BayesianRobustLinearTransceiverDesignforDual-HopAmplify-and-ForwardMIMORelaySystemsChengwenXing,ShaodanMaandYik-ChungWuDepartmentofElectricalandElectronicEngineeringTheUniversityofHongKong,HongKongEmail:{cwxing,sdma,ycwu}@eee.
hku.
hkAbstract—Inthispaper,weaddresstherobustlineartransceiverdesignfordual-hopamplify-and-forward(AF)MIMOrelaysystems,wherebothtransmittersandreceivershaveimperfectchannelstateinformation(CSI).
WiththestatisticsofchannelestimationerrorsinthetwohopsbeingGaussian,wefor-mulatetherobustlinear-minimum-mean-square-error(LMMSE)transceiverdesignproblemusingtheBayesianframework,andderiveaclosed-formsolution.
Simulationresultsshowthattheproposedalgorithmreducesthesensitivityoftherelaysystemtochannelestimationerrors,andperformsbetterthanthealgorithmusingestimatedchannelonly.
I.
INTRODUCTIONRecently,cooperativecommunicationhasgainedsignicantinterest,duetoitsgreatpotentialstoimprovereliability,coverageandcapacityofwirelesslinks[1][2].
Generallyspeaking,therearethreekindsofrelayprotocols,amplify-and-forward(AF),compress-and-forward(CF)anddecode-and-forward(DF).
Amongthethreeschemes,AFisconceptuallythesimplestone,inwhichtherelayjustscalesthesignaltrans-mittedfromthesource,andthentransmitstothedestination.
Duetoitssimplicityandlowimplementationcomplexity,AFstrategyhasreceivedmanyresearchers'attention.
Ontheotherhand,itiswell-knownthatinfullyscatteredenvironments,multiantennasystemsprovidespatialdiversityandmultiplexinggains.
Thiskindofbenetscanbedirectlyintroducedintocooperativecommunicationsviadeploymentofmultipleantennasattransmittersandreceivers.
Thecom-binationofAFandMIMOsystemsbringsgreatpotentialsinperformanceimprovement.
LineartransceiverdesignforAFMIMOrelaysystemshasbeenaddressedin[2],[3],[4]and[5].
ThecapacityscalinglawofMIMOrelaynetworkshasbeendiscussedin[2].
Thelineartransceiverdesignforthexedrelayincellularnet-workshasbeenaddressedin[3].
Jointlinear-minimum-mean-square-error(LMMSE)transceiverdesignforAFMIMOrelaysystemsisconsideredin[4]and[5].
However,alloftheabovementionedworksrequirethechannelstateinformation(CSI)perfectlyknownatthetransmittersandreceivers.
Unfortunately,inpracticalsystems,channelestimationer-rorsareinevitable,whichshouldbetakenintoaccountintransceiverdesign.
Inthispaper,weproposearobustlineartransceiverdesignmethodforAFMIMOrelaysystems.
TheTheRelayTheDestinationTheSourcesNRNRMDMFGsrHrdHssFig.
1.
Amplify-and-forwardMIMOrelaydiagramchannelestimationerrorsaremodeledasGaussianrandomvariables.
ThestatisticsofthechannelestimationerrorsareincorporatedintothedesignusingtheBayesianframework,andaclosed-formsolutionisobtained.
Simulationresultsshowthattheproposedalgorithmperformsbetterthanthealgorithmusingestimatedchannelonly.
Thefollowingnotationsareusedthroughoutthispaper.
Boldfacelowercaselettersdenotevectors,whileboldfaceuppercaselettersdenotematrices.
ThenotationZHdenotestheHermitianofthematrixZ,andTr(Z)isthetraceofthematrixZ.
ThesymbolIMdenotesanM*Midentitymatrix,while0M,NdenotesanM*Nallzeromatrix.
ThenotationZ12istheHermitiansquarerootofthepositivesemidenitematrixZ,suchthatZ12Z12=ZandZ12isalsoaHermitianmatrix.
II.
PROBLEMFORMULATIONInthispaper,adual-hopamplify-and-forward(AF)cooper-ativecommunicationsystemisconsidered.
Intheconsideredsystem,thereisonesourcewithNSantennas,onerelaywithMRreceiveantennasandNRtransmitantennas,andonedestinationwithMDantennas,asshowninFig.
1.
