BayesianRobustLinearTransceiverDesignforDual-HopAmplify-and-ForwardMIMORelaySystemsChengwenXing,ShaodanMaandYik-ChungWuDepartmentofElectricalandElectronicEngineeringTheUniversityofHongKong,HongKongEmail:{cwxing,sdma,ycwu}@eee.
hku.
hkAbstract—Inthispaper,weaddresstherobustlineartransceiverdesignfordual-hopamplify-and-forward(AF)MIMOrelaysystems,wherebothtransmittersandreceivershaveimperfectchannelstateinformation(CSI).
WiththestatisticsofchannelestimationerrorsinthetwohopsbeingGaussian,wefor-mulatetherobustlinear-minimum-mean-square-error(LMMSE)transceiverdesignproblemusingtheBayesianframework,andderiveaclosed-formsolution.
Simulationresultsshowthattheproposedalgorithmreducesthesensitivityoftherelaysystemtochannelestimationerrors,andperformsbetterthanthealgorithmusingestimatedchannelonly.
I.
INTRODUCTIONRecently,cooperativecommunicationhasgainedsignicantinterest,duetoitsgreatpotentialstoimprovereliability,coverageandcapacityofwirelesslinks[1][2].
Generallyspeaking,therearethreekindsofrelayprotocols,amplify-and-forward(AF),compress-and-forward(CF)anddecode-and-forward(DF).
Amongthethreeschemes,AFisconceptuallythesimplestone,inwhichtherelayjustscalesthesignaltrans-mittedfromthesource,andthentransmitstothedestination.
Duetoitssimplicityandlowimplementationcomplexity,AFstrategyhasreceivedmanyresearchers'attention.
Ontheotherhand,itiswell-knownthatinfullyscatteredenvironments,multiantennasystemsprovidespatialdiversityandmultiplexinggains.
Thiskindofbenetscanbedirectlyintroducedintocooperativecommunicationsviadeploymentofmultipleantennasattransmittersandreceivers.
Thecom-binationofAFandMIMOsystemsbringsgreatpotentialsinperformanceimprovement.
LineartransceiverdesignforAFMIMOrelaysystemshasbeenaddressedin[2],[3],[4]and[5].
ThecapacityscalinglawofMIMOrelaynetworkshasbeendiscussedin[2].
Thelineartransceiverdesignforthexedrelayincellularnet-workshasbeenaddressedin[3].
Jointlinear-minimum-mean-square-error(LMMSE)transceiverdesignforAFMIMOrelaysystemsisconsideredin[4]and[5].
However,alloftheabovementionedworksrequirethechannelstateinformation(CSI)perfectlyknownatthetransmittersandreceivers.
Unfortunately,inpracticalsystems,channelestimationer-rorsareinevitable,whichshouldbetakenintoaccountintransceiverdesign.
Inthispaper,weproposearobustlineartransceiverdesignmethodforAFMIMOrelaysystems.
TheTheRelayTheDestinationTheSourcesNRNRMDMFGsrHrdHssFig.
1.
Amplify-and-forwardMIMOrelaydiagramchannelestimationerrorsaremodeledasGaussianrandomvariables.
ThestatisticsofthechannelestimationerrorsareincorporatedintothedesignusingtheBayesianframework,andaclosed-formsolutionisobtained.
Simulationresultsshowthattheproposedalgorithmperformsbetterthanthealgorithmusingestimatedchannelonly.
Thefollowingnotationsareusedthroughoutthispaper.
Boldfacelowercaselettersdenotevectors,whileboldfaceuppercaselettersdenotematrices.
ThenotationZHdenotestheHermitianofthematrixZ,andTr(Z)isthetraceofthematrixZ.
ThesymbolIMdenotesanM*Midentitymatrix,while0M,NdenotesanM*Nallzeromatrix.
ThenotationZ12istheHermitiansquarerootofthepositivesemidenitematrixZ,suchthatZ12Z12=ZandZ12isalsoaHermitianmatrix.
II.
PROBLEMFORMULATIONInthispaper,adual-hopamplify-and-forward(AF)cooper-ativecommunicationsystemisconsidered.
Intheconsideredsystem,thereisonesourcewithNSantennas,onerelaywithMRreceiveantennasandNRtransmitantennas,andonedestinationwithMDantennas,asshowninFig.
1.
