poorww.4399
ww.4399 时间:2021-03-20 阅读:(
)
ORIGINALPAPERInter-andintracellularcolonizationofArabidopsisrootsbyendophyticactinobacteriaandtheimpactofplanthormonesontheirantimicrobialactivityAnnevanderMeij.
JoostWillemse.
MartinusA.
Schneijderberg.
ReneGeurts.
JosM.
Raaijmakers.
GillesP.
vanWezelReceived:20November2017/Accepted:3January2018/Publishedonline:15January2018TheAuthor(s)2018.
ThisarticleisanopenaccesspublicationAbstractManyactinobacterialiveincloseassoci-ationwitheukaryotessuchasfungi,insects,animalsandplants.
Plant-associatedactinobacteriadisplay(endo)symbiotic,saprophyticorpathogeniclifestyles,andcanmakeupasubstantialpartoftheendophyticcommunity.
Here,wecharacterisedendophyticacti-nobacteriaisolatedfromroottissueofArabidopsisthaliana(Arabidopsis)plantsgrowninsoilfromanaturalecosystem.
ManyoftheseactinobacteriabelongtothefamilyofStreptomycetaceaewithStreptomycesolivochromogenesandStreptomycesclaviferaswellrepresentedspecies.
WhenseedsofArabidopsiswereinoculatedwithsporesofStrepto-mycesstraincoa1,whichshowshighsimilaritytoS.
olivochromogenes,rootswerecolonisedintercellu-larlyand,unexpectedly,alsointracellularly.
Subse-quentexposureofendophyticisolatestoplanthormonestypicallyfoundinrootandshoottissuesofArabidopsisledtoalteredantibioticproductionagainstEscherichiacoliandBacillussubtilis.
Takentogether,ourworkrevealsremarkablecolonizationpatternsofendophyticstreptomyceteswithspecictraitsthatmayallowacompetitiveadvantageinsideroottissue.
KeywordsStreptomycesPlant–microbeinteractionsPlanthormoneCrypticantibioticsElectronmicroscopyIntroductionActinobacteriarepresentadiversephylumcomposedofbothrod-shapedandlamentousbacteriathatcanbefoundinsoil,marineandfreshwaterecosystems(Goodfellow2012).
Thelamentousactinobacteriaareversatileproducersofbioactivenaturalproducts,includingtwo-thirdsofallknownantibioticsaswellasmanyanticancer,antifungalandimmunosuppressiveagents(Barkaetal.
2016;Berdy2005;HopwoodElectronicsupplementarymaterialTheonlineversionofthisarticle(https://doi.
org/10.
1007/s10482-018-1014-z)con-tainssupplementarymaterial,whichisavailabletoauthorizedusers.
AnnevanderMeijandJoostWillemsehavecontributedequallytothiswork.
A.
vanderMeijJ.
WillemseG.
P.
vanWezel(&)MolecularBiotechnology,InstituteofBiology,LeidenUniversity,Sylviusweg72,2333BELeiden,TheNetherlandse-mail:g.
wezel@biology.
leidenuniv.
nlM.
A.
SchneijderbergR.
GeurtsDepartmentofPlantSciences,WageningenUniversity,Wageningen,TheNetherlandsJ.
M.
RaaijmakersDepartmentofMicrobialEcology,NetherlandsInstituteofEcology(NIOO-KNAW),Wageningen,TheNetherlands123AntonievanLeeuwenhoek(2018)111:679–690https://doi.
org/10.
1007/s10482-018-1014-z2007).
Theactinobacteriaarealsomajorproducersofindustriallyrelevantenzymes(Anneetal.
1990;vanDisseletal.
2014).
Hence,theactinobacteriaareofutmostimportanceforhumanhealth,agricultureandbiotechnology.
Theconceptofactinobacteriaasfree-livingbacte-riahasmorerecentlybeenchallengedbystudiespointingtotheirintimaterelationshipswithdiverseeukaryotes(Seipkeetal.
2012;vanderMeijetal.
2017).
Indeed,theyhavebeenfoundinassociationwithvertebrates,invertebrates,fungiandplants.
Actinobacteriaareoftenwelcomegueststotheirhostsduetotheirabilitytoproducechemicallydiversenaturalproducts.
Muchofthechemicaldiversityofsecondarymetabolitesproducedbyactinobacteriahaslikelyevolvedbecauseoftheirinteractionswithother(micro)organismsinhighlydiverseenvironments(Seipkeetal.
2012;vanderMeijetal.
2017).
Itisbecomingincreasinglyclearthatactinobacteriaplayakeyroleinmaintainingplanthealthbycontributingtobioticandabioticstresstolerance(Viaeneetal.
2016).
Forexample,actinobacteriaproducesiderophoresforironacquisitionaswellasantibacterialsandantifun-galstoprotecttheirhostagainstpathogens(Viaeneetal.
2016).
Actinobacteriacanmakeupasubstantialpartoftherootendophyticcommunityacrosstheplantkingdom,whichislargelydeterminedbyanincreasedrelativeabundanceofthefamilyofStreptomycetaceae(Bul-garellietal.
2012;Edwardsetal.
2015;Lundbergetal.
2012).
Thecompositionofrhizosphericandrootendophyticbacterialcommunitiesisstronglyinu-encedbysoiltype(Bulgarellietal.
2012)aswellasbytheplantgenotype(Perez-Jaramilloetal.
2017).
Therefore,partofthemicrobiomecompositionoftherhizosphereandendosphereofArabidopsisthalianagrownundercontrolledconditionsindiffer-entnaturalsoilsisconservedwithspecicbacterialtaxaincludingmembersoftheactinobacteria(Bul-garellietal.
2012).
Despitetheiroccurrenceintheendosphere,verylittleisknownonhowmostactinobacteriacolonisetheendosphereandwheretheyreside.
AnexceptionisStreptomycesscabies,thecausalagentofpotatoscab,whichhasbeenstudiedindetail(Loriaetal.
2006;Jourdanetal.
2016;Bignelletal.
2010;Bukhalidetal.
1998).
Colonizationofrootandshoottissuebyactinobac-teriaisdependent,atleastinpart,onchemicalcuesfromtheplantaswasshownforenrichmentofactinobacteriabytheplanthormonesalicylicacid(SA)(Lebeisetal.
2015).
SAplaysaroleinavarietyofphysiologicalandbiochemicalprocessesandisimportantasanendogenoussignalmediatinglocalandsystemicplantdefenseresponsesagainstpathogensandabioticstressfactors(Rivas-SanVicenteandPlasencia2011).
SAisdetectableinArabidopsisleavesandrootsatconcentrationsupto1lg/gfreshweight(vandeMorteletal.
2012).
Hence,endophyticactinobacteriaaremostlikelyexposedandresponsivetoSAandotherplanthormonessuchasjasmonicacidandauxin(Halimetal.
2006;Zhao2010).
