apwww.88ququ.com

www.88ququ.com  时间:2021-03-21  阅读:()
RESEARCHOpenAccessEffectoftheloadingdurationonthelinearviscoelasticparametersoftropicalwood:caseofTectonagrandisL.
f(Teak)andDiospyrosmespiliformis(Ebony)ofBeninRepublicAgapiKocouviHouanou1*,AdolpheDèfodjiTchéhouali1andAmosErickFoudjet2AbstractJudiciousandregulateduseofwoodasabuildingmaterialisbetterthanthatofmanyotherconventionalmaterialsintermsofenvironmentalissuesofthiscentury.
Thestudyofthebehaviorofwoodrequiresabetterunderstandingofthecharacteristicsindifferentpossiblecasesofloadingincludingloadsappliedinstantly,loadsappliedforashorttimeandloadsappliedforalongtime.
Thepurposeofthisstudyistoevaluatetheinfluenceoftheloadingdurationonthelinearviscoelasticparametersoftropicalwoodincreeptest.
Creeptestsconductedontwospeciesoftropicalwood,TectonagrandisL.
fandDiospyrosmespiliformis,werecarriedoutforatotalloadingdurationof15hoursbysubjectingsamplestobendingtestthroughwithequalstraininallsections.
Aftermeasuringtheinstantaneousdeflection,theothermeasurementswerecarriedoutatregulartimeeach30minutes.
Eachrecordeddeflectionwasconvertedintolongitudinaldeformationandthedatawereanalyzedbyconsideringfourteenloadingdurations.
Usingtheleastsquaresmethod,thedynamicmodulusofelasticityandthemodulusofdynamicviscosityweredeterminedforeachloadingtime.
Theresultsshowedthattheloadingtimehasnoinfluenceonthemodulusofdynamicviscosity.
Ontheotherhand,thedynamicmodulusofelasticitydecreasesandtendstowardszero.
Goodagreementbetweencreeptestdataanddynamicmodulusofelasticitywasfoundusingmathematicalfunctioninpower.
Suitably,the"power"functionestablishedbetweentheelasticdynamicmodulusandtheloadingdurationcanbeusedtoextrapolatedeformationsvalues.
Keywords:Tropicalwood;Bendingcreep;Loadingduration;Dynamicmodulusofelasticity;DynamicmodulusofviscosityIntroductionWoodusedasabuildingmaterialisanaturalresourcewithmultiplebenefits,includingquotingforexample,thesignificantreductionofthenegativeenvironmentalimpactsgenerallyregisteredwhenusingothercurrentbuildingmaterials.
Itsuseinthefieldofcivilengineeringdatesforaverylongtimeandisencounteredintheconstructionoflargestructuressuchashouses,bridgesetc.
Deconstructionwastegeneratedbythedemolitionofthewoodenstruc-tures,attheendoftheirlifearerareeasymanageablewaste.
Dependingonthedestination,thewoodenstruc-turesmaybesolicitedbyshortloadingduration,averageloadingdurationorlongloadingduration.
Deformationsunderthesechargesconsistofinstantan-eousdeformationsanddeferreddeformations.
Thoseundershortloadingdurationarecontrollableandtakenintoaccountwhendesigningclassicworksbutthecontrolofthefailuremechanismresultingofdeferreddeforma-tionsrequiresknowledgeoftheviscoelasticparameters.
*Correspondence:agapikh13@yahoo.
fr1LaboratoryofEnergyandAppliedMechanics-PolytechnicSchoolofAbomey-Calavi,UniversityofAbomey-Calavi,Abomey-Calavi,BeninRepublicFulllistofauthorinformationisavailableattheendofthearticleaSpringerOpenJournal2014Houanouetal.
;licenseeSpringer.
ThisisanopenaccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.
org/licenses/by/2.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.
Houanouetal.
SpringerPlus2014,3:74http://www.
springerplus.
com/content/3/1/74Severalstudieshavebeenconductedtodemonstratetheviscoelasticbehaviorofwoodinordertoestablishitsmainproperties.
Thus,tocharacterizethedeferredbehav-iorofwood,mostofauthorsusecreeptestsattheexpenseofrelaxationtests,becauseoftheconsistentloadingmodewiththesolicitationconditionsencounteredincurrentus-agesofwoodandeasyimplementationofexperimentaldevicesfordeflectionmeasurementswithaviewtocalcu-latingthecorrespondingdeformations.
