permission222be.com
222be.com 时间:2021-03-21 阅读:(
)
102AENVIRONMENTALSCIENCE&TECHNOLOGY/MARCH1,20032003AmericanChemicalSocietyEnvironmentalTechnologiesattheNanoscaleNanotechnologycouldsubstantiallyenhanceenvironmentalqualityandsustainabilitythroughpollutionprevention,treatment,andremediation.
TINAMASCIANGIOLIAAASENVIRONMENTALSCIENCE&TECHNOLOGYPOLICYFELLOWWEI-XIANZHANGLEHIGHUNIVERSITYMARCH1,2003/ENVIRONMENTALSCIENCE&TECHNOLOGY103AMaintainingandimprovingsoil,water,andairqualityrepresentsomeofthemostformidablechallengesfacingglobalsocietyinthe21stcen-tury.
Pollutantsfromsuchdiversesourcesasoilandchemicalspills,pesticideandfertilizerrunoff,abandonedindustrialandminingsites,andair-bornegaseousandparticulatematterfromautomobilesexacerbatethesituationonadailybasis.
Detectingandtreatingexistingcontaminantsandpreventingnewpollutionareamongthechallenges.
Theaggregatefinancialburdenforim-provingair,water,andsoilqualityistrulystaggering(1).
Inlightoftheseenor-mousandcomplexchallenges,itisperhapsironicthatoneprospectivesolutionisdiminutiveinsizebutimmenselypowerfulincapacity.
DEEPAKSRIVASTAVA/NASAEnternanotechnologytherevolutionaryscienceandartofmanipulatingmatterattheatomicormolecularscalethathascutacrosssuchdisci-plinesaschemistry,physics,biology,andengi-neering(2).
Despitealargelyunproventrackrecordintheenvironmentalarena,nan-otechnologyoffersgreatpromisefordeliv-eringnewandimprovedenvironmentaltechnologies.
However,proliferationofnanotechnologycouldalsoleadtonewenvironmentalproblems,suchasnewclass-esoftoxinsorrelatedenvironmentalhazards.
NanotechnologyoverviewNanotechnologyrefersbroadlytousingmaterialsandstructureswithnanoscaledimensions,usuallyrang-ingfrom1to100nanometers(nm).
Perhaps,withoutrealizingit,wealreadyencountersomelikenessofnanotechnologyindailylife.
Forexample,proteina-ceousmoleculesinlivingorganismsfrombacteriatobeetlestohumansserveas"molecularmotors"todriveeverythingfromflagellarmotiontomuscleflex-ion.
Nanometer-sizedparticleshavebeendevelopedtoimprovethemechanicalpropertiesoftires,initi-atephotographicfilmdevelopment,andserveasvitalcatalystsinthepetrochemicalindustry.
Tosomeextent,environmentalscientistsanden-gineersarealreadyworkingwithnanoscalestruc-tures(3).
Naturalweatheringofminerals,suchasironoxidesandsilicates,andmicroorganisms,suchasbacteriaandalgae,producenanoscalecolloids,whichincludedispersionsofnanosized-particlesinmediawithspecialpropertiesthatcanbeimportantinthefate,transport,transformation,andbioavail-abilityofenvironmentallyharmfulsubstances.
Anthropogenicandnaturalcolloidsofsolids,liquids,andgasesinliquids(sols,emulsions,andfoams,re-spectively),andsolidsandliquidsingases(smokesandfogs,respectively)arecommonlyencounteredintheenvironment.
However,nanotechnologyisnotjustaboutthesizeofverysmallthings.
Moreimportant,itisaboutstruc-tureandtheabilitytowork—observe,manipulate,andbuild—attheatomicormolecularlevel.
Thisre-sultsinmaterialsandsystemsthatoftenexhibitnovelandsignificantlychangedphysical,chemical,andbi-ologicalpropertiesduetotheirsizeandstructure.
Thesenewproperties,whichwewillelaborateonlaterinthisarticle,includeimprovedcatalysis(4),tunablewavelengthsensingability(5),andincreasedmechanicalstrength(6).
Thebasicstructuresofnanotechnologyincludenanoparticlesornanocrystals,nanolayers,andnano-tubes.
Thesenanostructuresdifferinhowtheyaremadeandhowtheiratomsandmoleculesareor-dered.
