Quetal.
AnnalsofClinicalMicrobiologyandAntimicrobials2010,9:16http://www.
ann-clinmicrob.
com/content/9/1/16OpenAccessRESEARCH2010Quetal;licenseeBioMedCentralLtd.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAt-tributionLicense(http://creativecommons.
org/licenses/by/2.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.
ResearchAntibioticsusceptibilityofcoagulase-negativestaphylococciisolatedfromverylowbirthweightbabies:comprehensivecomparisonsofbacteriaatdifferentstagesofbiofilmformationYueQu1,AndrewJDaley2,TaghridSIstivan1,SuzanneMGarland2,3,4andMargaretADeighton*1AbstractBackground:Coagulase-negativestaphylococciaremajorcausesofbloodstreaminfectionsinverylowbirthweightbabiescaredforinNeonatalIntensiveCareUnits.
Thevirulenceofthesebacteriaismainlyduetotheirabilitytoformbiofilmsonindwellingmedicaldevices.
Biofilm-relatedinfectionsoftenfailtorespondtoantibioticchemotherapyguidedbyconventionalantibioticsusceptibilitytests.
Methods:Coagulase-negativestaphylococcalbloodcultureisolatesweregrownindifferentphasesrelevanttobiofilmformation:planktoniccellsatmid-logphase,planktoniccellsatstationaryphase,adherentmonolayersandmaturebiofilmsandtheirsusceptibilitiestoconventionalantibioticswereassessed.
Theeffectsofoxacillin,gentamicin,andvancomycinonpreformedbiofilms,atthehighestachievableserumconcentrationswereexamined.
Epifluorescencemicroscopyandconfocallaserscanningmicroscopyincombinationwithbacterialviabilitystainingandpolysaccharidestainingwereusedtoconfirmthestimulatoryeffectsofantibioticsonbiofilms.
Results:Mostcoagulase-negativestaphylococcalclinicalisolateswereresistanttopenicillinG(100%),gentamicin(83.
3%)andoxacillin(91.
7%)andsusceptibletovancomycin(100%),ciprofloxacin(100%),andrifampicin(79.
2%).
Bacteriagrownasadherentmonolayersshowedsimilarsusceptibilitiestotheirplanktoniccounterpartsatmid-logphase.
Isolatesinabiofilmgrowthmodeweremoreresistanttoantibioticsthanbothplanktonicculturesatmid-logphaseandadherentmonolayers;howevertheywereequallyresistantorlessresistantthanplanktoniccellsatstationaryphase.
Moreover,forsomecell-wallactiveantibiotics,concentrationshigherthanconventionalMICswererequiredtopreventtheestablishmentofplanktonicculturesfrombiofilms.
Finally,thebiofilm-growthoftwoS.
capitisisolatescouldbeenhancedbyoxacillinatthehighestachievableserumconcentration.
Conclusion:Weconcludethattheresistanceofcoagulase-negativestaphylococcitomultipleantibioticsinitiallyremainsimilarwhenthebacteriashiftfromaplanktonicgrowthmodeintoanearlyattachedmode,thenincreasesignificantlyastheadherentmodefurtherdevelops.
Furthermore,preformedbiofilmsofsomeCoNSareenhancedbyoxacillininadose-dependentmanner.
BackgroundCoagulase-negativestaphylococci(CoNS),predomi-nantlyStaphylococcusepidermidis,arethemostcommoncausativeagentsofneonatalsepsis[1-3],aconditionwhichhasbeenrelatedtosignificantmorbidityandmor-talityinneonatalintensivecareunits(NICUs)[2].
Thepresenceofacentralvenouscatheterinverylowbirthweight(VLBW)babies(48h),thechoiceiseitherflucloxacillinorvancomycinwithgentamicin.
Ciprofloxacinandrifampicinwerealsoeval-uatedinthisstudyastheefficacyoftheseantibioticsonCoNSbiofilmshasbeenreportedbyotherinvitrostud-ies.
