN+isequaltoorgreaterthan{[VDD+(IN–)]–1LSB},thentheoutputcodewillbeFFFh.
IfthevoltagelevelatIN–ismorethan1LSBbelowVSS,thenthevoltagelevelattheIN+inputwillhavetogobelowVSStoseethe000houtputcode.
Conversely,ifIN-ismorethan1LSBaboveVSS,thentheFFFhcodewillnotbeseenunlesstheIN+inputlevelgoesaboveVDDlevel.
4.
2DigitalOutputCodeThedigitaloutputcodeproducedbyanA/DConverterisafunctionoftheinputsignalandthereferencevoltage.
FortheMCP3202,VDDisusedasthereferencevoltage.
AstheVDDlevelisreduced,theLSBsizeisreducedaccordingly.
ThetheoreticaldigitaloutputcodeproducedbytheA/DConverterisshownbelow.
EQUATION4-1:DigitalOutputCode4096VINVDD-=where:VIN=analoginputvoltageVDD=supplyvoltageMCP3202DS21034E-page162008MicrochipTechnologyInc.
FIGURE4-1:AnalogInputModel.
FIGURE4-2:MaximumClockFrequencyvs.
InputResistance(RS)tomaintainlessthana0.
1LSBdeviationinINLfromnominalconditions.
CPINVARSSCHx7pFVT=0.
6VVT=0.
6VILEAKAGESamplingSwitchSSRS=1kWCSAMPLE=DACcapacitanceVSSVDD=20pF±1nALegendVA=signalsourceRSS=sourceimpedanceCHx=inputchannelpadCPIN=inputpincapacitanceVT=thresholdvoltageILEAKAGE=leakagecurrentatthepinduetovariousjunctionsSS=samplingswitchRS=samplingswitchresistorCSAMPLE=sample/holdcapacitance0.
00.
20.
40.
60.
81.
01.
21.
41.
61.
82.
0100100010000InputResistance(Ohms)ClockFrequency(MHz)VDD=5VVDD=2.
7V2008MicrochipTechnologyInc.
DS21034E-page17MCP32025.
0SERIALCOMMUNICATIONS5.
1OverviewCommunicationwiththeMCP3202isdoneusingastandardSPI-compatibleserialinterface.
InitiatingcommunicationwiththedeviceisdonebybringingtheCSlinelow.
SeeFigure5-1.
IfthedevicewaspoweredupwiththeCSpinlow,itmustbebroughthighandbacklowtoinitiatecommunication.
ThefirstclockreceivedwithCSlowandDINhighwillconstituteastartbit.
TheSGL/DIFFbitandtheODD/SIGNbitfollowthestartbitandareusedtoselecttheinputchannelconfiguration.
TheSGL/DIFFisusedtoselectsingleendedorpsuedo-differentialmode.
TheODD/SIGNbitselectswhichchannelisusedinsingleendedmode,andisusedtodeterminepolarityinpseudo-differentialmode.
FollowingtheODD/SIGNbit,theMSBFbitistransmittedtoandisusedtoenabletheLSBfirstformatforthedevice.
IftheMSBFbitishigh,thenthedatawillcomefromthedeviceinMSBfirstformatandanyfurtherclockswithCSlowwillcausethedevicetooutputzeros.
IftheMSBFbitislow,thenthedevicewilloutputtheconvertedwordLSBfirstafterthewordhasbeentransmittedintheMSBfirstformat.
SeeFigure5-2.
Table5-1showstheconfigurationbitsfortheMCP3202.
Thedevicewillbegintosampletheanaloginputonthesecondrisingedgeoftheclock,afterthestartbithasbeenreceived.
Thesampleperiodwillendonthefallingedgeofthethirdclockfollowingthestartbit.
OnthefallingedgeoftheclockfortheMSBFbit,thedevicewilloutputalownullbit.
Thenextsequential12clockswilloutputtheresultoftheconversionwithMSBfirstasshowninFigure5-1.