Ananoparticle—acollectionoftenstothou-sandsofatomsmeasuringabout1–100nminaggregatediameter—isthemostbasicstructureinnanotechnology.
Suchnanoparticlesarecreatedatombyatom,sothesize,andoftentheshape,ofaparti-cleiscontrolledbyexperimentalconditions.
Theseparticlescanalsobedescribedasnanocrystalsbe-causetheatomswithintheparticlearehighlyor-dered,orcrystalline.
Nanostructures,suchasthoseshowninFigure1,areoftenarrangedorself-assembledintohighlyorderedlayersarisingfromhydrogenbonding,dipo-larforces,hydrophilicorhydrophobicinteractions,gravity,andotherforces(7).
Manynaturallyoccur-ringbiologicalstructures,likemembranes,vesicles,andDNA,formbecauseofsuchself-assembly.
Repeatingstructureswithatailoredperiodicityareessentialinmanyapplicationsofnanotechnology,suchasphotonics,catalysts,andmembranes.
Understandingandbuildingnanostructuresthroughself-assemblyisthecoreofthenanotechnologycre-ationprocess(8).
Theextraordinarymechanical,electronic,andchemicalcharacteristicsofnanostructurescalledcar-bonnanotubes,whichwerediscoveredbySumioIijimain1991,havecapturedtheimaginationofsci-entistsandengineers(9).
AsshowninFigure2,nano-tubesgenerallyconsistofhexagonallatticesofcarbonatomsarrangedspirallytoformconcentriccylinders(10).
Thetubesarenearlyperfectcrystalsandthin-nerthangraphitewhiskers.
Single-wallnanotubes(SWNTs)haveadiameterofapproximately1.
4nm,andmultiwallnanotubes(MWNTs)consistofbe-tween2and30concentrictubesthatformanouterdiameterof30–50nm.
Nanotubesrangeinlengthfromafewtensofnanometerstoseveralmicrometers.
Nanotubeshavecharacteristicsthatleadtovari-ousapplications(11).
Forexample,nanotubesarestrongerthansteelbutveryflexibleandlightweight,whichmakesthemasuitablematerialforbothsuper-strongcableandtipsforscanningprobemicro-scopes.
Inadditiontotheremarkablemechanicalproperties,nanotubescouldpotentiallyreplacecop-perasanelectricalconductoror,withasmallchangeinstructure,replacesiliconasasemiconductor.
Nanotubesalsotransferheatbetterthananyotherknownmaterial.
Researchersareexploringtheuseofnanotubesindrugdeliveryandmedicaldiagnosticapplications.
SeveraldifferentcompaniesintheUnitedStates,Japan,andEuropearetestingproductionofnano-tubesonapilotscale.
However,atseveralhundreddollarspergram,nanotubesarestilltooexpensiveformostapplications.
PollutionpreventionPollutionpreventionrefersto"sourcereduction"andotherpracticesthatefficientlyuserawmaterials,en-ergy,water,orotherresourcestoreduceoreliminatecreationofwaste.
Thisstrategyalsoincludesusinglesstoxicandrenewablereagentsandprocessingma-terials,wherepossible,andtheproductionofmoreenvironmentallybenignmanufacturedproducts.
Nanotechnologycouldplayakeyroleinpollutionpreventiontechnologies.
Forexample,nanotechnol-ogy-basedhomelightingcouldreduceenergycon-sumptionbyanestimated10%intheUnitedStates,saving$100billionannuallyandreducingcarbonemissionsby200milliontonsperyear(12).
FIGURE1Nanostructures(a)SiIiconnanowiresthatdetectpH,(b)carbonnanotubes,(c)smallorganicmolecules,and(d)biomoleculesareexamplesofnanoscalematerials,devices,andcircuitsthatcouldbeusedforpollutantsensinng,prevention,andtreatment.
NNNNZnSSSSSSSSSSSiO2SourceDrainSiOSiOOHOSiSiSiSiNH2HOSiNWSiOSiOOSiSiSiSiNH2SiNWSiOSiOOHOSiSiSiSiNH3HOSiNW+–O–O–H++H+–H++H+Nanowire(a)(b)(c)(d)Source:Figure1awasadaptedwithpermissionfromReference(28),andFigures1b–dwereadaptedwithpermissionfromReference(37).
104AENVIRONMENTALSCIENCE&TECHNOLOGY/MARCH1,2003Nanostructuredcatalysts,forexample,canmakechemicalmanufacturingmoreefficientbyprovidinghigherselectivityfordesiredreactionproducts(13).