InthisstudyweisolatedendophyticactinobacteriafromArabidopsisroots,grownundercontrolledconditionsaswellasfromplantsgrowninanecologicalsetting.
Colonizationpatternsweremoni-toredandvisualisedbyconfocalaswellaselectronmicroscopyforStreptomycesstraincoa1,whichadaptedfromasoildwellingtoanendophyticlifestyle,onaxencially-grownA.
thaliana.
Finally,weinvestigatedhowspecicplanthormonesaffecttheantimicrobialactivityofendophyticStreptomycesisolatedfromwildArabidopsisprovidingarststeptowardsevaluatingtheconceptofplant-mediated'antibioticproductionondemand'.
ResultsanddiscussionIsolationofendophyticactinobacteriaToconrmthepresenceofactinobacteriaintheendosphere,sterileA.
thalianaCol-0plantsweregrowninapottingsoil:sandmixturefor2weeksundercontrolledconditions,followedbyharvestingrootsandshoot,surface-sterilizationandhomogenizationoftheroottissueandplatingontovariousmediaselectiveforactinobacteria(Zhuetal.
2014b).
Tenmorpholog-icallydistinctactinobacterialisolateswereobtainedfortheCol-0plants.
AsimilarisolationapproachwasadoptedforA.
thalianaecotypemossel(Msl)obtainedfromanaturalecosystem(Mossel,Veluwe,theNetherlands).
NexttoplatingontoselectivemediafortheisolationofactinobacterialendophytesfromMslplants,totalDNAwasextractedineightreplicatesfromsamplesobtainedfromthesoil,therhizosphere,therootendosphereandtoothpicksinsertedinthesoilwereutilisedaswoodcompartment(Bulgarellietal.
2012).
TheseDNAsampleswerethenanalyzedby680AntonievanLeeuwenhoek(2018)111:679–69012316SrDNA-ampliconsequencing.
Basedontotalsequencereadstheresultsofthelatteranalysisshowedthatactinobacteriarepresentedonaverage22%ofthetotalendophyticpopulation(Fig.
1a).
Amongtheactinobacterialoperationaltaxonomicunits(OTUs),theStreptomycetaceaeandMicromonosporaceaewereoverrepresented.
Additionally,10%thereadsoftheendophyticpopulationwasrepresentedbyonlytwoOTUs(137and48),belongingtothefamilyofStreptomycetaceae(Fig.
2b).
Thisenrichmentwasnotasmuchobservedforthesoil,therhizosphereandbacteriaassociatedwithatoothpick,suggestingaspecies-specicselectionamongtherootendophyticactinobacteriaofA.
thaliana.
NumbersontotalsequencereadsandOTUsarelistedinTableS1.
IsolationofactinobacteriafromtheendosphereofA.
thalianaecotypeMslresultedin35morphologi-callydifferentisolates.
The34-465regionofthe16SRNAgeneofallisolateswassequencedandtheclosesthitsontheEzBioCloudwereconrmedusingtheMLSA-basedphylogenypublishedrecently(Labedaetal.
2017).
LinkingtheOTUsdetectedby16SrDNAampliconsequencingtoasingleStrepto-mycesspecieswasnotalwayspossibleduetoarelativelylowresolution(Girardetal.
2013;Labedaetal.
2017).
Nevertheless,thetwoisolatesthatwereanalysedbothbelongedtothemostabundantOTUsStreptomycesclaviferandStreptomycesolivochromo-genes(Fig.
2a).
Outofthe35isolates,vewerecloselyrelatedtoS.
claviferandfourtoS.
olivochro-mogenes.
Supportiveevidencecomesfromseveralindependentstudies,reportingS.
olivochromogenesfromtheendosphereofChinesecabbageroots,potatotubers,medicinalplantsandpurplehenbit(SinghandGaur2016;Leeetal.
2008;Doumbouetal.
1998;Kimetal.
2012).
Additionally,strainssimilartoS.
claviferwerepreviouslyisolatedfromsugarcane,lucerneplantsandwheat(Kruasuwanetal.
2017;Francoetal.
2017;MiskandFranco2011).
Subsequentphenotypingoftheseendophyticacti-nobacterialisolatesbyhighresolutionimagingbyscanningelectronmicroscopy(SEM)revealedspinysporesthataretypicalofS.
clavifer(Goodfellow2012),supportingthe16SrDNA-basedtaxonomicclassicationoftheisolatesasS.
clavifer(Fig.
2b).
Incontrast,S.
olivochromogenespoorlydevelopssporu-latingmyceliumaccordingtoBergey'smanual,whichisshownaswellforanisolateclassiedasS.
olivochromogenes(Fig.
2c).
However,impairedsporulationwasencounteredfrequently,aphenotypethatwasdependentonthegrowthmedia,whichmakesthisfeaturenon-specic(seenextparagraph).
TheFig.
1Relativeabundanceoftheactinobacteriaintheendo-phyticcompartmentofA.
thalianaMsl.
aAmpliconsequencingdatashowthatactinobacteriarepresent22%ofthetotalendophyticcompartment(EC),whileinsoilandrhizosphere(RS)communitiesandthoseinassociationwithatoothpick(TP)insertedinthesoil,theytakeuproughly2%ofthetotalbacterialcommunity.
bTheenrichmentofactinobacteriaispredomi-natelydrivenbyStreptomycetaceaeOTU48and137.
OTU48and137makeup10%ofthetotalECandalmost50%ofalltheactinobacteriapresentintheEC.
TheseOTUsarenotasmuchenrichedinthesamplesderivedfromnon-endophyticoriginsAntonievanLeeuwenhoek(2018)111:679–690681123endophyticisolatesofA.
thalianaecotypeMslshoweddiversecolonymorphologies(forexamplesseeFig.
3).
Remarkably,20outof35isolatesfailedtodeveloponR5agarplates,suggestingtheyhadeitherlostkeysporulationgenesorlackedtheabilitytodevelopintheabsenceofspecicnutrientsortraceelements.
Forexample,R5agarisknowntolacksufcientironandcopper,whichisamajorreasonwhybldmutantscannotsporulateonthismedia(Keijseretal.
2000;Lambertetal.
2014).
Addition-ally,severalendophytesshowedthepropensitytoopenuptheircolony,withtheirvegetativemyceliumfacingupward.
ThisfeatureiswellexempliedbyStreptomycessp.
MOS31andMOS18(Fig.
3h,c).
MOS18istaxonomicallyrelatedtoS.
claviferandMOS31istheonlyendophyticisolatecloselyrelatedtoStreptomycesbobili,a'neighbour'ofS.
olivochro-mogenes(Labedaetal.
2017).
Tostudythemorpho-logicalcharacteristicsofMOS31athigherresolutionSEMwasapplied,whichrevealedathicksheetofhyphaethatturnedawayfromtheinsideofthecolony(Fig.
4a).