PenicillinGwaspurchasedfromCSLBiotherapies,Parkville,AustraliaandallotherswereobtainedfromSigma-Aldrich,CastleHill,Australia.
EstablishmentofadherentmonolayersBacterialculturesofadherentmonolayerswereestab-lishedfollowingthemethodofMiyakeetal.
(1992),whichinvolvedtheadditionof50μLvolumesofbacterialTable1:Bacterialisolatesandgrowthmediausedforbiofilmformation.
IsolateSpeciesStatusGrowthmediumforbiofilmformationaTSBTSB+1%glucoseTSB+4%NaClicaAicaCicaD1S.
warneriInvasive+---2S.
haemolyticusInvasive----3S.
epidermidisInvasive++++4S.
epidermidisInvasive+---5S.
epidermidisInvasive++++6S.
capitisInvasive+++-7S.
epidermidisInvasive++++8aS.
capitisInvasive+++-8bS.
capitisInvasive+++-9S.
capitisInvasive+++-10S.
epidermidisInvasive+---11S.
epidermidisInvasive++++12S.
epidermidisContaminantw---13S.
epidermidisContaminant++++15S.
capitisContaminantw++-16S.
capitisContaminant+++-17S.
capitisContaminant+++-18S.
capitisContaminant+++-19S.
epidermidisContaminant----20S.
epidermidisContaminant++++21S.
epidermidisContaminant++++22S.
capitisContaminantw+++23S.
epidermidisContaminant++++24S.
epidermidisContaminant++++RP62AS.
epidermidisReference+SP2S.
hominisReference-aSelectionofgrowthmediumwasbasedontheproductionofthehighestbiofilmdensityforeachisolate.
Theamountofbiofilmwasindicatedas:"+",strong(OD600≥0.
24);"w",weak(0.
12≤OD6002*log2inMICorMBCforoxacillin,vancomycin,ciprofloxacinandrifampicin,andanincreaseof>3*log2forMICorMBCforpenicillinandgentamicin,wereconsideredsignificant[38].
Experi-mentstargetingtheeffectsofantibioticsonpreformedbiofilmswererepeatedatleastthreetimesintriplicate.
Onewayanalysisofvariance(ANOVA)orthenon-para-metricMann-Whitneytestwasusedfortwo-setcompar-isonsandap-valueof10241024>102432≤132Biofilm(0.
9-1.
9)*109>1024e>102464>102464>102416>1024d0.
25>10240.
0040.
015Isolate3LogPlanktonic(2.
9-8.
3)*1058160.
250.
250.
250.
25240.
120.
250.
0080.
015Monolayer(5.
0-11.
0)*10532640.
250.
50.
120.
5280.
250.
50.
0020.
004StatPlanktonic(0.
6-2.
2)*109>102432>1024>10241024256Biofilm(0.
3-1.
3)*109>1024>102416160.
25216160.
2520.
54Isolate8aLogPlanktonic(2.
6-5.
5)*105128128323288120.
250.
250.
0080.
03Monolayer(6.
4-11.
1)*105>128>12832646464180.
120.
50.
0040.
015StatPlanktonic(4.
4-4.
9)*108>1024>1024>1024>102410242Biofilm(0.
6-1.
8)*1081024>1024256>1024256>10248>10240.
12>10240.
0044Isolate9LogPlanktonic(3.
1-5.
2)*10532643232816120.
250.
250.
0150.
03Monolayer(4.
6-10.
8)*105>128>12832>1281632280.
250.
50.
0040.
015StatPlanktonic(0.
7-0.
8)*109>1024>1024>1024>1024>1024256Biofilm(1.
1-1.
7)*109>1024>102464>1024>128>10248>10240.
25>10240.
0084Isolate11LogPlanktonic(2.
7-8.
5)*1058864>1283264110.
060.
12>128>128Monolayer(3.
2-17.
8)*1053264>128>1283264120.
060.
12>128>128StatPlanktonic(0.
8-1.
6)*109>1024>1024>1024>10245121024Biofilm(0.
2-0.
6)*109>1024>1024256>1024256>10248>10240.
