permission222be.com

222be.com  时间:2021-03-21  阅读:()
102AENVIRONMENTALSCIENCE&TECHNOLOGY/MARCH1,20032003AmericanChemicalSocietyEnvironmentalTechnologiesattheNanoscaleNanotechnologycouldsubstantiallyenhanceenvironmentalqualityandsustainabilitythroughpollutionprevention,treatment,andremediation.
TINAMASCIANGIOLIAAASENVIRONMENTALSCIENCE&TECHNOLOGYPOLICYFELLOWWEI-XIANZHANGLEHIGHUNIVERSITYMARCH1,2003/ENVIRONMENTALSCIENCE&TECHNOLOGY103AMaintainingandimprovingsoil,water,andairqualityrepresentsomeofthemostformidablechallengesfacingglobalsocietyinthe21stcen-tury.
Pollutantsfromsuchdiversesourcesasoilandchemicalspills,pesticideandfertilizerrunoff,abandonedindustrialandminingsites,andair-bornegaseousandparticulatematterfromautomobilesexacerbatethesituationonadailybasis.
Detectingandtreatingexistingcontaminantsandpreventingnewpollutionareamongthechallenges.
Theaggregatefinancialburdenforim-provingair,water,andsoilqualityistrulystaggering(1).
Inlightoftheseenor-mousandcomplexchallenges,itisperhapsironicthatoneprospectivesolutionisdiminutiveinsizebutimmenselypowerfulincapacity.
DEEPAKSRIVASTAVA/NASAEnternanotechnologytherevolutionaryscienceandartofmanipulatingmatterattheatomicormolecularscalethathascutacrosssuchdisci-plinesaschemistry,physics,biology,andengi-neering(2).
Despitealargelyunproventrackrecordintheenvironmentalarena,nan-otechnologyoffersgreatpromisefordeliv-eringnewandimprovedenvironmentaltechnologies.
However,proliferationofnanotechnologycouldalsoleadtonewenvironmentalproblems,suchasnewclass-esoftoxinsorrelatedenvironmentalhazards.
NanotechnologyoverviewNanotechnologyrefersbroadlytousingmaterialsandstructureswithnanoscaledimensions,usuallyrang-ingfrom1to100nanometers(nm).
Perhaps,withoutrealizingit,wealreadyencountersomelikenessofnanotechnologyindailylife.
Forexample,proteina-ceousmoleculesinlivingorganismsfrombacteriatobeetlestohumansserveas"molecularmotors"todriveeverythingfromflagellarmotiontomuscleflex-ion.
Nanometer-sizedparticleshavebeendevelopedtoimprovethemechanicalpropertiesoftires,initi-atephotographicfilmdevelopment,andserveasvitalcatalystsinthepetrochemicalindustry.
Tosomeextent,environmentalscientistsanden-gineersarealreadyworkingwithnanoscalestruc-tures(3).
Naturalweatheringofminerals,suchasironoxidesandsilicates,andmicroorganisms,suchasbacteriaandalgae,producenanoscalecolloids,whichincludedispersionsofnanosized-particlesinmediawithspecialpropertiesthatcanbeimportantinthefate,transport,transformation,andbioavail-abilityofenvironmentallyharmfulsubstances.
Anthropogenicandnaturalcolloidsofsolids,liquids,andgasesinliquids(sols,emulsions,andfoams,re-spectively),andsolidsandliquidsingases(smokesandfogs,respectively)arecommonlyencounteredintheenvironment.
However,nanotechnologyisnotjustaboutthesizeofverysmallthings.
Moreimportant,itisaboutstruc-tureandtheabilitytowork—observe,manipulate,andbuild—attheatomicormolecularlevel.
Thisre-sultsinmaterialsandsystemsthatoftenexhibitnovelandsignificantlychangedphysical,chemical,andbi-ologicalpropertiesduetotheirsizeandstructure.
Thesenewproperties,whichwewillelaborateonlaterinthisarticle,includeimprovedcatalysis(4),tunablewavelengthsensingability(5),andincreasedmechanicalstrength(6).
Thebasicstructuresofnanotechnologyincludenanoparticlesornanocrystals,nanolayers,andnano-tubes.
Thesenanostructuresdifferinhowtheyaremadeandhowtheiratomsandmoleculesareor-dered.
Ananoparticle—acollectionoftenstothou-sandsofatomsmeasuringabout1–100nminaggregatediameter—isthemostbasicstructureinnanotechnology.