Atthersthop,thesourcetransmitsdatatotherelay.
Thereceivedsignal,x,attherelayisx=Hsrs+n1(1)wheresisthedatavectortransmittedbythesourcewiththecovariancematrixRs=E{ssH}.
ThematrixHsristheMIMOchannelmatrixbetweenthesourceandtherelay.
Symboln1istheadditiveGaussiannoisewithcovariancematrixRn1.
Attherelay,thereceivedsignalxismultipliedbyaprecodermatrixF,underapowerconstraintTr(FRxFH)≤ThisfulltextpaperwaspeerreviewedatthedirectionofIEEECommunicationsSocietysubjectmatterexpertsforpublicationintheIEEE"GLOBECOM"2009proceedings.
978-1-4244-4148-8/09/$25.
002009PwhereRx=E{xxH}andPisthemaximumtransmitpower.
Thentheresultingsignalistransmittedtothedestina-tion.
Thereceivedsignalatthedestination,y,canbewrittenasy=HrdFHsrs+HrdFn1+n2,(2)whereHrdistheMIMOchannelmatrixbetweentherelayandthedestination,andn2istheadditiveGaussiannoisevectoratthesecondhopwithcovariancematrixRn2.
Inordertoguaranteethetransmitteddatascanberecoveredatthedestination,itisassumedthatMR,NR,andMDaregreaterthanorequaltoNS[4].
Itisassumedthatboththerelayanddestinationhavetheestimatedchannelstateinformation(CSI).
Whenchannelestimationerrorsareconsidered,wehaveHsr=Hsr+ΔHsr,Hrd=Hrd+ΔHrd,(3)wherethesymbolsHsrandHrdaretheestimatedCSI,whileΔHsrandΔHrdarethecorrespondingchannelestimationerrorswhoseelementsarezeromeanGaussianrandomvari-ables.
Ingeneral,theMR*NSmatrixΔHsrcanbewrittenasΔHsr=Σ12srHWΨ12srwheretheelementsoftheMR*NSmatrixHWareindependentandidenticallydistributed(i.
i.
d.
)Gaussianrandomvariableswithzeromeanandunitvariance.
TheMR*MRmatrixΣsrandNS*NSmatrixΨTsraretherowandcolumncovariancematricesofΔHsr,respectively[6].
Itiseasytoseethatvec(ΔHTsr)CN(0MR*NS,ΣsrΨTsr)basedonwhichΔHsrissaidtohaveamatrix-variatecomplexGaussiandistribution,whichcanbewrittenas[7]ΔHsrCNMR,NS(0MR,NS,ΣsrΨTsr),(4)withtheprobabilitydensityfunction(p.
d.
f.
)givenby[8][9]f(ΔHsr)=exp(Tr((ΔHsr0)HΣ1sr(ΔHsr0)Ψ1sr))(π)NSMRdet(Σsr)NSdet(Ψsr)MR.
(5)Similarly,fortheestimationerrorinthesecondhop,wehaveΔHrdCNMD,NR(0MD,NR,ΣrdΨTrd)(6)wheretheMD*MDmatrixΣrdandNR*NRmatrixΨTrdaretherowandcolumncovariancematricesofΔHrd,respectively.
Itisassumedthatthechannelestimationerrors,ΔHsrandΔHrd,areindependent.
Atthedestination,alinearequalizerGisadoptedtodetectthetransmitteddatas.
TheproblemishowtodesignthelinearprecodermatrixFattherelayandthelinearequalizerGatthedestinationtominimizethemeansquareerrors(MSE)ofthereceiveddataatthedestination:MSE(F,G)=E{Tr(Gys)(Gys)H},(7)wheretheexpectationistakenwithrespecttos,ΔHsr,ΔHrd,n1andn2.
III.
ROBUSTTRANSCEIVERDESIGNFORMIMORELAYA.
MSEAveragedoverChannelUncertaintiesSinces,n1andn2areindependent,theMSEexpression(7)canbewrittenasMSE(F,G)=E{(GHrdFHsrINS)s+GHrdFn1+Gn22}=EΔHsr,ΔHrd{Tr((GHrdFHsrI)Rs(GHrdFHsrI)H)}+EΔHrd{Tr(GHrdF)Rn1(GHrdF)H}+Tr(GRn2GH)=EΔHsr,ΔHrd{Tr(GHrdFHsr)Rs(GHrdFHsr)H}+TrGEΔHrd{HrdFRn1FHHHrd}GHTrRs(GHrdFHsr)HTrGHrdFHsrRs+Tr(Rs)+Tr(GRn2GH).