Theexplanationofthelinearrangeofwoodviscoelasticbehaviorwasalsosubjecttoseveralinvestigations.
Asre-portedbyMontero(2010),studiesconductedbyKingstonandClarke(1961),NakaiandGrossman(1983)andMukudai(1983)showedthatthewoodviscoelasticityislinearforlowerloadingsat40%oftheultimatetensilestrengthandtheBoltzmannsuperpositionprincipleisvalidaccordingtoNakaiandGrossman(1983).
Whilestudyingthetimberrheology,Foudjet(1986)alsostudiedthelinearityofitsviscoelasticbehaviorfromcreeptestsonsometropicalspecies(Azobé,Tali,SapelliandMovingui).
Theobtainedresultsshowthatthede-ferredbehavioroftimberisviscoelasticlinearforstresseslessthanorequalto35%oftheultimatetensilestrength.
Thesemeasurementswereobtainedoniso-stresssamples(cantilever)stabilizedat12%ofmoistureandsubmittedlongitudinallyatdifferentlevelsofconfin-ingstress(respectively25%,30%,35%and42%oftheul-timatetensilestrength).
AsforRandriambololona(2003),hereportedinhispaperthatthelinearitylimitofviscoelasticbehaviorofwooddependsonthetypeofstressandissituatedatastressbetween10%and20%oftheultimatetensilestrengthwhenthetestiscarriedoutincompressionandbetween20%and30%oftheultimatetensilestrengthwhenitisthebendingortensilecreeptest.
Placet(2006)reportedinhispaperthattheviscoelasticbehaviorofwoodisstronglyinfluencedbytemperatureandmoistureinadditiontotheloadingdurationinre-spectofthepolymericnatureoftheseconstituents.
In-deed,hefoundoutthatthebehaviorofaviscoelasticmaterialtohighertemperatureforshortloadingtimesisequivalenttothatofthesamematerialatlowertemperature,butforlongertimes.
Thisistheprincipleoftime-temperatureequivalenceortheprincipleoftime-temperaturesuperposition(Dlouhà2009;Placet2006).
InthepaperofMontero(2010),itissaidthatwhenthewatercontentisbelowthefibersaturationpoint,itinfluencestheviscoelasticbehaviorattwolevels:thekinetics'evolutionandmecanosorptiveeffectduetotheviscosityofwoodwhichdependsonitswatercontent,butisalsoverysensitivetothevariationofthewatercontent.
Thus,theviscoelasticcomplianceisseventimeshigherforwetcreep(moisture22%),thesamewithadrycreep(moisture0,5%).
Asformecanosorptivefact,thefirstworkswerepub-lishedin1960byArmstrongandKingstonhighlightingtheinfluenceofthevariationofmoistureinwoodinitsdeferredbehavior.
Inbendingtests,theycomparethecreepofwoodsampleskeptatconstantmoisturewiththeonethatcandryduringthetest.
Fromtheseresults,itap-pearsthatthecreeponthesesamplesisatleasttwotimesgreaterthantheonesmaintainedatconstantmoisture.
Ayearlater,ArmstrongandChristensen(1961)bydetailingpreviousstudieshaveindicatedthatthisincreasedependsontherateofsorptionandnotthemoistureoftheloadedsample(Montero2010).
Theseresultsonmeca-nosorptionpavedthewayforotherstudies,includingthoseofRandriambololona(2003)devotedtomodelingthedeferredbehaviorofwoodinavariableenvironment.
Theviscoelasticmodelisbyfarthemostwidelyusedformodelingthemechanicalbehaviorofwood.
Infact,thelinearviscoelasticbehaviorisrepresentedgenerallybyconstructingamodelconsistingofanassemblyofspringsanddashpots.
Itisthereforeananalogandsym-bolicmodelrepresentedbyacombinationofspringsanddashpotsinseriesandinparallelmoreorlesscom-plex(Foudjet1986;Placet2006;Dlouhà2009).
TheworksofHaqueetal.