Additionally,weobservedhyphaeextend-ingfromthesesheets,awayfromthevegetativemycelium(Fig.
4b).
EndophyticcolonizationofArabidopsisbyStreptomycesWethenwantedtoknowifandwheretheisolatesentertherootendosphereofA.
thalianatogetmoreinsightintotheyetelusiveendophyticbiologyofStrepto-myces.
ThereforeweinoculatedsporesofStrepto-mycesstraincoa1,whichwasrecruitedbysterileA.
thalianaCol-0plantsgrowninapottingsoil:sandmixture,ontosterilisedseedsofA.
thalianaCol-0.
Noteworthy,16SrDNAanalysisclusterscoa1intheS.
olivochromogenesbranchbasedonphylogeneticrelationshipswithinthefamilyofStreptomycetaceae(Labedaetal.
2017).
AttachmentofthesporestotheseedswasconrmedbySEM(Fig.
S1).
Seven-day-oldseedlingsgrownfromthetreatedseedswerestainedwithpropidiumiodideandsubjectedtoconfocaluorescencemicroscopy.
Theresultsshowedthattheendophytehadcolonisedbothleavesandroots(Fig.
5).
Straincoa1attachedtothelateralrootsindensepellets,whereascolonizationoftheleavesinvolvedhyphalgrowthovertheleafsurface.
ThecolonisedArabidopsisrootswerethenxedforsectioningandhighresolutionimagingwithtransmis-sionelectronmicroscopy(TEM).
Regionsofinterestwereidentiedbyobtaining1-lmsectionsthatwereFig.
2CharacterizationofStreptomycesendophytesandtheirtaxonomicdistribution.
aSeveralisolatesshowhighestsimi-laritywithStreptomycesclaviferorStreptomycesolivochromo-genesonthebasisof16SrDNAanalysis.
Themajorityoftheisolatesshowedawidevariationinclosestspeciesassigned,indicatingadiverseendophyticcompartment.
'Unclassied'meansthattheseactinobacteriacouldnotbeclassiedatthespecieslevelbasedonthe16SrDNAsequence.
bScanningelectronmicrographofStreptomycessp.
MOS18,whichproducesspinyspores.
Scalebar3lM.
cScanningelectronmicrographofStreptomycessp.
MOS38showingpoorsporu-lation.
Scalebar5lM.
StrainsweregrownonSFMmediafor6days682AntonievanLeeuwenhoek(2018)111:679–690123stainedwithtoluidinetovisualisethebacteria(Fig.
6a).
Theresultsshowedthatcoa1notonlycolonisedtherootsurfacebutalsotheinternalroottissueand,remarkably,theintracellularspace(Fig.
6b,c).
Noplantcelldefectswereobservedintheimagedsamples.
Strikingly,thereisnoplantFig.
3Streptomycesendophytesdisplayawiderangeofmorphologies.
StrainsshownabovearegrownonSFMagarplatesfor6days.
S.
coelicolorM145andS.
griseusDSM40236areshownasreferencestrains.
aS.
coelicolorM145,bS.
griseusDSM40236andtheendophyticstreptomycetesMOS18(c),MOS38(d),MOS14(e),MOS32(f),MOS25(g),MOS31(h)andMOS35(i).
Scalebar2mmFig.
4ScanningelectronmicrographofStreptomycessp.
MOS31.
ImagesofmycelialsheetsasisseeninFig.
3H.
aThicklayersofvegetativemyceliummadeupofhyphaeandextracellularmatrixturnawayfromtheinnerpartofthecolony.
Scalebar100lM.
bHyphaeextendingfromthemycelialsheets,therebygrowingawayfromthevegetativemycelium.
Scalebar30lM.
Streptomycessp.
MOS31wasgrownonSFMagarplatesfor6daysAntonievanLeeuwenhoek(2018)111:679–690683123cellularmembraneseparatingStreptomycesfromtheintracellularspace.
PreviousstudiesshowedcolonizationoftherootsurfaceofArabidopsisbyactinobacteria,andlettuce,turniprapeandcarrotbyStreptomyces(Bulgarellietal.
2012;Bonaldietal.
2015;Kortemaaetal.
1994).
Inaddition,endophyticcolonizationofgerminatingwheatseedhasbeenreportedbyreintroductionofaFig.
5ColonizationofArabidopsisbyStreptomycesendophytecoa1.
aConfocalmicrographofacolonisedlateralroot.
Thesampleisstainedwithpropidiumiodide,resultinginreduorescenceofbothbacterialandplantcells.
Coa1attachestotherootasadensepellet.
Scalebar50lM.
bConfocalmicrographoftheborderoftheleaf.
Singlehyphaearegrowingovertheleafsurface(arrowheads).
Scalebar15lMFig.
6SectionsofArabidopsisrootsinvadedbyStreptomycescoa1.
aToluidinestainedsectionofanArabidopsisrootinvadedbyStreptomycescoa1.
Coa1enterstherootviatheepidermis(EP)cellsandcolonisestherootinbetweenthecortexcells(CO)andEPcells.
Scalebar10lM.
Boxedpartoftheimageisshownasmagnicationontheright.
b,cTransmissionelectronmicrographsofArabidopsisrootsinvadedbycao1.
Coa1colonisestherootintracellularly.
ThebacteriumcanbefoundinbetweentheCO-andEPcells,andinbetweentheendodermis(ED)andCOcells(imageB).
Inaddition,inEPcellsintracellulargrowthofStreptomycescoa1wasobserved(imageC).
Scalebar2lM684AntonievanLeeuwenhoek(2018)111:679–690123GFPexpressingStreptomycesstrain(Francoetal.
2017).
Tothebestofourknowledge,ourresultsshowforthersttimethepresenceofastreptomycetewithinanArabidopsisrootcell.
Furthermore,thehyphaeofcoa1appearedlesselectrondenseintheendospherethanontheplantsurface,whichmayreectphysio-logicaldifferencesbetweenlifeinsideandoutsidetheplant.
Stilltherearemajorgapsinourunderstandingoftheendophyticbiologyofstreptomycetes.
Forexample,wedidnotndreproductivestructuresorsporeswithintheendosphere.
Itthereforeremainstobeseenwhetherendophyteshaveacompletelifecycleinsideplantsoronlyremaininthevegetativegrowthphase,althoughwehavetotakeintoaccountthata7daytimeframemightnotbesufcienttoformsporeswithinaplant.
Ithasalsobeensuggestedthattheendophyticlifestyleofactinobacteriamayincludetheformationofsmallprotoplast-likecellsthatlackacellwall(Ramijanetal.
2016).
Theseso-calledL-formsmayexplainhowtherelativelylargemycelialacti-nobacteriacanstillmigrateandproliferateinsideplanttissue.
TofurtherunraveltheendophyticbiologyofStreptomyceswewillfocusfutureexperimentsontheidenticationofmajorgeneticormorphologicaltraitsassociatedwiththeendophyticlifestyle.