(8)BecauseΔHsrandΔHrdareindependent,thersttermofMSEisEΔHsr,ΔHrd{Tr(GHrdFHsr)Rs(GHrdFHsr)H}=TrGEΔHrdHrdFEΔHsr{HsrRsHHsr}FHHHrdGH.
(9)Fortheinnerexpectation,duetothefactthatthedistributionofΔHsrismatrix-variatecomplexGaussianwithzeromean,thefollowingequationholds[7]EΔHsr{HsrRsHHsr}=EΔHsr{(Hsr+ΔHsr)Rs(Hsr+ΔHsr)H}=Tr(RsΨsr)Σsr+HsrRsHHsrΠ0.
(10)Applying(10)andthecorrespondingresultforΔHrdto(9),thersttermofMSEbecomesTrGEΔHrdHrdFEΔHsr{HsrRsHHsr}FHHHrdGH=Tr(G(Tr(FΠ0FHΨrd)Σrd+HrdFΠ0FHHHrd)GH).
(11)Similarly,thesecondtermofMSEin(8)canbesimpliedasTrGEΔHrd{HrdFRn1FHHHrd}GH=Tr(GTr(FRn1FHΨrd)Σrd+HrdFRn1FHHHrdGH).
(12)Basedon(11)and(12),theMSE(8)equalstoMSE(F,G)=TrG(HrdFRxFHHHrd+K)GHTrRsHHsrFHHHrdGHTrRsGHrdFHsr+Tr(Rs)(13)whereRx=Π0+Rn1(14)K=Tr(F(Π0+Rn1)FHΨrd)Σrd+Rn2.
(15)NoticethatthematrixRxistheautocorrelationmatrixofthereceivesignalxattherelay.
ThisfulltextpaperwaspeerreviewedatthedirectionofIEEECommunicationsSocietysubjectmatterexpertsforpublicationintheIEEE"GLOBECOM"2009proceedings.
978-1-4244-4148-8/09/$25.
002009B.
JointRobustDesignofEqualizerandPrecoderSubjecttothetransmitpowerconstraintattherelay,thejointdesignofequalizerandprecodercanbeexpressedasthefollowingoptimizationproblemminF,GMSE(F,G)s.
t.
Tr(FRxFH)≤P.
(16)SincetheconstraintdoesnotinvolvetheequalizerG,whentheprecodermatrixFisxed,theoptimallinearequalizer,Gopt,satisesthefollowingconditionMSE(F,G)G=0,(17)basedonwhichwehaveGopt=Rs(HrdFHsr)H(HrdFRxFHHHrd+K)1.
(18)Substituting(18)into(13),theMSEatthedestinationequalstoMSE(F)=Tr(Rs)Tr(RsHHsr[FHHHrd(HrdFRxFHHHrd+K)1HrdF]HsrRs).
(19)SinceK12andRx12arebothHermitianmatrices,exploitingthematrixinversionlemma,wehaveFHHHrd(HrdFRxFHHHrd+K)1HrdF=RxH2RxH2FHHHrdKH2(K12HrdFRx12RxH2FHHHrdKH2+IMD)1K12HrdFRx12Rx12=Rx1RxH2(RxH2FHHHrdK1HrdFRx12+IMR)1Rx12.
(20)Putting(20)into(19),anddeningtheconstantpartcTr(Rs)Tr(RsHHsrRx1HsrRs),equation(19)canberewrittenasMSE(F)=Tr(RsHHsrRxH2(RxH2FHHHrdK1HrdFRx12+IMR)1Rx12HsrRs)+c.
(21)From(15),K=Tr(FRxFHΨrd)Σrd+Rn2,soMSE(F)isahighorderfunctionofFandtheproblemofminimizing(21)isverydifculttosolve.
Inordertoproceed,noticethat[10]Tr(FRxFH)λmax(Ψrd)Σrd+Rn2K,(22)whereλmax(Z)denotesthelargesteigenvalueofZ.
SincefortheminimumMSE,thecorrespondingtransmitpowermustbeontheboundary(i.
e.
