RESEARCHOpenAccessEffectoftheloadingdurationonthelinearviscoelasticparametersoftropicalwood:caseofTectonagrandisL.
f(Teak)andDiospyrosmespiliformis(Ebony)ofBeninRepublicAgapiKocouviHouanou1*,AdolpheDèfodjiTchéhouali1andAmosErickFoudjet2AbstractJudiciousandregulateduseofwoodasabuildingmaterialisbetterthanthatofmanyotherconventionalmaterialsintermsofenvironmentalissuesofthiscentury.
Thestudyofthebehaviorofwoodrequiresabetterunderstandingofthecharacteristicsindifferentpossiblecasesofloadingincludingloadsappliedinstantly,loadsappliedforashorttimeandloadsappliedforalongtime.
Thepurposeofthisstudyistoevaluatetheinfluenceoftheloadingdurationonthelinearviscoelasticparametersoftropicalwoodincreeptest.
Creeptestsconductedontwospeciesoftropicalwood,TectonagrandisL.
fandDiospyrosmespiliformis,werecarriedoutforatotalloadingdurationof15hoursbysubjectingsamplestobendingtestthroughwithequalstraininallsections.
Aftermeasuringtheinstantaneousdeflection,theothermeasurementswerecarriedoutatregulartimeeach30minutes.
Eachrecordeddeflectionwasconvertedintolongitudinaldeformationandthedatawereanalyzedbyconsideringfourteenloadingdurations.
Usingtheleastsquaresmethod,thedynamicmodulusofelasticityandthemodulusofdynamicviscosityweredeterminedforeachloadingtime.
Theresultsshowedthattheloadingtimehasnoinfluenceonthemodulusofdynamicviscosity.
Ontheotherhand,thedynamicmodulusofelasticitydecreasesandtendstowardszero.
Goodagreementbetweencreeptestdataanddynamicmodulusofelasticitywasfoundusingmathematicalfunctioninpower.
Suitably,the"power"functionestablishedbetweentheelasticdynamicmodulusandtheloadingdurationcanbeusedtoextrapolatedeformationsvalues.
Keywords:Tropicalwood;Bendingcreep;Loadingduration;Dynamicmodulusofelasticity;DynamicmodulusofviscosityIntroductionWoodusedasabuildingmaterialisanaturalresourcewithmultiplebenefits,includingquotingforexample,thesignificantreductionofthenegativeenvironmentalimpactsgenerallyregisteredwhenusingothercurrentbuildingmaterials.
Itsuseinthefieldofcivilengineeringdatesforaverylongtimeandisencounteredintheconstructionoflargestructuressuchashouses,bridgesetc.
Deconstructionwastegeneratedbythedemolitionofthewoodenstruc-tures,attheendoftheirlifearerareeasymanageablewaste.
Dependingonthedestination,thewoodenstruc-turesmaybesolicitedbyshortloadingduration,averageloadingdurationorlongloadingduration.
Deformationsunderthesechargesconsistofinstantan-eousdeformationsanddeferreddeformations.
Thoseundershortloadingdurationarecontrollableandtakenintoaccountwhendesigningclassicworksbutthecontrolofthefailuremechanismresultingofdeferreddeforma-tionsrequiresknowledgeoftheviscoelasticparameters.
*Correspondence:agapikh13@yahoo.
fr1LaboratoryofEnergyandAppliedMechanics-PolytechnicSchoolofAbomey-Calavi,UniversityofAbomey-Calavi,Abomey-Calavi,BeninRepublicFulllistofauthorinformationisavailableattheendofthearticleaSpringerOpenJournal2014Houanouetal.
;licenseeSpringer.
ThisisanopenaccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.
org/licenses/by/2.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.
Houanouetal.
SpringerPlus2014,3:74http://www.
springerplus.
com/content/3/1/74Severalstudieshavebeenconductedtodemonstratetheviscoelasticbehaviorofwoodinordertoestablishitsmainproperties.
Thus,tocharacterizethedeferredbehav-iorofwood,mostofauthorsusecreeptestsattheexpenseofrelaxationtests,becauseoftheconsistentloadingmodewiththesolicitationconditionsencounteredincurrentus-agesofwoodandeasyimplementationofexperimentaldevicesfordeflectionmeasurementswithaviewtocalcu-latingthecorrespondingdeformations.