Atthersthop,thesourcetransmitsdatatotherelay.
Thereceivedsignal,x,attherelayisx=Hsrs+n1(1)wheresisthedatavectortransmittedbythesourcewiththecovariancematrixRs=E{ssH}.
ThematrixHsristheMIMOchannelmatrixbetweenthesourceandtherelay.
Symboln1istheadditiveGaussiannoisewithcovariancematrixRn1.
Attherelay,thereceivedsignalxismultipliedbyaprecodermatrixF,underapowerconstraintTr(FRxFH)≤ThisfulltextpaperwaspeerreviewedatthedirectionofIEEECommunicationsSocietysubjectmatterexpertsforpublicationintheIEEE"GLOBECOM"2009proceedings.
978-1-4244-4148-8/09/$25.
002009PwhereRx=E{xxH}andPisthemaximumtransmitpower.
Thentheresultingsignalistransmittedtothedestina-tion.
Thereceivedsignalatthedestination,y,canbewrittenasy=HrdFHsrs+HrdFn1+n2,(2)whereHrdistheMIMOchannelmatrixbetweentherelayandthedestination,andn2istheadditiveGaussiannoisevectoratthesecondhopwithcovariancematrixRn2.
Inordertoguaranteethetransmitteddatascanberecoveredatthedestination,itisassumedthatMR,NR,andMDaregreaterthanorequaltoNS[4].
Itisassumedthatboththerelayanddestinationhavetheestimatedchannelstateinformation(CSI).
Whenchannelestimationerrorsareconsidered,wehaveHsr=Hsr+ΔHsr,Hrd=Hrd+ΔHrd,(3)wherethesymbolsHsrandHrdaretheestimatedCSI,whileΔHsrandΔHrdarethecorrespondingchannelestimationerrorswhoseelementsarezeromeanGaussianrandomvari-ables.
Ingeneral,theMR*NSmatrixΔHsrcanbewrittenasΔHsr=Σ12srHWΨ12srwheretheelementsoftheMR*NSmatrixHWareindependentandidenticallydistributed(i.
i.
d.
)Gaussianrandomvariableswithzeromeanandunitvariance.
TheMR*MRmatrixΣsrandNS*NSmatrixΨTsraretherowandcolumncovariancematricesofΔHsr,respectively[6].
Itiseasytoseethatvec(ΔHTsr)CN(0MR*NS,ΣsrΨTsr)basedonwhichΔHsrissaidtohaveamatrix-variatecomplexGaussiandistribution,whichcanbewrittenas[7]ΔHsrCNMR,NS(0MR,NS,ΣsrΨTsr),(4)withtheprobabilitydensityfunction(p.
d.
f.
)givenby[8][9]f(ΔHsr)=exp(Tr((ΔHsr0)HΣ1sr(ΔHsr0)Ψ1sr))(π)NSMRdet(Σsr)NSdet(Ψsr)MR.
(5)Similarly,fortheestimationerrorinthesecondhop,wehaveΔHrdCNMD,NR(0MD,NR,ΣrdΨTrd)(6)wheretheMD*MDmatrixΣrdandNR*NRmatrixΨTrdaretherowandcolumncovariancematricesofΔHrd,respectively.
Itisassumedthatthechannelestimationerrors,ΔHsrandΔHrd,areindependent.
Atthedestination,alinearequalizerGisadoptedtodetectthetransmitteddatas.
TheproblemishowtodesignthelinearprecodermatrixFattherelayandthelinearequalizerGatthedestinationtominimizethemeansquareerrors(MSE)ofthereceiveddataatthedestination:MSE(F,G)=E{Tr(Gys)(Gys)H},(7)wheretheexpectationistakenwithrespecttos,ΔHsr,ΔHrd,n1andn2.
III.
ROBUSTTRANSCEIVERDESIGNFORMIMORELAYA.
MSEAveragedoverChannelUncertaintiesSinces,n1andn2areindependent,theMSEexpression(7)canbewrittenasMSE(F,G)=E{(GHrdFHsrINS)s+GHrdFn1+Gn22}=EΔHsr,ΔHrd{Tr((GHrdFHsrI)Rs(GHrdFHsrI)H)}+EΔHrd{Tr(GHrdF)Rn1(GHrdF)H}+Tr(GRn2GH)=EΔHsr,ΔHrd{Tr(GHrdFHsr)Rs(GHrdFHsr)H}+TrGEΔHrd{HrdFRn1FHHHrd}GHTrRs(GHrdFHsr)HTrGHrdFHsrRs+Tr(Rs)+Tr(GRn2GH).