Dataisalwaysoutputfromthedeviceonthefallingedgeoftheclock.
Ifall12databitshavebeentransmittedandthedevicecontinuestoreceiveclockswhiletheCSisheldlow,(andMSBF=1),thedevicewilloutputtheconversionresultLSBfirstasshowninFigure5-2.
IfmoreclocksareprovidedtothedevicewhileCSisstilllow(aftertheLSBfirstdatahasbeentransmitted),thedevicewillclockoutzerosindefinitely.
Ifnecessary,itispossibletobringCSlowandclockinleadingzerosontheDINlinebeforethestartbit.
Thisisoftendonewhendealingwithmicrocontroller-basedSPIportsthatmustsend8bitsatatime.
RefertoSection6.
1"UsingtheMCP3202withMicrocon-troller(MCU)SPIPorts"formoredetailsonusingtheMCP3202deviceswithhardwareSPIports.
FIGURE5-1:CommunicationwiththeMCP3202usingMSBfirstformatonly.
TABLE5-1:CONFIGURATIONBITSFORTHEMCP3202ConfigBitsChannelSelectionGNDSGL/DIFFODD/SIGN01SingleEndedMode10+—-11—+-Pseudo-DifferentialMode00IN+IN-01IN-IN+CSCLKDINDOUTMSHI-ZNullBitB11B10B9B8B7B6B5B4B3B2B1B0*HI-ZtSAMPLEtCONVSGL/DIFFStarttCYCtCSHtCYC*Aftercompletingthedatatransfer,iffurtherclocksareappliedwithCSlow,theA/DConverterwilloutputzerosindefinitely.
SeeFigure5-2belowfordetailsonobtainingLSBfirstdata.
**tDATA:duringthistime,thebiascurrentandthecomparatorpowerdownwhilethereferenceinputbecomesahigh-impedancenode,leavingtheCLKrunningtoclockouttheLSB-firstdataorzeros.
tDATA**tSUCSODD/SIGNBFDon'tCareSGL/DIFFStartODD/SIGNMCP3202DS21034E-page182008MicrochipTechnologyInc.
FIGURE5-2:CommunicationwithMCP3202usingLSBfirstformat.
NullBitB11B10B9B8B7B6B5B4B3B2B1B0B1B2B3B4B5B6B7B8B9B10B11CSCLKDOUTHI-ZHI-Z(MSB)tCONVtDATA**PowerDowntSAMPLEDINtCYCtCSH*Aftercompletingthedatatransfer,iffurtherclocksareappliedwithCSlow,theA/DConverterwilloutputzerosindefinitely.
**tDATA:Duringthistime,thebiascircuitandthecomparatorpowerdownwhilethereferenceinputbecomesahigh-impedancenode,leavingtheCLKrunningtoclockoutLSBfirstdataorzeroes.
tSUCSODD/SIGNStartSGL/DIFFMSBFDon'tCare*2008MicrochipTechnologyInc.
DS21034E-page19MCP32026.
0APPLICATIONSINFORMATION6.
1UsingtheMCP3202withMicrocontroller(MCU)SPIPortsWithmostmicrocontrollerSPIports,itisrequiredtosendgroupsofeightbits.
ItisalsorequiredthatthemicrocontrollerSPIportbeconfiguredtoclockoutdataonthefallingedgeofclockandlatchdatainontherisingedge.
Dependingonhowcommunicationroutinesareused,itisverypossiblethatthenumberofclocksrequiredforcommunicationwillnotbeamultipleofeight.
Therefore,itmaybenecessaryfortheMCUtosendmoreclocksthanareactuallyrequired.
Thisisusuallydonebysending'leadingzeros'beforethestartbit,whichareignoredbythedevice.
Asanexample,Figure6-1andFigure6-2showhowtheMCP3202canbeinterfacedtoaMCUwithahardwareSPIport.