(2000),devotedtothecomparisonoftherelevanceofthesedifferentmodelsplusanempir-icalmodelbasedontheequationofBailer-Nortonem-piricalmodel,itwasfoundthattheKelvinmodelseemstobethebestsuitedtointerpolatetheexperimentalcurves(Moutee2006;Husson2009).
Thus,severalau-thorsadopttheKelvin'smodel,ormorepreciselytheseriesconnectionofnKelvinelementstorestoretheviscoelasticbehavioroftimberinacreeptest.
However,identifyingproblemsquicklybecomeinsolublebecauseoneneedstodetermineatleastasmanycoefficientsaselementsintroduced,whichmaybeunworkableespe-ciallyinpracticejustforthefactthattheseparametershighlydependonthemoistureandtemperature.
Inthiscontext,Foudjet(1986)showedarheologicalmodelwithmaximumtwo(2)Kelvin-Voigtelementsconnectedinserieswhichwaswidelyenoughtorepresenttheownlinearviscoelasticbehaviorofwood.
Otherstudiescarriedoutonpolymerslinearviscoelas-ticbehaviorhaveshowedthatcreepcomplianceJ(t),isonlyafunctionoftimeandnotafunctionofthemagni-tudesofstressandstrain(Bower2002;BrinsonandBrinson2008;ChandaandRoy2009)andthedeform-ation(strain)dependontheappliedstress(Barnersetal.
1993;ChandaandRoy2009).
Consideringtheresultsobtainedbythesepreviousworks,thestudiespublishedbyHouanouetal.
(2012)weredevotedtotheidentificationoflinearviscoelasticparemetersoftwotropicalwoodsatagivenmoistureandconstantlyheld,underasteadyappliedloadduringtheentiretestperiod.
Houanouetal.
SpringerPlus2014,3:74Page2of12http://www.
springerplus.
com/content/3/1/74AsforEurocode5(1995),woodisclassifiedaccordingtothemechanicalstrengthcriteriadefinedbytheruleswhichensurethereliabilitywithregardtotheuseforwhichitisintended.
Indeed,thisstandarddefinesacoeffi-cient(kmod),amendingthestrength,takingintoaccounttheclassofserviceofloadingdurationandmoistureofthewood.
Thiscoefficient(kmod)isusedtodeterminethedesignvalueXdofapropertyofthematerial.
XdkmodXkγm1Where,Xk:characteristicvalueofmaterial'spropertyγm:partialcoefficientapplyingtotheproperty.
Theaimofthisstudyistodeterminethemechanismtobetakenintoaccountoftheeffectoftheloadingdur-ationinthedesignofawoodenstructureinthelinearviscoelasticareaandnotsimplyintheelasticareaasthingsweredoneuntilnow.
Moreprecisely,theaimofthisworkistostudythein-fluenceofloadingdurationonthelinearviscoelasticpa-rameters(dynamicmodulusofelasticityanddynamicmodulusofviscosity),woodmoistureandappliedloadbeingmaintainedconstantthroughoutthecreeptest.
Otherwise,itwillbetomodelthebehaviorofeachpar-ameterasafunctionofloadingdurationtoextrapolatethevaluesofcreepordeformation.
Finally,itwillhelptodeducethelengthofabendingcreeptesttwo(2)pointsafterwhichaKelvin-Voigtmodelreflectsoptimallythelinearviscoelasticbehaviorofwood.
Thestudywilliden-tifyamodelforpredictingthemechanicallapseofanelementofstructuresubjectedtosuchstressesandcon-sequentlywilldevelopasuitablemethodtoextrapolatelongitudinalstrainvalues.
Also,thisworkswillpermittodeterminethespecieswhichhasthebestlinearvisco-elasticparameters.
Toachievetheseobjectives,weusedtheparameteridentificationapproachdescribedinHouanouetal.
(2012).
Thisapproachisappliedbyfollowingtheobservationwindowscreepcarefullychosenandappropri-atemathematicalfunctionstobuildtheextrapolationmodels.
MaterialandmethodsThesamplesweretakenfromthesameboardoftheheart-woodfollowingthelongitudinaldirection(Houanouetal.
2012).
Foreachspecies,twelve(12)experimentalspeci-mensweremadeupasshowninFigure1.
Thecutupsamplesprovidetheshapeofanequallysolicitedbeaminallitssections.