Theexplanationofthelinearrangeofwoodviscoelasticbehaviorwasalsosubjecttoseveralinvestigations.
Asre-portedbyMontero(2010),studiesconductedbyKingstonandClarke(1961),NakaiandGrossman(1983)andMukudai(1983)showedthatthewoodviscoelasticityislinearforlowerloadingsat40%oftheultimatetensilestrengthandtheBoltzmannsuperpositionprincipleisvalidaccordingtoNakaiandGrossman(1983).
Whilestudyingthetimberrheology,Foudjet(1986)alsostudiedthelinearityofitsviscoelasticbehaviorfromcreeptestsonsometropicalspecies(Azobé,Tali,SapelliandMovingui).
Theobtainedresultsshowthatthede-ferredbehavioroftimberisviscoelasticlinearforstresseslessthanorequalto35%oftheultimatetensilestrength.
Thesemeasurementswereobtainedoniso-stresssamples(cantilever)stabilizedat12%ofmoistureandsubmittedlongitudinallyatdifferentlevelsofconfin-ingstress(respectively25%,30%,35%and42%oftheul-timatetensilestrength).
AsforRandriambololona(2003),hereportedinhispaperthatthelinearitylimitofviscoelasticbehaviorofwooddependsonthetypeofstressandissituatedatastressbetween10%and20%oftheultimatetensilestrengthwhenthetestiscarriedoutincompressionandbetween20%and30%oftheultimatetensilestrengthwhenitisthebendingortensilecreeptest.
Placet(2006)reportedinhispaperthattheviscoelasticbehaviorofwoodisstronglyinfluencedbytemperatureandmoistureinadditiontotheloadingdurationinre-spectofthepolymericnatureoftheseconstituents.
In-deed,hefoundoutthatthebehaviorofaviscoelasticmaterialtohighertemperatureforshortloadingtimesisequivalenttothatofthesamematerialatlowertemperature,butforlongertimes.
Thisistheprincipleoftime-temperatureequivalenceortheprincipleoftime-temperaturesuperposition(Dlouhà2009;Placet2006).
InthepaperofMontero(2010),itissaidthatwhenthewatercontentisbelowthefibersaturationpoint,itinfluencestheviscoelasticbehaviorattwolevels:thekinetics'evolutionandmecanosorptiveeffectduetotheviscosityofwoodwhichdependsonitswatercontent,butisalsoverysensitivetothevariationofthewatercontent.
Thus,theviscoelasticcomplianceisseventimeshigherforwetcreep(moisture22%),thesamewithadrycreep(moisture0,5%).
Asformecanosorptivefact,thefirstworkswerepub-lishedin1960byArmstrongandKingstonhighlightingtheinfluenceofthevariationofmoistureinwoodinitsdeferredbehavior.
Inbendingtests,theycomparethecreepofwoodsampleskeptatconstantmoisturewiththeonethatcandryduringthetest.
Fromtheseresults,itap-pearsthatthecreeponthesesamplesisatleasttwotimesgreaterthantheonesmaintainedatconstantmoisture.
Ayearlater,ArmstrongandChristensen(1961)bydetailingpreviousstudieshaveindicatedthatthisincreasedependsontherateofsorptionandnotthemoistureoftheloadedsample(Montero2010).
Theseresultsonmeca-nosorptionpavedthewayforotherstudies,includingthoseofRandriambololona(2003)devotedtomodelingthedeferredbehaviorofwoodinavariableenvironment.
Theviscoelasticmodelisbyfarthemostwidelyusedformodelingthemechanicalbehaviorofwood.
Infact,thelinearviscoelasticbehaviorisrepresentedgenerallybyconstructingamodelconsistingofanassemblyofspringsanddashpots.
Itisthereforeananalogandsym-bolicmodelrepresentedbyacombinationofspringsanddashpotsinseriesandinparallelmoreorlesscom-plex(Foudjet1986;Placet2006;Dlouhà2009).
TheworksofHaqueetal.