Suchnanoparticlesarecreatedatombyatom,sothesize,andoftentheshape,ofaparti-cleiscontrolledbyexperimentalconditions.
Theseparticlescanalsobedescribedasnanocrystalsbe-causetheatomswithintheparticlearehighlyor-dered,orcrystalline.
Nanostructures,suchasthoseshowninFigure1,areoftenarrangedorself-assembledintohighlyorderedlayersarisingfromhydrogenbonding,dipo-larforces,hydrophilicorhydrophobicinteractions,gravity,andotherforces(7).
Manynaturallyoccur-ringbiologicalstructures,likemembranes,vesicles,andDNA,formbecauseofsuchself-assembly.
Repeatingstructureswithatailoredperiodicityareessentialinmanyapplicationsofnanotechnology,suchasphotonics,catalysts,andmembranes.
Understandingandbuildingnanostructuresthroughself-assemblyisthecoreofthenanotechnologycre-ationprocess(8).
Theextraordinarymechanical,electronic,andchemicalcharacteristicsofnanostructurescalledcar-bonnanotubes,whichwerediscoveredbySumioIijimain1991,havecapturedtheimaginationofsci-entistsandengineers(9).
AsshowninFigure2,nano-tubesgenerallyconsistofhexagonallatticesofcarbonatomsarrangedspirallytoformconcentriccylinders(10).
Thetubesarenearlyperfectcrystalsandthin-nerthangraphitewhiskers.
Single-wallnanotubes(SWNTs)haveadiameterofapproximately1.
4nm,andmultiwallnanotubes(MWNTs)consistofbe-tween2and30concentrictubesthatformanouterdiameterof30–50nm.
Nanotubesrangeinlengthfromafewtensofnanometerstoseveralmicrometers.
Nanotubeshavecharacteristicsthatleadtovari-ousapplications(11).
Forexample,nanotubesarestrongerthansteelbutveryflexibleandlightweight,whichmakesthemasuitablematerialforbothsuper-strongcableandtipsforscanningprobemicro-scopes.
Inadditiontotheremarkablemechanicalproperties,nanotubescouldpotentiallyreplacecop-perasanelectricalconductoror,withasmallchangeinstructure,replacesiliconasasemiconductor.
Nanotubesalsotransferheatbetterthananyotherknownmaterial.
Researchersareexploringtheuseofnanotubesindrugdeliveryandmedicaldiagnosticapplications.
SeveraldifferentcompaniesintheUnitedStates,Japan,andEuropearetestingproductionofnano-tubesonapilotscale.
However,atseveralhundreddollarspergram,nanotubesarestilltooexpensiveformostapplications.
PollutionpreventionPollutionpreventionrefersto"sourcereduction"andotherpracticesthatefficientlyuserawmaterials,en-ergy,water,orotherresourcestoreduceoreliminatecreationofwaste.
Thisstrategyalsoincludesusinglesstoxicandrenewablereagentsandprocessingma-terials,wherepossible,andtheproductionofmoreenvironmentallybenignmanufacturedproducts.
Nanotechnologycouldplayakeyroleinpollutionpreventiontechnologies.
Forexample,nanotechnol-ogy-basedhomelightingcouldreduceenergycon-sumptionbyanestimated10%intheUnitedStates,saving$100billionannuallyandreducingcarbonemissionsby200milliontonsperyear(12).
FIGURE1Nanostructures(a)SiIiconnanowiresthatdetectpH,(b)carbonnanotubes,(c)smallorganicmolecules,and(d)biomoleculesareexamplesofnanoscalematerials,devices,andcircuitsthatcouldbeusedforpollutantsensinng,prevention,andtreatment.
NNNNZnSSSSSSSSSSSiO2SourceDrainSiOSiOOHOSiSiSiSiNH2HOSiNWSiOSiOOSiSiSiSiNH2SiNWSiOSiOOHOSiSiSiSiNH3HOSiNW+–O–O–H++H+–H++H+Nanowire(a)(b)(c)(d)Source:Figure1awasadaptedwithpermissionfromReference(28),andFigures1b–dwereadaptedwithpermissionfromReference(37).
104AENVIRONMENTALSCIENCE&TECHNOLOGY/MARCH1,2003Nanostructuredcatalysts,forexample,canmakechemicalmanufacturingmoreefficientbyprovidinghigherselectivityfordesiredreactionproducts(13).