Figure6-1depictstheoperationshowninSPIMode0,0,whichrequiresthattheSCLKfromtheMCUidlesinthe'low'state,whileFigure6-2showsthesimilarcaseofSPIMode1,1wheretheclockidlesinthe'high'state.
AsshowninFigure6-1,thefirstbytetransmittedtotheA/DConvertercontainssevenleadingzerosbeforethestartbit.
Arrangingtheleadingzerosthiswayproducestheoutput12bitstofallinpositionseasilymanipulatedbytheMCU.
TheMSBisclockedoutoftheA/DConverteronthefallingedgeofclocknumber12.
Afterthesecondeightclockshavebeensenttothedevice,theMCUreceivebufferwillcontainthreeunknownbits(theoutputisathigh-impedanceuntilthenullbitisclockedout),thenullbitandthehighestorderfourbitsoftheconversion.
Afterthethirdbytehasbeensenttothedevice,thereceiveregisterwillcontainthelowestordereightbitsoftheconversionresults.
Easiermanipulationoftheconverteddatacanbeobtainedbyusingthismethod.
FIGURE6-1:SPICommunicationusing8-bitsegments(Mode0,0:SCLKidleslow).
FIGURE6-2:SPICommunicationusing8-bitsegments(Mode1,1:SCLKidleshigh).
12345678910111213141516CSSCLKDINX=Don'tCareBits1718192021222324DOUTNULLBITB11B10B9B8B7B6B5B4B3B2B1B0HI-ZMCUlatchesdatafromA/DConverterDataisclockedoutofA/DConverteronfallingedgesonrisingedgesofSCLKMSBFDon'tCareODD/SIGNStartXXXXXXXXXXXXXXXXXXB7B6B5B4B3B2B1B0B11B10B9B80XXXXXXXXXXX1StartBit(Null)MCUTransmittedData(Alignedwithfallingedgeofclock)MCUReceivedData(Alignedwithrisingedgeofclock)MSBFSGL/DIFFXXSGL/DIFFODD/SIGNDatastoredintoMCUreceiveregisteraftertransmissionoffirst8bitsDatastoredintoMCUreceiveregisteraftertransmissionofsecond8bitsDatastoredintoMCUreceiveregisteraftertransmissionoflast8bits12345678910111213141516CSSCLKDINX=Don'tCareBits1718192021222324DOUTDon'tCareNULLBITB11B10B9B8B6B5B4B3B2B1B0HI-Z000000XXXXXXXXXXXXXB7B6B5B4B3B2B1B0B11B10B9B80XXXXXXXXXXXMCUlatchesdatafromA/DConverteronrisingedgesofSCLKDataisclockedoutofA/DConverteronfallingedgesStartBit(Null)StartMCUTransmittedData(Alignedwithfallingedgeofclock)MCUReceivedData(Alignedwithrisingedgeofclock)B71SGL/DIFFMSBFODD/SIGN0SGL/DIFFODD/SIGNMSBFDatastoredintoMCUreceiveregisteraftertransmissionoffirst8bitsDatastoredintoMCUreceiveregisteraftertransmissionofsecond8bitsDatastoredintoMCUreceiveregisteraftertransmissionoflast8bitsMCP3202DS21034E-page202008MicrochipTechnologyInc.
6.
2MaintainingMinimumClockSpeedWhentheMCP3202initiatesthesampleperiod,chargeisstoredonthesamplecapacitor.
Whenthesampleperiodiscomplete,thedeviceconvertsonebitforeachclockthatisreceived.
Itisimportantfortheusertonotethataslowclockratewillallowchargetobleedoffthesamplecapwhiletheconversionistakingplace.
At85°C(worstcasecondition),thepartwillmaintainproperchargeonthesamplecapacitorforatleast1.
2msafterthesampleperiodhasended.
Thismeansthatthetimebetweentheendofthesampleperiodandthetimethatall12databitshavebeenclockedoutmustnotexceed1.
2ms(effectiveclockfrequencyof10kHz).