Theexperimentalspec-imensweredriedto12%moisturecontentinamoderndryer,inaccordancewiththenormalconditionsoftemperature,pressureandspeeddrying.
Theywerecare-fullysurroundedbyaluminumfoilinordertomaintaintheirwatercontentundercontrol.
Thebendingcreeptestconsistsonsubjectingthesampletotwopointsbendingtest.
Thesamplesareem-beddedatoneendand20%ofthebendingfailureload(let19.
4MPaforTeakand25.
2MPaforEbony)wasappliedattheotherend.
Thisloadisappliedto300mmfromtheotherendofthebeam(Figure2)(Houanouetal.
2012).
Creeptestwerecarriedoutwithinatotaldurationof15hours.
Thedeflectionsweremeasuredbymeansofacomparatorwithanaccuracyof1/100mmevery30minutesatmid-spanofthebeamaftermeasuringtheinstantaneousdeflection.
Datahavebeentreatedbyconsidering14periods:(0-2h),(0-3h),(0-4h),(0-5h),(0-6h),(0-7h),(0-8h)(0-9h),(0-10h),(0-11h),(0-12h),(0-13h),(0-14h)and(0-15h).
Eachperiodrepresentsanobservationwindow.
Thespecimenswereweighedatthebeginningandattheendofthecreeptest.
Thetemperatureismaintainedataconstantvalueduringmanipulation.
Thedeflectionsrecordedhavebeenconvertedtolongitudinaldeform-ation(Houanouetal.
2012)usingthefollowingformula:ε4σucσutσucσut2ff2L2h2Where,Figure1Configurationofspecimens.
Houanouetal.
SpringerPlus2014,3:74Page3of12http://www.
springerplus.
com/content/3/1/74σuc:ultimecompressivestress(MPa)σut:ultimetensilestress(MPa)f:beamdeflection(mm)L:beamspan(mm)h:heightofthebeam(mm)Thesearrowswereusedtocalculatetheviscoelasticcreepcompliance,J(t),usingthefollowingformuladerivedfromFoudjet(1986):Jtεσ03Where:εisthedeformationcalculatedusing(2),σ0meanstestloading.
CreepcomplianceJ(t)isthesumoftheinstantaneouscreepcomplianceJ(τ)andthelinearviscoelasticcreepcomplianceJ(t>τ)withτ,thetimeatwhichtheinstant-aneousdeformationisread(τ=15seconds).
Themathematicalexpressionofcreepcomplianceisoftheform(Foudjet1986;Guitard1987;Houanouetal.
2012):Jtεtσ01E01E1expEηtwitht>04Equation4isderivedfromtherheologicalmodelofZener.
ThismodelistheseriescombinationofaspringcharacterizingtheinstantaneousdeformationandKelvin-Voigtmodelwhichrepresentstheowncreepofwoodinthelinearviscoelasticdomain(Foudjet1986;Guitard1987;Houanouetal.
2012).
Inthisexpression,"E0"isHookeelasticitymodulus;"E"meansthedynamicelasticitymodulusofthespringand"η"thedynamicviscositymodulusofthedamper.
Foridentification,wehave:Jτ1E05andJt1E1expEηtwitht>τ6Foreachobservationwindow,theoptimumvaluesofthe"E"and"η"oftheexpressionofcreepcomplianceinthelinearviscoelasticfield(6)aredeterminedbyadjust-ingtheowncreepcomplianceofusingthemethodofleastsquaresnonlinearasdescribedinHouanouetal.
(2012).
Theowncreepcomplianceiscalculatedwith(3)usingthedelayeddeformation.
Forabetterleadingofdataanalysisinpurelylinearviscoelasticfield,abasechangeismadewheretheoriginisat(0,0)andthestartingpointoftheexperimentisnowat(τ;-j(τ))inthenewcoordinatesystem.
Thischangeallowsustoaccountfortheperiodofreadingtheinstantaneousdeformationcharacterizingthepurelyelasticrange.
Themathematicalmodeltopredicttheevolutionofthedynamicmodulusofelasticitywiththeloadingdurationwasestablishedbymeansoftheleastsquaresmethodandthefittingequationdeductedfromtheexperimen-talcurvescanbeexpressedasfollow(PolyaninandManzhirov2007):Etatbwitha>0;b07Etaebtwitha>0;b0;b0theexponentialfunctionE(t)=aebtwitha>0;b<0andt≥0.