Forexample,aluminosilicatemolecularsieves(zeo-lites)areporouscrystallinesolidswithwell-definedstructureswidelyusedforseparationsandcatalysis.
Nanometer-sizedzeolites(10–100nm)arebeingde-velopedtoselectivelyoxidizehydrocarbons,suchastoluenetobenzaldehyde(14).
Usingnanostructuredzeolitesmakesthisexamplemoreenvironmentallybenignfortworeasons.
First,theoxidationreactionisinitiatedbyvisiblelight,whichreducesenergycon-sumption.
Second,usingvisiblelightaccesseslow-en-ergyreactionpathwaysthathelpeliminatewastefulsecondaryphotoreactionsandincreasetheyieldofthedesiredproduct.
Inthisstudy,selectivityforbenz-aldehydeusingthenanostructureswas87%,com-paredtolessthan35%forthesamereactionwithconventionalzeolitematerial.
Assemblingnanostructuresfrombiopolymersorbio-inspiredmaterialsisanexampleofanenviron-mentallybenignapproachtofabricatingmicroelec-tronics.
Accordingtorecentcalculations,1.
7kgoffossilfuelandchemicalsand32kgofwaterarerequiredtoproduceasingle2-gram,32-megabytemicrochip(15).
Biomolecularnanolithographyrep-resentsa"bottom-up"approachtoreplacecurrentsemiconductorchipproductionmethods(16).
Nanoscalemetalparticlesonabiopolymer(poly-L-lysine)templateorscaffoldarestretchedoutonasurfaceintowell-definedchiparchitectures,suchaslinesandgrids,atroomtemperature.
Biodegradablematerialslikepoly-L-lysineareusedforconstructionofthesestructures.
Nanotechnologyapplicationscouldalsohelpcre-atebenignsubstancesthatreplacecurrentlyusedtoxicmaterials.
Forexample,nontoxic,energy-effi-cientcomputermonitorsarereplacingthosemadeofcathoderaytubes(CRT),whichcontainmanytoxicmaterials(17).
Newerliquidcrystallinedisplaysaresmaller,donotcontainlead,andconsumelesspowerthanCRTcomputermonitors(17).
Usingcarbonnan-otubesincomputerdisplaysmayfurtherdiminishtheenvironmentalimpactsbyeliminatingtoxicheavymetalsanddrasticallyreducingmaterialandenergyuserequirements,whileprovidingenhancedperfor-manceforconsumerneeds.
Fieldemissiondisplays(FEDs)thatusecarbonnanotubesarethelatestde-velopmentindisplaytechnologyandmaybecom-merciallyavailablefromseveralmanufacturerswithinthenextyear(18).
Althoughthetoxicityofcarbonnanotubesislargelyunknown,theamountofcarbonnanotubesusedinFEDsisquitesmall(0.
5g/moni-tor)comparedtothekilogramsofleadinCRTs(17).
TreatmentandremediationTheearlyimpactofnanotechnologyresearchhasbeenmostlyinremediationandend-of-pipetreatmenttechnologies.
Variousreportshaveappearedontheuseofavarietyofnanoparticlesfortreatmentandre-mediationofpollutantsintheenvironment.
Forex-ample,nanoparticlesofvariousoxidants,reductants,andnutrientshavebeensuggestedasusefulforpro-motingcontaminanttransformationandstimulatingmicrobialgrowth,becausetheirsmallsizeandlargersurfaceareamakethemmorereactiveandmoreflex-ibleintermsofdeployment.
Nanoparticlescanalsoexhibituniquechemicalreactivitynotobservedforlargerparticlesbecauseoftheirunusualcrystalshapesandlatticeorder.
Forexample,conventionalmethods(e.
g.
,bioremediationandzero-valentiron)forinsituremediationofchlorinatedorganicsolvents,suchastrichlorethylene,tendtoproduceundesirablebyprod-MARCH1,2003/ENVIRONMENTALSCIENCE&TECHNOLOGY105AFIGURE2Carbonnanotubescanbespecialized(a)Nanotubesarestrongerthansteelbutveryflexibleandlightweight.
Theseexceptionalmechanicalcharacteristicsmakethemsuitableas"tips"forscanningprobemicroscopesorenforcingfibersfornanotube–polymercompositematerials.
(b)Dependingontheconstruction,nanotubescanbehavelikeelectricalconductorsorsemiconductors,whichmakesthemextremelyusefulfornanoscaleelectronicsapplications.