Failuretomeetthiscriteriamayinducelinearityerrorsintotheconversionoutsidetheratedspecifications.
Itshouldbenotedthatduringtheentireconversioncycle,theA/DConverterdoesnotrequireaconstantclockspeedordutycycle,aslongasalltimingspecificationsaremet.
6.
3Buffering/FilteringtheAnalogInputsIfthesignalsourcefortheA/DConverterisnotalow-impedancesource,itwillhavetobebufferedorinaccurateconversionresultsmayoccur.
Itisalsorecommendedthatafilterbeusedtoeliminateanysignalsthatmaybealiasedbackintotheconversionresults.
ThisisillustratedinFigure6-3belowwhereanopampisusedtodrivetheanaloginputoftheMCP3202.
Thisamplifierprovidesalow-impedanceoutputfortheconverterinputandalow-passfilter,whicheliminatesunwantedhighfrequencynoise.
Low-pass(anti-aliasing)filterscanbedesignedusingMicrochip'sinteractiveFilterLabsoftware.
FilterLabwillcalculatecapacitorandresistorvalues,aswellas,determinethenumberofpolesthatarerequiredfortheapplication.
Formoreinformationonfilteringsignals,seetheapplicationnoteAN699"Anti-AliasingAnalogFiltersforDataAcquisitionSystems".
"FIGURE6-3:TheMCP601OperationalAmplifierisusedtoimplementa2ndorderanti-aliasingfilterforthesignalbeingconvertedbytheMCP3202.
6.
4LayoutConsiderationsWhenlayingoutaprintedcircuitboardforusewithanalogcomponents,careshouldbetakentoreducenoisewhereverpossible.
Abypasscapacitorshouldalwaysbeusedwiththisdeviceandshouldbeplacedascloseaspossibletothedevicepin.
Abypasscapacitorvalueof0.
1Fisrecommended.
Digitalandanalogtracesshouldbeseparatedasmuchaspossibleontheboardandnotracesshouldrununderneaththedeviceorthebypasscapacitor.
Extraprecautionsshouldbetakentokeeptraceswithhighfrequencysignals(suchasclocklines)asfaraspossiblefromanalogtraces.
Useofananaloggroundplaneisrecommendedinordertokeepthegroundpotentialthesameforalldevicesontheboard.
ProvidingVDDconnectionstodevicesina"star"configurationcanalsoreducenoisebyeliminatingcurrentreturnpathsandassociatederrors.
SeeFigure6-4.
FormoreinformationonlayouttipswhenusingA/DConverters,refertoAN688"LayoutTipsfor12-BitA/DConverterApplications"(DS00688).
FIGURE6-4:VDDtracesarrangedina'Star'configurationinordertoreduceerrorscausedbycurrentreturnpaths.
MCP3202VDD10FIN-IN+-+VINC1C20.
1FMCP601R1R2R3R4VDDConnectionDevice1Device2Device3Device42008MicrochipTechnologyInc.
DS21034E-page21MCP32027.
0PACKAGINGINFORMATION7.
1PackageMarkingInformationXXXXXXXXXXXXXNNNYYWW8-LeadPDIP(300mil)Example:8-LeadSOIC(150mil)Example:XXXXXXXXXXXXYYWWNNN8-LeadTSSOPExample:3202-BI/P^^25608173202-BISN^^08172568-LeadMSOPExample:XXXXYYWWNNNXXXXXXYWWNNN202CI8172563202CI817256Legend:XX.
.
.
XCustomer-specificinformationYYearcode(lastdigitofcalendaryear)YYYearcode(last2digitsofcalendaryear)WWWeekcode(weekofJanuary1isweek'01')NNNAlphanumerictraceabilitycodePb-freeJEDECdesignatorforMatteTin(Sn)*ThispackageisPb-free.
ThePb-freeJEDECdesignator()canbefoundontheouterpackagingforthispackage.
Note:IntheeventthefullMicrochippartnumbercannotbemarkedononeline,itwillbecarriedovertothenextline,thuslimitingthenumberofavailablecharactersforcustomer-specificinformation.