(8)BecauseΔHsrandΔHrdareindependent,thersttermofMSEisEΔHsr,ΔHrd{Tr(GHrdFHsr)Rs(GHrdFHsr)H}=TrGEΔHrdHrdFEΔHsr{HsrRsHHsr}FHHHrdGH.
(9)Fortheinnerexpectation,duetothefactthatthedistributionofΔHsrismatrix-variatecomplexGaussianwithzeromean,thefollowingequationholds[7]EΔHsr{HsrRsHHsr}=EΔHsr{(Hsr+ΔHsr)Rs(Hsr+ΔHsr)H}=Tr(RsΨsr)Σsr+HsrRsHHsrΠ0.
(10)Applying(10)andthecorrespondingresultforΔHrdto(9),thersttermofMSEbecomesTrGEΔHrdHrdFEΔHsr{HsrRsHHsr}FHHHrdGH=Tr(G(Tr(FΠ0FHΨrd)Σrd+HrdFΠ0FHHHrd)GH).
(11)Similarly,thesecondtermofMSEin(8)canbesimpliedasTrGEΔHrd{HrdFRn1FHHHrd}GH=Tr(GTr(FRn1FHΨrd)Σrd+HrdFRn1FHHHrdGH).
(12)Basedon(11)and(12),theMSE(8)equalstoMSE(F,G)=TrG(HrdFRxFHHHrd+K)GHTrRsHHsrFHHHrdGHTrRsGHrdFHsr+Tr(Rs)(13)whereRx=Π0+Rn1(14)K=Tr(F(Π0+Rn1)FHΨrd)Σrd+Rn2.
(15)NoticethatthematrixRxistheautocorrelationmatrixofthereceivesignalxattherelay.
ThisfulltextpaperwaspeerreviewedatthedirectionofIEEECommunicationsSocietysubjectmatterexpertsforpublicationintheIEEE"GLOBECOM"2009proceedings.
978-1-4244-4148-8/09/$25.
002009B.
JointRobustDesignofEqualizerandPrecoderSubjecttothetransmitpowerconstraintattherelay,thejointdesignofequalizerandprecodercanbeexpressedasthefollowingoptimizationproblemminF,GMSE(F,G)s.
t.
Tr(FRxFH)≤P.
(16)SincetheconstraintdoesnotinvolvetheequalizerG,whentheprecodermatrixFisxed,theoptimallinearequalizer,Gopt,satisesthefollowingconditionMSE(F,G)G=0,(17)basedonwhichwehaveGopt=Rs(HrdFHsr)H(HrdFRxFHHHrd+K)1.
(18)Substituting(18)into(13),theMSEatthedestinationequalstoMSE(F)=Tr(Rs)Tr(RsHHsr[FHHHrd(HrdFRxFHHHrd+K)1HrdF]HsrRs).
(19)SinceK12andRx12arebothHermitianmatrices,exploitingthematrixinversionlemma,wehaveFHHHrd(HrdFRxFHHHrd+K)1HrdF=RxH2RxH2FHHHrdKH2(K12HrdFRx12RxH2FHHHrdKH2+IMD)1K12HrdFRx12Rx12=Rx1RxH2(RxH2FHHHrdK1HrdFRx12+IMR)1Rx12.
(20)Putting(20)into(19),anddeningtheconstantpartcTr(Rs)Tr(RsHHsrRx1HsrRs),equation(19)canberewrittenasMSE(F)=Tr(RsHHsrRxH2(RxH2FHHHrdK1HrdFRx12+IMR)1Rx12HsrRs)+c.
(21)From(15),K=Tr(FRxFHΨrd)Σrd+Rn2,soMSE(F)isahighorderfunctionofFandtheproblemofminimizing(21)isverydifculttosolve.
Inordertoproceed,noticethat[10]Tr(FRxFH)λmax(Ψrd)Σrd+Rn2K,(22)whereλmax(Z)denotesthelargesteigenvalueofZ.
SincefortheminimumMSE,thecorrespondingtransmitpowermustbeontheboundary(i.
e.