Eachoftheselawscreatesapackagethattendstozerowhentheloadingtimeisrela-tivelylong.
However,thepowerlawismoreappropriate.
Further,theresultsshowedthatonecancharacterizethefreecreepofwoodtroughtheassessmentofthelinearviscoelasticbehavioradoptingtherheologicalmodelofKelvin-Voigtinbendingcreeptestwhenitiscarriedoutwithinamaximumloadingdurationof9hours.
Finally,studieshaveshownthatforsomeshortloadingtimesinferiorto2h42mn,thelinearviscoelasticpa-rametersofEbonyareslightlybetterthanthoseofTeak.
Butbeyondthat,thelinearviscoelasticparametersofTeakarefranklybetterthanthoseofEbony.
CompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterests.
Authors'contributionsHKA,TDAandFAEconductedastudyontheinfluenceoftheloadingdurationonlinearviscoelasticparametersoftwotropicalspecies(teakandebony)ofBeninRepublic,participatedintheanalysisandexplanationofthedatacollectedanddraftedthemanuscript.
Authordetails1LaboratoryofEnergyandAppliedMechanics-PolytechnicSchoolofAbomey-Calavi,UniversityofAbomey-Calavi,Abomey-Calavi,BeninRepublic.
2CRESAForest–Wood,UniversityofDschang,Dschang,Cameroon.
Received:3September2013Accepted:31January2014Published:7February2014ReferencesAlmeidaG(2006)InfluencedelaStructureduBoissursesPropriétésPhysico-MécaniquesàdesTeneursenHumiditéElevées.
ThèseenSciencesduBois.
UniversitéLaval,Québec,p232Houanouetal.
SpringerPlus2014,3:74Page11of12http://www.
springerplus.
com/content/3/1/74AlteyracJ(2005)InfluencedelaDensitédePeuplementetdelaHauteurDansl'arbresurlesPropriétésPhysico-MécaniquesduBoisd'épinetteNoire(PicéaMariana(Mill.
)b.
s.
p).
ThèseenSciencesduBois.
UniversitéLaval,Québec,p154ArmstrongL,ChristensenG(1961)Influenceofmoisturechangesondeformationofwoodunderstress.
Nature191(4791):869–870BarnesHA,HuttonJF,WaltersFRSK(1993)AnIntroductiontoRheology,3rdedition.
ElsevierAmsterdam,TheNetherlands,pp201BowerID(2002)AnIntroductiontoPolymerPhysics,1stedition.
CambridgeUniversityPress,NewYorkUSA.
p465BrinsonHF,BrinsonLC(2008)PolymerEngineeringScienceandViscoelasticity,AnIntroduction,1stedition.
Springer,NewYorkUSA.
p454ChandaM,RoySK(2009)PlasticsFundamentals,PropertiesandTesting,1stedition.
FrancisandTaylor,BocaRatonUSA.
p278CharronS,etal.
(2003)tudecomparativedescaractéristiquesphysiquesetmécaniquesduboisdesmélèzesd'Europe(LarixdeciduaMill.
),duJapon(Larixkaempferi(Lambert)Carr.
)etdeleurhybride(LarixxeurolepisHenry).
BiotechnolAgronSocEnviron7(1):5–16ChungDDL(2010)CompositeMaterials,ScienceandApplications,2ndedition.
Springer,NewYorkUSA.
p358DlouhàJ(2009)ComportementViscoélastiqueLongitudinalduBoisVert:DiversitéetPrédictionàLongTerme.
ThèseenMécaniqueetGénieCivil.
UniversitéMontpellier2,Montpellier,p163DupeuxM(2008)AideMémoireSciencedesMatériaux,2ndedition.
Dunod,ParisFrance.
p354Eurocode5(1995)CalculdesStructuresenBois,Partie1–1:RèglesGénéralesetRèglesPourlesBtiments.
AFNOR,ParisFrance,p143FoudjetA(1986)Contributionàl'étudeRhéologiqueduMatériauBois.
ThèseèsScienceenGénieCivil.