ResponseofendophytestophytohormonesActinobacteriaplayanimportantroleinantibiosisandasprobioticstotheplantduetotheproductionofadiversearrayofbioactivemolecules(Viaeneetal.
2016).
Weassessedtheantimicrobialactivityoftheactinobacterialendophytesinoverlayassays,usingBacillussubtilis(Gram-positive)andEscherichiacoli(Gram-negative)asthetarget.
Byapplyingagardiffusionassayswiththestreptomycetesgrownonminimalmediumagarwithmannitolandglycerolweshowedthat11%oftheisolatesproducedoneormorecompoundsthatinhibitedgrowthofE.
colicells,while14%inhibitedgrowthofB.
subtilis.
Generally,thevastmajorityofactinomycetesisolatedfromsoilsamplesareabletoinhibitB.
subtilisgrowthunderroutinelaboratoryconditions,whichdiffersfromwhatwendforourcollectionofendophytes(Zhuetal.
2014b).
Whilethesmallnumbersmakeitdifculttoapplystatistics,wecannotruleoutthatthereducedantibioticactivityagainstGram-positivebacteriaandinpartic-ularFirmicutes,maybetypicalofendophyticactinobacteria.
Genomesequencingrevealedthatactinobacteriahavealotofbiosyntheticgeneclustersfornaturalproductsthatarepoorlyexpressed(KolterandvanWezel2016;Nettetal.
2009).
Thisoffersavastreservoirofpotentiallyimportantbioactivemolecules,includingantibiotics.
Toallowscreeningofthesecompounds,strategiesarerequiredtoelicittheirexpression(RutledgeandChallis2015;vanWezeletal.
2009;Wuetal.
2015;Zhuetal.
2014a).
Weassessedthepotentialofphytohormonesaselicitors,therebymimickingthechemicalenvironmentoftherhizosphereandendosphere.
Forthis,weexposedtheendophytestotheplanthormonessalicylicacid(SA),indoleaceticacid(IAA,knownasauxin)orjasmonicacid(JA).
Thestrainsweregrownonminimalmedia,withorwithout0.
01,0.
001or0.
0001%(w/v)ofeitherplanthormoneasconcentrationsofSAcanbeashighas0.
01%(w/w).
Square12912cmagarplateswereinoculatedwithspotsfromsporestocksoftheendophytes.
Interestingly,thepercentageofstrainsexhibitingantibioticactivityroughlydoubled,with20%ofthestrainsinhibitingE.
colicells,and29%inhibitinggrowthofB.
subtilis(TableS1).
ThiseffectcouldmostlybeattributedtoIAA,whichhadamoresignicantelicitingeffectontheendophytesthanSAorJA(TableS2).
AnexampleofelicitedantimicrobialproductionbyIAAispresentedinFig.
S2.
Addition-ally,weobservedincreasedactivityagainsttheindicatorstrainsaswell,indicatingeithermoreproductionofthesameantibioticorproductionofadifferent(setof)antibiotic(s)(SeeFig.
S3).
Afterelicitation,comparativemetabolomicsand/orgeno-micsonsamplesobtainedfromproducingandnon-producingconditionscanbeusedtoidentifythecompoundandgeneclusterofinterest,respectively(Gubbensetal.
2014;Nguyenetal.
2013).
Althoughtheconceptofelicitingantimicrobialproductionbyactinobacteriaisalreadywell-estab-lished,thisexperimentalsetupwasconnectedtothebioticinteractionsbetweenplantandstreptomycete,aimedtomimicthechemicalenvironmentoftheplant.
Plant-endophyteinteractionshavelikelyplayedakeyroleintheevolutionofthechemicaldiversityofactinomycete-derivednaturalproductsandsignalsthatcontroltheproductionoftheseantimicrobialsarelikelytiedtothebioticinteractions.
Thisideaisfurtherexploredbythe''cryforhelp''hypothesis,whichadditionallystatesthatactinobacteriaencountertrade-offsbetweenthecostsofproducingcomplexnaturalAntonievanLeeuwenhoek(2018)111:679–690685123productsandtheirbenets,andmaythereforeproducethesemoleculesspecicallyinresponsetoecologicaldemands(vanderMeijetal.
2017).
Tobroadenourunderstandingofthisconceptitwouldbeofinteresttoknowwhichtype(s)ofcompoundsareproducedinresponsetophytohormoneexposure.
Identicationoftheantimicrobialcompoundsproducedinresponsetoexposuretophytohormonesandthecorrespondingmetabolicnetworkswillgivebetterinsightsintothebacterialresponsestotheplant's''cryforhelp''.
Inaddition,theconcentration-dependenteffectofphy-tohormonesmaybeofgreatimportanceaslocalphytohormoneconcentrationsinaplantvary.
Inordertoharnessplant-actinomyceteinteractionsaselicitorsforantimicrobialproduction,furtherstudiesshouldfocusontheseconcentration-dependenteffects,aswellassynergismorantagonismofdifferentphythor-moneswhenusedaselicitor.
ConclusionInthisstudy,weshowtherecruitmentofStreptomycesendophytesbyA.
thalianaCol-0andA.
thalianaMsl.
OurpilotstudyshowsthatisolatesfallingwithinthegroupsofS.
olivochromogenesandS.
claviferareoverrepresentedintheendosphere,suggestingthattheseendophyticstreptomycetesmayhavespeciccharacteristicsthatallowthemtoadapttolifeinsidetheplant.
Thisneedstobestudiedinmoredetail,andmayalsobeextendedtothestudyofotheractinobac-terialgenerafoundintheendosphere.
Additionally,weprovidearststeptowardstheproofofconceptforthe'cryforhelp'hypothesis,wherebyplanthormones,inparticularIAA,haveastimulatingeffectonantibioticproductionbyendophyticactinobacteria.
Thesebaselineexperimentshighlighttheimportanceofexploringandexploitingplant-actinomyceteinter-actionsaselicitorsfor'antibioticproductionondemand'.
MaterialsandmethodsBacteria,plantsandgrowthconditionsStreptomycescoelicolorA3(2)M145wasobtainedfromtheJohnInnesCentrestraincollectioninNorwich,UK,andStreptomycesgriseusDSM40236fromtheDSMZculturecollection(Braunschweig,Germany).
S.
coelicolorM145andS.
griseusDSM40236weregrownonSFMfor6daysat30°C,unlessindicateddifferently.
AsterileA.
thalianaecotypeColumbia(Col-0)wasusedfortherecruit-mentofendophyticactinobacteriaunderlabcondi-tions.
Plantsweregrownonamixtureof9:1substratesoilandsand(HollandPotgrond)at21°C,a16hphotoperiod,and70%relativehumidity.
After2weeksofgrowth,theplantswereharvested.