,Tr(FRxFH)=P),wehavePλmax(Ψrd)Σrd+Rn2K.
AsshowninAp-pendixI,whenKin(21)isreplacedbyitsupper-boundΦPλmax(Ψrd)Σrd+Rn2,theresultantMSEexpression,denotedasMSEU(F)anddenedin(43),isanupper-boundofMSE(F)(i.
e.
,MSEU(F)≥MSE(F)).
Therefore,weproposetodesigntheprecoderFbyminimizingMSEU(F),whichcorrespondstominFTr(Rx12HsrRsRsHHsrRxH2T(RxH2FHHHrdΦ1HrdΘFRx12+IMR)1)s.
t.
Tr(FRxFH)≤P(23)wheretheconstantcisneglected,whichdoesnotaffecttheoptimizationproblem.
NoticethatwhenΨrd∝I,thereplacementinvolvesnoapproximation.
Basedoneigendecompostion,wehaveT=UTΛTUHT,(24)Θ=UΘΛΘUHΘ,(25)wherethematricesUTandUΘconsistoftheeigenvectorsofTandΘ,respectively,whilethediagonalmatricesΛTandΛΘcontainstheeigenvaluesofTandΘ,respectively.
Withoutlossofgenerality,itisassumedthatthediagonalelementsofΛTandΛΘareindecreasingorder.
Substituting(24)and(25)into(23)anddeningFUHΘFRx12UT,(26)theoptimizationproblemcanbewritteninacompactformasminFTrΛT(FHΛΘF+IMR)1s.
t.
Tr(FFH)≤P.
(27)Fortheobjectivefunctionof(27),noticethatTr(ΛTB)≥MRi=1λT,iλB,MRi+1(28)whereBisdenedasB(FHΛΘF+IMR)1,λB,iistheithlargesteigenvalueofB,andthesymbolλT,idenotestheithdiagonalelementofΛT.
In(28),theequalityholdswhenthematrixBisdiagonalwithdiagonalelementsinincreasingorder[11,9.
H.
1.
h].
Therefore,fortheoptimalsolution,(FHΛΘF+IMR)1mustbediagonalwithdiagonalelementsinincreasingorder.
Basedonthediagonalstructure,introducingapermutationmatrixwithdimensionM*MasQM=0010.
.
.
0100M,(29)theobjectivefunctionoftheoptimizationproblem(27)canberewrittenasTrΛT(FHΛΘF+IMR)1=TrΛT(FHΛΘF+IMR)1(30)whereΛT=QMRΛTQMRandΛΘ=QNRΛΘQNRareΛTandΛΘwithdiagonalelementsinreverseorder,andF=ThisfulltextpaperwaspeerreviewedatthedirectionofIEEECommunicationsSocietysubjectmatterexpertsforpublicationintheIEEE"GLOBECOM"2009proceedings.
978-1-4244-4148-8/09/$25.
002009QNRFQMR.
WiththefactthatΛTisadiagonalmatrix,theoptimizationproblem(27)canbereformulatedasminf0(b)=dT{ΛT}d{(FHΛΘF+IMR)1}bs.
t.
Tr(FHF)≤P,(31)wherethesymbold{Z}denotesthevectorformedfromthemaindiagonalofZ.
Noticethatbecauseofthepermutationmatrices,theorderofbisthereversetothatofthemaindiagonalofB(i.
e.
,theelementsofbareindecreasingorder).
TogetherwiththefactthatthediagonalelementsofΛTareinincreasingorder,thefunctionf0(b)isSchur-concave[11,3.
H.
3].
Basedon[12,Theorem1],theoptimalF=QNRFQMRfortheproblem(31)haszeroelementsexceptalongtherightmostmaindiagonal.
DeningN=min(Rank(ΛΘ),MR),theoptimalFhasthefollowingstruc-tureF=diag(f1,fN)0N*(MRN)0(NRN)*N0(NRN)*(MRN).
(32)With(32),theoptimizationproblem(27)canberewrittenasminf2iNi=1λT,iλΘ,if2i+1+MRi=N+1λT,is.
t.
Ni=1f2i≤P(33)whereλΘ,idenotestheithdiagonalelementofΛΘ.