Forexample,aluminosilicatemolecularsieves(zeo-lites)areporouscrystallinesolidswithwell-definedstructureswidelyusedforseparationsandcatalysis.
Nanometer-sizedzeolites(10–100nm)arebeingde-velopedtoselectivelyoxidizehydrocarbons,suchastoluenetobenzaldehyde(14).
Usingnanostructuredzeolitesmakesthisexamplemoreenvironmentallybenignfortworeasons.
First,theoxidationreactionisinitiatedbyvisiblelight,whichreducesenergycon-sumption.
Second,usingvisiblelightaccesseslow-en-ergyreactionpathwaysthathelpeliminatewastefulsecondaryphotoreactionsandincreasetheyieldofthedesiredproduct.
Inthisstudy,selectivityforbenz-aldehydeusingthenanostructureswas87%,com-paredtolessthan35%forthesamereactionwithconventionalzeolitematerial.
Assemblingnanostructuresfrombiopolymersorbio-inspiredmaterialsisanexampleofanenviron-mentallybenignapproachtofabricatingmicroelec-tronics.
Accordingtorecentcalculations,1.
7kgoffossilfuelandchemicalsand32kgofwaterarerequiredtoproduceasingle2-gram,32-megabytemicrochip(15).
Biomolecularnanolithographyrep-resentsa"bottom-up"approachtoreplacecurrentsemiconductorchipproductionmethods(16).
Nanoscalemetalparticlesonabiopolymer(poly-L-lysine)templateorscaffoldarestretchedoutonasurfaceintowell-definedchiparchitectures,suchaslinesandgrids,atroomtemperature.
Biodegradablematerialslikepoly-L-lysineareusedforconstructionofthesestructures.
Nanotechnologyapplicationscouldalsohelpcre-atebenignsubstancesthatreplacecurrentlyusedtoxicmaterials.
Forexample,nontoxic,energy-effi-cientcomputermonitorsarereplacingthosemadeofcathoderaytubes(CRT),whichcontainmanytoxicmaterials(17).
Newerliquidcrystallinedisplaysaresmaller,donotcontainlead,andconsumelesspowerthanCRTcomputermonitors(17).
Usingcarbonnan-otubesincomputerdisplaysmayfurtherdiminishtheenvironmentalimpactsbyeliminatingtoxicheavymetalsanddrasticallyreducingmaterialandenergyuserequirements,whileprovidingenhancedperfor-manceforconsumerneeds.
Fieldemissiondisplays(FEDs)thatusecarbonnanotubesarethelatestde-velopmentindisplaytechnologyandmaybecom-merciallyavailablefromseveralmanufacturerswithinthenextyear(18).
Althoughthetoxicityofcarbonnanotubesislargelyunknown,theamountofcarbonnanotubesusedinFEDsisquitesmall(0.
5g/moni-tor)comparedtothekilogramsofleadinCRTs(17).
TreatmentandremediationTheearlyimpactofnanotechnologyresearchhasbeenmostlyinremediationandend-of-pipetreatmenttechnologies.
Variousreportshaveappearedontheuseofavarietyofnanoparticlesfortreatmentandre-mediationofpollutantsintheenvironment.
Forex-ample,nanoparticlesofvariousoxidants,reductants,andnutrientshavebeensuggestedasusefulforpro-motingcontaminanttransformationandstimulatingmicrobialgrowth,becausetheirsmallsizeandlargersurfaceareamakethemmorereactiveandmoreflex-ibleintermsofdeployment.
Nanoparticlescanalsoexhibituniquechemicalreactivitynotobservedforlargerparticlesbecauseoftheirunusualcrystalshapesandlatticeorder.
Forexample,conventionalmethods(e.
g.
,bioremediationandzero-valentiron)forinsituremediationofchlorinatedorganicsolvents,suchastrichlorethylene,tendtoproduceundesirablebyprod-MARCH1,2003/ENVIRONMENTALSCIENCE&TECHNOLOGY105AFIGURE2Carbonnanotubescanbespecialized(a)Nanotubesarestrongerthansteelbutveryflexibleandlightweight.
Theseexceptionalmechanicalcharacteristicsmakethemsuitableas"tips"forscanningprobemicroscopesorenforcingfibersfornanotube–polymercompositematerials.