,Tr(FRxFH)=P),wehavePλmax(Ψrd)Σrd+Rn2K.
AsshowninAp-pendixI,whenKin(21)isreplacedbyitsupper-boundΦPλmax(Ψrd)Σrd+Rn2,theresultantMSEexpression,denotedasMSEU(F)anddenedin(43),isanupper-boundofMSE(F)(i.
e.
,MSEU(F)≥MSE(F)).
Therefore,weproposetodesigntheprecoderFbyminimizingMSEU(F),whichcorrespondstominFTr(Rx12HsrRsRsHHsrRxH2T(RxH2FHHHrdΦ1HrdΘFRx12+IMR)1)s.
t.
Tr(FRxFH)≤P(23)wheretheconstantcisneglected,whichdoesnotaffecttheoptimizationproblem.
NoticethatwhenΨrd∝I,thereplacementinvolvesnoapproximation.
Basedoneigendecompostion,wehaveT=UTΛTUHT,(24)Θ=UΘΛΘUHΘ,(25)wherethematricesUTandUΘconsistoftheeigenvectorsofTandΘ,respectively,whilethediagonalmatricesΛTandΛΘcontainstheeigenvaluesofTandΘ,respectively.
Withoutlossofgenerality,itisassumedthatthediagonalelementsofΛTandΛΘareindecreasingorder.
Substituting(24)and(25)into(23)anddeningFUHΘFRx12UT,(26)theoptimizationproblemcanbewritteninacompactformasminFTrΛT(FHΛΘF+IMR)1s.
t.
Tr(FFH)≤P.
(27)Fortheobjectivefunctionof(27),noticethatTr(ΛTB)≥MRi=1λT,iλB,MRi+1(28)whereBisdenedasB(FHΛΘF+IMR)1,λB,iistheithlargesteigenvalueofB,andthesymbolλT,idenotestheithdiagonalelementofΛT.
In(28),theequalityholdswhenthematrixBisdiagonalwithdiagonalelementsinincreasingorder[11,9.
H.
1.
h].
Therefore,fortheoptimalsolution,(FHΛΘF+IMR)1mustbediagonalwithdiagonalelementsinincreasingorder.
Basedonthediagonalstructure,introducingapermutationmatrixwithdimensionM*MasQM=0010.
.
.
0100M,(29)theobjectivefunctionoftheoptimizationproblem(27)canberewrittenasTrΛT(FHΛΘF+IMR)1=TrΛT(FHΛΘF+IMR)1(30)whereΛT=QMRΛTQMRandΛΘ=QNRΛΘQNRareΛTandΛΘwithdiagonalelementsinreverseorder,andF=ThisfulltextpaperwaspeerreviewedatthedirectionofIEEECommunicationsSocietysubjectmatterexpertsforpublicationintheIEEE"GLOBECOM"2009proceedings.
978-1-4244-4148-8/09/$25.
002009QNRFQMR.
WiththefactthatΛTisadiagonalmatrix,theoptimizationproblem(27)canbereformulatedasminf0(b)=dT{ΛT}d{(FHΛΘF+IMR)1}bs.
t.
Tr(FHF)≤P,(31)wherethesymbold{Z}denotesthevectorformedfromthemaindiagonalofZ.
Noticethatbecauseofthepermutationmatrices,theorderofbisthereversetothatofthemaindiagonalofB(i.
e.
,theelementsofbareindecreasingorder).
TogetherwiththefactthatthediagonalelementsofΛTareinincreasingorder,thefunctionf0(b)isSchur-concave[11,3.
H.
3].
Basedon[12,Theorem1],theoptimalF=QNRFQMRfortheproblem(31)haszeroelementsexceptalongtherightmostmaindiagonal.
DeningN=min(Rank(ΛΘ),MR),theoptimalFhasthefollowingstruc-tureF=diag(f1,fN)0N*(MRN)0(NRN)*N0(NRN)*(MRN).
(32)With(32),theoptimizationproblem(27)canberewrittenasminf2iNi=1λT,iλΘ,if2i+1+MRi=N+1λT,is.
t.
Ni=1f2i≤P(33)whereλΘ,idenotestheithdiagonalelementofΛΘ.
Obvi-ously,thesolutionoftheproblem(33)isthemodiedwater-lling[13],andbasedontheKarush-Kuhn-Tucker(KKT)conditionsof(33),wehave[14]f2i,opt=λT,iμλΘ,i1λΘ,i+i=1,N(34)whereμ>0istheLagrangianmultipliersuchthatNi=1f2i,opt=Pholds.