(2000),devotedtothecomparisonoftherelevanceofthesedifferentmodelsplusanempir-icalmodelbasedontheequationofBailer-Nortonem-piricalmodel,itwasfoundthattheKelvinmodelseemstobethebestsuitedtointerpolatetheexperimentalcurves(Moutee2006;Husson2009).
Thus,severalau-thorsadopttheKelvin'smodel,ormorepreciselytheseriesconnectionofnKelvinelementstorestoretheviscoelasticbehavioroftimberinacreeptest.
However,identifyingproblemsquicklybecomeinsolublebecauseoneneedstodetermineatleastasmanycoefficientsaselementsintroduced,whichmaybeunworkableespe-ciallyinpracticejustforthefactthattheseparametershighlydependonthemoistureandtemperature.
Inthiscontext,Foudjet(1986)showedarheologicalmodelwithmaximumtwo(2)Kelvin-Voigtelementsconnectedinserieswhichwaswidelyenoughtorepresenttheownlinearviscoelasticbehaviorofwood.
Otherstudiescarriedoutonpolymerslinearviscoelas-ticbehaviorhaveshowedthatcreepcomplianceJ(t),isonlyafunctionoftimeandnotafunctionofthemagni-tudesofstressandstrain(Bower2002;BrinsonandBrinson2008;ChandaandRoy2009)andthedeform-ation(strain)dependontheappliedstress(Barnersetal.
1993;ChandaandRoy2009).
Consideringtheresultsobtainedbythesepreviousworks,thestudiespublishedbyHouanouetal.
(2012)weredevotedtotheidentificationoflinearviscoelasticparemetersoftwotropicalwoodsatagivenmoistureandconstantlyheld,underasteadyappliedloadduringtheentiretestperiod.
Houanouetal.
SpringerPlus2014,3:74Page2of12http://www.
springerplus.
com/content/3/1/74AsforEurocode5(1995),woodisclassifiedaccordingtothemechanicalstrengthcriteriadefinedbytheruleswhichensurethereliabilitywithregardtotheuseforwhichitisintended.
Indeed,thisstandarddefinesacoeffi-cient(kmod),amendingthestrength,takingintoaccounttheclassofserviceofloadingdurationandmoistureofthewood.
Thiscoefficient(kmod)isusedtodeterminethedesignvalueXdofapropertyofthematerial.
XdkmodXkγm1Where,Xk:characteristicvalueofmaterial'spropertyγm:partialcoefficientapplyingtotheproperty.
Theaimofthisstudyistodeterminethemechanismtobetakenintoaccountoftheeffectoftheloadingdur-ationinthedesignofawoodenstructureinthelinearviscoelasticareaandnotsimplyintheelasticareaasthingsweredoneuntilnow.
Moreprecisely,theaimofthisworkistostudythein-fluenceofloadingdurationonthelinearviscoelasticpa-rameters(dynamicmodulusofelasticityanddynamicmodulusofviscosity),woodmoistureandappliedloadbeingmaintainedconstantthroughoutthecreeptest.
Otherwise,itwillbetomodelthebehaviorofeachpar-ameterasafunctionofloadingdurationtoextrapolatethevaluesofcreepordeformation.
Finally,itwillhelptodeducethelengthofabendingcreeptesttwo(2)pointsafterwhichaKelvin-Voigtmodelreflectsoptimallythelinearviscoelasticbehaviorofwood.
Thestudywilliden-tifyamodelforpredictingthemechanicallapseofanelementofstructuresubjectedtosuchstressesandcon-sequentlywilldevelopasuitablemethodtoextrapolatelongitudinalstrainvalues.
Also,thisworkswillpermittodeterminethespecieswhichhasthebestlinearvisco-elasticparameters.
Toachievetheseobjectives,weusedtheparameteridentificationapproachdescribedinHouanouetal.
(2012).
Thisapproachisappliedbyfollowingtheobservationwindowscreepcarefullychosenandappropri-atemathematicalfunctionstobuildtheextrapolationmodels.
MaterialandmethodsThesamplesweretakenfromthesameboardoftheheart-woodfollowingthelongitudinaldirection(Houanouetal.
2012).
Foreachspecies,twelve(12)experimentalspeci-mensweremadeupasshowninFigure1.
Thecutupsamplesprovidetheshapeofanequallysolicitedbeaminallitssections.