3e3e3e3eMCP3202DS21034E-page222008MicrochipTechnologyInc.
/HDG3ODVWLF0LFUR6PDOO2XWOLQH3DFNDJH06>0623@1RWHV3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKLQWKHKDWFKHGDUHD'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(3',3@1RWHV3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKWKHKDWFKHGDUHD6LJQLILFDQW&KDUDFWHULVWLF'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGSHUVLGH'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(62,&@1RWHV3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKLQWKHKDWFKHGDUHD6LJQLILFDQW&KDUDFWHULVWLF'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(76623@1RWHV3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKLQWKHKDWFKHGDUHD'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0%6&%DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV5()5HIHUHQFH'LPHQVLRQXVXDOO\ZLWKRXWWROHUDQFHIRULQIRUPDWLRQSXUSRVHVRQO\1RWH)RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDWKWWSZZZPLFURFKLSFRPSDFNDJLQJ8QLWV0,//,0(7(56'LPHQVLRQ/LPLWV0,11200$;1XPEHURI3LQV13LWFKH%6&2YHUDOO+HLJKW$±±0ROGHG3DFNDJH7KLFNQHVV$6WDQGRII$±2YHUDOO:LGWK(%6&0ROGHG3DFNDJH:LGWK(0ROGHG3DFNDJH/HQJWK')RRW/HQJWK/)RRWSULQW/5())RRW$QJOHI±/HDG7KLFNQHVVF±/HDG:LGWKE±DNEE1NOTE112becAA1A2L1Lφ0LFURFKLS7HFKQRORJ\'UDZLQJ&%2008MicrochipTechnologyInc.
DS21034E-page27MCP3202APPENDIXA:REVISIONHISTORYRevisionE(December2008)Thefollowingisthelistofmodifications:1.
Updatestopackagingoutlinedrawings.
RevisionD(December2006)Thefollowingisthelistofmodifications:1.
Updatestopackagingoutlinedrawings.
RevisionC(August2001)Thefollowingisthelistofmodifications:1.
Undocumentedchanges.
RevisionB(June2000)Thefollowingisthelistofmodifications:1.
Undocumentedchanges.
RevisionA(August1999)Initialreleaseofthisdocument.
MCP3202DS21034E-page282008MicrochipTechnologyInc.
NOTES:2008MicrochipTechnologyInc.
DS21034E-page29MCP3202PRODUCTIDENTIFICATIONSYSTEMToorderorobtaininformation,e.
g.
,onpricingordelivery,refertothefactoryorthelistedsalesoffice.
PARTNO.
X/XXPackageTemperatureRangeDeviceDeviceMCP3202:12-BitSerialA/dConverterMCP3202T:12-BitSerialA/DConverter(TapeandReel)(MSOP,SOICandTSSOPpackageonly)PerformanceGrade:B=±1LSBINL(TSSOPnotavailable)C=±2LSBINLTemperatureRangeI=-40°Cto+85°C(Industrial)E=-40°Cto+125°C(Extended)PackageMS=PlasticMicroSmallOutline(MSOP),8-LeadP=PlasticDIP(300milBody),8-LeadSN=PlasticSOIC(150milBody),8-LeadST=TSSOP(4.
4mmBody),8-Lead(CGradeonly)Examples:a)MCP3202-CI/MS:Industrialtemperature,8LDMSOPpackage.
b)MCP3202-BI/P:BPerformancegrade,Industrialtemperature,8LDPDIPpackagec)MCP3202-BI/SN:CPerformancegrade,Industrialtemperature,8LDSOICpackaged)MCP3202T-BI/SN:TapeandReel,BPerformancegrade,Industrialtemperature.
,8LDSOICpackagee)MCP3202T-CI/ST:TapeandReel,CPerformancegrade,Industrialtemperature,8LDTSSOPpackage.