(b)Dependingontheconstruction,nanotubescanbehavelikeelectricalconductorsorsemiconductors,whichmakesthemextremelyusefulfornanoscaleelectronicsapplications.
Theelectroniccharacteristicsofcarbonnanotubesarestronglycoupledtothemechanicalpropertiesandprovidegreatopportunitytodevelopnovelelectromechanicalnanodevices(11).
(c)Variationsinnanotubecompositionallowfortuningelectrontransportpropertiesoverawiderange.
Nanotubescanalsobeconstructedfrommaterialssuchasboron,carbon,andnitrogen(Bx-Cy-Nz)thatarestructurallysimilartothoseconsistingonlyofcarbon.
Theseheteroatomicnanotubesareexpectedtobeinsulators,unlikecarbonnanotubes(38).
Source:DeepakSrivastava/NASA.
(a)(b)(c)ucts,suchasdichloroethylenesandvinylchloride.
Usingnanoscalebimetallicparticlesessentiallyelim-inatesalltheundesirablebyproducts(19,20).
Nanoparticlesthatareactivatedbylight,suchasthelargeband-gapsemiconductorstitaniumdioxide(TiO2)andzincoxide(ZnO),continuetobestudiedfortheirabilitytoremoveorganiccontaminantsfromvariousmedia.
Theseparticlesarereadilyavailable,inexpensive,andhavelowtoxicity(21,22).
Recently,ZnOnanoparticleswereshowntoactasbothasen-sorandphotocatalystfortreatmentofchlorinatedphenols(22).
Researchersarealsoquiteinterestedinmanipulatingthesurfaceofnanoparticleswithor-ganicorinorganicdyestoextendtheirphotoresponsefromUVtovisiblelight,makingthemevenmoreefficientasphotocatalystsforthetransformationofenvironmentalcontaminantsbecauseUVlightrep-resentsonly5%ofthesolarspectrum(23).
Nanoparticlescouldprovideenormousflexibilityforinsituremediationaswell.
Forexample,nanopar-ticlesareeasilydeployedinexsituslurryreactorsforthetreatmentofcontaminatedsoils,sediments,andsolidwastes.
Alternatively,theycanbeanchoredontoasolidmatrixsuchascarbon,zeolite,ormembraneforenhancedtreatmentofwater,wastewater,orgaseousprocessstreams(24).
Directsubsurfacein-jectionofnanoscaleironparticles,whetherundergravity-feedorpressurizedconditions,hasalreadybeenshowntoeffectivelydegradechlorinatedor-ganics,suchastrichloroethylene,toenvironmental-lybenigncompounds(19).
Thetechnologyalsoholdsgreatpromiseforimmobilizingheavymetalsandra-dionuclides.
Researchhasdemonstratedthatnanoscale,bimetallicparticles,suchasiron/palladium,iron/sil-ver,orzinc/palladium,canserveaspotentreductantsandcatalystsforalargevarietyofcommonenviron-mentalcontaminantssuchasPCBs,organochlorinepesticides,andhalogenatedorganicsolvents(4).
Nanoscalemetallicparticlesreducedvirtuallyallchlo-rinatedhydrocarbonstestedtobenignhydrocarbons.
Additionally,ampleevidenceindicatesthatiron-basednanoparticlescanbeusedtoreducemanyotherrecalcitrantcontaminants,includinganions(perchlorate,nitrate,anddichromate),heavymetals(nickelandmercury),andradionuclides(uraniumdioxide).
Nanotubeshavebeensuggestedas"asu-periorsorbent"fordioxins(25).
Thesorp-tionenergyofdioxinoncarbonnanotubesisal-most3timesthatofac-tivatedcarbon.
TheLangmuircon-stant(B),apara-metercharacterizingthesorptionaffinity,ismanyordersofmagnitudehigherfornanotubesthanforactivatedcarbon.
Thus,theprospectofusingcarbonnanotub-esforairandwaterpollutioncontrolappearstobeveryfavorable,butlarge-scaleapplicationsofnano-tubesinthenearfuturearelimitedbycostandavailability.
Anotherexampleofenvironmentaltreatmentandremediation-relatedapplicationofnanomaterialsin-cludesusingdendriticnanoscalechelatingagentsforpolymer-supportedultrafiltration(PSUF)(26).
Den-drimersarehighlybranchedpolymerswithcontrolledcompositionandanarchitecturethatconsistsofnanoscalefeatures.