Theelectroniccharacteristicsofcarbonnanotubesarestronglycoupledtothemechanicalpropertiesandprovidegreatopportunitytodevelopnovelelectromechanicalnanodevices(11).
(c)Variationsinnanotubecompositionallowfortuningelectrontransportpropertiesoverawiderange.
Nanotubescanalsobeconstructedfrommaterialssuchasboron,carbon,andnitrogen(Bx-Cy-Nz)thatarestructurallysimilartothoseconsistingonlyofcarbon.
Theseheteroatomicnanotubesareexpectedtobeinsulators,unlikecarbonnanotubes(38).
Source:DeepakSrivastava/NASA.
(a)(b)(c)ucts,suchasdichloroethylenesandvinylchloride.
Usingnanoscalebimetallicparticlesessentiallyelim-inatesalltheundesirablebyproducts(19,20).
Nanoparticlesthatareactivatedbylight,suchasthelargeband-gapsemiconductorstitaniumdioxide(TiO2)andzincoxide(ZnO),continuetobestudiedfortheirabilitytoremoveorganiccontaminantsfromvariousmedia.
Theseparticlesarereadilyavailable,inexpensive,andhavelowtoxicity(21,22).
Recently,ZnOnanoparticleswereshowntoactasbothasen-sorandphotocatalystfortreatmentofchlorinatedphenols(22).
Researchersarealsoquiteinterestedinmanipulatingthesurfaceofnanoparticleswithor-ganicorinorganicdyestoextendtheirphotoresponsefromUVtovisiblelight,makingthemevenmoreefficientasphotocatalystsforthetransformationofenvironmentalcontaminantsbecauseUVlightrep-resentsonly5%ofthesolarspectrum(23).
Nanoparticlescouldprovideenormousflexibilityforinsituremediationaswell.
Forexample,nanopar-ticlesareeasilydeployedinexsituslurryreactorsforthetreatmentofcontaminatedsoils,sediments,andsolidwastes.
Alternatively,theycanbeanchoredontoasolidmatrixsuchascarbon,zeolite,ormembraneforenhancedtreatmentofwater,wastewater,orgaseousprocessstreams(24).
Directsubsurfacein-jectionofnanoscaleironparticles,whetherundergravity-feedorpressurizedconditions,hasalreadybeenshowntoeffectivelydegradechlorinatedor-ganics,suchastrichloroethylene,toenvironmental-lybenigncompounds(19).
Thetechnologyalsoholdsgreatpromiseforimmobilizingheavymetalsandra-dionuclides.
Researchhasdemonstratedthatnanoscale,bimetallicparticles,suchasiron/palladium,iron/sil-ver,orzinc/palladium,canserveaspotentreductantsandcatalystsforalargevarietyofcommonenviron-mentalcontaminantssuchasPCBs,organochlorinepesticides,andhalogenatedorganicsolvents(4).
Nanoscalemetallicparticlesreducedvirtuallyallchlo-rinatedhydrocarbonstestedtobenignhydrocarbons.
Additionally,ampleevidenceindicatesthatiron-basednanoparticlescanbeusedtoreducemanyotherrecalcitrantcontaminants,includinganions(perchlorate,nitrate,anddichromate),heavymetals(nickelandmercury),andradionuclides(uraniumdioxide).
Nanotubeshavebeensuggestedas"asu-periorsorbent"fordioxins(25).
Thesorp-tionenergyofdioxinoncarbonnanotubesisal-most3timesthatofac-tivatedcarbon.
TheLangmuircon-stant(B),apara-metercharacterizingthesorptionaffinity,ismanyordersofmagnitudehigherfornanotubesthanforactivatedcarbon.
Thus,theprospectofusingcarbonnanotub-esforairandwaterpollutioncontrolappearstobeveryfavorable,butlarge-scaleapplicationsofnano-tubesinthenearfuturearelimitedbycostandavailability.
Anotherexampleofenvironmentaltreatmentandremediation-relatedapplicationofnanomaterialsin-cludesusingdendriticnanoscalechelatingagentsforpolymer-supportedultrafiltration(PSUF)(26).
Den-drimersarehighlybranchedpolymerswithcontrolledcompositionandanarchitecturethatconsistsofnanoscalefeatures.