Theexperimentalspec-imensweredriedto12%moisturecontentinamoderndryer,inaccordancewiththenormalconditionsoftemperature,pressureandspeeddrying.
Theywerecare-fullysurroundedbyaluminumfoilinordertomaintaintheirwatercontentundercontrol.
Thebendingcreeptestconsistsonsubjectingthesampletotwopointsbendingtest.
Thesamplesareem-beddedatoneendand20%ofthebendingfailureload(let19.
4MPaforTeakand25.
2MPaforEbony)wasappliedattheotherend.
Thisloadisappliedto300mmfromtheotherendofthebeam(Figure2)(Houanouetal.
2012).
Creeptestwerecarriedoutwithinatotaldurationof15hours.
Thedeflectionsweremeasuredbymeansofacomparatorwithanaccuracyof1/100mmevery30minutesatmid-spanofthebeamaftermeasuringtheinstantaneousdeflection.
Datahavebeentreatedbyconsidering14periods:(0-2h),(0-3h),(0-4h),(0-5h),(0-6h),(0-7h),(0-8h)(0-9h),(0-10h),(0-11h),(0-12h),(0-13h),(0-14h)and(0-15h).
Eachperiodrepresentsanobservationwindow.
Thespecimenswereweighedatthebeginningandattheendofthecreeptest.
Thetemperatureismaintainedataconstantvalueduringmanipulation.
Thedeflectionsrecordedhavebeenconvertedtolongitudinaldeform-ation(Houanouetal.
2012)usingthefollowingformula:ε4σucσutσucσut2ff2L2h2Where,Figure1Configurationofspecimens.
Houanouetal.
SpringerPlus2014,3:74Page3of12http://www.
springerplus.
com/content/3/1/74σuc:ultimecompressivestress(MPa)σut:ultimetensilestress(MPa)f:beamdeflection(mm)L:beamspan(mm)h:heightofthebeam(mm)Thesearrowswereusedtocalculatetheviscoelasticcreepcompliance,J(t),usingthefollowingformuladerivedfromFoudjet(1986):Jtεσ03Where:εisthedeformationcalculatedusing(2),σ0meanstestloading.
CreepcomplianceJ(t)isthesumoftheinstantaneouscreepcomplianceJ(τ)andthelinearviscoelasticcreepcomplianceJ(t>τ)withτ,thetimeatwhichtheinstant-aneousdeformationisread(τ=15seconds).
Themathematicalexpressionofcreepcomplianceisoftheform(Foudjet1986;Guitard1987;Houanouetal.
2012):Jtεtσ01E01E1expEηtwitht>04Equation4isderivedfromtherheologicalmodelofZener.
ThismodelistheseriescombinationofaspringcharacterizingtheinstantaneousdeformationandKelvin-Voigtmodelwhichrepresentstheowncreepofwoodinthelinearviscoelasticdomain(Foudjet1986;Guitard1987;Houanouetal.
2012).
Inthisexpression,"E0"isHookeelasticitymodulus;"E"meansthedynamicelasticitymodulusofthespringand"η"thedynamicviscositymodulusofthedamper.
Foridentification,wehave:Jτ1E05andJt1E1expEηtwitht>τ6Foreachobservationwindow,theoptimumvaluesofthe"E"and"η"oftheexpressionofcreepcomplianceinthelinearviscoelasticfield(6)aredeterminedbyadjust-ingtheowncreepcomplianceofusingthemethodofleastsquaresnonlinearasdescribedinHouanouetal.
(2012).
Theowncreepcomplianceiscalculatedwith(3)usingthedelayeddeformation.
Forabetterleadingofdataanalysisinpurelylinearviscoelasticfield,abasechangeismadewheretheoriginisat(0,0)andthestartingpointoftheexperimentisnowat(τ;-j(τ))inthenewcoordinatesystem.
Thischangeallowsustoaccountfortheperiodofreadingtheinstantaneousdeformationcharacterizingthepurelyelasticrange.
Themathematicalmodeltopredicttheevolutionofthedynamicmodulusofelasticitywiththeloadingdurationwasestablishedbymeansoftheleastsquaresmethodandthefittingequationdeductedfromtheexperimen-talcurvescanbeexpressedasfollow(PolyaninandManzhirov2007):Etatbwitha>0;b07Etaebtwitha>0;b0;b0theexponentialfunctionE(t)=aebtwitha>0;b<0andt≥0.