Thesenanostructurescanbede-signedtoencapsulatemetalionsandzero-valentmet-als,enablingthemtodissolveinsuitablemediaorbindtoappropriatesurfaces.
Thisapproachmaypre-sentameanstoproduceafunctional,cost-effectiveand,dependingonthecompound,environmentallysoundmaterialforPSUF.
PollutionsensinganddetectionRapidandprecisesensorscapableofdetectingpol-lutantsatthemolecularlevelcouldgreatlyenhanceourabilitytoprotecthumanhealthandtheenviron-ment.
Manufacturingprocesscontrol,compliance,ecosystemmonitoring,andenvironmentaldecisionmakingwouldbesignificantlyimprovedifmoresen-sitiveandlesscostlytechniquesforcontaminantde-tectionwereavailable.
Ofparticularinterestareremote,insitu,andcontinuousmonitoringdevicescapableofyieldingreal-timeinformation,andalsothosethatcandetectpollutantsatverylowconcen-trationlevels.
Recently,chemicalsensorsbasedonindividualSWNTshavebeendemonstrated(27).
Alteredelec-tricalresistanceofsemiconductingSWNTsthroughexposuretogaseousmolecules,suchasnitrogendioxideorammonia,formsthebasisforthesesen-sors.
Thenanotubesensorsalsoexhibitedfastre-sponsesatroomtemperaturetothegasesandasubstantiallyhighersensitivitythanexistingsolid-statesensors(27).
Boron-dopedsiliconnanowires(SiNWs)havebeenusedtocreatehighlysensitive,real-timeelec-tricallybasedsensorsforbiologicalandchemicalspecies(28).
TheSiNWscouldbemodifiedinvariouswaystoprovidedifferentfunctionalities.
Specifically,theamine-andoxide-functionalizednanowireswereusedtodetectchangesinpH,andbiotin-modifiedSiNWswereusedtodetectstreptavidininthepicomolarcon-centrationrange.
Inaddition,anti-gen-functionalizedSiNWsshowedreversibleantibodybind-ingandconcentration-dependentdetectioninrealtime.
Detectionofthereversiblebindingofthemetabolicindi-catorcalciumwasalsodemonstrated.
Thesemechanismscouldapplytode-106AENVIRONMENTALSCIENCE&TECHNOLOGY/MARCH1,2003MARCH1,2003/ENVIRONMENTALSCIENCE&TECHNOLOGY107Atectingpathogensandchemicalandbiologicalagentsinwater,air,andfood.
Humanhealthandecologicaldiagnosiscouldalsobenefitfromsensors.
Forinstance,nanobarcodes—highlyencodableandchemicallydiversenanoparti-cles—mayallowforhigh-levelmultiplexingofsmallsamplevolumes(29).
Evaluatingtheexposureofcom-plexsystemsintheenvironmenttotoxicpollutantsoftenhassuchrequirementsforsampleanalysis.
Nanobarcodescangreatlyenhanceourabilitytoiden-tifythesourceandstrengthofcontaminants,deter-minetherouteandmechanismofenvironmentalfateandbioavailability,andassesstheeffectivenessoftreatmentandremediationtechniques.
NanotechnologypitfallsNanotechnologyisarevolutionaryscientificandengineeringventurethatwillinvariablyimpacttheexistinginfrastructureofconsumergoods,manufac-turingmethods,andmaterialsusage.
Notsurpris-ingly,thepotentialbenefitshavedominatedscientificandmassmediacoverageofnanotechnology.
Butanytechnologycanbeadouble-edgedsword.
Environ-mentalandsafetyconcernsaboutnanotechnologyonlyrecentlyhavebeendiscussedinthemainstreammedia(30).
Wearealreadywitnessingsomeprecursorsofnanotechnology-associatedpollution:toxicgalliumarsenideusedinmicrochipsenterslandfillsinin-creasingquantitiesasmillionsofcomputersandcel-lularphonesaredisposedofeveryyear.
Potentiallyharmfuleffectsofnanotechnologymightariseasaresultofthenatureofnanomaterialsthemselves,thecharacteristicsoftheproductsmadefromthem,ortheaspectsofthemanufacturingprocessinvolved.