251664>1024αBiofilm-positiveisolates(OD600>0.
24).
bMICsforCoNSatstationaryphasearenotprovidedasthevaluescouldnotbedeterminedbystandardmethods.
cValuesunderlinedindicateasignificantincreaseintheMICsorMBCsbetweenlog-planktonicandadherentmonolayermodesofgrowth.
dValuesinitalicindicateasignificantchangeintheMBCsbetweenstationary-planktonicandbiofilmmodesofgrowth.
eValuesinboldindicateasignificantincreaseinMICsorMBCsbetweenlog-planktonic/adherentmonolayerandbiofilmmodesofgrowthQuetal.
AnnalsofClinicalMicrobiologyandAntimicrobials2010,9:16http://www.
ann-clinmicrob.
com/content/9/1/16Page8of12adherentmonolayers,however,itisalsolikelythatthedifferencewasduetothedifferentkineticsofbiofilmfor-mationbetweenP.
aeruginosaandStaphylococcusspp.
[19].
ConventionalMICshavebeenusedtoguidethetreat-mentofbiofilm-relatedinfectionsatthefebrilestage,basedontheassumptionthatbiofilm-releasedcellsaresimilarintheirsusceptibilitiestocellsintheplanktonicphase[23].
Reporteddifferencesbetweentheconven-tionalMICsandbiofilmMICswereattributedtolackofstandardizationofinitialinoculaandtothepresenceofsmallcolonyvariants[23].
However,inourstudy,wefoundthatMICsofcellwallactiveantibioticswerefre-quentlyhigherforbiofilmgrownbacteriathanplanktoniccultures.
ThisisconsistentwithrecentstudiesbyMoskowitzetal.
(2004)andMelchioretal.
(2006),whoreportedthatbiofilmMICsofβ-lactamantibiotics,butnototherantibiotics,weremuchhigherthantheconven-tionalMICsforP.
aeruginosaandS.
aureusrespectively[21,24].
Theseresultsarenotsurprisinggiventhatcellwallactiveantibioticsmainlyaffectrapidlygrowingbac-teria.
Biofilm-releasedcellsarelikelytobelessactivethandividingplanktoniccellsatmid-logphase,probablybecausetheyhaverecentlyundergoneaswitchfromabiofilmmodeofgrowthtoafree-livingmode,similartocellsatlag-phasegrowth,andrequireachangeingeneexpressiontoadapttothenewenvironment.
TheMBCsofpenicillinG,gentamicin,oxacillin,andvancomycinforCoNSgrowninabiofilmmodeweregen-erally>1024μg/ml,whichiswellbeyondthehighestachievableserumconcentrations.
Althoughsomeoftheseantibioticsatthehighestachievableserumconcen-trationswereeffectiveagainstbacteriagrownplanktoni-callytomid-logphase,theywereinadequatetokillTable3:Antibioticsusceptibilityoffourbiofilm-negativeisolatesagrownindifferentmodes.
IsolateandmodeofgrowthInitialbacterialdensity(CFU/ml)Penicillin(μg/ml)Gentamicin(μg/ml)Oxacillin(μg/ml)Vancomycin(μg/ml)Ciprofloxacin(μg/ml)Rifampicin(μg/ml)MICMBCMICMBCMICMBCMICMBCMICMBCMICMBCSP2LogPlanktonic(1.
2-4.
1)*1050.
50.
5880.
060.
06120.
120.
120.
0080.
03Monolayer(2.
6-4.
7)*10528c16160.
120.
120.
510.
120.
120.
0040.
008StatPlanktonic(3.
5-9.
5)*107b>10241024d2420.
008Biofilm(1.
0-3.
2)*107128>1024e8320.
122240.
1220.
0020.
008Isolate15LogPlanktonic(2.
2-5.
5)*10512812832641632440.
250.
250.
0150.
03Monolayer(5.
2-16.
4)*105>128>12832641664480.
120.
250.
0040.
008StatPlanktonic(3.
7-7.