Obvi-ously,thesolutionoftheproblem(33)isthemodiedwater-lling[13],andbasedontheKarush-Kuhn-Tucker(KKT)conditionsof(33),wehave[14]f2i,opt=λT,iμλΘ,i1λΘ,i+i=1,N(34)whereμ>0istheLagrangianmultipliersuchthatNi=1f2i,opt=Pholds.
FromthedenitionofFin(26),(32)and(34),wecanwritetheoptimalFcompactlyasFopt=UΘ,N1√μΛ12ΘΛ12TΛ1Θ+12UHT,NRx12(35)where[(Z)+]i,j=max(0,(Z)i,j).
ThematricesΛΘandΛTaretheprinciplesubmatricesofΛΘandΛTwithdimensionsN*N.
ThematricesUΘ,NandUT,NaretherstNcloumnsofUΘandUT,respectively.
Noticethatwhenthesource-relaylinkisnoiselessandthechannelrealizationisperfectlyknown,equation(35)reducestothepoint-to-pointMIMOrobustLMMSEtransceiver[15].
Ifbothtwochannelsareexactlyknown,(35)isexactlythesolutionin[5].
IV.
NUMERICALEXPERIMENTSInthissection,simulationresultswillbeshowntoverifytheeffectivenessoftheproposedalgorithm.
Inthispaper,thesource,relayanddestinationareallequippedwith3antennas.
Atthesource,itisassumedthatthetransmitpowerTr(Rs)=20dBandthemodulationschemeisQPSK.
Theestimatedchannelmatrices,HsrandHrd,areHsr=0.
27140.
3487i0.
61700.
4784i0.
2315+0.
5103i0.
2354+0.
2462i0.
3534+0.
1253i0.
19640.
7238i1.
18090.
3305i0.
3179+2.
3439i0.
19891.
1954iHrd=0.
90020.
4583i0.
96460.
6782i0.
9360+1.
1348i0.
9969+0.
1589i0.
2910+0.
3071i0.
60350.
4315i0.
67981.
1627i0.
7557+0.
3929i0.
37420.
0623i.
(36)TheestimationerrorcorrelationmatricesareassumedtobeΣsr=1ββ2β1ββ2β1Σrd=1ββ2β1ββ2β1Ψsr=0.
031αα2α1αα2α1Ψrd=0.
041αα2α1αα2α1.
(37)Ineachsimulationrun,channelestimationerrors,ΔHsrandΔHrd,aregeneratedindependently,accordingto(4)and(6),respectively,and1000trialsareaveragedtogiveeachpointinthegures.
Fig.
2showstheMSEofthereceivedsignalatthedesti-nationversusthetransmitpowerattherelayP,forthealgo-rithmusingestimatedchannelmatricesonlyandtheproposedBayesianalgorithm,withdifferentvaluesofβ,whenα=0.
4.
Itcanbeseenthatingeneral,thewholesystemperformancedegradeswhenthecorrelationfactorβincreases.
Thisisduetothefactthatchannelcorrelationsreducethenumberofeffectiveeigenchannels[6].
However,theperformanceoftheproposedalgorithmissignicantlybetterthanthealgorithmusingestimatedchannelmatricesonly,regardlessofthevalueofβ.
Fig.
3showsthecorrespondingresultsfordifferentvaluesofα,whenβ=0.
4.
AsimilarconclusiontothatofFig.
2canbedrawn.
V.
CONCLUSIONSInthispaper,wepresentedthejointdesignoflineartransceiversforAFMIMOrelaysystemsundertheknowledgeofestimatedchannelanderrorcovariancematrices.
Thestatis-ticsofchannelestimationerrorswereincorporatedintothetransceiverdesignusingtheBayesianframework.
Aclosed-formsolutionhasbeenderivedandtwoexistingalgorithmswereshowntobespecialcasesofourframework.
Fromthesimulations,itwasfoundthattheproposedalgorithmreducesthesensitivityoftherelaysystemtochannelestimationerrors,andimprovesthesystemperformancegreatly,comparedtothealgorithmusingestimatedchannelonly.
ThisfulltextpaperwaspeerreviewedatthedirectionofIEEECommunicationsSocietysubjectmatterexpertsforpublicationintheIEEE"GLOBECOM"2009proceedings.
978-1-4244-4148-8/09/$25.
002009051015202530100.
7100.
6100.
5100.
4100.
3100.
2α=0.
4P(dB)MSEAlgorithmbasedonestimatedCSI,β=0.