UniversitéClaudeBernard,Lyon,Lyon,p217GardelleV(2005)MécaniquedesAssemblagesetRenfortsCollésenConstructionBois.
ThèseenScienceduBois.
UniversitédeBordeaux,Bordeaux,p165GenevauxJ-M(1989)FluageàTempératureLinéairementCroissante:CaractérisationdesSourcesdeViscoélasticitéAnisotropeduBois.
ThèseenMécaniqueetEnergétique.
InstitutNationalPolytechniquedeLorraine,Loraine,p198GuitardD(1987)MécaniqueduMatériauBoisetComposites.
EditionCepadues.
CollectionNabla,ToulouseFrance,p238HangDH(2007)RheologyandProcessingofPolymericMaterialVol.
1PolymerRheology,1stedition.
OxfordUniversityPress,NewYorkUSA,p728HaqueMN,LangrishTAG,KeepL-B,KeeyRB(2000)ModelfittingforviscoelasticcreepofPinusradiataduringkilndrying.
WoodScienceandTechnology34:447–457HouanouKA,TchéhoualiA,FoudjetA(2012)Identificationofrheologicalparametersofthelinearviscoelasticmodelofspeciesoftropicalwoods(TectonagrandisL.
fandDiospyrosmespiliformis).
ResJEngSci1(5):17–24HussonJ-M(2009)LoideComportementViscoélastiqueAvecEffetMémoire.
ApplicationàlaMécanosorptiondansleBois.
ThèseenGénieCivil.
UniversitédeLimoges,Limoges,p120JacquesD(2003)AméliorationduModuled'élasticitéduBoisdeMélèzeHybride(LarixxEurolepisHenry)parSélectionClonale.
ThèseenSciencesAgronomiquesetIngénierieBiologique.
FacultéuniversitairedesSciencesagronomiquesdeGembloux,Gembloux,p292KingstonR,ClarkeL(1961)Someaspectsoftherheologicalbehaviorofwood.
1:Theeffectofstresswithparticularreferencetocreep.
AustralianJournalofAppliedScience6:211–226KumarA,GuptaRK(2003)FundamentalsofPolymerEngineering,2ndedition.
MarcelDekker,NewYorkUSA.
p712LaplancheK(2006)EtudeduComportementaufeudesAssemblagesdesStructuresenBois:ApprocheExpérimentaleetModélisation.
ThèseenGénieCivil.
UniversitéBlaisePascal,Clermont2,p145LinY-H(2011)PolymerViscoelasticity:Basics,MolecularTheories,ExperimentsandSimulations,2ndedition.
WorldScientificPublishing,TohTuckLinkSingapore.
p441MonteroC(2010)CaractérisationduComportementViscoélastiqueAsymptotique.
ThèseenMécaniqueetGénieCivil.
UniversitéMontpellier2,Montpellier,p139MontgomeryDC,RungerGC(2003)AppliedStatisticsandProbabilityforEngineers,3rdedition.
JohnWileyandSonsInc.
,ArizonaStateUniversity.
p976MouteeM(2006)ModélisationduComportementMécaniqueduBoisauCoursduSéchage.
ThèseenScienceduBois.
UniversitéLaval,Québec,p194MukudaiJ(1983)Evaluationoflinearandnon-linearviscoelasticbendingdeflectionofwood.
WoodScienceandTechnology17:39–54NakaiT,GrossmanPUA(1983)Deflectionofwoodunderintermittentloading.
WoodScienceandTechnology17(1):55–67PlacetV(2006)ConceptionetExploitationd'unDispositifExpérimentalInnovantPourlaCaractérisationduComportementViscoélastiqueetdelaDégradationThermiqueduBoisDansdesConditionsSévères.
ThèseenScienceduBois.
UniversitédeHenriPoincarré,NancyI,p338PolyaninDA,ManzhirovVA(2007)HandbookofMathematicsforEngineersandScientists,Fisrtthedition.
TaylorandFrancis,BocaRatonUSA.
p1543RandriambololonaH(2003)ModélisationduComportementDifféréduBoisenEnvironnementVariable.
ThèseenGénieCivil.
UniversitédeLimoges,Limoges,p143RepellinV(2006)OptimisationdesParamètresDuréeetTempératured'unTraitementThermiqueduBois.