Thesenanostructurescanbede-signedtoencapsulatemetalionsandzero-valentmet-als,enablingthemtodissolveinsuitablemediaorbindtoappropriatesurfaces.
Thisapproachmaypre-sentameanstoproduceafunctional,cost-effectiveand,dependingonthecompound,environmentallysoundmaterialforPSUF.
PollutionsensinganddetectionRapidandprecisesensorscapableofdetectingpol-lutantsatthemolecularlevelcouldgreatlyenhanceourabilitytoprotecthumanhealthandtheenviron-ment.
Manufacturingprocesscontrol,compliance,ecosystemmonitoring,andenvironmentaldecisionmakingwouldbesignificantlyimprovedifmoresen-sitiveandlesscostlytechniquesforcontaminantde-tectionwereavailable.
Ofparticularinterestareremote,insitu,andcontinuousmonitoringdevicescapableofyieldingreal-timeinformation,andalsothosethatcandetectpollutantsatverylowconcen-trationlevels.
Recently,chemicalsensorsbasedonindividualSWNTshavebeendemonstrated(27).
Alteredelec-tricalresistanceofsemiconductingSWNTsthroughexposuretogaseousmolecules,suchasnitrogendioxideorammonia,formsthebasisforthesesen-sors.
Thenanotubesensorsalsoexhibitedfastre-sponsesatroomtemperaturetothegasesandasubstantiallyhighersensitivitythanexistingsolid-statesensors(27).
Boron-dopedsiliconnanowires(SiNWs)havebeenusedtocreatehighlysensitive,real-timeelec-tricallybasedsensorsforbiologicalandchemicalspecies(28).
TheSiNWscouldbemodifiedinvariouswaystoprovidedifferentfunctionalities.
Specifically,theamine-andoxide-functionalizednanowireswereusedtodetectchangesinpH,andbiotin-modifiedSiNWswereusedtodetectstreptavidininthepicomolarcon-centrationrange.
Inaddition,anti-gen-functionalizedSiNWsshowedreversibleantibodybind-ingandconcentration-dependentdetectioninrealtime.
Detectionofthereversiblebindingofthemetabolicindi-catorcalciumwasalsodemonstrated.
Thesemechanismscouldapplytode-106AENVIRONMENTALSCIENCE&TECHNOLOGY/MARCH1,2003MARCH1,2003/ENVIRONMENTALSCIENCE&TECHNOLOGY107Atectingpathogensandchemicalandbiologicalagentsinwater,air,andfood.
Humanhealthandecologicaldiagnosiscouldalsobenefitfromsensors.
Forinstance,nanobarcodes—highlyencodableandchemicallydiversenanoparti-cles—mayallowforhigh-levelmultiplexingofsmallsamplevolumes(29).
Evaluatingtheexposureofcom-plexsystemsintheenvironmenttotoxicpollutantsoftenhassuchrequirementsforsampleanalysis.
Nanobarcodescangreatlyenhanceourabilitytoiden-tifythesourceandstrengthofcontaminants,deter-minetherouteandmechanismofenvironmentalfateandbioavailability,andassesstheeffectivenessoftreatmentandremediationtechniques.
NanotechnologypitfallsNanotechnologyisarevolutionaryscientificandengineeringventurethatwillinvariablyimpacttheexistinginfrastructureofconsumergoods,manufac-turingmethods,andmaterialsusage.
Notsurpris-ingly,thepotentialbenefitshavedominatedscientificandmassmediacoverageofnanotechnology.
Butanytechnologycanbeadouble-edgedsword.
Environ-mentalandsafetyconcernsaboutnanotechnologyonlyrecentlyhavebeendiscussedinthemainstreammedia(30).
Wearealreadywitnessingsomeprecursorsofnanotechnology-associatedpollution:toxicgalliumarsenideusedinmicrochipsenterslandfillsinin-creasingquantitiesasmillionsofcomputersandcel-lularphonesaredisposedofeveryyear.
Potentiallyharmfuleffectsofnanotechnologymightariseasaresultofthenatureofnanomaterialsthemselves,thecharacteristicsoftheproductsmadefromthem,ortheaspectsofthemanufacturingprocessinvolved.
Thelargesurfacearea,crystallinestructure,andre-activityofsomenanoparticles,forinstance,mayfacilitatetransportoftoxicmaterialsintheenviron-ment,orthesizeandchemicalcompositionofnano-structuresmayleadtobiologicalharmbecauseofthewaytheyinteractwithcellularmaterials(31)(seeFigure3).