9AlgorithmbasedonestimatedCSI,β=0.
45AlgorithmbasedonestimatedCSI,β=0Proposedalgorithm,β=0.
9Proposedalgorithm,β=0.
45Proposedalgorithm,β=0β=0.
9β=0.
45β=0Fig.
2.
MSEversustransmitpowerattherelayforthealgorithmbasedonestimatedchannelandtheproposedBayesianalgorithm,withdifferentvaluesofβ,whenα=0.
4051015202530100.
7100.
6100.
5100.
4100.
3100.
2β=0.
4P(dB)MSEAlgorithmbasedonestimatedCSI,α=0.
9AlgorithmbasedonestimatedCSI,α=0.
45AlgorithmbasedonestimatedCSI,α=0Proposedalgorithm,α=0.
9Proposedalgorithm,α=0.
45Proposedalgorithm,α=0α=0.
9α=0.
45α=0Fig.
3.
MSEversustransmitpowerattherelayforthealgorithmbasedonestimatedchannelandtheproposedBayesianalgorithmwithdifferentvaluesofα,whenβ=0.
4APPENDIXIForpositiveHermitianmatrices,MandN,ifMN,thefollowinginequalityholds[10,7.
7.
4]N1M1.
(38)Furthermore,foranymatrixA,theinequalityAHN1AAHM1A(39)alwaysholds[10,7.
7.
3.
a].
Addinganidentitymatrixonbothsidesof(39),theinequalitysigndoesnotchange.
Togetherwith(38),wehave(AHM1A+I)1(AHN1A+I)1.
(40)Withtheresultin(39),foranarbitrarymatrixB,wehaveBH(AHM1A+I)1BBH(AHN1A+I)1B.
(41)PuttingA=HrdFRx12,B=Rx12HsrRs,N=KandM=Tr(FRxFH)λmax(Ψrd)Σrd+Rn2,andtakingthetraceonbothsidesof(41),wehaveMSEU(F)≥MSE(F)(42)whereMSEU(F)isdenedasMSEU(F)=Tr(RsHHsrRxH2(RxH2FHHHrdM1HrdFRx12+IMR)1Rx12HsrRs)+c,(43)andMSE(F)isdenedin(21).
ACKNOWLEDGEMENTThisstudywaspartiallysupportedbyagrantfromtheResearchGrantsCounciloftheHongKongSAR.
REFERENCES[1]A.
Scaglione,D.
L.
Goeckel,andJ.
N.
Laneman,"Cooperativecom-municationsinmobileAdHocnetworks,"IEEESignalProcessingMagazine,pp.
18–29,Sept.
2006.
[2]H.
Bolcskei,R.
U.
Nabar,O.
Oyman,andA.
J.
Paulraj,"CapacityscalinglawsinMIMOrelaynetworks,"IEEETrans.
onWirelessComm.
,vol.
5,no.
6,pp.
1433–1443,June2006.
[3]C.
-B.
Chae,T.
Tang,R.
W.
Health,andS.
Cho,"MIMOrelayingwithlinearprocessingformultiusertransmissioninxedrelaynetworks,"IEEETrans.
onSignalProcessing,vol.
56,no.
2,pp.
727–738,Feb.
2008.
[4]A.
S.
Behbahani,R.
Merched,andA.
M.
Eltawil,"OptimizationsofaMIMOrelaynetwork,"IEEETrans.
onSignalProcessing,vol.
56,no.
10,part2,pp.
5062–5073,Oct.
2008.
[5]W.
GuanandH.
Luo,"JointMMSEtransceiverdesigninnon-regenerativeMIMOrelaysystems,"IEEECommunicationsLetters,vol.
12,issue7,pp.
517–519,July2008.
[6]E.
G.
LarssonandP.
Stoica,Space-TimeBlockCodingforWirelessCommunications,CambridgeUniversityPress,2003.
[7]A.
GuptaandD.
Nagar,MatrixVariatesDistributions,London,U.
K.
,Chapamn&Hall/CRC,2000.
[8]A.
P.
Dawid,"Somematrix-variatedistributiontheory:Notationalcon-siderationsandaBayesianapplication,"OxfordJournals,Mathematics&PhysicalSciences,vol.
68,no.
1,pp.
265–274,1981.
[9]A.
T.