FromthedenitionofFin(26),(32)and(34),wecanwritetheoptimalFcompactlyasFopt=UΘ,N1√μΛ12ΘΛ12TΛ1Θ+12UHT,NRx12(35)where[(Z)+]i,j=max(0,(Z)i,j).
ThematricesΛΘandΛTaretheprinciplesubmatricesofΛΘandΛTwithdimensionsN*N.
ThematricesUΘ,NandUT,NaretherstNcloumnsofUΘandUT,respectively.
Noticethatwhenthesource-relaylinkisnoiselessandthechannelrealizationisperfectlyknown,equation(35)reducestothepoint-to-pointMIMOrobustLMMSEtransceiver[15].
Ifbothtwochannelsareexactlyknown,(35)isexactlythesolutionin[5].
IV.
NUMERICALEXPERIMENTSInthissection,simulationresultswillbeshowntoverifytheeffectivenessoftheproposedalgorithm.
Inthispaper,thesource,relayanddestinationareallequippedwith3antennas.
Atthesource,itisassumedthatthetransmitpowerTr(Rs)=20dBandthemodulationschemeisQPSK.
Theestimatedchannelmatrices,HsrandHrd,areHsr=0.
27140.
3487i0.
61700.
4784i0.
2315+0.
5103i0.
2354+0.
2462i0.
3534+0.
1253i0.
19640.
7238i1.
18090.
3305i0.
3179+2.
3439i0.
19891.
1954iHrd=0.
90020.
4583i0.
96460.
6782i0.
9360+1.
1348i0.
9969+0.
1589i0.
2910+0.
3071i0.
60350.
4315i0.
67981.
1627i0.
7557+0.
3929i0.
37420.
0623i.
(36)TheestimationerrorcorrelationmatricesareassumedtobeΣsr=1ββ2β1ββ2β1Σrd=1ββ2β1ββ2β1Ψsr=0.
031αα2α1αα2α1Ψrd=0.
041αα2α1αα2α1.
(37)Ineachsimulationrun,channelestimationerrors,ΔHsrandΔHrd,aregeneratedindependently,accordingto(4)and(6),respectively,and1000trialsareaveragedtogiveeachpointinthegures.
Fig.
2showstheMSEofthereceivedsignalatthedesti-nationversusthetransmitpowerattherelayP,forthealgo-rithmusingestimatedchannelmatricesonlyandtheproposedBayesianalgorithm,withdifferentvaluesofβ,whenα=0.
4.
Itcanbeseenthatingeneral,thewholesystemperformancedegradeswhenthecorrelationfactorβincreases.
Thisisduetothefactthatchannelcorrelationsreducethenumberofeffectiveeigenchannels[6].
However,theperformanceoftheproposedalgorithmissignicantlybetterthanthealgorithmusingestimatedchannelmatricesonly,regardlessofthevalueofβ.
Fig.
3showsthecorrespondingresultsfordifferentvaluesofα,whenβ=0.
4.
AsimilarconclusiontothatofFig.
2canbedrawn.
V.
CONCLUSIONSInthispaper,wepresentedthejointdesignoflineartransceiversforAFMIMOrelaysystemsundertheknowledgeofestimatedchannelanderrorcovariancematrices.
Thestatis-ticsofchannelestimationerrorswereincorporatedintothetransceiverdesignusingtheBayesianframework.
Aclosed-formsolutionhasbeenderivedandtwoexistingalgorithmswereshowntobespecialcasesofourframework.
Fromthesimulations,itwasfoundthattheproposedalgorithmreducesthesensitivityoftherelaysystemtochannelestimationerrors,andimprovesthesystemperformancegreatly,comparedtothealgorithmusingestimatedchannelonly.
ThisfulltextpaperwaspeerreviewedatthedirectionofIEEECommunicationsSocietysubjectmatterexpertsforpublicationintheIEEE"GLOBECOM"2009proceedings.
978-1-4244-4148-8/09/$25.
002009051015202530100.
7100.
6100.
5100.
4100.
3100.
2α=0.
4P(dB)MSEAlgorithmbasedonestimatedCSI,β=0.
9AlgorithmbasedonestimatedCSI,β=0.