Eachoftheselawscreatesapackagethattendstozerowhentheloadingtimeisrela-tivelylong.
However,thepowerlawismoreappropriate.
Further,theresultsshowedthatonecancharacterizethefreecreepofwoodtroughtheassessmentofthelinearviscoelasticbehavioradoptingtherheologicalmodelofKelvin-Voigtinbendingcreeptestwhenitiscarriedoutwithinamaximumloadingdurationof9hours.
Finally,studieshaveshownthatforsomeshortloadingtimesinferiorto2h42mn,thelinearviscoelasticpa-rametersofEbonyareslightlybetterthanthoseofTeak.
Butbeyondthat,thelinearviscoelasticparametersofTeakarefranklybetterthanthoseofEbony.
CompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterests.
Authors'contributionsHKA,TDAandFAEconductedastudyontheinfluenceoftheloadingdurationonlinearviscoelasticparametersoftwotropicalspecies(teakandebony)ofBeninRepublic,participatedintheanalysisandexplanationofthedatacollectedanddraftedthemanuscript.
Authordetails1LaboratoryofEnergyandAppliedMechanics-PolytechnicSchoolofAbomey-Calavi,UniversityofAbomey-Calavi,Abomey-Calavi,BeninRepublic.
2CRESAForest–Wood,UniversityofDschang,Dschang,Cameroon.
Received:3September2013Accepted:31January2014Published:7February2014ReferencesAlmeidaG(2006)InfluencedelaStructureduBoissursesPropriétésPhysico-MécaniquesàdesTeneursenHumiditéElevées.
ThèseenSciencesduBois.
UniversitéLaval,Québec,p232Houanouetal.
SpringerPlus2014,3:74Page11of12http://www.
springerplus.
com/content/3/1/74AlteyracJ(2005)InfluencedelaDensitédePeuplementetdelaHauteurDansl'arbresurlesPropriétésPhysico-MécaniquesduBoisd'épinetteNoire(PicéaMariana(Mill.
)b.
s.
p).
ThèseenSciencesduBois.
UniversitéLaval,Québec,p154ArmstrongL,ChristensenG(1961)Influenceofmoisturechangesondeformationofwoodunderstress.
Nature191(4791):869–870BarnesHA,HuttonJF,WaltersFRSK(1993)AnIntroductiontoRheology,3rdedition.
ElsevierAmsterdam,TheNetherlands,pp201BowerID(2002)AnIntroductiontoPolymerPhysics,1stedition.
CambridgeUniversityPress,NewYorkUSA.
p465BrinsonHF,BrinsonLC(2008)PolymerEngineeringScienceandViscoelasticity,AnIntroduction,1stedition.
Springer,NewYorkUSA.
p454ChandaM,RoySK(2009)PlasticsFundamentals,PropertiesandTesting,1stedition.
FrancisandTaylor,BocaRatonUSA.
p278CharronS,etal.
(2003)tudecomparativedescaractéristiquesphysiquesetmécaniquesduboisdesmélèzesd'Europe(LarixdeciduaMill.
),duJapon(Larixkaempferi(Lambert)Carr.
)etdeleurhybride(LarixxeurolepisHenry).
BiotechnolAgronSocEnviron7(1):5–16ChungDDL(2010)CompositeMaterials,ScienceandApplications,2ndedition.
Springer,NewYorkUSA.
p358DlouhàJ(2009)ComportementViscoélastiqueLongitudinalduBoisVert:DiversitéetPrédictionàLongTerme.
ThèseenMécaniqueetGénieCivil.
UniversitéMontpellier2,Montpellier,p163DupeuxM(2008)AideMémoireSciencedesMatériaux,2ndedition.
Dunod,ParisFrance.
p354Eurocode5(1995)CalculdesStructuresenBois,Partie1–1:RèglesGénéralesetRèglesPourlesBtiments.
AFNOR,ParisFrance,p143FoudjetA(1986)Contributionàl'étudeRhéologiqueduMatériauBois.
ThèseèsScienceenGénieCivil.