-XPerformanceGradeMCP3202DS21034E-page302008MicrochipTechnologyInc.
NOTES:2008MicrochipTechnologyInc.
DS21034E-page31Informationcontainedinthispublicationregardingdeviceapplicationsandthelikeisprovidedonlyforyourconvenienceandmaybesupersededbyupdates.
Itisyourresponsibilitytoensurethatyourapplicationmeetswithyourspecifications.
MICROCHIPMAKESNOREPRESENTATIONSORWARRANTIESOFANYKINDWHETHEREXPRESSORIMPLIED,WRITTENORORAL,STATUTORYOROTHERWISE,RELATEDTOTHEINFORMATION,INCLUDINGBUTNOTLIMITEDTOITSCONDITION,QUALITY,PERFORMANCE,MERCHANTABILITYORFITNESSFORPURPOSE.
Microchipdisclaimsallliabilityarisingfromthisinformationanditsuse.
UseofMicrochipdevicesinlifesupportand/orsafetyapplicationsisentirelyatthebuyer'srisk,andthebuyeragreestodefend,indemnifyandholdharmlessMicrochipfromanyandalldamages,claims,suits,orexpensesresultingfromsuchuse.
Nolicensesareconveyed,implicitlyorotherwise,underanyMicrochipintellectualpropertyrights.
TrademarksTheMicrochipnameandlogo,theMicrochiplogo,Accuron,dsPIC,KEELOQ,KEELOQlogo,MPLAB,PIC,PICmicro,PICSTART,rfPIC,SmartShuntandUNI/OareregisteredtrademarksofMicrochipTechnologyIncorporatedintheU.
S.
A.
andothercountries.
FilterLab,LinearActiveThermistor,MXDEV,MXLAB,SEEVAL,SmartSensorandTheEmbeddedControlSolutionsCompanyareregisteredtrademarksofMicrochipTechnologyIncorporatedintheU.
S.
A.
Analog-for-the-DigitalAge,ApplicationMaestro,CodeGuard,dsPICDEM,dsPICDEM.
net,dsPICworks,dsSPEAK,ECAN,ECONOMONITOR,FanSense,In-CircuitSerialProgramming,ICSP,ICEPIC,Mindi,MiWi,MPASM,MPLABCertifiedlogo,MPLIB,MPLINK,mTouch,PICkit,PICDEM,PICDEM.
net,PICtail,PIC32logo,PowerCal,PowerInfo,PowerMate,PowerTool,REALICE,rfLAB,SelectMode,TotalEndurance,WiperLockandZENAaretrademarksofMicrochipTechnologyIncorporatedintheU.
S.
A.
andothercountries.
SQTPisaservicemarkofMicrochipTechnologyIncorporatedintheU.
S.
A.
Allothertrademarksmentionedhereinarepropertyoftheirrespectivecompanies.
2008,MicrochipTechnologyIncorporated,PrintedintheU.
S.
A.
,AllRightsReserved.
Printedonrecycledpaper.
NotethefollowingdetailsofthecodeprotectionfeatureonMicrochipdevices:MicrochipproductsmeetthespecificationcontainedintheirparticularMicrochipDataSheet.
Microchipbelievesthatitsfamilyofproductsisoneofthemostsecurefamiliesofitskindonthemarkettoday,whenusedintheintendedmannerandundernormalconditions.
Therearedishonestandpossiblyillegalmethodsusedtobreachthecodeprotectionfeature.
Allofthesemethods,toourknowledge,requireusingtheMicrochipproductsinamanneroutsidetheoperatingspecificationscontainedinMicrochip'sDataSheets.
Mostlikely,thepersondoingsoisengagedintheftofintellectualproperty.
Microchipiswillingtoworkwiththecustomerwhoisconcernedabouttheintegrityoftheircode.
NeitherMicrochipnoranyothersemiconductormanufacturercanguaranteethesecurityoftheircode.
Codeprotectiondoesnotmeanthatweareguaranteeingtheproductas"unbreakable.