9)*108>1024>1024>1024>1024>102464Biofilm(0.
7-0.
9)*108>1024>1024256>1024256>102416>10240.
255120.
0040.
008Isolate19LogPlanktonic(2.
9-7.
4)*105>128>128646428220.
250.
250.
0080.
015Monolayer(3.
2-14.
6)*105>128>12864>12828280.
120.
250.
0020.
008StatPlanktonic(0.
7-1.
5)*109>1024>1024>1024>102410242Biofilm(0.
1-0.
2)*1091024>102464>102464>10244>10240.
2540.
0080.
06Isolate22LogPlanktonic(2.
8-5.
6)*105>128>1286464816440.
120.
250.
0150.
03Monolayer(4.
8-16.
3)*105>128>12832>1283232280.
120.
250.
0040.
008StatPlanktonic(0.
5-0.
7)*109>1024>1024>1024>1024>1024256Biofilm0.
2*1091024>1024>128>1024>128>102416>10240.
2510.
0080.
03aBiofilm-negativeisolatesincludedbiofilm-weakproducer(0.
24>OD600≥0.
12)andbiofilm-negativeproducer(OD6002003,88:F89-93.
3.
CheungGY,OttoM:UnderstandingthesignificanceofStaphylococcusepidermidisbacteremiainbabiesandchildren.
CurrOpinInfectDis2010,23:208-216.
4.
Johnson-RobbinsLA,el-MohandesAE,SimmensSJ,KeiserJF:Staphylococcusepidermidissepsisintheintensivecarenursery:acharacterizationofriskassociationsininfants<1,000g.
BiolNeonate1996,69:249-256.
5.
MaasA,FlamentP,PardouA,DeplanoA,DramaixM,StruelensMJ:Centralvenouscatheter-relatedbacteraemiaincriticallyillneonates:riskfactorsandimpactofapreventionprogramme.
JHospInfect1998,40:211-224.
6.
vonEiffC,PetersG,HeilmannC:Pathogenesisofinfectionsduetocoagulase-negativestaphylococci.
LancetInfectDis2002,2:677-685.
7.
KlingenbergC,AaragE,RonnestadA,SollidJE,AbrahamsenTG,KjeldsenG,FlaegstadT:Coagulase-negativestaphylococcalsepsisinneonates.
Associationbetweenantibioticresistance,biofilmformationandthehostinflammatoryresponse.
PediatrInfectDisJ2005,24:817-822.
8.
OttoM:Staphylococcalbiofilms.
CurrTopMicrobiolImmunol2008,322:207-228.
9.
QinZ,OuY,YangL,ZhuY,Tolker-NielsenT,MolinS,QuD:Roleofautolysin-mediatedDNAreleaseinbiofilmformationofStaphylococcusepidermidis.
Microbiology2007,153:2083-2092.
10.
SutherlandIW:Thebiofilmmatrix--animmobilizedbutdynamicmicrobialenvironment.
TrendsMicrobiol2001,9:222-227.
11.
CostertonJW,StewartPS,GreenbergEP:Bacterialbiofilms:acommoncauseofpersistentinfections.
Science1999,284:1318-1322.
12.
Hall-StoodleyL,CostertonJW,StoodleyP:Bacterialbiofilms:fromthenaturalenvironmenttoinfectiousdiseases.
NatRevMicrobiol2004,2:95-108.
13.
MonzonM,OteizaC,LeivaJ,LamataM,AmorenaB:BiofilmtestingofStaphylococcusepidermidisclinicalisolates:lowperformanceofvancomycininrelationtootherantibiotics.
DiagnMicrobiolInfectDis2002,44:319-324.
14.
NishimuraS,TsurumotoT,YonekuraA,AdachiK,ShindoH:AntimicrobialsusceptibilityofStaphylococcusaureusandStaphylococcusepidermidisbiofilmsisolatedfrominfectedtotalhiparthroplastycases.
JOrthopSci2006,11:46-50.
15.
AndersonGG,O'TooleGA:Innateandinducedresistancemechanismsofbacterialbiofilms.