UniversitéClaudeBernard,Lyon,Lyon,p217GardelleV(2005)MécaniquedesAssemblagesetRenfortsCollésenConstructionBois.
ThèseenScienceduBois.
UniversitédeBordeaux,Bordeaux,p165GenevauxJ-M(1989)FluageàTempératureLinéairementCroissante:CaractérisationdesSourcesdeViscoélasticitéAnisotropeduBois.
ThèseenMécaniqueetEnergétique.
InstitutNationalPolytechniquedeLorraine,Loraine,p198GuitardD(1987)MécaniqueduMatériauBoisetComposites.
EditionCepadues.
CollectionNabla,ToulouseFrance,p238HangDH(2007)RheologyandProcessingofPolymericMaterialVol.
1PolymerRheology,1stedition.
OxfordUniversityPress,NewYorkUSA,p728HaqueMN,LangrishTAG,KeepL-B,KeeyRB(2000)ModelfittingforviscoelasticcreepofPinusradiataduringkilndrying.
WoodScienceandTechnology34:447–457HouanouKA,TchéhoualiA,FoudjetA(2012)Identificationofrheologicalparametersofthelinearviscoelasticmodelofspeciesoftropicalwoods(TectonagrandisL.
fandDiospyrosmespiliformis).
ResJEngSci1(5):17–24HussonJ-M(2009)LoideComportementViscoélastiqueAvecEffetMémoire.
ApplicationàlaMécanosorptiondansleBois.
ThèseenGénieCivil.
UniversitédeLimoges,Limoges,p120JacquesD(2003)AméliorationduModuled'élasticitéduBoisdeMélèzeHybride(LarixxEurolepisHenry)parSélectionClonale.
ThèseenSciencesAgronomiquesetIngénierieBiologique.
FacultéuniversitairedesSciencesagronomiquesdeGembloux,Gembloux,p292KingstonR,ClarkeL(1961)Someaspectsoftherheologicalbehaviorofwood.
1:Theeffectofstresswithparticularreferencetocreep.
AustralianJournalofAppliedScience6:211–226KumarA,GuptaRK(2003)FundamentalsofPolymerEngineering,2ndedition.
MarcelDekker,NewYorkUSA.
p712LaplancheK(2006)EtudeduComportementaufeudesAssemblagesdesStructuresenBois:ApprocheExpérimentaleetModélisation.
ThèseenGénieCivil.
UniversitéBlaisePascal,Clermont2,p145LinY-H(2011)PolymerViscoelasticity:Basics,MolecularTheories,ExperimentsandSimulations,2ndedition.
WorldScientificPublishing,TohTuckLinkSingapore.
p441MonteroC(2010)CaractérisationduComportementViscoélastiqueAsymptotique.
ThèseenMécaniqueetGénieCivil.
UniversitéMontpellier2,Montpellier,p139MontgomeryDC,RungerGC(2003)AppliedStatisticsandProbabilityforEngineers,3rdedition.
JohnWileyandSonsInc.
,ArizonaStateUniversity.
p976MouteeM(2006)ModélisationduComportementMécaniqueduBoisauCoursduSéchage.
ThèseenScienceduBois.
UniversitéLaval,Québec,p194MukudaiJ(1983)Evaluationoflinearandnon-linearviscoelasticbendingdeflectionofwood.
WoodScienceandTechnology17:39–54NakaiT,GrossmanPUA(1983)Deflectionofwoodunderintermittentloading.
WoodScienceandTechnology17(1):55–67PlacetV(2006)ConceptionetExploitationd'unDispositifExpérimentalInnovantPourlaCaractérisationduComportementViscoélastiqueetdelaDégradationThermiqueduBoisDansdesConditionsSévères.
ThèseenScienceduBois.
UniversitédeHenriPoincarré,NancyI,p338PolyaninDA,ManzhirovVA(2007)HandbookofMathematicsforEngineersandScientists,Fisrtthedition.
TaylorandFrancis,BocaRatonUSA.
p1543RandriambololonaH(2003)ModélisationduComportementDifféréduBoisenEnvironnementVariable.
ThèseenGénieCivil.
UniversitédeLimoges,Limoges,p143RepellinV(2006)OptimisationdesParamètresDuréeetTempératured'unTraitementThermiqueduBois.