Forexample,ifnanostructurescanself-as-sembleinthelaboratory,cantheyreplicateintheenvironmentIfso,whatwillbethefateofthosenanostructuresandtheirenvironmentalandhealthimpactsInaddition,itispossiblethatnanotech-nologycouldleadtosocietalchangesthatinfluencetransportation,urbandevelopment,informationmanagement,andotheractivitiesofoursocietythatdirectlyorindirectlyaffectthequalityoftheenvi-ronment.
Becausenanotechnologyisunlikelytobethefirstentirelybenigntechnologyadvance,thereisanurgentneedtoevaluatetheeffectivenessofcur-rentwaterandairtreatmenttechniquesforthere-movalandcontrolofpotentialnanoscalepollution.
TheU.
S.
NationalNanotechnologyInitiativehasalreadybegunexploringthepotentialenvironmen-talandsocietalimplications(2,32).
Inthefallof2001,RiceUniversityopenedtheCenterforBiologicalandEnvironmentalNanotechnology(CBEN),whichisFIGURE3NanotechnologycouldpollutemanymediaBecausenanoscalematerialsareinthesamesizerangeashemoglobinandvirusesandareevensmallerthancommonirritants,suchasparticulatematter(2m)Microbialcells(~1m)Virus(10–100nm)Hemoglobin(7nm)H2O(0.
2nm)100m10m1m100nm10nm1nm0.
1nmPollens(10–100m)PM2.
5(aerosols)Bacteriophage(80nm)Source:KenRaniere,LehighUniversity.
sponsoredbytheNationalScienceFoundation.
OneofthepriorityareasofCBENistoprobethebehav-iorofnanomaterialsintheenvironment(33).
In2002,theU.
S.
EPAannounceditsfundingplanforexter-nalresearchthatspecificallyaddressesthepotentialbeneficialapplicationsandenvironmentalimplica-tionsofnanotechnology(34).
However,currentfederalfundingforresearchanddevelopmentinthisareaisinadequate.
Theproposedfundingforstudyingnanoscaleprocessesintheen-vironmentaspartoftheNationalNanotechnologyInitiativeinthefiscalyear2003budgetrequestbytheBushadministration,forexample,isaround$20mil-lionoutofatotalinvestmentofapproximately$710million—amere2.
9%ofthetotalinitiative(35).
Theresponsibilitytorecognizeandaddressmanyofthepotentiallyadverserepercussionsisinthehandsofresearchersandenvironmentalprofessionals.
Asnewnanoscalestructuresandtechnologiesareex-ploredanddeveloped,areresearchersconsideringallofthepossibleenvironmentaloutcomesForexample,aretheremorebenignprecur-sormaterialsorsyntheticmethodstouseCanwerecoverthenano-particlesornanotubesforreuseorwilltheydegradeintoenvi-ronmentallybenignproductsNewnanoscalestructuresandotherpreviouslyde-scribedenvironmentalappli-cationsallsupportthepredictionthatnanoscalescienceandengineeringwilllikelyhaveaprofoundim-pactonscienceandtechnol-ogy(36).
However,wemustremainmindfulofthepoten-tialramificationsofthistech-nology,includingthefactthatnanoscalematerialscanenterthefoodchainandbeabsorbedortrans-portedbywaterandfood.
Bioavailabilityandtoxicityofnewlycreatednanoscalematerialsarelargelyunknown.
Nanotechnologyishigh-lyinterdisciplinaryandmaypresentfurtherchallengesforenvironmentalscientistsandengineers.
Fewstudentsarebeingtrainedinenvironmentalnanotechnology,andfewlaboratoriesarecurrentlyequippedtoconductre-searchinthisarea,detectnanopollution,anddevelopef-fectivetreatmentandremediationtechnologies.
AcknowledgmentW.
Z.
thanksU.
S.
EPAandtheNationalScienceFoundation(NSF)fortheirsupport.
However,thisarticlehasnotbeenreviewedbyeithertheEPAorNSFanddoesnotnecessarilyreflecttheirviews.
TinaMasciangioliisanAmericanAssociationfortheAdvancementofScienceEnvironmentalScienceandTechnologyPolicyFellowattheNationalCenterforEnvironmentalResearch,U.
S.
EPA,Washington,D.
C.
Wei-XianZhangisanassociateprofessorofenviron-mentalengineeringatLehighUniversity.