"Codeprotectionisconstantlyevolving.
WeatMicrochiparecommittedtocontinuouslyimprovingthecodeprotectionfeaturesofourproducts.
AttemptstobreakMicrochip'scodeprotectionfeaturemaybeaviolationoftheDigitalMillenniumCopyrightAct.
Ifsuchactsallowunauthorizedaccesstoyoursoftwareorothercopyrightedwork,youmayhavearighttosueforreliefunderthatAct.
MicrochipreceivedISO/TS-16949:2002certificationforitsworldwideheadquarters,designandwaferfabricationfacilitiesinChandlerandTempe,Arizona;Gresham,OregonanddesigncentersinCaliforniaandIndia.
TheCompany'squalitysystemprocessesandproceduresareforitsPICMCUsanddsPICDSCs,KEELOQcodehoppingdevices,SerialEEPROMs,microperipherals,nonvolatilememoryandanalogproducts.
Inaddition,Microchip'squalitysystemforthedesignandmanufactureofdevelopmentsystemsisISO9001:2000certified.
DS21034E-page322008MicrochipTechnologyInc.
AMERICASCorporateOffice2355WestChandlerBlvd.
Chandler,AZ85224-6199Tel:480-792-7200Fax:480-792-7277TechnicalSupport:http://support.
microchip.
comWebAddress:www.
microchip.
comAtlantaDuluth,GATel:678-957-9614Fax:678-957-1455BostonWestborough,MATel:774-760-0087Fax:774-760-0088ChicagoItasca,ILTel:630-285-0071Fax:630-285-0075DallasAddison,TXTel:972-818-7423Fax:972-818-2924DetroitFarmingtonHills,MITel:248-538-2250Fax:248-538-2260KokomoKokomo,INTel:765-864-8360Fax:765-864-8387LosAngelesMissionViejo,CATel:949-462-9523Fax:949-462-9608SantaClaraSantaClara,CATel:408-961-6444Fax:408-961-6445TorontoMississauga,Ontario,CanadaTel:905-673-0699Fax:905-673-6509ASIA/PACIFICAsiaPacificOfficeSuites3707-14,37thFloorTower6,TheGatewayHarbourCity,KowloonHongKongTel:852-2401-1200Fax:852-2401-3431Australia-SydneyTel:61-2-9868-6733Fax:61-2-9868-6755China-BeijingTel:86-10-8528-2100Fax:86-10-8528-2104China-ChengduTel:86-28-8665-5511Fax:86-28-8665-7889China-HongKongSARTel:852-2401-1200Fax:852-2401-3431China-NanjingTel:86-25-8473-2460Fax:86-25-8473-2470China-QingdaoTel:86-532-8502-7355Fax:86-532-8502-7205China-ShanghaiTel:86-21-5407-5533Fax:86-21-5407-5066China-ShenyangTel:86-24-2334-2829Fax:86-24-2334-2393China-ShenzhenTel:86-755-8203-2660Fax:86-755-8203-1760China-WuhanTel:86-27-5980-5300Fax:86-27-5980-5118China-XiamenTel:86-592-2388138Fax:86-592-2388130China-XianTel:86-29-8833-7252Fax:86-29-8833-7256China-ZhuhaiTel:86-756-3210040Fax:86-756-3210