SoilfortheeldexperimentwithA.
thalianaecotypeMossel(Msl)wascollectedinMay2016attheMosselareaatthe'HogeVeluwe'intheNetherlands(coor-dinates:N52°03035.
500E5°45006.
400),fromfourdiffer-entspotswithinaradiusof100m.
Iftherewasanyvegetationpresent,thetop5–10cmsoilwasremoved.
Thesoilwashomogenisedandalllargepartssuchasdeadrootsandstoneswereremoved.
Thesoilwaskeptinacoldroomat4°Cuntiluse.
Seedsweresterilisedin49dilutedhouseholdbleachfor10min,washedseventimeswithsterileMQwater,ashortrinsewith70%ethanolandtransferredtoplateswithawetlterpaper,placedat4°Cfor48handthenmovedtoa21°Cincubatorinthedark.
Mosselsoilwasplacedinatraywith393cmpotsandwatered.
Toremovetheendogenousseedpopulation,thetraywasplacedinthegreenhousefor2days.
Afterweeding,thesterileseedlingsontheplatesweretransplantedtothetraywithMosselsoilandafter7daystheplantsincludingthesoilwereplantedintototheMosseleld.
After6weeksofgrowthintheeld,plantswereharvestedusingasmallshovel3–4cmaroundthebaseoftheplant.
IsolationofendophytesA.
thalianaCol-0wassurfacesterilisedbywashingtheplantthreetimesin70%EtOH,afterwhichtheplantmaterialwascrushedinMQ.
SterilizationwasconrmedbyaddingasterilisedplantontoLBagar,afterwhichnobacterialgrowthwasobserved.
RoottissueofA.
thalianaMslwascleaned,sonicatedandgroundwithmortarandpestlein1mLphosphatebuffer(perlitre:6.
33gofNaH2PO4H2O,10.
96gofNa2HPO42H2Oand200lLSilwetL-77).
Boththecrushedplantmaterial(Col-0)andsonicatedplantmaterial(Msl)werespreadontothesurfaceofarangeofselectiveisolationmediaincludinghumicacidagar(HA)(HayakawaandNonomura1987),glucose686AntonievanLeeuwenhoek(2018)111:679–690123caseinagar(GCA)(Zhang1985),soyourmannitolmedium(SFM)orminimalmedium(MM)(Kieseretal.
2000).
Initialselectionwasdoneonmediasupplementedwiththeantifungalagentnystatin(50lg/mL)andtheantibacterialagentnalidixicacid(10lg/mL).
Plateswereincubatedat30°Cfor4–25days.
PlantharvestingandDNAisolationofthemicrobialcommunityForA.
thalianaMslweappliedtheharvestingprotocolasdescribedbefore(Lundbergetal.
2012).
Inshort,rootsincludingrhizosphericsoilwerecollectedina50mLtubecontaining25mLofphosphatebuffer,andvortexedfor15s.
Replacingthebufferandvortexingwasrepeateduntilthebufferstayedclear.
Rootsweretransferredtoa15mLtube,sonicated(5burstsof30swith30sbreaks),vortexed,washedwithphosphatebufferanddriedonlterpaper.
Then,therootswereeithergroundforbacterialisolation,orashfrozenandstoredat-80°CforlaterDNAisolation.
Fourindividualplantswerepooledintoonesample.
UntreatedtoothpickswereinsertedintotheMslsoilataminimaldepthof4cmandwereutilisedaswoodcompartment.
DNAwasisolatedfromsoilusingtheMoBioPowerSoilkitandECandtoothpicksampleswiththeMPBioFastDNAspinkit.
QualityandquantityoftheDNAwascheckedbynanodropandgelelectrophoresis.
Around400ngwassentfor16srDNAsequencingatBeijingGenomicsInstitute(BGI).
AmpliconsequencingUsingprimers515F(50-GTGYCAGCMGCCGCGG-TAA-30)and806R(50-GGACTACNVGGGTWTC-TAAT-30),theV4regionwassequencedatBGIontheHiSeq2500sequencingplatform(Illumina).
RawdatafromBGIwasprocessedusingapreviouslyreportedcustomimplementation(Perez-Jaramilloetal.
2017)ofQIIME(Caporasoetal.
2010)withminormodi-cations(describedbySchneijderbergetal.
,inprep).
Inshort,readswerequalitylteredandlteredforchimerasusingChimeraSlayer.
Usinga97%identitythreshold,denovoOTUsweredetermined,whichweretaxonomicallyassignedusingtheRDPclassier2.
10(Coleetal.
2014)withtheGreenGenesdatabase28(DeSantisetal.
2006).
OTUsrelatedtomitochondialandchloroplastsequenceswereremoved,asweretheOTUsthatdidnothave25readsinatleast5samples(''raretaxa'').
ToobtainrelativeabundanceoftheOTUs,thenumberofreadsfromasingleOTUpersamplewasdividedbythetotalnumberofreadsofthatsampleafterlteringforraretaxa.
Analysisofactinobacteriabasedon16SrRNAsequencesThe16SrRNAgenesoftheactinobacteriawereampliedbyPCRfromliquid-grownmyceliausingprimersF1(50-GCGTGCTTAACACATGCAAG-30)andR1(50-CGTATTACCGCGGCTGCTG-30),whichcorrespondtontpositions15-34and465-483ofthe16SrRNAlocusofS.
coelicolor(vanWezeletal.
1991),respectively.
PCRswereconductedasdescribed(Colsonetal.
2007)andsequencedusingoligonucleotideF1.
SequencingwasdoneatBase-ClearinLeiden,theNetherlands.
16SrRNAgeneanalysiswasperformedusingwebbasedidentifytoolonEzBioCloud(https://www.
ezbiocloud.
net/identify).
Theidentifyserviceprovidesprovensimi-larity-basedsearchesagainstquality-controlleddata-basesof16SrRNAsequences.
Thetop-hitinformationforeachIdentifyJobwascheckedagainstStrepto-mycesfocusedMLSAbasedphylogenetictreepub-lishedelsewhere(Labedaetal.
2017).
MicroscopyLightmicroscopyStereomicroscopywasdoneusingaZeissLumarV12microscopeequippedwithaAxioCamMRc,andconfocalmicroscopyusingaZeissObserverMicro-scope.
Forconfocalmicroscopy,sporesoftheendo-phytewereaddedtotheseeds.
SeedswereputonMurashigeandSkoogmediumwith1%sucroseand0.
8%agarandkeptinthedarkat4°for48h.
Afterthecoldshock,seedswereincubatedintheclimateroomfor1week(seebacteria,plantsandgrowthcondi-tions)afterwhichtheywereimaged.
Sampleswerestainedwithpropidiumiodide1:1000(1lg/mL).
Sampleswereexcitedwithlaserlightatawavelength535nmtodetectthepropidiumiodide.