Addresscor-respondencetoZhangatwez3@lehigh.
edu.
References(1)U.
S.
EPA,NationalCenterforEnvironmentalEconomics.
WhatDoWeSpendonEnvironmentalProtection,http://yosemite.
epa.
gov/ee/epa/white.
nsf/pages/q1.
(2)Roco,M.
C.
,Williams,R.
S.
,Alivasatos,P.
,Eds.
Nano-technologyResearchDirections:IWGNWorkshopReport;KluwerAcademicPublishers:Norwell,MA,1999.
(3)Sawyer,C.
N.
;McCarty,P.
L.
;Parkin,G.
F.
ChemistryforEnvironmentalEngineering,4thed.
;McGraw-Hill:NewYork,1994.
(4)Zhang,W.
-X.
;Wang,C.
-B.
;Lien,H.
-L.
Catal.
Today1998,40,387–395.
(5)Chan,W.
C.
W.
;Maxwell,D.
J.
;Gao,X.
;Bailey,R.
E.
;Han,M.
;Nie,S.
Curr.
Opin.
Biotechnol.
2002,13,40–46.
(6)Thess,A.
;etal.
Science1996,273,483–487.
(7)Tolles,W.
M.
MRSBull.
2000,October,36–38.
(8)Service,R.
F.
;Szuromi,P.
;Uppenbrink,J.
Science2002,295,2395.
(9)Baughman,R.
H.
;Zakhidov,A.
A.
;deHeer,W.
A.
Science2002,297,787–792.
(10)Iijima,S.
Nature1991,354,56–58.
(11)Service,R.
F.
Science1998,281,940–942.
(12)NationalNanotechnologyInitiative:TheInitiativeandItsImplementationPlan;NSTC/NSETreport,March2001,WashingtonD.
C.
;www.
nano.
gov/nsetrpts.
htm.
(13)Samorjai,G.
A.
;McCrea,K.
Appl.
Catal.
A:General2001,222,3–18.
(14)Panov,A.
G.
;Larson,R.
G.
;Totah,N.
I.
;Larsen,S.
C.
;Grassian,V.
H.
J.
Phys.
Chem.
B2000,104,5706–5714.
(15)Williams,E.
D.
;Ayers,R.
U.
;Heller,M.
Environ.
Sci.
Technol.
2002,36,5504–5510.
(16)Wybourne,M.
N.
;Hutchison,J.
E.
;Clarke,L.
;Brown,L.
O.
;Mooster,J.
L.
Microelectr.
Eng.
1999,47,55–57.
(17)Socolof,M.
L.
;Overly,J.
G.
;Kincaid,L.
E.
;Geibig,J.
R.
DesktopComputerDisplays:ALife-CycleAssessment;Vol.
IandII,DesignfortheEnvironmentComputerDisplayProject.
U.
S.
EnvironmentalProtectionAgency,2001;www.
epa.
gov/oppt/dfe/pubs/comp-dic/lca.
(18)Choi,W.
B.
;etal.
Appl.
Phys.
Lett.
1999,75,3129–3131.
(19)Elliott,D.
W.
;Zhang,W.
-X.
Environ.
Sci.
Technol.
2001,35,4922–4926.
(20)Wang,C.
;Zhang,W.
Environ.
Sci.
Technol.
1997,31,2154–2156.
(21)Fujishima,A.
;Rao,T.
N.
;Tryk,D.
A.
J.
Photochem.
Photobiol.
C:Photochem.
Rev.
2000,1,1–21.
(22)Kamat,P.
V.
;Huehn,R.
;Nicolaescu,R.
J.
Phys.
Chem.
B.
2002,106,788–794.
(23)Subramanian,V.
;Wolf,E.
;Kamat,P.
V.
J.
Phys.
Chem.
B2001,105,11,439–11,446.
(24)Ponder,S.
M.
;Darab,J.
G.
;Mallouk,T.
E.
Environ.
Sci.
Technol.
2000,34,2564–2569.
(25)Long,R.
Q.
;Yang,R.
T.
J.
Am.
Chem.
Soc.
2001,123,2058–2059.
(26)Diallo,M.
S.
;Balogh,L.
;Shafagati,A.
;Johnson,J.
H.
,Jr.
;GoddardIII,W.
A.
;Tomalia,D.
A.
Environ.
Sci.
Technol.
1999,33,820–824.
(27)Kong,J.
;etal.