049ASIA/PACIFICIndia-BangaloreTel:91-80-4182-8400Fax:91-80-4182-8422India-NewDelhiTel:91-11-4160-8631Fax:91-11-4160-8632India-PuneTel:91-20-2566-1512Fax:91-20-2566-1513Japan-YokohamaTel:81-45-471-6166Fax:81-45-471-6122Korea-DaeguTel:82-53-744-4301Fax:82-53-744-4302Korea-SeoulTel:82-2-554-7200Fax:82-2-558-5932or82-2-558-5934Malaysia-KualaLumpurTel:60-3-6201-9857Fax:60-3-6201-9859Malaysia-PenangTel:60-4-227-8870Fax:60-4-227-4068Philippines-ManilaTel:63-2-634-9065Fax:63-2-634-9069SingaporeTel:65-6334-8870Fax:65-6334-8850Taiwan-HsinChuTel:886-3-572-9526Fax:886-3-572-6459Taiwan-KaohsiungTel:886-7-536-4818Fax:886-7-536-4803Taiwan-TaipeiTel:886-2-2500-6610Fax:886-2-2508-0102Thailand-BangkokTel:66-2-694-1351Fax:66-2-694-1350EUROPEAustria-WelsTel:43-7242-2244-39Fax:43-7242-2244-393Denmark-CopenhagenTel:45-4450-2828Fax:45-4485-2829France-ParisTel:33-1-69-53-63-20Fax:33-1-69-30-90-79Germany-MunichTel:49-89-627-144-0Fax:49-89-627-144-44Italy-MilanTel:39-0331-742611Fax:39-0331-466781Netherlands-DrunenTel:31-416-690399Fax:31-416-690340Spain-MadridTel:34-91-708-08-90Fax:34-91-708-08-91UK-WokinghamTel:44-118-921-5869Fax:44-118-921-5820WORLDWIDESALESANDSERVICE01/02/08
RackNerd 商家给的感觉就是一直蹭节日热点,然后时不时通过修改配置结构不断的提供低价年付的VPS主机,不过他们家还是在做事的,这么两年多的发展,居然已经有新增至十几个数据中心,而且产品线发展也是比较丰富。比如也有独立服务器业务,不过在他们轮番的低价年付VPS主机活动下,他们的服务器估摸着销路不是太好的。这里,今天有看到RackNerd商家的独立服务器业务有促销。这次提供美国多个机房的高配独立...
前些天赵容分享过DogYun(狗云)香港BGP线路AMD 5950X经典低价云服务器的信息(点击查看),刚好账户还有点余额够开个最低配,所以手贱尝试下,这些贴上简单测试信息,方便大家参考。官方网站:www.dogyun.com主机配置我搞的是最低款优惠后14.4元/月的,配置单核,512MB内存,10GB硬盘,300GB/50Mbps月流量。基本信息DogYun的VPS主机管理集成在会员中心,包括...
最近上洛杉矶机房联通CUVIP线路主机的商家越来越多了,HostKvm也发来了新节点上线的邮件,适用全场8折优惠码,基于KVM架构,优惠后最低月付5.2美元起。HostKvm是一家成立于2013年的国人主机商,提供基于KVM架构的VPS主机,可选数据中心包括日本、新加坡、韩国、美国、中国香港等多个地区机房,君选择国内直连或优化线路,延迟较低,适合建站或者远程办公等。以洛杉矶CUVIP线路主机为例,...
ww.zzz13.com为你推荐
硬盘的工作原理硬盘的工作原理是?(不要给我网址,我用的手机)广东GDP破10万亿中国GDP10万亿,广东3万亿多。占了中国三分之一的经纪。如果,我是说如果。广东独立了。中国会有什同ip网站查询怎样查询一个ip绑了多少域名刘祚天还有DJ网么?杰景新特杰普特长笛JFL-511SCE是不是有纯银的唇口片??价格怎样??psbc.com95580是什么诈骗信息不点网址就安全吧!月神谭求几个个性网名:8090lu.com8090向前冲电影 8090向前冲清晰版 8090向前冲在线观看 8090向前冲播放 8090向前冲视频下载地址??mole.61.com摩尔庄园的米米号和密码我都忘了 只记得注册的邮箱 怎么办-_-mole.61.com摩尔庄园RK的秘密是什么?
com域名价格 php空间租用 网通vps 中国域名网 万网域名管理 台湾服务器 linode mediafire 10t等于多少g 512m shopex空间 godaddy域名优惠码 cpanel空间 789电视网 免费防火墙 阿里校园 免费全能主机 支付宝扫码领红包 银盘服务 创建邮箱 更多