45AlgorithmbasedonestimatedCSI,β=0Proposedalgorithm,β=0.
9Proposedalgorithm,β=0.
45Proposedalgorithm,β=0β=0.
9β=0.
45β=0Fig.
2.
MSEversustransmitpowerattherelayforthealgorithmbasedonestimatedchannelandtheproposedBayesianalgorithm,withdifferentvaluesofβ,whenα=0.
4051015202530100.
7100.
6100.
5100.
4100.
3100.
2β=0.
4P(dB)MSEAlgorithmbasedonestimatedCSI,α=0.
9AlgorithmbasedonestimatedCSI,α=0.
45AlgorithmbasedonestimatedCSI,α=0Proposedalgorithm,α=0.
9Proposedalgorithm,α=0.
45Proposedalgorithm,α=0α=0.
9α=0.
45α=0Fig.
3.
MSEversustransmitpowerattherelayforthealgorithmbasedonestimatedchannelandtheproposedBayesianalgorithmwithdifferentvaluesofα,whenβ=0.
4APPENDIXIForpositiveHermitianmatrices,MandN,ifMN,thefollowinginequalityholds[10,7.
7.
4]N1M1.
(38)Furthermore,foranymatrixA,theinequalityAHN1AAHM1A(39)alwaysholds[10,7.
7.
3.
a].
Addinganidentitymatrixonbothsidesof(39),theinequalitysigndoesnotchange.
Togetherwith(38),wehave(AHM1A+I)1(AHN1A+I)1.
(40)Withtheresultin(39),foranarbitrarymatrixB,wehaveBH(AHM1A+I)1BBH(AHN1A+I)1B.
(41)PuttingA=HrdFRx12,B=Rx12HsrRs,N=KandM=Tr(FRxFH)λmax(Ψrd)Σrd+Rn2,andtakingthetraceonbothsidesof(41),wehaveMSEU(F)≥MSE(F)(42)whereMSEU(F)isdenedasMSEU(F)=Tr(RsHHsrRxH2(RxH2FHHHrdM1HrdFRx12+IMR)1Rx12HsrRs)+c,(43)andMSE(F)isdenedin(21).
ACKNOWLEDGEMENTThisstudywaspartiallysupportedbyagrantfromtheResearchGrantsCounciloftheHongKongSAR.
REFERENCES[1]A.
Scaglione,D.
L.
Goeckel,andJ.
N.
Laneman,"Cooperativecom-municationsinmobileAdHocnetworks,"IEEESignalProcessingMagazine,pp.
18–29,Sept.
2006.
[2]H.
Bolcskei,R.
U.
Nabar,O.
Oyman,andA.
J.
Paulraj,"CapacityscalinglawsinMIMOrelaynetworks,"IEEETrans.
onWirelessComm.
,vol.
5,no.
6,pp.
1433–1443,June2006.
[3]C.
-B.
Chae,T.
Tang,R.
W.
Health,andS.
Cho,"MIMOrelayingwithlinearprocessingformultiusertransmissioninxedrelaynetworks,"IEEETrans.
onSignalProcessing,vol.
56,no.
2,pp.
727–738,Feb.
2008.
[4]A.
S.
Behbahani,R.
Merched,andA.
M.
Eltawil,"OptimizationsofaMIMOrelaynetwork,"IEEETrans.
onSignalProcessing,vol.
56,no.
10,part2,pp.
5062–5073,Oct.
2008.
[5]W.
GuanandH.
Luo,"JointMMSEtransceiverdesigninnon-regenerativeMIMOrelaysystems,"IEEECommunicationsLetters,vol.
12,issue7,pp.
517–519,July2008.
[6]E.
G.
LarssonandP.
Stoica,Space-TimeBlockCodingforWirelessCommunications,CambridgeUniversityPress,2003.
[7]A.
GuptaandD.
Nagar,MatrixVariatesDistributions,London,U.
K.
,Chapamn&Hall/CRC,2000.
[8]A.
P.
Dawid,"Somematrix-variatedistributiontheory:Notationalcon-siderationsandaBayesianapplication,"OxfordJournals,Mathematics&PhysicalSciences,vol.
68,no.
1,pp.
265–274,1981.
[9]A.
T.
James,"Dstributionsofmatrixvariatesandlatentrootsderivedfromnormalsamples,"Ann.