CurrTopMicrobiolImmunol2008,322:85-105.
16.
StewartPS:Mechanismsofantibioticresistanceinbacterialbiofilms.
IntJMedMicrobiol2002,292:107-113.
17.
SpoeringAL,LewisK:BiofilmsandplanktoniccellsofPseudomonasaeruginosahavesimilarresistancetokillingbyantimicrobials.
JBacteriol2001,183:6746-6751.
18.
CercaN,MartinsS,CercaF,JeffersonKK,PierGB,OliveiraR,AzeredoJ:Comparativeassessmentofantibioticsusceptibilityofcoagulase-negativestaphylococciinbiofilmversusplanktoniccultureasassessedbybacterialenumerationorrapidXTTcolorimetry.
JAntimicrobChemother2005,56:331-336.
19.
AaronSD,FerrisW,RamotarK,VandemheenK,ChanF,SaginurR:Singleandcombinationantibioticsusceptibilitiesofplanktonic,adherent,andbiofilm-grownPseudomonasaeruginosaisolatesculturedfromsputaofadultswithcysticfibrosis.
JClinMicrobiol2002,40:4172-4179.
20.
CeriH,OlsonME,StremickC,ReadRR,MorckD,BuretA:TheCalgaryBiofilmDevice:newtechnologyforrapiddeterminationofantibioticsusceptibilitiesofbacterialbiofilms.
JClinMicrobiol1999,37:1771-1776.
21.
MelchiorMB,Fink-GremmelsJ,GaastraW:ComparativeassessmentoftheantimicrobialsusceptibilityofStaphylococcusaureusisolatesfrombovinemastitisinbiofilmversusplanktonicculture.
JVetMedBInfectDisVetPublicHealth2006,53:326-332.
22.
MizunagaS,KamiyamaT,FukudaY,TakahataM,MitsuyamaJ:InfluenceofinoculumsizeofStaphylococcusaureusandPseudomonasaeruginosaoninvitroactivitiesandinvivoefficacyoffluoroquinolonesandcarbapenems.
JAntimicrobChemother2005,56:91-96.
Received:5February2010Accepted:27May2010Published:27May2010Thisarticleisavailablefrom:http://www.
ann-clinmicrob.
com/content/9/1/162010Quetal;licenseeBioMedCentralLtd.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.
org/licenses/by/2.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.
AnnalsofClinicalMicrobiologyandAntimicrobials2010,9:16Quetal.
AnnalsofClinicalMicrobiologyandAntimicrobials2010,9:16http://www.
ann-clinmicrob.
com/content/9/1/16Page12of1223.
CeriH,OlsonM,MorckD,StoreyD,ReadR,BuretA,OlsonB:TheMBECAssaySystem:multipleequivalentbiofilmsforantibioticandbiocidesusceptibilitytesting.
MethodsEnzymol2001,337:377-385.
24.
MoskowitzSM,FosterJM,EmersonJ,BurnsJL:ClinicallyfeasiblebiofilmsusceptibilityassayforisolatesofPseudomonasaeruginosafrompatientswithcysticfibrosis.
JClinMicrobiol2004,42:1915-1922.
25.
KumonH:Managementofbiofilminfectionsintheurinarytract.
WorldJSurg2000,24:1193-1196.
26.
LewisK:Persistercellsandtheriddleofbiofilmsurvival.
Biochemistry(Mosc)2005,70:267-274.
27.
LewisK:Multidrugtoleranceofbiofilmsandpersistercells.
CurrtTopMicrobiolImmunol2008,322:107-131.
28.
PettitRK,WeberCA,KeanMJ,HoffmannH,PettitGR,TanR,FranksKS,HortonML:MicroplateAlamarblueassayforStaphylococcusepidermidisbiofilmsusceptibilitytesting.
AntimicrobAgentsChemother2005,49:2612-2617.
29.