Science2000,287,622–625.
(28)Cui,Y.
;Wei,Q.
;Park,H.
;Lieber,C.
M.
Science2001,293,1289–1292.
(29)Nicewarner-Pena,S.
R.
;etal.
Science2001,294,137–141.
(30)Feder,B.
NewYorkTimes;pC3,Aug19,2002.
(31)Gorman,J.
ScienceNews2002,161,200–201.
(32)Roco,M.
C.
,Bainbridge,W.
S.
,Eds.
SocietalImplicationsofNanoscienceandNanotechnology;KluwerAcademicPublishers:Norwell,MA,2001.
(33)CenterforBiologicalandEnvironmentalNanotechnologyatRiceUniversity;http://cnst.
rice.
edu/cben.
(34)EnvironmentalFuturesResearchinNanoscaleScience,EngineeringandTechnology,ScienceToAchieveResults(STAR)Program,NationalCenterforEnvironmentalResearch;http://es.
epa.
gov/ncer/rfa/archive/grants/02/02nanotech.
html.
(35)NationalNanotechnologyInvestmentintheFY2003BudgetRequestbythePresident;www.
nano.
gov/2003budget.
html.
(36)Service,R.
F.
Science2001,294,2442–2443.
(37)Tseng,G.
Y.
;Ellenbogen,J.
C.
Science2001,294,1293–1294.
(38)Golberg,D.
;etal.
Chem.
Phys.
Lett.
2002,359,220-228.
108AENVIRONMENTALSCIENCE&TECHNOLOGY/MARCH1,2003

CloudCone闪购优惠洛杉矶MC机房VPS月$1.99 便宜可随意删除重开

CloudCone商家我们很多喜欢低价便宜VPS主机的肯定是熟悉的,个人不是特别喜欢他。因为我之前测试过几次,开通的机器IP都是不通的,需要删除且开通好几次才能得到一个可用的IP地址。当然他们家的优势也是有的,就是价格确实便宜,而且还支持删除重新开通,而且机房只有一个洛杉矶MC。实话,如果他们家能多几个机房,保持现在的特点,还是有很多市场的。CloudCone是来自美国的主机销售商,成立于2017...

阿里云香港 16核32G 20M 999元/月

阿里云香港配置图提速啦是成立于2012年的十分老牌的一个商家这次给大家评测的是 阿里云香港 16核32G 20M 这款产品,单单说价格上就是十分的离谱原价8631元/月的现价只要 999元 而且还有个8折循环优惠。废话不多说直接进入正题。优惠时间 2021年8月20日-2021年9月20日 优惠码 wn789 8折优惠阿里云香港BGP专线 16核32G 10M带宽 优惠购买 399元购买链接阿里云...

搬瓦工VPS:高端线路,助力企业运营,10Gbps美国 cn2 gia,1Gbps香港cn2 gia,10Gbps日本软银

搬瓦工vps(bandwagonhost)现在面向中国大陆有3条顶级线路:美国 cn2 gia,香港 cn2 gia,日本软银(softbank)。详细带宽是:美国cn2 gia、日本软银,都是2.5Gbps~10Gbps带宽,香港 cn2 gia为1Gbps带宽,搬瓦工是目前为止,全球所有提供这三种带宽的VPS(云服务器)商家里面带宽最大的,成本最高的,没有第二家了! 官方网站:https...

222be.com为你推荐
seo优化工具seo优化软件有哪些?百度关键词分析百度竞价关键词分析需要从哪些数据入手?郭泊雄郭佰雄最后一次出现是什么时候?www.mywife.ccmywife哪部最经典www.789.com.cn有什么网站可以玩游戏的.www.hyyan.comDOTA6.51新手选什么英雄为好,请详细讲述出装备顺序,加点顺序,以及注意事项。谢谢www.cn12365.orgwww.12365china.net是不是真的防伪网站300373一搓黑是真的吗www.bbbb.com二级域名怎么申请?看URL怎么分辨出二级域名、三级域名彪言彪语()言() 语苗惟妮最新青春偶像剧2010
工信部域名备案系统 如何注册中文域名 免费网站监控 tk域名 ca4249 e蜗 最好的qq空间 超级服务器 360云服务 东莞主机托管 黑科云 webmin 带宽测速 卡巴斯基官方下载 神棍节 vim命令 电脑主机响 qq空间技术网 dell服务器论坛 摇号申请网站 更多