Thelargesurfacearea,crystallinestructure,andre-activityofsomenanoparticles,forinstance,mayfacilitatetransportoftoxicmaterialsintheenviron-ment,orthesizeandchemicalcompositionofnano-structuresmayleadtobiologicalharmbecauseofthewaytheyinteractwithcellularmaterials(31)(seeFigure3).
Forexample,ifnanostructurescanself-as-sembleinthelaboratory,cantheyreplicateintheenvironmentIfso,whatwillbethefateofthosenanostructuresandtheirenvironmentalandhealthimpactsInaddition,itispossiblethatnanotech-nologycouldleadtosocietalchangesthatinfluencetransportation,urbandevelopment,informationmanagement,andotheractivitiesofoursocietythatdirectlyorindirectlyaffectthequalityoftheenvi-ronment.
Becausenanotechnologyisunlikelytobethefirstentirelybenigntechnologyadvance,thereisanurgentneedtoevaluatetheeffectivenessofcur-rentwaterandairtreatmenttechniquesforthere-movalandcontrolofpotentialnanoscalepollution.
TheU.
S.
NationalNanotechnologyInitiativehasalreadybegunexploringthepotentialenvironmen-talandsocietalimplications(2,32).
Inthefallof2001,RiceUniversityopenedtheCenterforBiologicalandEnvironmentalNanotechnology(CBEN),whichisFIGURE3NanotechnologycouldpollutemanymediaBecausenanoscalematerialsareinthesamesizerangeashemoglobinandvirusesandareevensmallerthancommonirritants,suchasparticulatematter(2m)Microbialcells(~1m)Virus(10–100nm)Hemoglobin(7nm)H2O(0.
2nm)100m10m1m100nm10nm1nm0.
1nmPollens(10–100m)PM2.
5(aerosols)Bacteriophage(80nm)Source:KenRaniere,LehighUniversity.
sponsoredbytheNationalScienceFoundation.
OneofthepriorityareasofCBENistoprobethebehav-iorofnanomaterialsintheenvironment(33).
In2002,theU.
S.
EPAannounceditsfundingplanforexter-nalresearchthatspecificallyaddressesthepotentialbeneficialapplicationsandenvironmentalimplica-tionsofnanotechnology(34).
However,currentfederalfundingforresearchanddevelopmentinthisareaisinadequate.
Theproposedfundingforstudyingnanoscaleprocessesintheen-vironmentaspartoftheNationalNanotechnologyInitiativeinthefiscalyear2003budgetrequestbytheBushadministration,forexample,isaround$20mil-lionoutofatotalinvestmentofapproximately$710million—amere2.
9%ofthetotalinitiative(35).
Theresponsibilitytorecognizeandaddressmanyofthepotentiallyadverserepercussionsisinthehandsofresearchersandenvironmentalprofessionals.
Asnewnanoscalestructuresandtechnologiesareex-ploredanddeveloped,areresearchersconsideringallofthepossibleenvironmentaloutcomesForexample,aretheremorebenignprecur-sormaterialsorsyntheticmethodstouseCanwerecoverthenano-particlesornanotubesforreuseorwilltheydegradeintoenvi-ronmentallybenignproductsNewnanoscalestructuresandotherpreviouslyde-scribedenvironmentalappli-cationsallsupportthepredictionthatnanoscalescienceandengineeringwilllikelyhaveaprofoundim-pactonscienceandtechnol-ogy(36).
However,wemustremainmindfulofthepoten-tialramificationsofthistech-nology,includingthefactthatnanoscalematerialscanenterthefoodchainandbeabsorbedortrans-portedbywaterandfood.
Bioavailabilityandtoxicityofnewlycreatednanoscalematerialsarelargelyunknown.
Nanotechnologyishigh-lyinterdisciplinaryandmaypresentfurtherchallengesforenvironmentalscientistsandengineers.
Fewstudentsarebeingtrainedinenvironmentalnanotechnology,andfewlaboratoriesarecurrentlyequippedtoconductre-searchinthisarea,detectnanopollution,anddevelopef-fectivetreatmentandremediationtechnologies.
AcknowledgmentW.
Z.
thanksU.
S.
EPAandtheNationalScienceFoundation(NSF)fortheirsupport.
However,thisarticlehasnotbeenreviewedbyeithertheEPAorNSFanddoesnotnecessarilyreflecttheirviews.
TinaMasciangioliisanAmericanAssociationfortheAdvancementofScienceEnvironmentalScienceandTechnologyPolicyFellowattheNationalCenterforEnvironmentalResearch,U.