QuY,IstivanTS,DaleyAJ,RouchDA,DeightonMA:Comparisonofvariousantimicrobialagentsascatheterlocksolutions:preferenceforethanolineradicationofcoagulase-negativestaphylococcalbiofilms.
JMedMicrobiol2009,58:442-450.
30.
CercaN,MartinsS,SillankorvaS,JeffersonKK,PierGB,OliveiraR,AzeredoJ:EffectsofgrowthinthepresenceofsubinhibitoryconcentrationsofdicloxacillinonStaphylococcusepidermidisandStaphylococcushaemolyticusbiofilms.
ApplEnvironMicrobiol2005,71:8677-8622.
31.
RachidS,OhlsenK,WitteW,HackerJ,ZiebuhrW:Effectofsubinhibitoryantibioticconcentrationsonpolysaccharideintercellularadhesinexpressioninbiofilm-formingStaphylococcusepidermidis.
AntimicrobAgentsChemother2000,44:3357-3363.
32.
RuppME,HamerKE:Effectofsubinhibitoryconcentrationsofvancomycin,cefazolin,ofloxacin,L-ofloxacinandD-ofloxacinonadherencetointravascularcathetersandbiofilmformationbyStaphylococcusepidermidis.
JAntimicrobChemother1998,41:155-161.
33.
BradfordR,AbdulMananR,DaleyAJ,PearceC,RamalingamA,D'MelloD,MuellerY,UahwatanasakulW,QuY,GrandoD,GarlandS,DeightonM:Coagulase-negativestaphylococciinvery-low-birth-weightinfants:inabilityofgeneticmarkerstodistinguishinvasivestrainsfrombloodculturecontaminants.
EurJClinMicrobiolInfectDis2006,25:283-290.
34.
MiyakeY,FujiwaraS,UsuiT,SuginakaH:Simplemethodformeasuringtheantibioticconcentrationrequiredtokilladherentbacteria.
Chemotherapy1992,38:286-290.
35.
DeightonMA,CapstickJ,DomalewskiE,vanNguyenT:MethodsforstudyingbiofilmsproducedbyStaphylococcusepidermidis.
MethodsEnzymol2001,336:177-195.
36.
Villain-GuillotP,GualtieriM,BastideL,LeonettiJP:InvitroactivitiesofdifferentinhibitorsofbacterialtranscriptionagainstStaphylococcusepidermidisbiofilm.
AntimicrobAgentsChemother2007,51:3117-3121.
37.
GualtieriM,BastideL,Villain-GuillotP,Michaux-CharachonS,LatoucheJ,LeonettiJP:InvitroactivityofanewantibacterialrhodaninederivativeagainstStaphylococcusepidermidisbiofilms.
JAntimicrobChemother2006,58:778-783.
38.
ClinicalandLaboratoryStandardsInstitute(CLSI):Methodsfordilutionantimicrobialsusceptibilitytestsforbacteriathatgrowaerobically.
CLSIdocumentM7-A7,approvedstandard.
7thedition.
Wayne,PA;CLSI;2004.
39.
MurrayPR,BaronEJ,JorgensenJH,LandryML,PfallerMA,(ed):ManualofClinicalMicrobiology.
Washington,D.
C.
:ASMPress;2007.
40.
VillariP,SarnataroC,IacuzioL:MolecularepidemiologyofStaphylococcusepidermidisinaneonatalintensivecareunitoverathree-yearperiod.
JClinMicrobiol2008,38:1740-1746.
41.
LabthavikulP,PetersenPJ,BradfordPA:InvitroactivityoftigecyclineagainstStaphylococcusepidermidisgrowinginanadherent-cellbiofilmmodel.
AntimicrobAgentsChemother2003,47:3967-3969.
42.
DonlanRM:Biofilms:microbiallifeonsurfaces.
EmergInfectDis2002,8:881-890.
43.
ChristensenGD,SimpsonWA,YoungerJJ,BaddourLM,BarrettFF,MeltonDM,BeacheyEH:Adherenceofcoagulase-negativestaphylococcitoplastictissuecultureplates:aquantitativemodelfortheadherenceofstaphylococcitomedicaldevices.