ModificationdesPropriétésd'usageduBoisenRelationAveclesModificationsPhysico-ChimiquesetUltraStructuralesOccasionnéesparleTraitementThermique.
ThèseenGéniedesProcédés.
EcoleNationaleSupérieuredesMinesdeSaint-EtienneetUniversitéJeanMonnetdeSaint-Etienne,Saint-Etienne,p262SchniewindAP,BarrettJD(1972)Woodasalinearorthotropicviscoelasticmaterial.
WoodSciTechnol6:43–57SperlingLH(2006)AnIntroductiontoPhysicalPolymerScience,4thedition.
JohnWiley&Sons,NewJerseyUSA.
p866doi:10.
1186/2193-1801-3-74Citethisarticleas:Houanouetal.
:Effectoftheloadingdurationonthelinearviscoelasticparametersoftropicalwood:caseofTectonagrandisL.
f(Teak)andDiospyrosmespiliformis(Ebony)ofBeninRepublic.
SpringerPlus20143:74.
Submityourmanuscripttoajournalandbenetfrom:7Convenientonlinesubmission7Rigorouspeerreview7Immediatepublicationonacceptance7Openaccess:articlesfreelyavailableonline7Highvisibilitywithintheeld7RetainingthecopyrighttoyourarticleSubmityournextmanuscriptat7springeropen.
comHouanouetal.
SpringerPlus2014,3:74Page12of12http://www.
springerplus.
com/content/3/1/74
青果云香港CN2_GIA主机测评青果云香港多线BGP网络,接入电信CN2 GIA等优质链路,测试IP:45.251.136.1青果网络QG.NET是一家高效多云管理服务商,拥有工信部颁发的全网云计算/CDN/IDC/ISP/IP-VPN等多项资质,是CNNIC/APNIC联盟的成员之一。青果云香港CN2_GIA主机性能分享下面和大家分享下。官方网站:点击进入CPU内存系统盘数据盘宽带ip价格购买地...
RAKsmart 商家从原本只有专注于独立服务器后看到产品线比较单薄,后来陆续有增加站群服务器、高防服务器、VPS主机,以及现在也有在新增云服务器、裸机云服务器等等。机房也有增加到拥有洛杉矶、圣何塞、日本、韩国、中国香港等多个机房。在年前也有介绍到RAKsmart商家有提供年付129元的云服务器套餐,年后我们看到居然再次刷新年付云服务器低价格。我们看到云服务器低至年79元,如果有需要便宜云服务器的...
Virtono是一家成立于2014年的国外VPS主机商,提供VPS和服务器租用等产品,商家支持PayPal、信用卡、支付宝等国内外付款方式,可选数据中心共7个:罗马尼亚2个,美国3个(圣何塞、达拉斯、迈阿密),英国和德国各1个。目前,商家针对美国圣何塞机房VPS提供75折优惠码,同时,下单后在LET回复订单号还能获得双倍内存的升级。下面以圣何塞为例,分享几款VPS主机配置信息。Cloud VPSC...
www.88ququ.com为你推荐
微信回应封杀钉钉微信永久封号了!求大神们指点下怎么解封啊!留学生认证留学生的学位证书怎样认证?蓝色骨头手机宠物的骨头分别代表几级?阿丽克丝·布莱肯瑞吉阿丽克斯布莱肯瑞吉演的美国恐怖故事哪两集广告法新广告法哪些广告词不能用,广告违禁词大全baqizi.cc孔融弑母是真的吗?www.1diaocha.com手机网赚是真的吗彪言彪语( )言( )语的词语百度关键字在百度 输入任何关键词,可以搜出想要的内容,但是 搜索工具栏里面的字,却始终是同一个关键词, 如图b.faloo.com坏蛋是这样炼成的2出的最快的网站是那个?
东莞服务器租用 lnmp iisphpmysql 一点优惠网 日本空间 智能骨干网 免空 大容量存储器 789电视网 linux服务器维护 卡巴斯基破解版 香港新世界中心 四核服务器 如何注册阿里云邮箱 申请免费空间和域名 跟踪路由命令 路由跟踪 永久免费空间 云服务是什么意思 97rb 更多