S.
EPA,Washington,D.
C.
Wei-XianZhangisanassociateprofessorofenviron-mentalengineeringatLehighUniversity.
Addresscor-respondencetoZhangatwez3@lehigh.
edu.
References(1)U.
S.
EPA,NationalCenterforEnvironmentalEconomics.
WhatDoWeSpendonEnvironmentalProtection,http://yosemite.
epa.
gov/ee/epa/white.
nsf/pages/q1.
(2)Roco,M.
C.
,Williams,R.
S.
,Alivasatos,P.
,Eds.
Nano-technologyResearchDirections:IWGNWorkshopReport;KluwerAcademicPublishers:Norwell,MA,1999.
(3)Sawyer,C.
N.
;McCarty,P.
L.
;Parkin,G.
F.
ChemistryforEnvironmentalEngineering,4thed.
;McGraw-Hill:NewYork,1994.
(4)Zhang,W.
-X.
;Wang,C.
-B.
;Lien,H.
-L.
Catal.
Today1998,40,387–395.
(5)Chan,W.
C.
W.
;Maxwell,D.
J.
;Gao,X.
;Bailey,R.
E.
;Han,M.
;Nie,S.
Curr.
Opin.
Biotechnol.
2002,13,40–46.
(6)Thess,A.
;etal.
Science1996,273,483–487.
(7)Tolles,W.
M.
MRSBull.
2000,October,36–38.
(8)Service,R.
F.
;Szuromi,P.
;Uppenbrink,J.
Science2002,295,2395.
(9)Baughman,R.
H.
;Zakhidov,A.
A.
;deHeer,W.
A.
Science2002,297,787–792.
(10)Iijima,S.
Nature1991,354,56–58.
(11)Service,R.
F.
Science1998,281,940–942.
(12)NationalNanotechnologyInitiative:TheInitiativeandItsImplementationPlan;NSTC/NSETreport,March2001,WashingtonD.
C.
;www.
nano.
gov/nsetrpts.
htm.
(13)Samorjai,G.
A.
;McCrea,K.
Appl.
Catal.
A:General2001,222,3–18.
(14)Panov,A.
G.
;Larson,R.
G.
;Totah,N.
I.
;Larsen,S.
C.
;Grassian,V.
H.
J.
Phys.
Chem.
B2000,104,5706–5714.
(15)Williams,E.
D.
;Ayers,R.
U.
;Heller,M.
Environ.
Sci.
Technol.
2002,36,5504–5510.
(16)Wybourne,M.
N.
;Hutchison,J.
E.
;Clarke,L.
;Brown,L.
O.
;Mooster,J.
L.
Microelectr.
Eng.
1999,47,55–57.
(17)Socolof,M.
L.
;Overly,J.
G.
;Kincaid,L.
E.
;Geibig,J.
R.
DesktopComputerDisplays:ALife-CycleAssessment;Vol.
IandII,DesignfortheEnvironmentComputerDisplayProject.
U.
S.
EnvironmentalProtectionAgency,2001;www.
epa.
gov/oppt/dfe/pubs/comp-dic/lca.
(18)Choi,W.
B.
;etal.
Appl.
Phys.
Lett.
1999,75,3129–3131.
(19)Elliott,D.
W.
;Zhang,W.
-X.
Environ.
Sci.
Technol.
2001,35,4922–4926.
(20)Wang,C.
;Zhang,W.
Environ.
Sci.
Technol.
1997,31,2154–2156.
(21)Fujishima,A.
;Rao,T.
N.
;Tryk,D.
A.
J.
Photochem.
Photobiol.
C:Photochem.
Rev.
2000,1,1–21.
(22)Kamat,P.
V.
;Huehn,R.
;Nicolaescu,R.
J.
Phys.
Chem.
B.
2002,106,788–794.
(23)Subramanian,V.
;Wolf,E.
;Kamat,P.
V.
J.
Phys.
Chem.
B2001,105,11,439–11,446.
(24)Ponder,S.
M.
;Darab,J.
G.
;Mallouk,T.
E.
Environ.
Sci.
Technol.
2000,34,2564–2569.
(25)Long,R.
Q.
;Yang,R.
T.
J.
Am.
Chem.
Soc.
2001,123,2058–2059.
(26)Diallo,M.
S.
;Balogh,L.