AntonievanLeeuwenhoek(2018)111:679–690687123ElectronmicroscopyMorphologicalstudiesonsinglecoloniesofendo-phytesbySEMwereperformedusingaJEOLJSM6700Fscanningelectronmicroscope.
ForStrep-tomyceteonlysamples,piecesofagarwithbiomassfrom6-day-oldcoloniesgrownonSFMwerecutandxedwith1.
5%glutaraldehyde(1h).
Subsequently,samplesweredehydrated(70%acetone15min,80%acetone15min,90%acetone15min,100%acetone15minandcriticalpointdried(BaltecCPD-030).
Hereafterthesampleswerecoatedwithgoldusingagoldsputtercoater,anddirectlyimagedusingaJEOLJSM6700F.
ForSEMofArabidopissamples,imagingtimingwasincreasedfour-foldtooptimisexationanddehydration,andthe70%acetonestepwasdoneovernight.
Transmissionelectronmicroscopy(TEM)fortheanalysisofcross-sectionsofArabidopsisrootsandStreptomyceswasperformedwithaJEOL1010trans-missionelectronmicroscopeasdescribedpreviously(Pietteetal.
2005).
Samplesweregrowninthesamewayasforthelightmicroscopy,andxedwith1.
5%glutaraldehydefor4h.
Post-xationwasperformedwith1%Osmiumtetroxidefor4h.
Initialdehydrationwith70%ethanolwasdoneovernight.
Hereafterusingahighmagni-cation(9150)stereomicroscope(MZ16AF)rootsectionscontainingStreptomycesgrowthwereselected,followedbydehydrationin1hsteps(80,90,100%ethanol,100%propyleneoxide,50/50propyleneoxide/EPON,100%EPON).
SubsequentlysampleswereembeddedinEPONandpolymerisedfor2daysat60°C.
Ultrathinsectionswerecutonanultramicrotome(ReichertUltracutE),collectedoncoppergridsandexaminedusingaJeol1010trans-missionelectronmicroscopeat70kV.
AntimicrobialactivityassaysAntimicrobialactivityoftheendophyteswastestedagainstB.
subtilis168oraderivativeofE.
coliAS19-RrmA(LiuandDouthwaite2002).
IndicatorbacteriawereculturedinLBbrothandincubatedat37°Covernight.
Antimicrobialassayswereconductedusingthedouble-layeragarmethod.
Briey,actinobacteriawereinoculatedonminimalmediumagarplatescontainingbothmannitolandglycerol(1%w/v)asnon-repressingcarbonsources,sincenotallStreptomycesgrowequallywelloneithermannitolorglycerol.
Theagarplatesweresupplementedwitheither(±)-jasmonicacid(Caymanchemicalcompany,cas:88-30-0),3-indoleaceticacid(Sigma-Aldrich,cas:87-51-4)orsalicyclicacid(AlfaAesar,cas:69-72-7).
Theendophytesweretypicallyincubatedfor5daysat30°C,followingwhichtheywereoverlaidwithLBsoftagar(0.
6%w/vagar)containing300lLofoneoftheindicatorstrains(OD0.
4–0.
6),andthenincubatedovernightat37°C.
Thefollowingday,antibacterialactivitywasdeterminedbymeasuringtheinhibitionzones(mm)oftheindicatorstrainsur-roundingthecolonies.
AcknowledgementsThisworkwassupportedbyaGrants14218and14221fromtheNetherlandsOrganizationforScienticresearch(NWO)toJRandGPvW,respectively.
ConictofinterestTheauthorsdeclarenoconictofinterests.
OpenAccessThisarticleisdistributedunderthetermsoftheCreativeCommonsAttribution4.
0InternationalLicense(http://creativecommons.
org/licenses/by/4.
0/),whichpermitsunre-stricteduse,distribution,andreproductioninanymedium,providedyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreativeCom-monslicense,andindicateifchangesweremade.
ReferencesAnneJ,VanMellaertL,EyssenH(1990)OptimumconditionsforefcienttransformationofStreptomycesvenezuelaeprotoplasts.
ApplMicrobiolBiotechnol32:431–435BarkaEA,VatsaP,SanchezL,Gavaut-VaillantN,JacquardC,KlenkHP,ClementC,OudouchY,vanWezelGP(2016)Taxonomy,physiology,andnaturalproductsoftheActi-nobacteria.
MicrobiolMolBiolRev80:1–43BerdyJ(2005)Bioactivemicrobialmetabolites.
JAntibiot(Tokyo)58:1–26BignellDRD,SeipkeRF,Huguet-TapiaJC,ChambersAH,ParryRJ,LoriaR(2010)Streptomycesscabies87-22containsacoronafacicacid-likebiosyntheticclusterthatcontributestoplant-microbeinteractions.
MolPlant-Mi-crobeInteract23:161–175BonaldiM,ChenX,KunovaA,PizzattiC,SaracchiM,CortesiP(2015)ColonizationoflettucerhizosphereandrootsbytaggedStreptomyces.
FrontMicrobiol6:25BukhalidRA,ChungSY,LoriaR(1998)nec1,ageneconfer-ringanecrogenicphenotype,isconservedinplant-patho-genicStreptomycesspp.
andlinkedtoatransposasepseudogene.
MolPlant-MicrobeInteract11:960–967BulgarelliD,RottM,SchlaeppiK,LorenVer,vanThemaatE,AhmadinejadN,AssenzaF,RaufP,HuettelB,Reinhardt688AntonievanLeeuwenhoek(2018)111:679–690123R,SchmelzerE,PepliesJ,GloecknerFO,AmannR,EickhorstT,Schulze-LefertP(2012)RevealingstructureandassemblycuesforArabidopsisroot-inhabitingbacte-rialmicrobiota.
Nature488:91–95CaporasoJG,KuczynskiJ,StombaughJ,BittingerK,BushmanFD,CostelloEK,FiererN,PenaAG,GoodrichJK,GordonJI,HuttleyGA,KelleyST,KnightsD,KoenigJE,LeyRE,LozuponeCA,McDonaldD,MueggeBD,PirrungM,ReederJ,SevinskyJR,TurnbaughPJ,WaltersWA,Wid-mannJ,YatsunenkoT,ZaneveldJ,KnightR(2010)QIIMEallowsanalysisofhigh-throughputcommunitysequencingdata.
NatMethods7:335–336ColeJR,WangQ,FishJA,ChaiB,McGarrellDM,SunY,BrownCT,Porras-AlfaroA,KuskeCR,TiedjeJM(2014)Ribosomaldatabaseproject:dataandtoolsforhighthroughputrRNAanalysis.
NuclAcidsRes42:D633–642ColsonS,StephanJ,HertrichT,SaitoA,vanWezelGP,Tit-gemeyerF,RigaliS(2007)Conservedcis-actingelementsupstreamofgenescomposingthechitinolyticsystemofstreptomycetesareDasR-responsiveelements.