Math.
Statistics,vol.
35,pp.
475–501,1964.
[10]R.
A.
HornandC.
R.
Johnson,MatrixAnalysis,CambridgeUniversityPress,1985.
[11]A.
W.
MarshallandI.
Olkin,Inequalities:TheoryofMajorizationandItsApplication,NewYork,AcademicPress,1979.
[12]D.
P.
Palomar,J.
M.
Ciof,andM.
A.
Lagunas,"JointTx-Rxbeam-formingdesignformulticarrierMIMOchannels:Auniedframeworkforconvexoptimization,"IEEETrans.
onSignalProcessing,vol.
51,no.
9,pp.
2381–2401,Sep.
2003.
[13]F.
FrachineiandJ.
Pang,Finite-DimensionalVariationalInequalitiesandComplementarityProblems,SpringSeriesinOperationResearch,VolumeI,2003.
[14]S.
BoydandL.
Vandenberghe,ConvexOptimization,CambridgeUni-versityPress,2004.
[15]X.
Zhang,D.
P.
Palomar,andB.
Ottersten,"StatisticallyrobustdesignoflinearMIMOtransceiver,"IEEETrans.
onSignalProcessing,vol.
56,no.
8,pp.
3678–3689,Aug.
2008.
ThisfulltextpaperwaspeerreviewedatthedirectionofIEEECommunicationsSocietysubjectmatterexpertsforpublicationintheIEEE"GLOBECOM"2009proceedings.
978-1-4244-4148-8/09/$25.
002009
已经有一段时间没有听到Gigsgigscloud服务商的信息,这不今天看到商家有新增一款国际版线路的美国VPS主机,年付也是比较便宜的只需要26美元。线路上是接入Cogentco、NTT、AN2YIX以及其他亚洲Peering。这款方案的VPS主机默认的配置是1Gbps带宽,比较神奇的需要等待手工人工开通激活,不是立即开通的。我们看看这款服务器在哪里选择看到套餐。内存CPUSSD流量价格购买地址1...
瓜云互联一直主打超高性价比的海外vps产品,主要以美国cn2、香港cn2线路为主,100M以内高宽带,非常适合个人使用、企业等等!安全防护体系 弹性灵活,能为提供简单、 高效、智能、快速、低成本的云防护,帮助个人、企业从实现网络攻击防御,同时也承诺产品24H支持退换,不喜欢可以找客服退现,诚信自由交易!官方网站:点击访问瓜云互联官网活动方案:打折优惠策略:新老用户购买服务器统统9折优惠预存返款活动...
RAKsmart发布了9月份优惠促销活动,从9月1日~9月30日期间,爆款美国服务器每日限量抢购最低$30.62-$46/月起,洛杉矶/圣何塞/香港/日本站群大量补货特价销售,美国1-10Gbps大带宽不限流量服务器低价热卖等。RAKsmart是一家华人运营的国外主机商,提供的产品包括独立服务器租用和VPS等,可选数据中心包括美国加州圣何塞、洛杉矶、中国香港、韩国、日本、荷兰等国家和地区数据中心(...
33.eee.com为你推荐
汇通物流汇通快运 这是怎么回事?2020双十一成绩单2020双十一尾款如何合并付款?微信回应封杀钉钉为什么微信被封以后然后解封了过了一会又被封了嘉兴商标注册我在濮院想注册一个羊毛衫商标?该怎么做?嘀动网在炫动网买鞋怎么样,是真的吗haole018.comhttp://www.haoledy.com/view/32092.html 轩辕剑天之痕11、12集在线观看同一服务器网站服务器建设:一个服务器有多个网站该如何设置?se95se.comwww.sea8.com这个网站是用什么做的 需要多少钱www.dm8.cc有谁知道海贼王最新漫画网址是多少??官人放题SBNS-088 中年男の夢を叶えるセックス やりたい放題! 4(中文字幕)种子下载地址有么?好人一生平安
美国和欧洲vps 提供香港vps hawkhost优惠码 xen 国内php空间 好看qq空间 vip购优汇 腾讯实名认证中心 东莞数据中心 重庆双线服务器托管 gtt 网游服务器 无限流量 中国联通宽带测速 美国迈阿密 中国电信宽带测速 葫芦机 magento主机 qq空间打开很慢 此网页包含的内容将不使用安全的https 更多