James,"Dstributionsofmatrixvariatesandlatentrootsderivedfromnormalsamples,"Ann.
Math.
Statistics,vol.
35,pp.
475–501,1964.
[10]R.
A.
HornandC.
R.
Johnson,MatrixAnalysis,CambridgeUniversityPress,1985.
[11]A.
W.
MarshallandI.
Olkin,Inequalities:TheoryofMajorizationandItsApplication,NewYork,AcademicPress,1979.
[12]D.
P.
Palomar,J.
M.
Ciof,andM.
A.
Lagunas,"JointTx-Rxbeam-formingdesignformulticarrierMIMOchannels:Auniedframeworkforconvexoptimization,"IEEETrans.
onSignalProcessing,vol.
51,no.
9,pp.
2381–2401,Sep.
2003.
[13]F.
FrachineiandJ.
Pang,Finite-DimensionalVariationalInequalitiesandComplementarityProblems,SpringSeriesinOperationResearch,VolumeI,2003.
[14]S.
BoydandL.
Vandenberghe,ConvexOptimization,CambridgeUni-versityPress,2004.
[15]X.
Zhang,D.
P.
Palomar,andB.
Ottersten,"StatisticallyrobustdesignoflinearMIMOtransceiver,"IEEETrans.
onSignalProcessing,vol.
56,no.
8,pp.
3678–3689,Aug.
2008.
ThisfulltextpaperwaspeerreviewedatthedirectionofIEEECommunicationsSocietysubjectmatterexpertsforpublicationintheIEEE"GLOBECOM"2009proceedings.
978-1-4244-4148-8/09/$25.
002009
puaex怎么样?puaex是一家去年成立的国人商家,本站也分享过几次,他家主要销售香港商宽的套餐,给的全部为G口带宽,而且是不限流量的,目前有WTT和HKBN两种线路的方面,虽然商家的价格比较贵,但是每次补一些货,就会被抢空,之前一直都是断货的状态,目前商家进行了补货,有需要这种类型机器的朋友可以入手。点击进入:puaex商家官方网站Puaex香港vds套餐:全部为KVM虚拟架构,G口的带宽,可...
SugarHosts 糖果主机商我们算是比较熟悉的,早年学会建站的时候开始就用的糖果虚拟主机,目前他们家还算是为数不多提供虚拟主机的商家,有提供香港、美国、德国等虚拟主机机房。香港机房CN2速度比较快,美国机房有提供优化线路和普通线路适合外贸业务。德国欧洲机房适合欧洲业务的虚拟主机。糖果主机商一般是不会发布黑五活动的,他们在圣圣诞节促销活动是有的,我们看到糖果主机商发布的圣诞节促销虚拟主机低至6折...
日前,国内知名主机服务商阿里云与国外资深服务器面板Plesk强强联合,推出 阿里云域名注册与备案、服务器ECS购买与登录使用 前言云服务器(Elastic 只需要确定cpu内存与带宽基本上就可以了,对于新手用户来说,我们在购买阿里云服务申请服务器与域名许多云服务商的云服务器配置是弹性的 三周学会小程序第三讲:服务 不过这个国外服务器有点慢,可以考虑国内的ngrokcc。 ngrokcc...
33.eee.com为你推荐
h连锁酒店世界知名的连锁酒店有哪些?怎么查询商标手机上能查询商标吗?怎么查?access数据库ACCESS数据库有什么用月神谭有没有什么好看的小说?拒绝言情小说!m.2828dy.combabady为啥打不开了,大家帮我提供几个看电影的网址www.vtigu.com如图,已知四边形ABCD是平行四边形,下列条件:①AC=BD,②AB=AD,③∠1=∠2④AB⊥BC中,能说明平行四边形抓站工具公司网站要备份,谁知道好用的网站抓取工具,能够抓取bbs论坛的。推荐一下,先谢过了!partnersonline电脑内一切浏览器无法打开haole012.com012.com网站真的可以挂Q升级吗?66smsm.comffff66com手机可以观看视频吗?
浙江vps 国外服务器 服务器怎么绑定域名 免费ddos防火墙 最好看的qq空间 租空间 骨干网络 阿里云浏览器 数字域名 七夕促销 softbank邮箱 admit的用法 空间合租 酷番云 国外视频网站有哪些 raid10 移动王卡 上海联通 windowsserver2008 什么是dns 更多