JMolMicrobiolBiotechnol12:60–66DeSantisTZ,HugenholtzP,LarsenN,RojasM,BrodieEL,KellerK,HuberT,DaleviD,HuP,AndersenGL(2006)Greengenes,achimera-checked16SrRNAgenedatabaseandworkbenchcompatiblewithARB.
ApplEnvironMicrobiol72:5069–5072DoumbouCL,AkimovVV,BeaulieuC(1998)SelectionandcharacterizationofmicroorganismsutilizingthaxtominA,aphytotoxinproducedbyStreptomycesscabies.
ApplEnvironMicrobiol64:4313–4316EdwardsJ,JohnsonC,Santos-MedellinC,LurieE,PodishettyNK,BhatnagarS,EisenJA,SundaresanV(2015)Struc-ture,variation,andassemblyoftheroot-associatedmicrobiomesofrice.
ProcNatlAcadSciUSA112:E911–920FrancoCM,AdetutuEM,LeHX,BallardRA,AraujoR,TobeSS,PaulB,MallyaS,SatyamoorthyK(2017)CompletegenomesequencesoftheendophyticStreptomycessp.
strainsLUP30andLUP47B,isolatedfromlucerneplants.
GenomeAnnounc5:e00556GirardG,TraagBA,SangalV,MasciniN,HoskissonPA,GoodfellowM,vanWezelGP(2013)Anoveltaxonomicmarkerthatdiscriminatesbetweenmorphologicallycom-plexactinomycetes.
OpenBiol3:130073GoodfellowM(2012)PhylumXXVI.
Actinobacteriaphyl.
nov.
In:GoodfellowM,Ka¨mpferP,BusseH-Jetal.
(eds)Bergey'smanualofsystematicbacteriology,vol5.
TheActinobacteria,PartsAandB,2ndedn.
Springer,NewYork,pp1–2083.
https://doi.
org/10.
1007/978-0-387-68233-4GubbensJ,ZhuH,GirardG,SongL,FloreaBI,AstonP,IchinoseK,FilippovDV,ChoiYH,OverkleeftHS,ChallisGL,vanWezelGP(2014)Naturalproductproteomining,aquantitativeproteomicsplatform,allowsrapiddiscoveryofbiosyntheticgeneclustersfordifferentclassesofnaturalproducts.
ChemBiol21:707–718HalimVA,VessA,ScheelD,RosahlS(2006)Theroleofsalicylicacidandjasmonicacidinpathogendefence.
PlantBiol8:307–313HayakawaM,NonomuraH(1987)Humicacid-vitaminagar,anewmediumforselectiveisolationofsoilactinomycetes.
JFermentTechnol65:501–509HopwoodDA(2007)Streptomycesinnatureandmedicine:theantibioticmakers.
OxfordUniversityPress,NewYorkJourdanS,FrancisIM,KimMJ,SalazarJJ,PlanckaertS,FrereJM,MatagneA,KerffF,DevreeseB,LoriaR,RigaliS(2016)TheCebE/MsiKtransporterisadoorwaytothecello-oligosaccharide-mediatedInductionofStreptomycesscabiesPathogenicity.
SciRep6:27144KeijserBJ,vanWezelGP,CantersGW,KieserT,VijgenboomE(2000)Theram-dependenceofStreptomyceslividansdifferentiationisbypassedbycopper.
JMolMicrobiolBiotechnol2:565–574KieserT,BibbMJ,ButtnerMJ,ChaterKF,HopwoodDA(2000)PracticalStreptomycesgeneticsnorwich.
UKJohnInnesFoundation,NorwichKimTU,ChoSH,HanJH,ShinYM,LeeHB,KimSB(2012)DiversityandphysiologicalpropertiesofrootendophyticactinobacteriainnativeherbaceousplantsofKorea.
JMi-crobiol50:50–57KolterR,vanWezelGP(2016)GoodbyetobruteforceinantibioticdiscoveryNatMicrobiol1:15020KortemaaH,RitaH,HaahtelaK,SmolanderA(1994)RootcolonizationabilityofantagonisticStreptomycesgriseo-viridis.
PlantSoil163:77–83KruasuwanW,SalihTS,BrozioS,HoskissonPA,Tham-chaipenetA(2017)Draftgenomesequenceofplantgrowth-promotingendophyticStreptomycessp.
GKU895isolatedfromtherootsofsugarcane.
GenomeAnnounc5:e00358LabedaDP,DunlapCA,RongX,HuangY,DoroghaziJR,JuKS,MetcalfWW(2017)PhylogeneticrelationshipsinthefamilyStreptomycetaceaeusingmulti-locussequenceanalysis.
AntonieVanLeeuwenhoek110:563–583LambertS,TraxlerMF,CraigM,MaciejewskaM,OngenaM,vanWezelGP,KolterR,RigaliS(2014)Altereddesfer-rioxamine-mediatedironutilizationisacommontraitofbaldmutantsofStreptomycescoelicolor.
Metallomics6:1390–1399LebeisSL,ParedesSH,LundbergDS,BreakeldN,GehringJ,McDonaldM,MalfattiS,GlavinadelRioT,JonesCD,TringeSG,DanglJL(2015)Salicylicacidmodulatescolonizationoftherootmicrobiomebyspecicbacterialtaxa.
Science349:860–864LeeSO,ChoiGJ,ChoiYH,JangKS,ParkDJ,KimCJ,KimJC(2008)Isolationandcharacterizationofendophyticacti-nomycetesfromChinesecabbagerootsasantagoniststoPlasmodiophorabrassicae.
JMicrobiolBiotechnol18:1741–1746LiuM,DouthwaiteS(2002)Activityoftheketolideteli-thromycinisrefractorytoErmmonomethylationofbac-terialrRNA.
AntimicrobAgentsChemother46:1629–1633LoriaR,KersJ,JoshiM(2006)EvolutionofplantpathogenicityinStreptomyces.
AnnuRevPhytopathol44:469–487LundbergDS,LebeisSL,ParedesSH,YourstoneS,GehringJ,MalfattiS,TremblayJ,EngelbrektsonA,KuninV,delRioTG,EdgarRC,EickhorstT,LeyRE,HugenholtzP,TringeSG,DanglJL(2012)DeningthecoreArabidopsisthali-anarootmicrobiome.
Nature488:86–90AntonievanLeeuwenhoek(2018)111:679–690689123MiskA,FrancoC(2011)Biocontrolofchickpearootrotusingendophyticactinobacteria.
Biocontrol56:811–822NettM,IkedaH,MooreBS(2009)Genomicbasisfornaturalproductbiosyntheticdiversityintheactinomycetes.