;Shafagati,A.
;Johnson,J.
H.
,Jr.
;GoddardIII,W.
A.
;Tomalia,D.
A.
Environ.
Sci.
Technol.
1999,33,820–824.
(27)Kong,J.
;etal.
Science2000,287,622–625.
(28)Cui,Y.
;Wei,Q.
;Park,H.
;Lieber,C.
M.
Science2001,293,1289–1292.
(29)Nicewarner-Pena,S.
R.
;etal.
Science2001,294,137–141.
(30)Feder,B.
NewYorkTimes;pC3,Aug19,2002.
(31)Gorman,J.
ScienceNews2002,161,200–201.
(32)Roco,M.
C.
,Bainbridge,W.
S.
,Eds.
SocietalImplicationsofNanoscienceandNanotechnology;KluwerAcademicPublishers:Norwell,MA,2001.
(33)CenterforBiologicalandEnvironmentalNanotechnologyatRiceUniversity;http://cnst.
rice.
edu/cben.
(34)EnvironmentalFuturesResearchinNanoscaleScience,EngineeringandTechnology,ScienceToAchieveResults(STAR)Program,NationalCenterforEnvironmentalResearch;http://es.
epa.
gov/ncer/rfa/archive/grants/02/02nanotech.
html.
(35)NationalNanotechnologyInvestmentintheFY2003BudgetRequestbythePresident;www.
nano.
gov/2003budget.
html.
(36)Service,R.
F.
Science2001,294,2442–2443.
(37)Tseng,G.
Y.
;Ellenbogen,J.
C.
Science2001,294,1293–1294.
(38)Golberg,D.
;etal.
Chem.
Phys.
Lett.
2002,359,220-228.
108AENVIRONMENTALSCIENCE&TECHNOLOGY/MARCH1,2003
HostKvm发布了夏季特别促销活动,针对香港国际/韩国机房VPS主机提供7折优惠码,其他机房全场8折,优惠后2GB内存套餐月付仅5.95美元起。这是一家成立于2013年的国外主机服务商,主要提供基于KVM架构的VPS主机,可选数据中心包括日本、新加坡、韩国、美国、中国香港等多个地区机房,均为国内直连或优化线路,延迟较低,适合建站或者远程办公等。下面分享几款香港VPS和韩国VPS的配置和价格信息。...
RAKsmart发布了9月份优惠促销活动,从9月1日~9月30日期间,爆款美国服务器每日限量抢购最低$30.62-$46/月起,洛杉矶/圣何塞/香港/日本站群大量补货特价销售,美国1-10Gbps大带宽不限流量服务器低价热卖等。RAKsmart是一家华人运营的国外主机商,提供的产品包括独立服务器租用和VPS等,可选数据中心包括美国加州圣何塞、洛杉矶、中国香港、韩国、日本、荷兰等国家和地区数据中心(...
Sharktech最近洛杉矶和丹佛低价配置大部分都无货了,只有荷兰机房还有少量库存,商家又提供了两款洛杉矶特价独立服务器,价格不错,CPU/内存/硬盘都是高配,1-10Gbps带宽不限流量最低129美元/月起。鲨鱼机房(Sharktech)我们也叫它SK机房,是一家成立于2003年的老牌国外主机商,提供的产品包括独立服务器租用、VPS主机等,自营机房在美国洛杉矶、丹佛、芝加哥和荷兰阿姆斯特丹等,主...
222be.com为你推荐
在线教育平台在线教育平台系统有哪些百花百游百花净斑方效果怎么样?百度关键词工具常见百度关键词挖掘方法分别是什么请列举?porntimesexy time 本兮 MP3地址51sese.comwww.51xuanh.com这是什么网站是骗人的吗?789se.comhttp://gv789.com/index.php这个网站可信吗?是真的还是假的!www.diediao.com谁知道台湾的拼音怎么拼啊?有具体的对照表最好!xvideos..comxvideos 怎么下载dpscycleDPScycle插件为什么没有猎人模块 最好详细点月风随笔写风的作文
韩国虚拟主机 香港主机租用 网页空间租用 免费申请网页 lunarpages suspended 魔兽世界台湾服务器 北京双线机房 shopex主机 河南移动梦网 西安主机 德讯 空间申请 网站加速 广东服务器托管 双十二促销 windowsserver2008 alexa世界排名 cc加速器 ubuntu安装教程 更多