ModificationdesPropriétésd'usageduBoisenRelationAveclesModificationsPhysico-ChimiquesetUltraStructuralesOccasionnéesparleTraitementThermique.
ThèseenGéniedesProcédés.
EcoleNationaleSupérieuredesMinesdeSaint-EtienneetUniversitéJeanMonnetdeSaint-Etienne,Saint-Etienne,p262SchniewindAP,BarrettJD(1972)Woodasalinearorthotropicviscoelasticmaterial.
WoodSciTechnol6:43–57SperlingLH(2006)AnIntroductiontoPhysicalPolymerScience,4thedition.
JohnWiley&Sons,NewJerseyUSA.
p866doi:10.
1186/2193-1801-3-74Citethisarticleas:Houanouetal.
:Effectoftheloadingdurationonthelinearviscoelasticparametersoftropicalwood:caseofTectonagrandisL.
f(Teak)andDiospyrosmespiliformis(Ebony)ofBeninRepublic.
SpringerPlus20143:74.
Submityourmanuscripttoajournalandbenetfrom:7Convenientonlinesubmission7Rigorouspeerreview7Immediatepublicationonacceptance7Openaccess:articlesfreelyavailableonline7Highvisibilitywithintheeld7RetainingthecopyrighttoyourarticleSubmityournextmanuscriptat7springeropen.
comHouanouetal.
SpringerPlus2014,3:74Page12of12http://www.
springerplus.
com/content/3/1/74

青云互联-洛杉矶CN2弹性云限时五折,9.5元/月起,三网CN2gia回程,可选Windows,可自定义配置

官方网站:点击访问青云互联官网优惠码:五折优惠码:5LHbEhaS (一次性五折,可月付、季付、半年付、年付)活动方案:的套餐分为大带宽限流和小带宽不限流两种套餐,全部为KVM虚拟架构,而且配置都可以弹性设置1、洛杉矶cera机房三网回程cn2gia 洛杉矶cera机房                ...

香港 1核1G 29元/月 美国1核 2G 36元/月 快云科技

快云科技: 11.11钜惠 美国云机2H5G年付148仅有40台,云服务器全场7折,香港云服务器年付388仅不到五折 公司介绍:快云科技是成立于2020年的新进主机商,持有IDC/ICP/ISP等证件资质齐全主营产品有:香港弹性云服务器,美国vps和日本vps,香港物理机,国内高防物理机以及美国日本高防物理机官网地址:www.345idc.com活动截止日期为2021年11月13日此次促销活动提供...

妮妮云(119元/季)日本CN2 2核2G 30M 119元/季

妮妮云的知名度应该也不用多介绍了,妮妮云旗下的云产品提供商,相比起他家其他的产品,云产品还是非常良心的,经常出了一些优惠活动,前段时间的八折活动推出了很多优质产品,近期商家秒杀活动又上线了,秒杀产品比较全面,除了ECS和轻量云,还有一些免费空间、增值代购、云数据库等,如果你是刚入行安稳做站的朋友,可以先入手一个119/元季付的ECS来起步,非常稳定。官网地址:www.niniyun.com活动专区...

www.88ququ.com为你推荐
微盟赔付方案对意外险赔付方案不同意 该怎么办?西部妈妈网我爸妈在云南做非法集资了,钱肯定交了很多,我不恨她们。他们叫我明天去看,让我用心的看,,说是什么...嘉兴商标注册嘉兴那里有设计商标的老虎数码相机里的传感器CCD和CMO是什么意思?haole018.comse.haole004.com为什么手机不能放?网站检测请问论文检测网站好的有那些?同一服务器网站同一服务器上可以存放多个网站吗?百度指数词为什么百度指数里有写词没有指数,还要购买www.5any.comwww.qbo5.com 这个网站要安装播放器抓站工具抓鸡要什么工具?
新网域名 域名注册使用godaddy 免费注册网站域名 dns是什么 韩国加速器 网站保姆 xen 网通代理服务器 云鼎网络 网站挂马检测工具 骨干网络 169邮箱 如何注册阿里云邮箱 双12 智能dns解析 东莞主机托管 中国linux 阵亡将士纪念日 汤博乐 web服务器 更多