JClinMicrobiol1985,22:996-1006.
44.
OttoM:Virulencefactorsofthecoagulase-negativestaphylococci.
FrontBiosci2004,9:841-863.
45.
EdmistonCEJr,GoheenMP,SeabrookGR,JohnsonCP,LewisBD,BrownKR,TowneJB:Impactofselectiveantimicrobialagentsonstaphylococcaladherencetobiomedicaldevices.
AmJSurg2006,192:344-354.
46.
WuJA,KusumaC,MondJJ,Kokai-KunJF:LysostaphindisruptsStaphylococcusaureusandStaphylococcusepidermidisbiofilmsonartificialsurfaces.
AntimicrobAgentsChemother2003,47:3407-3414.
47.
MoretroT,HermansenL,HolckAL,SidhuMS,RudiK,LangsrudS:Biofilmformationandthepresenceoftheintercellularadhesionlocusicaamongstaphylococcifromfoodandfoodprocessingenvironments.
ApplEnvironMicrobiol2003,69:5648-5655.
48.
GollerCC,RomeoT:Environmentalinfluencesonbiofilmdevelopment.
CurrTopMicrobiolImmunol2008,322:37-66.
doi:10.
1186/1476-0711-9-16Citethisarticleas:Quetal.
,Antibioticsusceptibilityofcoagulase-negativestaphylococciisolatedfromverylowbirthweightbabies:comprehensivecomparisonsofbacteriaatdifferentstagesofbiofilmformationAnnalsofClinicalMicrobiologyandAntimicrobials2010,9:16
提速啦(www.tisula.com)是赣州王成璟网络科技有限公司旗下云服务器品牌,目前拥有在籍员工40人左右,社保在籍员工30人+,是正规的国内拥有IDC ICP ISP CDN 云牌照资质商家,2018-2021年连续4年获得CTG机房顶级金牌代理商荣誉 2021年赣州市于都县创业大赛三等奖,2020年于都电子商务示范企业,2021年于都县电子商务融合推广大使。资源优势介绍:Ceranetwo...
A400互联是一家成立于2020年的商家,本次给大家带来的是,全新上线的香港节点,cmi+cn2线路,全场香港产品7折优惠,优惠码0711,A400互联,只为给你提供更快,更稳,更实惠的套餐。目前,商家推出香港cn2节点+cmi线路云主机,1H/1G/10M/300G流量,37.8元/季,云上日子,你我共享。A400互联优惠码:七折优惠码:0711A400互联优惠方案:适合建站,个人开发爱好者配置...
2021年9月中秋特惠优惠促销来源:数脉科技 编辑:数脉科技编辑部 发布时间:2021-09-11 03:31尊敬的新老客户:9月优惠促销信息如下,10Mbps、 30Mbps、 50Mbps、100Mbps香港优质或BGPN2、阿里云线路、华为云线路,满足多种项目需求!支持测试。全部线路首月五折起。数脉官网 https://my.shuhost.com/香港特价数脉阿里云华为云 10MbpsCN...
www.88ququ.com为你推荐
汇通物流谁帮我查查百世汇通快递都一天多一直显示发货就是没有物流信息,221202微信回应封杀钉钉微信发过来的钉钉链接打不开?留学生认证留学生前阶段双认证认证什么内容?22zizi.comwww 地址 didi22怎么打不开了,还有好看的吗>com百度指数词百度指数我创建的新词partnersonline国外外贸平台有哪些?www.hyyan.com请问我是HY了吗?在线等javlibrary.comsony home network library官方下载地址www.k8k8.com谁能给我几个街污网站我去自己学干支论坛干支计时的干支计时
网站空间免备案 免费域名 广东服务器租用 vps侦探 sugarhosts 荣耀欧洲 缓存服务器 阿里云代金券 免费静态空间 免费个人网站申请 softbank邮箱 hostloc adroit 重庆双线服务器托管 360云服务 512mb 中国电信测速器 丽萨 中国域名 atom处理器 更多