NatProdRep26:1362–1384NguyenDD,WuCH,MoreeWJ,LamsaA,MedemaMH,ZhaoX,GavilanRG,AparicioM,AtencioL,JacksonC,BallesterosJ,SanchezJ,WatrousJD,PhelanVV,vandeWielC,KerstenRD,MehnazS,DeMotR,ShankEA,CharusantiP,NagarajanH,DugganBM,MooreBS,BandeiraN,PalssonBO,PoglianoK,GutierrezM,Dor-resteinPC(2013)MS/MSnetworkingguidedanalysisofmoleculeandgeneclusterfamilies.
ProcNatlAcadSciUSA110:E2611–2620Perez-JaramilloJE,CarrionVJ,BosseM,FerraoLFV,deHollanderM,GarciaAAF,RamirezCA,MendesR,RaaijmakersJM(2017)LinkingrhizospheremicrobiomecompositionofwildanddomesticatedPhaseolusvulgaristogenotypicandrootphenotypictraits.
ISMEJ11:2244–2257PietteA,DerouauxA,GerkensP,NoensEE,MazzucchelliG,VionS,KoertenHK,TitgemeyerF,DePauwE,LeprinceP,vanWezelGP,GalleniM,RigaliS(2005)FromdormanttogerminatingsporesofStreptomycescoelicolorA3(2):newperspectivesfromthecrpnullmutant.
JProteomeRes4:1699–1708RamijanK,WillemseJ,UlteeE,WondergemJ,vanderMeijA,BriegelA,HeinrichA,vanWezelGP,ClaessenD(2016)Reversiblemetamorphosisinabacterium.
BioRXiv.
https://doi.
org/10.
1101/094037Rivas-SanVicenteM,PlasenciaJ(2011)Salicylicacidbeyonddefence:itsroleinplantgrowthanddevelopment.
JExpBot62:3321–3338RutledgePJ,ChallisGL(2015)Discoveryofmicrobialnaturalproductsbyactivationofsilentbiosyntheticgeneclusters.
NatRevMicrobiol13:509–523SeipkeRF,KaltenpothM,HutchingsMI(2012)Streptomycesassymbionts:anemergingandwidespreadthemeFEMSMicrobiolRev36:862–876SinghSP,GaurR(2016)EvaluationofantagonisticandplantgrowthpromotingactivitiesofchitinolyticendophyticactinomycetesassociatedwithmedicinalplantsagainstSclerotiumrolfsiiinchickpea.
JApplMicrobiol121:506–518vandeMortelJE,deVosRCH,DekkersE,PinedaA,GuillodL,BouwmeesterK,vanLoonJJA,DickeM,RaaijmakersJM(2012)MetabolicandtranscriptomicchangesinducedinArabidopsisbytheRhizobacteriumPseudomonasuo-rescensSS101.
PlantPhysiol160:2173–2188vanderMeijA,WorsleySF,HutchingsMI,vanWezelGP(2017)Chemicalecologyofantibioticproductionbyactinomycetes.
FEMSMicrobiolRev41:392–416vanDisselD,ClaessenD,VanWezelGP(2014)MorphogenesisofStreptomycesinsubmergedcultures.
AdvApplMicro-biol89:1–45vanWezelGP,VijgenboomE,BoschL(1991)AcomparativestudyoftheribosomalRNAoperonsofStreptomycescoelicolorA3(2)andsequenceanalysisofrrnA.
NuclAcidsRes19:4399–4403vanWezelGP,McKenzieNL,NodwellJR(2009)Applyingthegeneticsofsecondarymetabolisminmodelactinomycetestothediscoveryofnewantibiotics.
MethodsEnzymol458:117–141ViaeneT,LangendriesS,BeirinckxS,MaesM,GoormachtigS(2016)Streptomycesasaplant'sbestfriendFEMSMicrobiolEcol92:w119WuC,KimHK,vanWezelGP,ChoiYH(2015)Metabolomicsinthenaturalproductseld—agatewaytonovelantibi-otics.
DrugDiscovTodayTechnol13:11–17ZhangJ(1985)Microbialtaxonomy.
FudanUniversityPress,Shanghai,pp214–218ZhaoY(2010)Auxinbiosynthesisanditsroleinplantdevel-opment.
AnnuRevPlantBiol61:49–64ZhuH,SandifordSK,vanWezelGP(2014a)Triggersandcuesthatactivateantibioticproductionbyactinomycetes.
JIndMicrobiolBiotechnol41:371–386ZhuH,SwierstraJ,WuC,GirardG,ChoiYH,vanWamelW,SandifordSK,vanWezelGP(2014b)ElicitingantibioticsactiveagainsttheESKAPEpathogensinacollectionofactinomycetesisolatedfrommountainsoils.
Microbiology160:1714–1725690AntonievanLeeuwenhoek(2018)111:679–690123
【双十二】兆赫云:全场vps季付六折优惠,低至50元/季,1H/1G/30M/20G数据盘/500G流量/洛杉矶联通9929商家简介:兆赫云是一家国人商家,成立2020年,主要业务是美西洛杉矶联通9929线路VPS,提供虚拟主机、VPS和独立服务器。VPS采用KVM虚拟架构,线路优质,延迟低,稳定性强。是不是觉得黑五折扣力度不够大?还在犹豫徘徊中?这次为了提前庆祝双十二,特价推出全场季付六折优惠。...
reliablesite怎么样?reliablesite是一家于2006年成立的老牌美国主机商,主要提供独服,数据中心有迈阿密、纽约、洛杉矶等,均免费提供20Gbps DDoS防护,150TB月流量,1Gbps带宽。月付19美金可升级为10Gbps带宽。洛杉矶/纽约/迈阿密等机房,E3-1240V6/64GB内存/1TB SSD硬盘/DDOS/150TB流量/1Gbps带宽/DDOS,$95/月,...
大硬盘服务器、存储服务器、Chia矿机。RackNerd,2019年末成立的商家,主要提供各类KVM VPS主机、独立服务器和站群服务器等。当前RackNerd正在促销旗下几款美国大硬盘服务器,位于洛杉矶multacom数据中心,亚洲优化线路,非常适合存储、数据备份等应用场景,双路e5-2640v2,64G内存,56G SSD系统盘,160T SAS数据盘,流量是每月200T,1Gbps带宽,配5...
ww.4399为你推荐
www.jjwxc.net有那个网站可以看书?www.e12.com.cn有什么好的高中学习网?336.com求那个网站 你懂得 1552517773@qqip在线查询通过对方的IP地址怎么样找到他的详细地址?广告法广告法有什么字不能用www.hyyan.com请问我是HY了吗?在线等dpscycle痛苦术士PVE输出宏朴容熙这个人男的女的,哪国人。叫什么。222cc.com怎样开通网站啊邯郸纠风网邯郸市信访局地址
域名大全 已备案域名注册 韩国空间 香港托管 账号泄露 一点优惠网 hnyd 浙江独立 合肥鹏博士 100m空间 购买国外空间 最漂亮的qq空间 后门 免费赚q币 香港博客 fatcow websitepanel webmin server2008 gotoassist 更多